
Network Working Group M. Eisler
Request for Comments: 2847 Zambeel
Category: Standards Track June 2000

 LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memorandum describes a method whereby one can use GSS-API
 [RFC2078] to supply a secure channel between a client and server,
 authenticating the client with a password, and a server with a public
 key certificate. As such, it is analogous to the common low
 infrastructure usage of the Transport Layer Security (TLS) protocol
 [RFC2246].

 The method leverages the existing Simple Public Key Mechanism (SPKM)
 [RFC2025], and is specified as a separate GSS-API mechanism (LIPKEY)
 layered above SPKM.

Table of Contents

 1. Introduction . 2
 2. LIPKEY’s Requirements of SPKM 4
 2.1. Mechanism Type . 4
 2.2. Name Type . 4
 2.3. Algorithms . 5
 2.3.1. MANDATORY Algorithms 5
 2.3.2. RECOMMENDED Integrity Algorithms (I-ALG) 7
 2.4. Context Establishment Tokens 8
 2.4.1. REQ-TOKEN Content Requirements 8
 2.4.1.1. algId and req-integrity 8
 2.4.1.2. Req-contents . 8
 2.4.1.2.1. Options . 9
 2.4.1.2.2. Conf-Algs . 9
 2.4.1.2.3. Intg-Algs . 9

Eisler Standards Track [Page 1]

RFC 2847 LIPKEY June 2000

 2.4.2. REP-TI-TOKEN Content Requirements 9
 2.4.2.1. algId . 9
 2.4.2.2. rep-ti-integ . 9
 2.5. Quality of Protection (QOP) 10
 3. How LIPKEY Uses SPKM . 11
 3.1. Tokens . 11
 3.2. Initiator . 11
 3.2.1. GSS_Import_name . 11
 3.2.2. GSS_Acquire_cred . 11
 3.2.3. GSS_Init_sec_context 12
 3.2.3.1. LIPKEY Caller Specified anon_req_flag as TRUE 12
 3.2.3.2. LIPKEY Caller Specified anon_req_flag as FALSE 13
 3.2.4. Other operations . 14
 3.3. Target . 14
 3.3.1. GSS_Import_name . 14
 3.3.2. GSS_Acquire_cred . 14
 3.3.3. GSS_Accept_sec_context 15
 4. LIPKEY Description . 15
 4.1. Mechanism Type . 15
 4.2. Name Types . 15
 4.3. Token Formats . 16
 4.3.1. Context Tokens . 16
 4.3.1.1. Context Tokens Prior to SPKM-3 Context Establishment . 16
 4.3.1.2. Post-SPKM-3 Context Establishment Tokens 16
 4.3.1.2.1. From LIPKEY Initiator 17
 4.3.1.2.2. From LIPKEY Target 17
 4.3.2. Tokens from GSS_GetMIC and GSS_Wrap 17
 4.4. Quality of Protection 18
 5. Security Considerations 18
 5.1. Password Management 18
 5.2. Certification Authorities 18
 5.3. HMAC-MD5 and MD5 Weaknesses 18
 5.4. Security of cast5CBC 18
 References . 19
 Acknowledgments . 21
 Author’s Address . 21
 Full Copyright Statement . 22

1. Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This memorandum describes a new security mechanism under the GSS-API
 called the Low Infrastructure Public Key Mechanism (LIPKEY). GSS-API
 provides a way for an application protocol to implement
 authentication, integrity, and privacy. TLS is another way. While TLS

Eisler Standards Track [Page 2]

RFC 2847 LIPKEY June 2000

 is in many ways simpler for an application to incorporate than GSS-
 API, there are situations where GSS-API might be more suitable.
 Certainly this is the case with application protocols that run over
 connectionless protocols. It is also the case with application
 protocols such as ONC RPC [RFC1831] [RFC2203], which have their own
 security architecture, and so do not easily mesh with a protocol like
 TLS that is implemented as a layer that encapsulates the upper layer
 application protocol. GSS-API allows the application protocol to
 encapsulate as much of the application protocol as necessary.

 Despite the flexibility of GSS-API, it compares unfavorably with TLS
 with respect to the perception of the amount of infrastructure
 required to deploy it. The better known GSS-API mechanisms, Kerberos
 V5 [RFC1964] and SPKM require a great deal of infrastructure to set
 up. Compare this to the typical TLS deployment scenario, which
 consists of a client with no public key certificate accessing a
 server with a public key certificate. The client:

 * obtains the server’s certificate,

 * verifies that it was signed by a trusted Certification Authority
 (CA),

 * generates a random session symmetric key,

 * encrypts the session key with the server’s public key, and

 * sends the encrypted session key to the server.

 At this point, the client and server have a secure channel. The
 client can then provide a user name and password to the server to
 authenticate the client. For example, when TLS is being used with the
 http protocol, once there is a secure channel, the http server will
 present the client with an html page that prompts for a user name and
 password. This information is then encrypted with the session key and
 sent to the server. The server then authenticates the client.

 Note that the client is not required to have a certificate for itself
 to identify and authenticate it to the server. In addition to a TLS
 implementation, the required security infrastructure includes a
 public key certificate and password database on the server, and a
 list of trusted CAs and their public keys on the client. Most
 operating systems that the http server would run on already have a
 native password database, so the net additional infrastructure is a
 server certificate and CA list. Hence the term "low infrastructure
 security model" to identify this typical TLS deployment scenario.

Eisler Standards Track [Page 3]

RFC 2847 LIPKEY June 2000

 By using unilateral authentication, and using a mechanism resembling
 the SPKM-1 mechanism type, SPKM can offer many aspects of the
 previously described low infrastructure security model. An
 application that uses GSS-API is certainly free to use GSS-API’s
 GSS_Wrap() routine to encrypt a user name and password and send them
 to the server, for it to decrypt and verify.

 Applications often have application protocols associated with them,
 and there might not be any provision in the protocol to specify a
 password. Layering a thin GSS-API mechanism over a mechanism
 resembling SPKM-1 can mitigate this problem. This can be a useful
 approach to avoid modifying applications that have already bound to
 GSS-API, assuming the applications are not statically bound to
 specific GSS-API mechanisms. The remainder of this memorandum
 defines the thin mechanism: the Low Infrastructure Public Key
 Mechanism (LIPKEY).

2. LIPKEY’s Requirements of SPKM

 SPKM-1 with unilateral authentication is close to the desired low
 infrastructure model described earlier. This section describes some
 additional changes to how SPKM-1 operates in order to realize the low
 infrastructure model. These changes include some minor changes in
 semantics. While it would be possible to implement these semantic
 changes within an SPKM-1 implementation (including using the same
 mechanism type Object Identifier (OID) as SPKM-1), the set of changes
 stretch the interpretation of RFC 2025 to the point where
 compatibility would be in danger. A new mechanism type, called SPKM-
 3, is warranted. LIPKEY requires that the SPKM implementation support
 SPKM-3. SPKM-3 is equivalent to SPKM-1, except as described in the
 remainder of this section.

2.1. Mechanism Type

 SPKM-3 has a different mechanism type OID from SPKM-1.

 spkm-3 OBJECT IDENTIFIER ::=
 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)spkm(1)spkm-3(3)}

2.2. Name Type

 RFC 2025 defines no required name types of SPKM. LIPKEY requires that
 the SPKM-3 implementation support all the mechanism independent name
 types in RFC 2078.

Eisler Standards Track [Page 4]

RFC 2847 LIPKEY June 2000

2.3. Algorithms

2.3.1. MANDATORY Algorithms

 RFC 2025 defines various algorithms for integrity, confidentiality,
 key establishment, and subkey derivation. Except for
 md5WithRSAEncryption, the REQUIRED Key Establishment (K-ALG),
 Integrity (I-ALG) and One-Way Functions for Subkey Derivation (O-ALG)
 algorithms listed in RFC 2025 continue to be REQUIRED.

 SPKM is designed to be extensible with regard to new algorithms. In
 order for LIPKEY to work correctly and securely, the following
 algorithms MUST be implemented in SPKM-3:

 * Integrity algorithms (I-ALG)

 NULL-MAC
 Because the initiator may not have a certificate for itself,
 nor for the target, it is not possible for it to calculate an
 Integrity value in the initiator’s REQ-TOKEN that is sent to
 the target. So we define, in ASN.1 [CCITT] syntax, a null I-
 ALG that returns a zero length bit string regardless of the
 input passed to it:

 NULL-MAC OBJECT IDENTIFIER ::=
 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 integrity(3)NULL-MAC(3)}

 id-dsa-with-sha1
 This is the signature algorithm as defined in Section 7.2.2
 of [RFC2459]. As noted in RFC 2459, the ASN.1 OID used to
 identify this signature algorithm is:

 id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040)
 x9cm(4) 3
 }

 Note that there is a work-in-progress [PKIX] to obsolete RFC
 2459. However that work-in-progress does not change the
 definition of id-dsa-with-sha1.

 HMAC-MD5
 A consequence of the SPKM-3 initiator not having a
 certificate is that it cannot use a digital signature
 algorithm like md5WithRSAEncryption, id-dsa-with-sha1, or
 sha1WithRSAEncryption once the context is established.
 Instead, a message authentication code (MAC) algorithm is

Eisler Standards Track [Page 5]

RFC 2847 LIPKEY June 2000

 required. DES-MAC is specified as recommended in [RFC2025].
 Since the security of 56 bit DES has been shown to be
 inadequate [EFF], SPKM-3 needs a stronger MAC. Thus, SPKM-3
 MUST support the HMAC-MD5 algorithm [RFC2104], with this OID:

 HMAC-MD5 OBJECT IDENTIFIER ::= {
 iso(1) org(3) dod(6) internet(1) security(5)
 mechanisms(5) ipsec(8) isakmpOakley(1)
 1
 }

 The reference for the algorithm OID of HMAC-MD5 is [IANA].
 The reference for the HMAC-MD5 algorithm is [RFC2104].

 The HMAC-SHA1 algorithm is not a mandatory SPKM-3 I-ALG MAC
 because SHA-1 is about half the speed of MD5 [Young]. A MAC
 based on an encryption algorithm like cast5CBC, DES EDE3, or
 RC4 is not mandatory because MD5 is 31 percent faster than
 the fastest of the three encryption algorithms [Young].

 * Confidentiality algorithm (C-ALG).

 RFC 2025 does not have a MANDATORY confidentiality algorithm,
 and instead has RECOMMENDED a 56 bit DES algorithm. Since the
 LIPKEY initiator needs to send a password to the target, and
 since 56 bit DES has been demonstrated as inadequate [EFF],
 LIPKEY needs stronger encryption. Thus, SPKM-3 MUST support this
 algorithm:

 cast5CBC OBJECT IDENTIFIER ::= {
 iso(1) memberBody(2) usa(840) nt(113533) nsn(7)
 algorithms(66) 10
 }

 Parameters ::= SEQUENCE {
 iv OCTET STRING DEFAULT 0, -- Initialization vector
 keyLength INTEGER -- Key length, in bits
 }

 The reference for the OID and description of the cast5CBC
 algorithm is [RFC2144]. The keyLength in the Parameters MUST be
 set to 128 bits.

 A triple DES (DES EDE3) algorithm is not a mandatory SPKM-3 C-
 ALG because it is much slower than cast5CBC. One set of
 measurements [Young] on a Pentium Pro 200 megahertz processor
 using the SSLeay code, showed that DES EDE3 performed as high as
 1,646,210 bytes per second, using 1024 byte blocks. The same

Eisler Standards Track [Page 6]

RFC 2847 LIPKEY June 2000

 test bed yielded performance of 7,147,760 bytes per second for
 cast5CBC, and 22,419,840 bytes per second for RC4. Most TLS
 sessions negotiate the RC4 cipher. Given that LIPKEY is targeted
 at environments similar to that where TLS is deployed, selecting
 a cipher that is over 13 times slower (and over 13 times more
 CPU intensive) than RC4 would severely impede the usefulness of
 LIPKEY. For performance reasons, RC4 would be the preferred
 mandatory algorithm for SPKM-3. Due to intellectual property
 considerations with RC4 [Schneier], the combination of
 cast5CBC’s reasonable performance, and its royalty-free
 licensing terms [RFC2144] make cast5CBC the optimal choice among
 DES EDE3, RC4, and cast5CBC.

 * Key Establishment Algorithm (K-ALG)

 RFC 2025 lists dhKeyAgreement [PKCS-3] as an apparently optional
 algorithm. As will be described later, the RSAEncryption key
 establishment algorithm is of no use for a low infrastructure
 security mechanism as defined by this memorandum. Hence, in
 SPKM-3, dhKeyAgreement is a REQUIRED key establishment
 algorithm:

 dhKeyAgreement OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-3(3) 1
 }

 * One-Way Function for Subkey Derivation Algorithm (O-ALG)

 RFC 2025 lists MD5 as a mandatory algorithm. Since MD5 has been
 found to have weaknesses when used as a hash [Dobbertin], id-
 sha1 is a MANDATORY O-ALG in SPKM-3:

 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14)
 secsig(3) algorithms(2) 26
 }

 The reference for the algorithm OID of id-sha1 is [RFC2437].
 The reference for SHA-1 algorithm corresponding to id-sha1 is
 [FIPS].

2.3.2. RECOMMENDED Integrity Algorithms (I-ALG)

 md5WithRSAEncryption
 The md5WithRSAEncryption integrity algorithm is listed in
 [RFC2025] as mandatory. Due to intellectual property
 considerations [RSA-IP], SPKM-3 implementations cannot be

Eisler Standards Track [Page 7]

RFC 2847 LIPKEY June 2000

 required to implement it. However, given the proliferation of
 certificates using RSA public keys, md5WithRSAEncryption is
 strongly RECOMMENDED. Otherwise, the opportunities for LIPKEY to
 leverage existing public key infrastructure will be limited.

 sha1WithRSAEncryption
 For reasons similar to that for md5WithRSAEncryption,
 sha1WithRSAEncryption is a RECOMMENDED algorithm. The
 sha1WithRSAEncryption algorithm is listed in addition to
 md5WithRSAEncryption due to weaknesses in the MD5 hash algorithm
 [Dobbertin]. The OID for sha1WithRSAEncryption is:

 sha1WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 5
 }

 The reference for the algorithm OID and description of
 sha1WithRSAEncryption is [RFC2437].

2.4. Context Establishment Tokens

 RFC 2025 sets up a context with an initiator first token (REQ-TOKEN),
 a target reply (REP-TI-TOKEN), and finally an initiator second token
 (REP-IT-TOKEN) to reply to the target’s reply. Since LIPKEY uses
 SPKM-3 with unilateral authentication, the REP-IT-TOKEN is not used.
 LIPKEY has certain requirements on the contents of the REQ-TOKEN and
 REP-TI-TOKEN, but the syntax of the SPKM-3 tokens is not different
 from RFC 2025’s SPKM-1 tokens.

2.4.1. REQ-TOKEN Content Requirements

2.4.1.1. algId and req-integrity

 If the SPKM-3 initiator cannot calculate a req-integrity field due to
 the lack of a target certificate, it MUST use the NULL-MAC I-ALG
 described earlier in this memorandum. This will produce a zero length
 bit string in the Integrity field.

2.4.1.2. Req-contents

 Because RFC 2025 requires that the RSAEncryption K-ALG be present,
 SPKM-1 must be able to map the target (targ-name) to its public key
 certificate, and thus SPKM can use the RSAEncryption algorithm to
 fill in the key-estb-req field. Because LIPKEY assumes a low
 infrastructure deployment, SPKM-3 MUST be prepared to be unable to
 map the targ-name field of the Req-contents field. This is a
 contradiction which is resolved by requiring SPKM-3 to support the

Eisler Standards Track [Page 8]

RFC 2847 LIPKEY June 2000

 dhKeyAgreement algorithm. Note that if an SPKM-3 implementation tries
 to map the target to a certificate, and succeeds, it is free to use
 the RSAEncryption K-ALG algorithm. It is also free to use an algID
 other than NULL-MAC in the REQ-TOKEN type.

2.4.1.2.1. Options

 SPKM-3 implementations MUST set the target-certif-data-required bit
 to 1 if the only K-ALG in the key-estb-set field of Req-contents is
 dhKeyAgreement. This would normally occur if the SPKM-3
 implementation cannot resolve the target name to a certificate.

2.4.1.2.2. Conf-Algs

 If the SPKM-3 implementation supports an algorithm weaker than
 cast5CBC, cast5CBC MUST be listed before the weaker algorithm to
 encourage the target to negotiate the stronger algorithm.

2.4.1.2.3. Intg-Algs

 Because the initiator will be anonymous (at the SPKM-3 level) and
 will not have a certificate for itself, the initiator cannot use an
 integrity algorithm that supports non-repudiation; it must use a MAC
 algorithm. If the SPKM-3 implementation supports an algorithm weaker
 than HMAC-MD5, HMAC-MD5 MUST be listed before the weaker algorithm to
 encourage the target to negotiate the stronger algorithm.

2.4.2. REP-TI-TOKEN Content Requirements

 With the previously described requirements on REQ-TOKEN, the contents
 of SPKM-3’s REP-TI-TOKEN can for the most part be derived from the
 specification in RFC 2025. The exceptions are the algId and rep-ti-
 integ fields.

2.4.2.1. algId

 The SPKM-3 target MUST NOT use a NULL-MAC I-ALG; it MUST use a
 signature algorithm like id-dsa-with-sha1, md5WithRSAEncryption, or
 sha1WithRSAEncryption.

2.4.2.2. rep-ti-integ

 If the req-token has an algId of NULL-MAC, then the target MUST
 compute the rep-ti-integ on the concatenation of the req-contents and
 rep-ti-contents.

Eisler Standards Track [Page 9]

RFC 2847 LIPKEY June 2000

2.5. Quality of Protection (QOP)

 The SPKM-3 initiator and target negotiate the set of algorithms they
 mutually support, using the procedure defined in Section 5.2 of RFC
 2025. If a QOP of zero is specified, then the initiator and target
 will use the first C-ALG (privacy), and I-ALG (integrity) algorithms
 negotiated.

 SPKM breaks the QOP into several fields, as reproduced here from
 Section 5.2 of RFC 2025:

 Confidentiality Integrity
 31 (MSB) 16 15 (LSB) 0
 -------------------------------|-------------------------------
 | TS(5) | U(3) | IA(4) | MA(4) | TS(5) | U(3) | IA(4) | MA(4) |
 -------------------------------|-------------------------------

 The MA subfields enumerate mechanism-defined algorithms. Since this
 memorandum introduces a new mechanism, SPKM-3, within the SPKM
 family, it is appropriate to add algorithms to the MA subfields of
 the respective Confidentiality and Integrity fields.

 The complete set of Confidentiality MA algorithms is thus:

 0001 (1) = DES-CBC
 0010 (2) = cast5CBC

 Where "0001" and "0010" are in base 2. An SPKM peer that negotiates
 a confidentiality MA algorithm value of "0010" MUST use a 128 bit
 key, i.e. set the keyLength values in the cast5CBC Parameters to 128
 bits.

 The complete set of Integrity MA algorithms is thus:

 0001 (1) = md5WithRSAEncryption
 0010 (2) = DES-MAC
 0011 (3) = id-dsa-with-sha1
 0100 (4) = HMAC-MD5
 0101 (5) = sha1WithRSAEncryption

 Where "0001" through "0101" are in base 2.

 Adding support for cast5CBC, id-dsa-with-sha1, HMAC-MD5, and
 sha1WithRSAEncryption in the above manner to SPKM-1 and SPKM-2 does
 not impair SPKM-1 and SPKM-2 backward compatibility because, as noted
 previously, SPKM negotiates algorithms. An older SPKM-1 or SPKM-2
 that does not recognize MA values for cast5CBC, id-dsa-with-sha1,
 HMAC-MD5, or sha1WithRSAEncryption will not select them.

Eisler Standards Track [Page 10]

RFC 2847 LIPKEY June 2000

3. How LIPKEY Uses SPKM

3.1. Tokens

 LIPKEY will invoke SPKM-3 to produce SPKM tokens. Since the mechanism
 that the application uses is LIPKEY, LIPKEY will wrap some of the
 SPKM-3 tokens with LIPKEY prefixes. The exact definition of the
 tokens is described later in this memorandum.

3.2. Initiator

3.2.1. GSS_Import_name

 The initiator uses GSS_Import_name to import the target’s name,
 typically, but not necessarily, using the GSS_C_NT_HOSTBASED_SERVICE
 name type. Ultimately, the output of GSS_Import_name will apply to
 an SPKM-3 mechanism type because a LIPKEY target is an SPKM-3 target.

3.2.2. GSS_Acquire_cred

 The initiator calls GSS_Acquire_cred. The credentials that are
 acquired are LIPKEY credentials, a user name and password. How the
 user name and password is acquired is dependent upon the operating
 environment. A application that invokes GSS_Acquire_cred() while the
 application’s user has a graphical user interface running might
 trigger the appearance of a pop up window that prompts for the
 information. A application embedded into the operating system, such
 as an NFS [Sandberg] client implemented as a native file system might
 broadcast a message to the user’s terminals telling him to invoke a
 command that prompts for the information.

 Because the credentials will not be used until GSS_Init_sec_context
 is called, the LIPKEY implementation will need to safeguard the
 credentials. If this is a problem, the implementation may instead
 defer actual acquisition of the user name and password until
 GSS_init_sec_context is ready to send the user name and password to
 the target. In that event, the output_cred_handle argument of
 GSS_Acquire_cred would simply be a reference that mapped to the
 principal corresponding to the desired_name argument. A subsequent
 GSS_Init_sec_context call would consider the mapping of
 claimant_cred_handle to principal when it acquires the user name and
 password. For example, the aforementioned pop up window might fill in
 the user name portion of the dialog with a default value that maps to
 the principal referred to in claimant_cred_handle.

Eisler Standards Track [Page 11]

RFC 2847 LIPKEY June 2000

3.2.3. GSS_Init_sec_context

 When a program invokes GSS_Init_sec_context on the LIPKEY mechanism
 type, if the context handle is NULL, the LIPKEY mechanism will in
 turn invoke GSS_Init_sec_context on an SPKM-3 mechanism implemented
 according to the requirements described previously. This call to
 SPKM-3 MUST have the following attributes:

 * claimant_cred_handle is NULL

 * mutual_req_flag is FALSE

 * anon_req_flag is TRUE

 * input_token is NULL

 * mech_type is the OID of the SPKM-3 mechanism

 Keep in mind the above attributes are in the GSS_Init_sec_context
 call from the LIPKEY mechanism down to the SPKM-3 mechanism. There
 are no special restrictions placed on the application invoking
 LIPKEY’s GSS_Init_sec_context routine. All other arguments are
 derived from the LIPKEY GSS_Init_sec_context arguments.

 The call to the SPKM-3 GSS_Init_sec_context will create an SPKM-3
 context handle. The remainder of the description of the LIPKEY
 GSS_Init_sec_context call depends on whether the caller of the LIPKEY
 GSS_Init_sec_context sets anon_req_flag to TRUE or FALSE.

3.2.3.1. LIPKEY Caller Specified anon_req_flag as TRUE

 If the caller of LIPKEY’s GSS_Init_sec_context sets anon_req_flag to
 TRUE, it MUST return to the LIPKEY caller all the outputs from the
 SPKM-3 GSS_Init_sec_context call, including the
 output_context_handle, output_token, and mech_type. In this way,
 LIPKEY now "gets out of the way" of GSS-API processing between the
 application and SPKM-3, because nothing in the returned outputs
 relates to LIPKEY. This is necessary, because LIPKEY context tokens
 do not have provision for specifying anonymous initiators. This is
 because SPKM-3 is sufficient for purpose of supporting anonymous
 initiators in a low infrastructure environment.

 Clearly, when the LIPKEY caller desires anonymous authentication,
 LIPKEY does not add any value, but it is simpler to support the
 feature, than to insist the caller directly use SPKM-3.

Eisler Standards Track [Page 12]

RFC 2847 LIPKEY June 2000

 If all goes well, the caller of LIPKEY will be returned a
 major_status of GSS_S_CONTINUE_NEEDED via SPKM-3, and so the caller
 of LIPKEY will send the output_token to the target. The caller of
 LIPKEY then receives the response token from the target, and directly
 invokes the SPKM-3 GSS_Init_sec_context. Upon return, the
 major_status should be GSS_S_COMPLETE.

3.2.3.2. LIPKEY Caller Specified anon_req_flag as FALSE

 The LIPKEY mechanism will need to allocate a context handle for
 itself, and record in the LIPKEY context handle the SPKM-3 context
 handle that was returned in the output_context_handle parameter from
 the call to the SPKM-3 GSS_Init_sec_context routine. The LIPKEY
 GSS_Init_sec_context routine will return in output_context_handle the
 LIPKEY context handle, and in mech_type, the LIPKEY mechanism type.
 The output_token is as defined later in this memorandum, in the
 subsection entitled "Context Tokens Prior to SPKM-3 Context
 Establishment." All the other returned outputs will be those that
 the SPKM-3 GSS_Init_sec_context routine returned to LIPKEY. If all
 went well, the SPKM-3 mechanism will have returned a major_status of
 GSS_S_CONTINUE_NEEDED.

 The caller of the LIPKEY GSS_Init_sec_context routine will see a
 major_status of GSS_S_CONTINUE_NEEDED, and so the caller of LIPKEY
 will send the output_token to the target. The caller of LIPKEY then
 receives the target’s response token, and invokes the LIPKEY
 GSS_Init_sec_context routine for a second time. LIPKEY then invokes
 the SPKM-3 GSS_Init_sec_context for a second time and upon return,
 the major_status should be GSS_S_COMPLETE.

 While SPKM-3’s context establishment is now complete, LIPKEY’s
 context establishment is not yet complete, because the initiator must
 send to the target the user name and password that were passed to it
 via the claimant_cred_handle on the first call to the LIPKEY
 GSS_Init_sec_context routine. LIPKEY uses the established SPKM-3
 context handle as the input to GSS_Wrap (with conf_req_flag set to
 TRUE) to encrypt what the claimant_cred_handle refers to (user name
 and password), and returns that as the output_token to the caller of
 LIPKEY (provided the conf_state output from the call to SPKM-3’s
 GSS_Wrap is TRUE), along with a major_status of
 GSS_S_CONTINUE_NEEDED.

 The caller of LIPKEY sends its second context establishment token to
 the target, and waits for a token provided by the target’s
 GSS_Accept_sec_context routine. The target’s LIPKEY
 GSS_Accept_sec_context routine invokes the SPKM-3 GSS_Unwrap routine
 on the token, and validates the user name and password. The target
 then invokes SPKM-3’s GSS_Wrap routine on a boolean indicating

Eisler Standards Track [Page 13]

RFC 2847 LIPKEY June 2000

 whether or not the user name and password were accepted, and returns
 the output_message result from GSS_Wrap as the output_token result
 for GSS_Accept_sec_context.

 The caller of LIPKEY receives the target’s response token, and passes
 this via the input_token parameter to the LIPKEY GSS_Init_sec_context
 routine. LIPKEY then invokes GSS_Unwrap to get the boolean
 acceptance indication, and maps this to a major_status of either
 GSS_S_COMPLETE indicating successful (the boolean was TRUE) and
 completed LIPKEY context establishment, or GSS_S_FAILURE, indicating
 that context establishment failed. GSS_S_CONTINUE_NEEDED will not be
 returned.

 Note that the mutual_req_flag parameter is ignored because unilateral
 authentication is impossible. The initiator must authenticate the
 target via SPKM-3 in order to create a secure channel to transmit the
 user name and password. The target must authenticate the initiator
 when it receives the user name and password.

 The SPKM-3 context remains established while the LIPKEY context is
 established. If the SPKM-3 context expires before the LIPKEY context
 is destroyed, the LIPKEY implementation should expire the LIPKEY
 context and return the appropriate error on the next GSS-API
 operation.

3.2.4. Other operations

 For other operations, the LIPKEY context acts as a pass through to
 the SPKM-3 context. Operations that affect or inquire context state,
 such as GSS_Delete_sec_context, GSS_Export_sec_context,
 GSS_Import_sec_context, and GSS_Inquire_context will require a pass
 through to the SPKM-3 context and a state modification of the LIPKEY
 context.

3.3. Target

3.3.1. GSS_Import_name

 As with the initiator, the imported name will be that of the target.

3.3.2. GSS_Acquire_cred

 The target calls the LIPKEY GSS_Acquire_cred routine to get a
 credential for an SPKM-3 target, via the SPKM-3 GSS_Acquire_cred
 routine. The desired_name is the output_name from GSS_Import_name.

Eisler Standards Track [Page 14]

RFC 2847 LIPKEY June 2000

3.3.3. GSS_Accept_sec_context

 When a program invokes GSS_Accept_sec_context on the LIPKEY mechanism
 type, if the context handle is NULL, the LIPKEY mechanism will in
 turn invoke GSS_Accept_sec_context on an SPKM-3 mechanism implemented
 according the requirements described previously. This call to SPKM-3
 is no different than what one would expect for a layered call to
 GSS_Accept_sec_context.

 If all goes well, the SPKM-3 GSS_Accept_sec_context call succeeds
 with GSS_S_COMPLETE, and the LIPKEY GSS_Accept_sec_context call
 returns the output_token to the caller, but with a major_status of
 GSS_S_CONTINUE_NEEDED because the LIPKEY initiator is still expected
 to send the user name and password.

 Once the SPKM-3 context is in a GSS_S_COMPLETE state, the next token
 the target receives will contain the user name and password, wrapped
 by the output of an SPKM-3 GSS_Wrap call. The target invokes the
 LIPKEY GSS_Accept_sec_context, which in turn invokes the SPKM-3
 GSS_Unwrap routine. The LIPKEY GSS_Accept_sec_context routine then
 compares the user name and password with its user name name and
 password database. If the initiator’s user name and password are
 valid, GSS_S_COMPLETE is returned to the caller. Otherwise
 GSS_S_FAILURE is returned. In either case, an output_token - equal to
 the output_message result from an SPKM-3 GSS_Wrap call on a boolean
 value - is returned to the caller. The boolean value is set to TRUE
 if the the user name and password were valid, FALSE otherwise. The
 target expects no more context establishment tokens from caller.

4. LIPKEY Description

4.1. Mechanism Type

 lipkey OBJECT IDENTIFIER ::=
 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)lipkey(9)}

4.2. Name Types

 LIPKEY uses only the mechanism independent name types defined in RFC
 2078. All the name types defined in RFC 2078 are REQUIRED.

Eisler Standards Track [Page 15]

RFC 2847 LIPKEY June 2000

4.3. Token Formats

4.3.1. Context Tokens

 GSS-API defines the context tokens as:

 InitialContextToken ::=
 -- option indication (delegation, etc.) indicated within
 -- mechanism-specific token
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerContextToken ANY DEFINED BY thisMech
 -- contents mechanism-specific
 -- ASN.1 structure not required
 }

 SubsequentContextToken ::= innerContextToken ANY
 -- interpretation based on predecessor InitialContextToken
 -- ASN.1 structure not required

 The contents of the innerContextToken depend on whether the SPKM-3
 context is established or not.

4.3.1.1. Context Tokens Prior to SPKM-3 Context Establishment

 In a LIPKEY InitialContextToken, thisMech will be the Object
 identifier for LIPKEY. However, as long as LIPKEY has not
 established the SPKM-3 mechanism, the innerContextToken for both the
 InitialContextToken and the SubsequentContextToken will be the output
 of an SPKM-3 GSS_Init_sec_context or GSS_Accept_sec_context. So the
 LIPKEY innerContextToken would be either:

 * An InitialContextToken, with thisMech set to the object
 identifier for SPKM-3, with innerContextToken defined to be an
 SPKMInnerContextToken, as defined in RFC 2025.

 * A SubsequentContextToken, with innerContextToken defined to be
 SPKMInnerContextToken

4.3.1.2. Post-SPKM-3 Context Establishment Tokens

 Once the SPKM-3 context is established, there is just one token sent
 from the initiator to the target, and one token returned to
 initiator.

Eisler Standards Track [Page 16]

RFC 2847 LIPKEY June 2000

4.3.1.2.1. From LIPKEY Initiator

 The LIPKEY initiator generates a token that is the the result of a
 GSS_Wrap (conf_req is set to TRUE) of a user name and password by the
 SPKM-3 context. The input_message argument of GSS_Wrap refers to an
 instance of the UserName-Password type defined below:

 UserName-Password ::= SEQUENCE {
 user-name OCTET STRING,
 -- each octet is an octet of a
 -- UTF-8 [RFC2279] string
 password OCTET STRING
 -- each octet is an octet of a
 -- UTF-8 [RFC2279] string
 }

4.3.1.2.2. From LIPKEY Target

 The target validates the user name and password token from the
 initiator, and generates a response token that is the output_message
 result of an SPKM-3 GSS_Wrap (conf_req may or may not be set to TRUE)
 call on an indication of validation success. The input_message
 argument of GSS_Wrap refers to an instance of the Valid-UNP type
 defined below:

 Valid-UNP ::= BOOLEAN
 -- If TRUE, user name/password pair was valid.

4.3.2. Tokens from GSS_GetMIC and GSS_Wrap

 RFC 2078 defines the token emitted by GSS_GetMIC and GSS_Wrap as:
 PerMsgToken ::=
 -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC
 -- ASN.1 structure not required
 innerMsgToken ANY

 SealedMessage ::=
 -- as emitted by GSS_Wrap and processed by GSS_Unwrap
 -- includes internal, mechanism-defined indicator
 -- of whether or not encrypted
 -- ASN.1 structure not required
 sealedUserData ANY

 As one can see, there are no mechanism independent prefixes in
 PerMSGToken or SealedMessage, and no explicit mechanism specific
 information. Since LIPKEY does not add any value to GSS_GetMIC and

Eisler Standards Track [Page 17]

RFC 2847 LIPKEY June 2000

 GSS_Wrap other than passing the message to the SPKM-3 GSS_GetMIC and
 GSS_Wrap, LIPKEY’s PerMsgToken and SealedMessage tokens are exactly
 what SPKM-3’s GSS_GetMIC and GSS_Wrap routines produce.

4.4. Quality of Protection

 LIPKEY, being a pass through for GSS_Wrap and GSS_GetMIC to SPKM-3,
 does not interpret or alter the QOPs passed to the aforementioned
 routines or received from their complements, GSS_Unwrap, and
 GSS_VerifyMIC. Thus, LIPKEY supports the same set of QOPs as SPKM-3.

5. Security Considerations

5.1. Password Management

 LIPKEY sends the clear text password encrypted by 128 bit cast5CBC so
 the risk in this approach is in how the target manages the password
 after it is done with it. The approach should be safe, provided the
 target clears the memory (primary and secondary, such as disk)
 buffers that contained the password, and any hash of the password
 immediately after it has validated the user’s password.

5.2. Certification Authorities

 The initiator must have a list of trusted Certification Authorities
 in order to verify the checksum (rep-ti-integ) on the SPKM-3 target’s
 context reply token. If it encounters a certificate signed by an
 unknown and/or untrusted certificate authority, the initiator MUST
 NOT silently accept the certificate. If it does wish to accept the
 certificate, it MUST get confirmation from the user running the
 application that is using GSS-API.

5.3. HMAC-MD5 and MD5 Weaknesses

 While the MD5 hash algorithm has been found to have weaknesses
 [Dobbertin], the weaknesses do not impact the security of HMAC-MD5
 [Dobbertin].

5.4. Security of cast5CBC

 The cast5CBC encryption algorithm is relatively new compared to
 established algorithms like triple DES, and RC4. Nonetheless, the
 choice of cast5CBC as the MANDATORY C-ALG for SPKM-3 is advisable.
 The cast5CBC algorithm is a 128 bit algorithm that the 256 bit
 cast6CBC [RFC2612] algorithm is based upon. The cast6CBC algorithm
 was judged by the U.S. National Institute of Standards and Technology
 (NIST) to have no known major or minor "security gaps," and to have a
 "high security margin" [AES]. NIST did note some vulnerabilities

Eisler Standards Track [Page 18]

RFC 2847 LIPKEY June 2000

 related to smart card implementations, but many other algorithms NIST
 analyzed shared the vulnerabilities, and in any case, LIPKEY is by
 definition not aimed at smart cards.

References

 [AES] Nechvatal, J., Barker, E., Dodson, D., Dworkin, M., Foti,
 J., Roback, E. (Undated, but no later than 1999). "Status
 Report on the First Round of the Development of the
 Advanced Encryption Standard."
 http://csrc.nist.gov/encryption/aes/round1/r1report.htm

 [CCITT] CCITT (1988). "Recommendation X.208: Specification of
 Abstract Syntax Notation One (ASN.1)."

 [Dobbertin] Dobbertin, H. (1996). "The Status of Md5 After a Recent
 Attack," RSA Laboratories’ CryptoBytes, Volume 2, Number
 2.
 ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf

 [EFF] Electronic Frontier Foundation, John Gilmore (Editor)
 (1998). "Cracking Des: Secrets of Encryption Research,
 Wiretap Politics & Chip Design," O’Reilly & Associates,
 ISBN 1565925203.

 [FIPS] National Institute of Standards and Technology (1995).
 "Secure Hash Standard" (SHA-1).
 http://www.itl.nist.gov/fipspubs/fip180-1.htm

 [IANA] Internet Assigned Numbers Authority (1999). "Network
 Management Parameters." http://www.isi.edu/in-
 notes/iana/assignments/smi-numbers

 [PKCS-3] RSA Laboratories (1993). "PKCS #3: Diffie-Hellman Key-
 Agreement Standard, Version 1.4."
 ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-3.asc

 [PKIX] Housley, R., Ford, W., Polk, W., Solo, D., "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", Work in Progress.

 [RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 1831, August 1995.

 [RFC1832] Srinivasan, R., "XDR: External Data Representation
 Standard", RFC 1832, August 1995.

Eisler Standards Track [Page 19]

RFC 2847 LIPKEY June 2000

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
 1964, June 1996.

 [RFC2203] Eisler, M., Chiu, A. and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC2025] Adams, C., "The Simple Public-Key GSS-API Mechanism
 (SPKM)", RFC 2025, October 1996.

 [RFC2078] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

 [RFC2104] Krawczyk, H, Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2144] Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144,
 May 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

 [RFC2437] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
 Specifications Version 2.0", RFC 2437, October 1998.

 [RFC2459] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 2459, January 1999.

 [RFC2612] Adams, C. and J. Gilchrist, "The CAST-256 Encryption
 Algorithm", RFC 2612, June 1999.

 [RSA-IP] All statements received by the IETF Secretariat are places
 on-line in http://www.ietf.org/ipr.html. Please check
 this web page to see any IPR information received about
 this and other technology.

 [Sandberg] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon,
 B. (1985). "Design and Implementation of the Sun Network
 Filesystem," Proceedings of the 1985 Summer USENIX
 Technical Conference.

Eisler Standards Track [Page 20]

RFC 2847 LIPKEY June 2000

 [Schneier] Schneier, B. (1996). "Applied Cryptography," John Wiley &
 Sons, Inc., ISBN 0-471-11709-9.

 [Young] Young, E.A. (1997). Collected timing results from the
 SSLeay source code distribution.

Acknowledgments

 The author thanks and acknowledges:

 * Jack Kabat for his patient explanation of the intricacies of
 SPKM, excellent suggestions, and review comments.

 * Denis Pinkas for his review comments.

 * Carlisle Adams for his review comments.

 * John Linn for his review comments.

 * Martin Rex for his review comments.

 * This memorandum includes ASN.1 definitions for GSS-API tokens
 from RFC 2078, which was authored by John Linn.

 * This memorandum includes ASN.1 definitions and other text from
 the SPKM definition in RFC 2025, which was authored by Carlisle
 Adams.

Author’s Address

 Address comments related to this memorandum to:

 ietf-cat-wg@lists.Stanford.EDU

 Mike Eisler
 Zambeel
 5565 Wilson Road
 Colorado Springs, CO 80919

 Phone: 1-719-599-9026
 EMail: mike@eisler.com

Eisler Standards Track [Page 21]

RFC 2847 LIPKEY June 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Eisler Standards Track [Page 22]

