
Network Working Group J. Kabat
Request for Comments: 2853 ValiCert, Inc.
Category: Standards Track M. Upadhyay
 Sun Microsystems, Inc.
 June 2000

 Generic Security Service API Version 2 : Java Bindings

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 The Generic Security Services Application Program Interface (GSS-API)
 offers application programmers uniform access to security services
 atop a variety of underlying cryptographic mechanisms. This document
 specifies the Java bindings for GSS-API which is described at a
 language independent conceptual level in RFC 2743 [GSSAPIv2-UPDATE].

 The GSS-API allows a caller application to authenticate a principal
 identity, to delegate rights to a peer, and to apply security
 services such as confidentiality and integrity on a per-message
 basis. Examples of security mechanisms defined for GSS-API are The
 Simple Public-Key GSS-API Mechanism [SPKM] and The Kerberos Version 5
 GSS-API Mechanism [KERBV5].

Table of Contents

 1. Introduction . 5
 2. GSS-API Operational Paradigm 6
 3. Additional Controls 8
 3.1. Delegation . 9
 3.2. Mutual Authentication 10
 3.3. Replay and Out-of-Sequence Detection 10
 3.4. Anonymous Authentication 11
 3.5. Confidentiality . 12
 3.6. Inter-process Context Transfer 12
 3.7. The Use of Incomplete Contexts 13

Kabat & Upadhyay Standards Track [Page 1]

RFC 2853 GSS-API Java Bindings June 2000

 4. Calling Conventions 13
 4.1. Package Name . 13
 4.2. Provider Framework 13
 4.3. Integer types . 14
 4.4. Opaque Data types 14
 4.5. Strings . 15
 4.6. Object Identifiers 15
 4.7. Object Identifier Sets 15
 4.8. Credentials . 16
 4.9. Contexts . 18
 4.10. Authentication tokens 18
 4.11. Interprocess tokens 18
 4.12. Error Reporting . 19
 4.12.1. GSS status codes 19
 4.12.2. Mechanism-specific status codes 21
 4.12.3. Supplementary status codes 21
 4.13. Names . 22
 4.14. Channel Bindings 25
 4.15. Stream Objects . 26
 4.16. Optional Parameters 26
 5. Introduction to GSS-API Classes and Interfaces 26
 5.1. GSSManager class . 26
 5.2. GSSName interface 27
 5.3. GSSCredential interface 28
 5.4. GSSContext interface 28
 5.5. MessageProp class 30
 5.6. GSSException class 30
 5.7. Oid class . 30
 5.8. ChannelBinding class 31
 6. Detailed GSS-API Class Description 31
 6.1. public abstract class GSSManager 31
 6.1.1. Example Code . 32
 6.1.2. getInstance . 33
 6.1.3. getMechs . 33
 6.1.4. getNamesForMech 33
 6.1.5. getMechsForName 33
 6.1.6. createName . 33
 6.1.7. createName . 34
 6.1.8. createName . 35
 6.1.9. createName . 35
 6.1.10. createCredential 36
 6.1.11. createCredential 36
 6.1.12. createCredential 37
 6.1.13. createContext . 37
 6.1.14. createContext . 38
 6.1.15. createContext . 38
 6.1.16. addProviderAtFront 38
 6.1.16.1. Example Code 39

Kabat & Upadhyay Standards Track [Page 2]

RFC 2853 GSS-API Java Bindings June 2000

 6.1.17. addProviderAtEnd 40
 6.1.17.1. Example Code 41
 6.2. public interface GSSName 42
 6.2.1. Example Code . 42
 6.2.2. Static Constants 43
 6.2.3. equals . 44
 6.2.4. equals . 44
 6.2.5. canonicalize . 44
 6.2.6. export . 45
 6.2.7. toString . 45
 6.2.8. getStringNameType 45
 6.2.9. isAnonymous . 45
 6.2.10. isMN . 45
 6.3. public interface GSSCredential implements Cloneable . . 45
 6.3.1. Example Code . 46
 6.3.2. Static Constants 47
 6.3.3. dispose . 48
 6.3.4. getName . 48
 6.3.5. getName . 48
 6.3.6. getRemainingLifetime 48
 6.3.7. getRemainingInitLifetime 49
 6.3.8. getRemainingAcceptLifetime 49
 6.3.9. getUsage . 49
 6.3.10. getUsage . 49
 6.3.11. getMechs . 50
 6.3.12. add . 50
 6.3.13. equals . 51
 6.4. public interface GSSContext 51
 6.4.1. Example Code . 52
 6.4.2. Static Constants 54
 6.4.3. initSecContext . 54
 6.4.3.1. Example Code . 55
 6.4.4. initSecContext . 56
 6.4.4.1. Example Code . 56
 6.4.5. acceptSecContext 57
 6.4.5.1. Example Code . 58
 6.4.6. acceptSecContext 59
 6.4.6.1. Example Code . 59
 6.4.7. isEstablished . 60
 6.4.8. dispose . 60
 6.4.9. getWrapSizeLimit 61
 6.4.10. wrap . 61
 6.4.11. wrap . 62
 6.4.12. unwrap . 63
 6.4.13. unwrap . 64
 6.4.14. getMIC . 65
 6.4.15. getMIC . 65
 6.4.16. verifyMIC . 66

Kabat & Upadhyay Standards Track [Page 3]

RFC 2853 GSS-API Java Bindings June 2000

 6.4.17. verifyMIC . 67
 6.4.18. export . 68
 6.4.19. requestMutualAuth 68
 6.4.20. requestReplayDet 69
 6.4.21. requestSequenceDet 69
 6.4.22. requestCredDeleg 69
 6.4.23. requestAnonymity 69
 6.4.24. requestConf . 70
 6.4.25. requestInteg . 70
 6.4.26. requestLifetime 70
 6.4.27. setChannelBinding 71
 6.4.28. getCredDelegState 71
 6.4.29. getMutualAuthState 71
 6.4.30. getReplayDetState 71
 6.4.31. getSequenceDetState 71
 6.4.32. getAnonymityState 72
 6.4.33. isTransferable 72
 6.4.34. isProtReady . 72
 6.4.35. getConfState . 72
 6.4.36. getIntegState . 72
 6.4.37. getLifetime . 73
 6.4.38. getSrcName . 73
 6.4.39. getTargName . 73
 6.4.40. getMech . 73
 6.4.41. getDelegCred . 73
 6.4.42. isInitiator . 73
 6.5. public class MessageProp 74
 6.5.1. Constructors . 74
 6.5.2. getQOP . 75
 6.5.3. getPrivacy . 75
 6.5.4. getMinorStatus . 75
 6.5.5. getMinorString . 75
 6.5.6. setQOP . 75
 6.5.7. setPrivacy . 75
 6.5.8. isDuplicateToken 76
 6.5.9. isOldToken . 76
 6.5.10. isUnseqToken . 76
 6.5.11. isGapToken . 76
 6.5.12. setSupplementaryStates 76
 6.6. public class ChannelBinding 77
 6.6.1. Constructors . 77
 6.6.2. getInitiatorAddress 78
 6.6.3. getAcceptorAddress 78
 6.6.4. getApplicationData 78
 6.6.5. equals . 78
 6.7. public class Oid . 79
 6.7.1. Constructors . 79
 6.7.2. toString . 80

Kabat & Upadhyay Standards Track [Page 4]

RFC 2853 GSS-API Java Bindings June 2000

 6.7.3. equals . 80
 6.7.4. getDER . 80
 6.7.5. containedIn . 80
 6.8. public class GSSException extends Exception 80
 6.8.1. Static Constants 81
 6.8.2. Constructors . 83
 6.8.3. getMajor . 84
 6.8.4. getMinor . 84
 6.8.5. getMajorString . 84
 6.8.6. getMinorString . 84
 6.8.7. setMinor . 84
 6.8.8. toString . 85
 6.8.9. getMessage . 85
 7. Sample Applications 85
 7.1. Simple GSS Context Initiator 85
 7.2. Simple GSS Context Acceptor 89
 8. Security Considerations 93
 9. Acknowledgments . 94
 10. Bibliography . 94
 11. Authors’ Addresses 95
 12. Full Copyright Statement. 96

1. Introduction

 This document specifies Java language bindings for the Generic
 Security Services Application Programming Interface Version 2 (GSS-
 API). GSS-API Version 2 is described in a language independent
 format in RFC 2743 [GSSAPIv2-UPDATE]. The GSS-API allows a caller
 application to authenticate a principal identity, to delegate rights
 to a peer, and to apply security services such as confidentiality and
 integrity on a per-message basis.

 This document leverages the work performed by the WG in the area of
 RFC 2743 [GSSAPIv2-UPDATE] and the C-bindings RFC 2744 [GSSAPI-C].
 Whenever appropriate, text has been used from the C-bindings RFC 2744
 to explain generic concepts and provide direction to the
 implementors.

 The design goals of this API have been to satisfy all the
 functionality defined in RFC 2743 and to provide these services in an
 object oriented method. The specification also aims to satisfy the
 needs of both types of Java application developers, those who would
 like access to a "system-wide" GSS-API implementation, as well as
 those who would want to provide their own "custom" implementation.

Kabat & Upadhyay Standards Track [Page 5]

RFC 2853 GSS-API Java Bindings June 2000

 A "system-wide" implementation is one that is available to all
 applications in the form of a library package. It may be a standard
 package in the Java runtime environment (JRE) being used or it may be
 additionally installed and accessible to any application via the
 CLASSPATH.

 A "custom" implementation of the GSS-API, on the other hand, is one
 that would, in most cases, be bundled with the application during
 distribution. It is expected that such an implementation would be
 meant to provide for some particular need of the application, such as
 support for some specific mechanism.

 The design of this API also aims to provide a flexible framework to
 add and manage GSS-API mechanisms. GSS-API leverages the Java
 Cryptography Architecture (JCA) provider model to support the
 plugability of mechanisms. Mechanisms can be added on a "system-
 wide" basis, where all users of the framework will have them
 available. The specification also allows for the addition of
 mechanisms per-instance of the GSS-API.

 Lastly, this specification presents an API that will naturally fit
 within the operation environment of the Java platform. Readers are
 assumed to be familiar with both the GSS-API and the Java platform.

2. GSS-API Operational Paradigm

 The Generic Security Service Application Programming Interface
 Version 2 [GSSAPIv2-UPDATE] defines a generic security API to calling
 applications. It allows a communicating application to authenticate
 the user associated with another application, to delegate rights to
 another application, and to apply security services such as
 confidentiality and integrity on a per-message basis.

 There are four stages to using GSS-API:

 1) The application acquires a set of credentials with which it may
 prove its identity to other processes. The application’s
 credentials vouch for its global identity, which may or may not
 be related to any local username under which it may be running.

 2) A pair of communicating applications establish a joint security
 context using their credentials. The security context
 encapsulates shared state information, which is required in
 order that per-message security services may be provided.
 Examples of state information that might be shared between
 applications as part of a security context are cryptographic
 keys, and message sequence numbers. As part of the
 establishment of a security context, the context initiator is

Kabat & Upadhyay Standards Track [Page 6]

RFC 2853 GSS-API Java Bindings June 2000

 authenticated to the responder, and may require that the
 responder is authenticated back to the initiator. The
 initiator may optionally give the responder the right to
 initiate further security contexts, acting as an agent or
 delegate of the initiator. This transfer of rights is termed
 "delegation", and is achieved by creating a set of credentials,
 similar to those used by the initiating application, but which
 may be used by the responder.

 A GSSContext object is used to establish and maintain the
 shared information that makes up the security context. Certain
 GSSContext methods will generate a token, which applications
 treat as cryptographically protected, opaque data. The caller
 of such GSSContext method is responsible for transferring the
 token to the peer application, encapsulated if necessary in an
 application-to-application protocol. On receipt of such a
 token, the peer application should pass it to a corresponding
 GSSContext method which will decode the token and extract the
 information, updating the security context state information
 accordingly.

 3) Per-message services are invoked on a GSSContext object to
 apply either:

 integrity and data origin authentication, or

 confidentiality, integrity and data origin authentication

 to application data, which are treated by GSS-API as arbitrary
 octet-strings. An application transmitting a message that it
 wishes to protect will call the appropriate GSSContext method
 (getMIC or wrap) to apply protection, and send the resulting
 token to the receiving application. The receiver will pass the
 received token (and, in the case of data protected by getMIC,
 the accompanying message-data) to the corresponding decoding
 method of the GSSContext interface (verifyMIC or unwrap) to
 remove the protection and validate the data.

 4) At the completion of a communications session (which may extend
 across several transport connections), each application uses a
 GSSContext method to invalidate the security context and
 release any system or cryptographic resources held. Multiple
 contexts may also be used (either successively or
 simultaneously) within a single communications association, at
 the discretion of the applications.

Kabat & Upadhyay Standards Track [Page 7]

RFC 2853 GSS-API Java Bindings June 2000

3. Additional Controls

 This section discusses the optional services that a context initiator
 may request of the GSS-API before the context establishment. Each of
 these services is requested by calling the appropriate mutator method
 in the GSSContext object before the first call to init is performed.
 Only the context initiator can request context flags.

 The optional services defined are:

 Delegation
 The (usually temporary) transfer of rights from initiator to
 acceptor, enabling the acceptor to authenticate itself as an
 agent of the initiator.

 Mutual Authentication
 In addition to the initiator authenticating its identity to the
 context acceptor, the context acceptor should also authenticate
 itself to the initiator.

 Replay Detection
 In addition to providing message integrity services, GSSContext
 per-message operations of getMIC and wrap should include
 message numbering information to enable verifyMIC and unwrap
 to detect if a message has been duplicated.

 Out-of-Sequence Detection
 In addition to providing message integrity services, GSSContext
 per-message operations (getMIC and wrap) should include
 message sequencing information to enable verifyMIC and unwrap
 to detect if a message has been received out of sequence.

 Anonymous Authentication
 The establishment of the security context should not reveal the
 initiator’s identity to the context acceptor.

 Some mechanisms may not support all optional services, and some
 mechanisms may only support some services in conjunction with others.
 The GSSContext interface offers query methods to allow the
 verification by the calling application of which services will be
 available from the context when the establishment phase is complete.
 In general, if the security mechanism is capable of providing a
 requested service, it should do so even if additional services must
 be enabled in order to provide the requested service. If the
 mechanism is incapable of providing a requested service, it should
 proceed without the service leaving the application to abort the
 context establishment process if it considers the requested service
 to be mandatory.

Kabat & Upadhyay Standards Track [Page 8]

RFC 2853 GSS-API Java Bindings June 2000

 Some mechanisms may specify that support for some services is
 optional, and that implementors of the mechanism need not provide it.
 This is most commonly true of the confidentiality service, often
 because of legal restrictions on the use of data-encryption, but may
 apply to any of the services. Such mechanisms are required to send
 at least one token from acceptor to initiator during context
 establishment when the initiator indicates a desire to use such a
 service, so that the initiating GSS-API can correctly indicate
 whether the service is supported by the acceptor’s GSS-API.

3.1. Delegation

 The GSS-API allows delegation to be controlled by the initiating
 application via the requestCredDeleg method before the first call to
 init has been issued. Some mechanisms do not support delegation, and
 for such mechanisms attempts by an application to enable delegation
 are ignored.

 The acceptor of a security context, for which the initiator enabled
 delegation, can check if delegation was enabled by using the
 getCredDelegState method of the GSSContext interface. In cases when
 it is, the delegated credential object can be obtained by calling the
 getDelegCred method. The obtained GSSCredential object may then be
 used to initiate subsequent GSS-API security contexts as an agent or
 delegate of the initiator. If the original initiator’s identity is
 "A" and the delegate’s identity is "B", then, depending on the
 underlying mechanism, the identity embodied by the delegated
 credential may be either "A" or "B acting for A".

 For many mechanisms that support delegation, a simple boolean does
 not provide enough control. Examples of additional aspects of
 delegation control that a mechanism might provide to an application
 are duration of delegation, network addresses from which delegation
 is valid, and constraints on the tasks that may be performed by a
 delegate. Such controls are presently outside the scope of the GSS-
 API. GSS-API implementations supporting mechanisms offering
 additional controls should provide extension routines that allow
 these controls to be exercised (perhaps by modifying the initiator’s
 GSS-API credential object prior to its use in establishing a
 context). However, the simple delegation control provided by GSS-API
 should always be able to over-ride other mechanism-specific
 delegation controls. If the application instructs the GSSContext
 object that delegation is not desired, then the implementation must
 not permit delegation to occur. This is an exception to the general
 rule that a mechanism may enable services even if they are not
 requested - delegation may only be provided at the explicit request
 of the application.

Kabat & Upadhyay Standards Track [Page 9]

RFC 2853 GSS-API Java Bindings June 2000

3.2. Mutual Authentication

 Usually, a context acceptor will require that a context initiator
 authenticate itself so that the acceptor may make an access-control
 decision prior to performing a service for the initiator. In some
 cases, the initiator may also request that the acceptor authenticate
 itself. GSS-API allows the initiating application to request this
 mutual authentication service by calling the requestMutualAuth method
 of the GSSContext interface with a "true" parameter before making the
 first call to init. The initiating application is informed as to
 whether or not the context acceptor has authenticated itself. Note
 that some mechanisms may not support mutual authentication, and other
 mechanisms may always perform mutual authentication, whether or not
 the initiating application requests it. In particular, mutual
 authentication may be required by some mechanisms in order to support
 replay or out-of-sequence message detection, and for such mechanisms
 a request for either of these services will automatically enable
 mutual authentication.

3.3. Replay and Out-of-Sequence Detection

 The GSS-API may provide detection of mis-ordered messages once a
 security context has been established. Protection may be applied to
 messages by either application, by calling either getMIC or wrap
 methods of the GSSContext interface, and verified by the peer
 application by calling verifyMIC or unwrap for the peer’s GSSContext
 object.

 The getMIC method calculates a cryptographic checksum of an
 application message, and returns that checksum in a token. The
 application should pass both the token and the message to the peer
 application, which presents them to the verifyMIC method of the
 peer’s GSSContext object.

 The wrap method calculates a cryptographic checksum of an application
 message, and places both the checksum and the message inside a single
 token. The application should pass the token to the peer
 application, which presents it to the unwrap method of the peer’s
 GSSContext object to extract the message and verify the checksum.

 Either pair of routines may be capable of detecting out-of-sequence
 message delivery, or duplication of messages. Details of such mis-
 ordered messages are indicated through supplementary query methods of
 the MessageProp object that is filled in by each of these routines.

 A mechanism need not maintain a list of all tokens that have been
 processed in order to support these status codes. A typical
 mechanism might retain information about only the most recent "N"

Kabat & Upadhyay Standards Track [Page 10]

RFC 2853 GSS-API Java Bindings June 2000

 tokens processed, allowing it to distinguish duplicates and missing
 tokens within the most recent "N" messages; the receipt of a token
 older than the most recent "N" would result in the isOldToken method
 of the instance of MessageProp to return "true".

3.4. Anonymous Authentication

 In certain situations, an application may wish to initiate the
 authentication process to authenticate a peer, without revealing its
 own identity. As an example, consider an application providing
 access to a database containing medical information, and offering
 unrestricted access to the service. A client of such a service might
 wish to authenticate the service (in order to establish trust in any
 information retrieved from it), but might not wish the service to be
 able to obtain the client’s identity (perhaps due to privacy concerns
 about the specific inquiries, or perhaps simply to avoid being placed
 on mailing-lists).

 In normal use of the GSS-API, the initiator’s identity is made
 available to the acceptor as a result of the context establishment
 process. However, context initiators may request that their identity
 not be revealed to the context acceptor. Many mechanisms do not
 support anonymous authentication, and for such mechanisms the request
 will not be honored. An authentication token will still be
 generated, but the application is always informed if a requested
 service is unavailable, and has the option to abort context
 establishment if anonymity is valued above the other security
 services that would require a context to be established.

 In addition to informing the application that a context is
 established anonymously (via the isAnonymous method of the GSSContext
 class), the getSrcName method of the acceptor’s GSSContext object
 will, for such contexts, return a reserved internal-form name,
 defined by the implementation.

 The toString method for a GSSName object representing an anonymous
 entity will return a printable name. The returned value will be
 syntactically distinguishable from any valid principal name supported
 by the implementation. The associated name-type object identifier
 will be an oid representing the value of NT_ANONYMOUS. This name-
 type oid will be defined as a public, static Oid object of the
 GSSName class. The printable form of an anonymous name should be
 chosen such that it implies anonymity, since this name may appear in,
 for example, audit logs. For example, the string "<anonymous>" might
 be a good choice, if no valid printable names supported by the
 implementation can begin with "<" and end with ">".

Kabat & Upadhyay Standards Track [Page 11]

RFC 2853 GSS-API Java Bindings June 2000

 When using the equal method of the GSSName interface, and one of the
 operands is a GSSName instance representing an anonymous entity, the
 method must return "false".

3.5. Confidentiality

 If a GSSContext supports the confidentiality service, wrap method may
 be used to encrypt application messages. Messages are selectively
 encrypted, under the control of the setPrivacy method of the
 MessageProp object used in the wrap method.

3.6. Inter-process Context Transfer

 GSS-API V2 provides functionality which allows a security context to
 be transferred between processes on a single machine. These are
 implemented using the export method of GSSContext and a byte array
 constructor of the same class. The most common use for such a
 feature is a client-server design where the server is implemented as
 a single process that accepts incoming security contexts, which then
 launches child processes to deal with the data on these contexts. In
 such a design, the child processes must have access to the security
 context object created within the parent so that they can use per-
 message protection services and delete the security context when the
 communication session ends.

 Since the security context data structure is expected to contain
 sequencing information, it is impractical in general to share a
 context between processes. Thus GSSContext interface provides an
 export method that the process, which currently owns the context, can
 call to declare that it has no intention to use the context
 subsequently, and to create an inter-process token containing
 information needed by the adopting process to successfully re-create
 the context. After successful completion of export, the original
 security context is made inaccessible to the calling process by GSS-
 API and any further usage of this object will result in failures.
 The originating process transfers the inter-process token to the
 adopting process, which creates a new GSSContext object using the
 byte array constructor. The properties of the context are equivalent
 to that of the original context.

 The inter-process token may contain sensitive data from the original
 security context (including cryptographic keys). Applications using
 inter-process tokens to transfer security contexts must take
 appropriate steps to protect these tokens in transit.

Kabat & Upadhyay Standards Track [Page 12]

RFC 2853 GSS-API Java Bindings June 2000

 Implementations are not required to support the inter-process
 transfer of security contexts. Calling the isTransferable method of
 the GSSContext interface will indicate if the context object is
 transferable.

3.7. The Use of Incomplete Contexts

 Some mechanisms may allow the per-message services to be used before
 the context establishment process is complete. For example, a
 mechanism may include sufficient information in its initial context-
 level tokens for the context acceptor to immediately decode messages
 protected with wrap or getMIC. For such a mechanism, the initiating
 application need not wait until subsequent context-level tokens have
 been sent and received before invoking the per-message protection
 services.

 An application can invoke the isProtReady method of the GSSContext
 class to determine if the per-message services are available in
 advance of complete context establishment. Applications wishing to
 use per-message protection services on partially-established contexts
 should query this method before attempting to invoke wrap or getMIC.

4. Calling Conventions

 Java provides the implementors with not just a syntax for the
 language, but also an operational environment. For example, memory
 is automatically managed and does not require application
 intervention. These language features have allowed for a simpler API
 and have led to the elimination of certain GSS-API functions.

 Moreover, the JCA defines a provider model which allows for
 implementation independent access to security services. Using this
 model, applications can seamlessly switch between different
 implementations and dynamically add new services. The GSS-API
 specification leverages these concepts by the usage of providers for
 the mechanism implementations.

4.1. Package Name

 The classes and interfaces defined in this document reside in the
 package called "org.ietf.jgss". Applications that wish to make use
 of this API should import this package name as shown in section 7.

4.2. Provider Framework

 The Java security API’s use a provider architecture that allows
 applications to be implementation independent and security API
 implementations to be modular and extensible. The

Kabat & Upadhyay Standards Track [Page 13]

RFC 2853 GSS-API Java Bindings June 2000

 java.security.Provider class is an abstract class that a vendor
 extends. This class maps various properties that represent different
 security services that are available to the names of the actual
 vendor classes that implement those services. When requesting a
 service, an application simply specifies the desired provider and the
 API delegates the request to service classes available from that
 provider.

 Using the Java security provider model insulates applications from
 implementation details of the services they wish to use.
 Applications can switch between providers easily and new providers
 can be added as needed, even at runtime.

 The GSS-API may use providers to find components for specific
 underlying security mechanisms. For instance, a particular provider
 might contain components that will allow the GSS-API to support the
 Kerberos v5 mechanism and another might contain components to support
 the SPKM mechanism. By delegating mechanism specific functionality
 to the components obtained from providers the GSS-API can be extended
 to support an arbitrary list of mechanism.

 How the GSS-API locates and queries these providers is beyond the
 scope of this document and is being deferred to a Service Provider
 Interface (SPI) specification. The availability of such a SPI
 specification is not mandatory for the adoption of this API
 specification nor is it mandatory to use providers in the
 implementation of a GSS-API framework. However, by using the provider
 framework together with an SPI specification one can create an
 extensible and implementation independent GSS-API framework.

4.3. Integer types

 All numeric values are declared as "int" primitive Java type. The
 Java specification guarantees that this will be a 32 bit two’s
 complement signed number.

 Throughout this API, the "boolean" primitive Java type is used
 wherever a boolean value is required or returned.

4.4. Opaque Data types

 Java byte arrays are used to represent opaque data types which are
 consumed and produced by the GSS-API in the forms of tokens. Java
 arrays contain a length field which enables the users to easily
 determine their size. The language has automatic garbage collection
 which alleviates the need by developers to release memory and
 simplifies buffer ownership issues.

Kabat & Upadhyay Standards Track [Page 14]

RFC 2853 GSS-API Java Bindings June 2000

4.5. Strings

 The String object will be used to represent all textual data. The
 Java String object, transparently treats all characters as two-byte
 Unicode characters which allows support for many locals. All
 routines returning or accepting textual data will use the String
 object.

4.6. Object Identifiers

 An Oid object will be used to represent Universal Object Identifiers
 (Oids). Oids are ISO-defined, hierarchically globally-interpretable
 identifiers used within the GSS-API framework to identify security
 mechanisms and name formats. The Oid object can be created from a
 string representation of its dot notation (e.g. "1.3.6.1.5.6.2") as
 well as from its ASN.1 DER encoding. Methods are also provided to
 test equality and provide the DER representation for the object.

 An important feature of the Oid class is that its instances are
 immutable - i.e. there are no methods defined that allow one to
 change the contents of an Oid. This property allows one to treat
 these objects as "statics" without the need to perform copies.

 Certain routines allow the usage of a default oid. A "null" value
 can be used in those cases.

4.7. Object Identifier Sets

 The Java bindings represents object identifiers sets as arrays of Oid
 objects. All Java arrays contain a length field which allows for
 easy manipulation and reference.

 In order to support the full functionality of RFC 2743, the Oid class
 includes a method which checks for existence of an Oid object within
 a specified array. This is equivalent in functionality to
 gss_test_oid_set_member. The use of Java arrays and Java’s automatic
 garbage collection has eliminated the need for the following
 routines: gss_create_empty_oid_set, gss_release_oid_set, and
 gss_add_oid_set_member. Java GSS-API implementations will not
 contain them. Java’s automatic garbage collection and the immutable
 property of the Oid object eliminates the complicated memory
 management issues of the C counterpart.

 When ever a default value for an Object Identifier Set is required, a
 "null" value can be used. Please consult the detailed method
 description for details.

Kabat & Upadhyay Standards Track [Page 15]

RFC 2853 GSS-API Java Bindings June 2000

4.8. Credentials

 GSS-API credentials are represented by the GSSCredential interface.
 The interface contains several constructs to allow for the creation
 of most common credential objects for the initiator and the acceptor.
 Comparisons are performed using the interface’s "equals" method. The
 following general description of GSS-API credentials is included from
 the C-bindings specification:

 GSS-API credentials can contain mechanism-specific principal
 authentication data for multiple mechanisms. A GSS-API credential is
 composed of a set of credential-elements, each of which is applicable
 to a single mechanism. A credential may contain at most one
 credential-element for each supported mechanism. A credential-
 element identifies the data needed by a single mechanism to
 authenticate a single principal, and conceptually contains two
 credential-references that describe the actual mechanism-specific
 authentication data, one to be used by GSS-API for initiating
 contexts, and one to be used for accepting contexts. For mechanisms
 that do not distinguish between acceptor and initiator credentials,
 both references would point to the same underlying mechanism-specific
 authentication data.

 Credentials describe a set of mechanism-specific principals, and give
 their holder the ability to act as any of those principals. All
 principal identities asserted by a single GSS-API credential should
 belong to the same entity, although enforcement of this property is
 an implementation-specific matter. A single GSSCredential object
 represents all the credential elements that have been acquired.

 The creation’s of an GSSContext object allows the value of "null" to
 be specified as the GSSCredential input parameter. This will
 indicate a desire by the application to act as a default principal.
 While individual GSS-API implementations are free to determine such
 default behavior as appropriate to the mechanism, the following
 default behavior by these routines is recommended for portability:

 For the initiator side of the context:

 1) If there is only a single principal capable of initiating
 security contexts for the chosen mechanism that the application
 is authorized to act on behalf of, then that principal shall be
 used, otherwise

Kabat & Upadhyay Standards Track [Page 16]

RFC 2853 GSS-API Java Bindings June 2000

 2) If the platform maintains a concept of a default network-
 identity for the chosen mechanism, and if the application is
 authorized to act on behalf of that identity for the purpose of
 initiating security contexts, then the principal corresponding
 to that identity shall be used, otherwise

 3) If the platform maintains a concept of a default local
 identity, and provides a means to map local identities into
 network-identities for the chosen mechanism, and if the
 application is authorized to act on behalf of the network-
 identity image of the default local identity for the purpose of
 initiating security contexts using the chosen mechanism, then
 the principal corresponding to that identity shall be used,
 otherwise

 4) A user-configurable default identity should be used.

 and for the acceptor side of the context

 1) If there is only a single authorized principal identity capable
 of accepting security contexts for the chosen mechanism, then
 that principal shall be used, otherwise

 2) If the mechanism can determine the identity of the target
 principal by examining the context-establishment token
 processed during the accept method, and if the accepting
 application is authorized to act as that principal for the
 purpose of accepting security contexts using the chosen
 mechanism, then that principal identity shall be used,
 otherwise

 3) If the mechanism supports context acceptance by any principal,
 and if mutual authentication was not requested, any principal
 that the application is authorized to accept security contexts
 under using the chosen mechanism may be used, otherwise

 4) A user-configurable default identity shall be used.

 The purpose of the above rules is to allow security contexts to be
 established by both initiator and acceptor using the default behavior
 whenever possible. Applications requesting default behavior are
 likely to be more portable across mechanisms and implementations than
 ones that instantiate an GSSCredential object representing a specific
 identity.

Kabat & Upadhyay Standards Track [Page 17]

RFC 2853 GSS-API Java Bindings June 2000

4.9. Contexts

 The GSSContext interface is used to represent one end of a GSS-API
 security context, storing state information appropriate to that end
 of the peer communication, including cryptographic state information.
 The instantiation of the context object is done differently by the
 initiator and the acceptor. After the context has been instantiated,
 the initiator may choose to set various context options which will
 determine the characteristics of the desired security context. When
 all the application desired characteristics have been set, the
 initiator will call the initSecContext method which will produce a
 token for consumption by the peer’s acceptSecContext method. It is
 the responsibility of the application to deliver the authentication
 token(s) between the peer applications for processing. Upon
 completion of the context establishment phase, context attributes can
 be retrieved, by both the initiator and acceptor, using the accessor
 methods. These will reflect the actual attributes of the established
 context. At this point the context can be used by the application to
 apply cryptographic services to its data.

4.10. Authentication tokens

 A token is a caller-opaque type that GSS-API uses to maintain
 synchronization between each end of the GSS-API security context.
 The token is a cryptographically protected octet-string, generated by
 the underlying mechanism at one end of a GSS-API security context for
 use by the peer mechanism at the other end. Encapsulation (if
 required) within the application protocol and transfer of the token
 are the responsibility of the peer applications.

 Java GSS-API uses byte arrays to represent authentication tokens.
 Overloaded methods exist which allow the caller to supply input and
 output streams which will be used for the reading and writing of the
 token data.

4.11. Interprocess tokens

 Certain GSS-API routines are intended to transfer data between
 processes in multi-process programs. These routines use a caller-
 opaque octet-string, generated by the GSS-API in one process for use
 by the GSS-API in another process. The calling application is
 responsible for transferring such tokens between processes. Note
 that, while GSS-API implementors are encouraged to avoid placing
 sensitive information within interprocess tokens, or to
 cryptographically protect them, many implementations will be unable
 to avoid placing key material or other sensitive data within them.
 It is the application’s responsibility to ensure that interprocess
 tokens are protected in transit, and transferred only to processes

Kabat & Upadhyay Standards Track [Page 18]

RFC 2853 GSS-API Java Bindings June 2000

 that are trustworthy. An interprocess token is represented using a
 byte array emitted from the export method of the GSSContext
 interface. The receiver of the interprocess token would initialize
 an GSSContext object with this token to create a new context. Once a
 context has been exported, the GSSContext object is invalidated and
 is no longer available.

4.12. Error Reporting

 RFC 2743 defined the usage of major and minor status values for
 signaling of GSS-API errors. The major code, also called GSS status
 code, is used to signal errors at the GSS-API level independent of
 the underlying mechanism(s). The minor status value or Mechanism
 status code, is a mechanism defined error value indicating a
 mechanism specific error code.

 Java GSS-API uses exceptions implemented by the GSSException class to
 signal both minor and major error values. Both mechanism specific
 errors and GSS-API level errors are signaled through instances of
 this class. The usage of exceptions replaces the need for major and
 minor codes to be used within the API calls. GSSException class also
 contains methods to obtain textual representations for both the major
 and minor values, which is equivalent to the functionality of
 gss_display_status.

4.12.1. GSS status codes

 GSS status codes indicate errors that are independent of the
 underlying mechanism(s) used to provide the security service. The
 errors that can be indicated via a GSS status code are generic API
 routine errors (errors that are defined in the GSS-API
 specification). These bindings take advantage of the Java exceptions
 mechanism, thus eliminating the need for calling errors.

 A GSS status code indicates a single fatal generic API error from the
 routine that has thrown the GSSException. Using exceptions announces
 that a fatal error has occurred during the execution of the method.
 The GSS-API operational model also allows for the signaling of
 supplementary status information from the per-message calls. These
 need to be handled as return values since using exceptions is not
 appropriate for informatory or warning-like information. The methods
 that are capable of producing supplementary information are the two
 per-message methods GSSContext.verifyMIC() and GSSContext.unwrap().
 These methods fill the supplementary status codes in the MessageProp
 object that was passed in.

Kabat & Upadhyay Standards Track [Page 19]

RFC 2853 GSS-API Java Bindings June 2000

 GSSException object, along with providing the functionality for
 setting of the various error codes and translating them into textual
 representation, also contains the definitions of all the numeric
 error values. The following table lists the definitions of error
 codes:

 Table: GSS Status Codes

 Name Value Meaning

 BAD_MECH 1 An unsupported mechanism
 was requested.

 BAD_NAME 2 An invalid name was supplied.

 BAD_NAMETYPE 3 A supplied name was of an
 unsupported type.

 BAD_BINDINGS 4 Incorrect channel bindings were
 supplied.

 BAD_STATUS 5 An invalid status code was
 supplied.

 BAD_MIC 6 A token had an invalid MIC.

 NO_CRED 7 No credentials were supplied, or
 the credentials were unavailable
 or inaccessible.

 NO_CONTEXT 8 Invalid context has been
 supplied.

 DEFECTIVE_TOKEN 9 A supplied token was invalid.

 DEFECTIVE_CREDENTIAL 10 A supplied credential was
 invalid.

 CREDENTIALS_EXPIRED 11 The referenced credentials
 have expired.

 CONTEXT_EXPIRED 12 The context has expired.

 FAILURE 13 Miscellaneous failure,
 unspecified at the GSS-API level.

 BAD_QOP 14 The quality-of-protection
 requested could not be provided.

Kabat & Upadhyay Standards Track [Page 20]

RFC 2853 GSS-API Java Bindings June 2000

 UNAUTHORIZED 15 The operation is forbidden by
 local security policy.

 UNAVAILABLE 16 The operation or option is
 unavailable.

 DUPLICATE_ELEMENT 17 The requested credential
 element already exists.

 NAME_NOT_MN 18 The provided name was not a
 mechanism name.

 OLD_TOKEN 19 The token’s validity period has
 expired.

 DUPLICATE_TOKEN 20 The token was a duplicate of an
 earlier version.

 The GSS major status code of FAILURE is used to indicate that the
 underlying mechanism detected an error for which no specific GSS
 status code is defined. The mechanism-specific status code can
 provide more details about the error.

 The different major status codes that can be contained in the
 GSSException object thrown by the methods in this specification are
 the same as the major status codes returned by the corresponding
 calls in RFC 2743 [GSSAPIv2-UPDATE].

4.12.2. Mechanism-specific status codes

 Mechanism-specific status codes are communicated in two ways, they
 are part of any GSSException thrown from the mechanism specific layer
 to signal a fatal error, or they are part of the MessageProp object
 that the per-message calls use to signal non-fatal errors.

 A default value of 0 in either the GSSException object or the
 MessageProp object will be used to represent the absence of any
 mechanism specific status code.

4.12.3. Supplementary status codes

 Supplementary status codes are confined to the per-message methods of
 the GSSContext interface. Because of the informative nature of these
 errors it is not appropriate to use exceptions to signal them.
 Instead, the per-message operations of the GSSContext interface
 return these values in a MessageProp object.

Kabat & Upadhyay Standards Track [Page 21]

RFC 2853 GSS-API Java Bindings June 2000

 The MessageProp class defines query methods which return boolean
 values indicating the following supplementary states:

 Table: Supplementary Status Methods

 Method Name Meaning when "true" is returned

 isDuplicateToken The token was a duplicate of an
 earlier token.

 isOldToken The token’s validity period has
 expired.

 isUnseqToken A later token has already been
 processed.

 isGapToken An expected per-message token was
 not received.

 "true" return value for any of the above methods indicates that the
 token exhibited the specified property. The application must
 determine the appropriate course of action for these supplementary
 values. They are not treated as errors by the GSS-API.

4.13. Names

 A name is used to identify a person or entity. GSS-API authenticates
 the relationship between a name and the entity claiming the name.

 Since different authentication mechanisms may employ different
 namespaces for identifying their principals, GSS-API’s naming support
 is necessarily complex in multi-mechanism environments (or even in
 some single-mechanism environments where the underlying mechanism
 supports multiple namespaces).

 Two distinct conceptual representations are defined for names:

 1) A GSS-API form represented by implementations of the GSSName
 interface: A single GSSName object may contain multiple names from
 different namespaces, but all names should refer to the same
 entity. An example of such an internal name would be the name
 returned from a call to the getName method of the GSSCredential
 interface, when applied to a credential containing credential
 elements for multiple authentication mechanisms employing
 different namespaces. This GSSName object will contain a distinct
 name for the entity for each authentication mechanism.

Kabat & Upadhyay Standards Track [Page 22]

RFC 2853 GSS-API Java Bindings June 2000

 For GSS-API implementations supporting multiple namespaces,
 GSSName implementations must contain sufficient information to
 determine the namespace to which each primitive name belongs.

 2) Mechanism-specific contiguous byte array and string forms:
 Different GSSName initialization methods are provided to handle
 both byte array and string formats and to accommodate various
 calling applications and name types. These formats are capable of
 containing only a single name (from a single namespace).
 Contiguous string names are always accompanied by an object
 identifier specifying the namespace to which the name belongs, and
 their format is dependent on the authentication mechanism that
 employs that name. The string name forms are assumed to be
 printable, and may therefore be used by GSS-API applications for
 communication with their users. The byte array name formats are
 assumed to be in non-printable formats (e.g. the byte array
 returned from the export method of the GSSName interface).

 A GSSName object can be converted to a contiguous representation by
 using the toString method. This will guarantee that the name will be
 converted to a printable format. Different initialization methods in
 the GSSName interface are defined allowing support for multiple
 syntaxes for each supported namespace, and allowing users the freedom
 to choose a preferred name representation. The toString method
 should use an implementation-chosen printable syntax for each
 supported name-type. To obtain the printable name type,
 getStringNameType method can be used.

 There is no guarantee that calling the toString method on the GSSName
 interface will produce the same string form as the original imported
 string name. Furthermore, it is possible that the name was not even
 constructed from a string representation. The same applies to name-
 space identifiers which may not necessarily survive unchanged after a
 journey through the internal name-form. An example of this might be
 a mechanism that authenticates X.500 names, but provides an
 algorithmic mapping of Internet DNS names into X.500. That
 mechanism’s implementation of GSSName might, when presented with a
 DNS name, generate an internal name that contained both the original
 DNS name and the equivalent X.500 name. Alternatively, it might only
 store the X.500 name. In the latter case, the toString method of
 GSSName would most likely generate a printable X.500 name, rather
 than the original DNS name.

 The context acceptor can obtain a GSSName object representing the
 entity performing the context initiation (through the usage of
 getSrcName method). Since this name has been authenticated by a
 single mechanism, it contains only a single name (even if the
 internal name presented by the context initiator to the GSSContext

Kabat & Upadhyay Standards Track [Page 23]

RFC 2853 GSS-API Java Bindings June 2000

 object had multiple components). Such names are termed internal
 mechanism names, or "MN"s and the names emitted by GSSContext
 interface in the getSrcName and getTargName are always of this type.
 Since some applications may require MNs without wanting to incur the
 overhead of an authentication operation, creation methods are
 provided that take not only the name buffer and name type, but also
 the mechanism oid for which this name should be created. When
 dealing with an existing GSSName object, the canonicalize method may
 be invoked to convert a general internal name into an MN.

 GSSName objects can be compared using their equal method, which
 returns "true" if the two names being compared refer to the same
 entity. This is the preferred way to perform name comparisons
 instead of using the printable names that a given GSS-API
 implementation may support. Since GSS-API assumes that all primitive
 names contained within a given internal name refer to the same
 entity, equal can return "true" if the two names have at least one
 primitive name in common. If the implementation embodies knowledge
 of equivalence relationships between names taken from different
 namespaces, this knowledge may also allow successful comparisons of
 internal names containing no overlapping primitive elements.

 When used in large access control lists, the overhead of creating an
 GSSName object on each name and invoking the equal method on each
 name from the ACL may be prohibitive. As an alternative way of
 supporting this case, GSS-API defines a special form of the
 contiguous byte array name which may be compared directly (byte by
 byte). Contiguous names suitable for comparison are generated by the
 export method. Exported names may be re-imported by using the byte
 array constructor and specifying the NT_EXPORT_NAME as the name type
 object identifier. The resulting GSSName name will also be a MN.
 The GSSName interface defines public static Oid objects representing
 the standard name types. Structurally, an exported name object
 consists of a header containing an OID identifying the mechanism that
 authenticated the name, and a trailer containing the name itself,
 where the syntax of the trailer is defined by the individual
 mechanism specification. Detailed description of the format is
 specified in the language-independent GSS-API specification
 [GSSAPIv2-UPDATE].

 Note that the results obtained by using the equals method will in
 general be different from those obtained by invoking canonicalize and
 export, and then comparing the byte array output. The first series
 of operation determines whether two (unauthenticated) names identify
 the same principal; the second whether a particular mechanism would
 authenticate them as the same principal. These two operations will
 in general give the same results only for MNs.

Kabat & Upadhyay Standards Track [Page 24]

RFC 2853 GSS-API Java Bindings June 2000

 It is important to note that the above are guidelines as how GSSName
 implementations should behave, and are not intended to be specific
 requirements of how names objects must be implemented. The mechanism
 designers are free to decide on the details of their implementations
 of the GSSName interface as long as the behavior satisfies the above
 guidelines.

4.14. Channel Bindings

 GSS-API supports the use of user-specified tags to identify a given
 context to the peer application. These tags are intended to be used
 to identify the particular communications channel that carries the
 context. Channel bindings are communicated to the GSS-API using the
 ChannelBinding object. The application may use byte arrays to
 specify the application data to be used in the channel binding as
 well as using instances of the InetAddress. The InetAddress for the
 initiator and/or acceptor can be used within an instance of a
 ChannelBinding. ChannelBinding can be set for the GSSContext object
 using the setChannelBinding method before the first call to init or
 accept has been performed. Unless the setChannelBinding method has
 been used to set the ChannelBinding for a GSSContext object, "null"
 ChannelBinding will be assumed. InetAddress is currently the only
 address type defined within the Java platform and as such, it is the
 only one supported within the ChannelBinding class. Applications
 that use other types of addresses can include them as part of the
 application specific data.

 Conceptually, the GSS-API concatenates the initiator and acceptor
 address information, and the application supplied byte array to form
 an octet string. The mechanism calculates a MIC over this octet
 string and binds the MIC to the context establishment token emitted
 by init method of the GSSContext interface. The same bindings are
 set by the context acceptor for its GSSContext object and during
 processing of the accept method a MIC is calculated in the same way.
 The calculated MIC is compared with that found in the token, and if
 the MICs differ, accept will throw a GSSException with the major
 code set to BAD_BINDINGS, and the context will not be established.
 Some mechanisms may include the actual channel binding data in the
 token (rather than just a MIC); applications should therefore not use
 confidential data as channel-binding components.

 Individual mechanisms may impose additional constraints on addresses
 that may appear in channel bindings. For example, a mechanism may
 verify that the initiator address field of the channel binding
 contains the correct network address of the host system. Portable
 applications should therefore ensure that they either provide correct
 information for the address fields, or omit setting of the addressing
 information.

Kabat & Upadhyay Standards Track [Page 25]

RFC 2853 GSS-API Java Bindings June 2000

4.15. Stream Objects

 The context object provides overloaded methods which use input and
 output streams as the means to convey authentication and per-message
 GSS-API tokens. It is important to note that the streams are
 expected to contain the usual GSS-API tokens which would otherwise be
 handled through the usage of byte arrays. The tokens are expected to
 have a definite start and an end. The callers are responsible for
 ensuring that the supplied streams will not block, or expect to block
 until a full token is processed by the GSS-API method. Only a single
 GSS-API token will be processed per invocation of the stream based
 method.

 The usage of streams allows the callers to have control and
 management of the supplied buffers. Because streams are non-
 primitive objects, the callers can make the streams as complicated or
 as simple as desired simply by using the streams defined in the
 java.io package or creating their own through the use of inheritance.
 This will allow for the application’s greatest flexibility.

4.16. Optional Parameters

 Whenever the application wishes to omit an optional parameter the
 "null" value shall be used. The detailed method descriptions
 indicate which parameters are optional. Methods overloading has also
 been used as a technique to indicate default parameters.

5. Introduction to GSS-API Classes and Interfaces

 This section presents a brief description of the classes and
 interfaces that constitute the GSS-API. The implementations of these
 are obtained from the CLASSPATH defined by the application. If Java
 GSS becomes part of the standard Java API’s then these classes will
 be available by default on all systems as part of the JRE’s system
 classes.

 This section also shows the corresponding RFC 2743 functionality
 implemented by each of the classes. Detailed description of these
 classes and their methods is presented in section 6.

5.1. GSSManager class

 This abstract class serves as a factory to instantiate
 implementations of the GSS-API interfaces and also provides methods
 to make queries about underlying security mechanisms.

Kabat & Upadhyay Standards Track [Page 26]

RFC 2853 GSS-API Java Bindings June 2000

 A default implementation can be obtained using the static method
 getInstance(). Applications that desire to provide their own
 implementation of the GSSManager class can simply extend the abstract
 class themselves.

 This class contains equivalents of the following RFC 2743 routines:

 gss_import_name Create an internal name from 6.1.9-
 the supplied information. 6.1.12

 gss_acquire_cred Acquire credential 6.1.13-
 for use. 6.1.15

 gss_import_sec_context Create a previously exported 6.1.18
 context.

 gss_indicate_mechs List the mechanisms 6.1.6
 supported by this GSS-API
 implementation.

 gss_inquire_mechs_for_name List the mechanisms 6.1.8
 supporting the
 specified name type.

 gss_inquire_names_for_mech List the name types 6.1.7
 supported by the
 specified mechanism.

5.2. GSSName interface

 GSS-API names are represented in the Java bindings through the
 GSSName interface. Different name formats and their definitions are
 identified with universal Object Identifiers (oids). The format of
 the names can be derived based on the unique oid of each name type.
 The following GSS-API routines are provided by the GSSName interface:

 RFC 2743 Routine Function Section(s)

 gss_display_name Covert internal name 6.2.7
 representation to text format.

 gss_compare_name Compare two internal names. 6.2.3, 6.2.4

 gss_release_name Release resources associated N/A
 with the internal name.

Kabat & Upadhyay Standards Track [Page 27]

RFC 2853 GSS-API Java Bindings June 2000

 gss_canonicalize_name Convert an internal name to a 6.1.11,
 mechanism name.

 gss_export_name Convert a mechanism name to 6.2.6
 export format.

 gss_duplicate_name Create a copy of the internal N/A
 name.

 The gss_release_name call is not provided as Java does its own
 garbage collection. The gss_duplicate_name call is also redundant;
 the GSSName interface has no mutator methods that can change the
 state of the object so it is safe for sharing.

5.3. GSSCredential interface

 The GSSCredential interface is responsible for the encapsulation of
 GSS-API credentials. Credentials identify a single entity and
 provide the necessary cryptographic information to enable the
 creation of a context on behalf of that entity. A single credential
 may contain multiple mechanism specific credentials, each referred to
 as a credential element. The GSSCredential interface provides the
 functionality of the following GSS-API routines:

 RFC 2743 Routine Function Section(s)

 gss_add_cred Constructs credentials 6.3.12
 incrementally.

 gss_inquire_cred Obtain information about 6.3.4,6.3.5
 credential.

 gss_inquire_cred_by_mech Obtain per-mechanism 6.3.5-6.3.10
 information about
 a credential.

 gss_release_cred Disposes of credentials 6.3.3
 after use.

5.4. GSSContext interface

 This interface encapsulates the functionality of context-level calls
 required for security context establishment and management between
 peers as well as the per-message services offered to applications. A
 context is established between a pair of peers and allows the usage
 of security services on a per-message basis on application data. It

Kabat & Upadhyay Standards Track [Page 28]

RFC 2853 GSS-API Java Bindings June 2000

 is created over a single security mechanism. The GSSContext
 interface provides the functionality of the following GSS-API
 routines:

 RFC 2743 Routine Function Section(s)

 gss_init_sec_context Initiate the creation of a 6.4.3,
 security context with a peer. 6.4.4

 gss_accept_sec_context Accept a security context 6.4.5,
 initiated by a peer. 6.4.6

 gss_delete_sec_context Destroy a security context. 6.4.8

 gss_context_time Obtain remaining context 6.4.37
 time.

 gss_inquire_context Obtain context 6.4.29 to
 characteristics. 6.3.42

 gss_wrap_size_limit Determine token-size limit 6.4.9
 for gss_wrap.

 gss_export_sec_context Transfer security context 6.4.18
 to another process.

 gss_get_mic Calculate a cryptographic 6.4.14,
 Message Integrity Code (MIC) 6.4.15
 for a message.

 gss_verify_mic Verify integrity on a received 6.4.16,
 message. 6.4.17

 gss_wrap Attach a MIC to a message and 6.4.10,
 optionally encrypt the message 6.4.11
 content.

 gss_unwrap Obtain a previously wrapped 6.4.12,
 application message verifying 6.4.13
 its integrity and optionally
 decrypting it.

 The functionality offered by the gss_process_context_token routine
 has not been included in the Java bindings specification. The
 corresponding functionality of gss_delete_sec_context has also been
 modified to not return any peer tokens. This has been proposed in

Kabat & Upadhyay Standards Track [Page 29]

RFC 2853 GSS-API Java Bindings June 2000

 accordance to the recommendations stated in RFC 2743. GSSContext
 does offer the functionality of destroying the locally-stored context
 information.

5.5. MessageProp class

 This helper class is used in the per-message operations on the
 context. An instance of this class is created by the application and
 then passed into the per-message calls. In some cases, the
 application conveys information to the GSS-API implementation through
 this object and in other cases the GSS-API returns information to the
 application by setting it in this object. See the description of the
 per-message operations wrap, unwrap, getMIC, and verifyMIC in the
 GSSContext interfaces for details.

5.6. GSSException class

 Exceptions are used in the Java bindings to signal fatal errors to
 the calling applications. This replaces the major and minor codes
 used in the C-bindings specification as a method of signaling
 failures. The GSSException class handles both minor and major codes,
 as well as their translation into textual representation. All GSS-
 API methods are declared as throwing this exception.

 RFC 2743 Routine Function Section

 gss_display_status Retrieve textual 6.8.5, 6.8.6,
 representation of error 6.8.8, 6.8.9
 codes.

5.7. Oid class

 This utility class is used to represent Universal Object Identifiers
 and their associated operations. GSS-API uses object identifiers to
 distinguish between security mechanisms and name types. This class,
 aside from being used whenever an object identifier is needed,
 implements the following GSS-API functionality:

 RFC 2743 Routine Function Section

 gss_test_oid_set_member Determine if the specified oid 6.7.5
 is part of a set of oids.

Kabat & Upadhyay Standards Track [Page 30]

RFC 2853 GSS-API Java Bindings June 2000

5.8. ChannelBinding class

 An instance of this class is used to specify channel binding
 information to the GSSContext object before the start of a security
 context establishment. The application may use a byte array to
 specify application data to be used in the channel binding as well as
 use instances of the InetAddress. InetAddress is currently the only
 address type defined within the Java platform and as such, it is the
 only one supported within the ChannelBinding class. Applications that
 use other types of addresses can include them as part of the
 application data.

6. Detailed GSS-API Class Description

 This section lists a detailed description of all the public methods
 that each of the GSS-API classes and interfaces must provide.

6.1. public abstract class GSSManager

 The GSSManager class is an abstract class that serves as a factory
 for three GSS interfaces: GSSName, GSSCredential, and GSSContext. It
 also provides methods for applications to determine what mechanisms
 are available from the GSS implementation and what nametypes these
 mechanisms support. An instance of the default GSSManager subclass
 may be obtained through the static method getInstance(), but
 applications are free to instantiate other subclasses of GSSManager.

 All but one method in this class are declared abstract. This means
 that subclasses have to provide the complete implementation for those
 methods. The only exception to this is the static method
 getInstance() which will have platform specific code to return an
 instance of the default subclass.

 Platform providers of GSS are required not to add any constructors to
 this class, private, public, or protected. This will ensure that all
 subclasses invoke only the default constructor provided to the base
 class by the compiler.

 A subclass extending the GSSManager abstract class may be implemented
 as a modular provider based layer that utilizes some well known
 service provider specification. The GSSManager API provides the
 application with methods to set provider preferences on such an
 implementation. These methods also allow the implementation to throw
 a well-defined exception in case provider based configuration is not
 supported. Applications that expect to be portable should be aware of
 this and recover cleanly by catching the exception.

Kabat & Upadhyay Standards Track [Page 31]

RFC 2853 GSS-API Java Bindings June 2000

 It is envisioned that there will be three most common ways in which
 providers will be used:

 1) The application does not care about what provider is used (the
 default case).

 2) The application wants a particular provider to be used
 preferentially, either for a particular mechanism or all the
 time, irrespective of mechanism.

 3) The application wants to use the locally configured providers
 as far as possible but if support is missing for one or more
 mechanisms then it wants to fall back on its own provider.

 The GSSManager class has two methods that enable these modes of
 usage: addProviderAtFront() and addProviderAtEnd(). These methods
 have the effect of creating an ordered list of <provider, oid> pairs
 where each pair indicates a preference of provider for a given oid.

 The use of these methods does not require any knowledge of whatever
 service provider specification the GSSManager subclass follows. It is
 hoped that these methods will serve the needs of most applications.
 Additional methods may be added to an extended GSSManager that could
 be part of a service provider specification that is standardized
 later.

6.1.1. Example Code

 GSSManager mgr = GSSManager.getInstance();

 // What mechs are available to us?
 Oid[] supportedMechs = mgr.getMechs();

 // Set a preference for the provider to be used when support is needed
 // for the mechanisms "1.2.840.113554.1.2.2" and "1.3.6.1.5.5.1.1".

 Oid krb = new Oid("1.2.840.113554.1.2.2");
 Oid spkm1 = new Oid("1.3.6.1.5.5.1.1");

 Provider p = (Provider) (new com.foo.security.Provider());

 mgr.addProviderAtFront(p, krb);
 mgr.addProviderAtFront(p, spkm1);

 // What name types does this spkm implementation support?
 Oid[] nameTypes = mgr.getNamesForMech(spkm1);

Kabat & Upadhyay Standards Track [Page 32]

RFC 2853 GSS-API Java Bindings June 2000

6.1.2. getInstance

 public static GSSManager getInstance()

 Returns the default GSSManager implementation.

6.1.3. getMechs

 public abstract Oid[] getMechs()

 Returns an array of Oid objects indicating mechanisms available to
 GSS-API callers. A "null" value is returned when no mechanism are
 available (an example of this would be when mechanism are dynamically
 configured, and currently no mechanisms are installed).

6.1.4. getNamesForMech

 public abstract Oid[] getNamesForMech(Oid mech)
 throws GSSException

 Returns name type Oid’s supported by the specified mechanism.

 Parameters:

 mech The Oid object for the mechanism to query.

6.1.5. getMechsForName

 public abstract Oid[] getMechsForName(Oid nameType)

 Returns an array of Oid objects corresponding to the mechanisms that
 support the specific name type. "null" is returned when no
 mechanisms are found to support the specified name type.

 Parameters:

 nameType The Oid object for the name type.

6.1.6. createName

 public abstract GSSName createName(String nameStr, Oid nameType)
 throws GSSException

 Factory method to convert a contiguous string name from the specified
 namespace to a GSSName object. In general, the GSSName object
 created will not be an MN; two examples that are exceptions to this
 are when the namespace type parameter indicates NT_EXPORT_NAME or
 when the GSS-API implementation is not multi-mechanism.

Kabat & Upadhyay Standards Track [Page 33]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 nameStr The string representing a printable form of the name
 to create.

 nameType The Oid specifying the namespace of the printable name
 supplied. Note that nameType serves to describe and
 qualify the interpretation of the input nameStr, it
 does not necessarily imply a type for the output
 GSSName implementation. "null" value can be used to
 specify that a mechanism specific default printable
 syntax should be assumed by each mechanism that
 examines nameStr.

6.1.7. createName

 public abstract GSSName createName(byte name[], Oid nameType)
 throws GSSException

 Factory method to convert a contiguous byte array containing a name
 from the specified namespace to a GSSName object. In general, the
 GSSName object created will not be an MN; two examples that are
 exceptions to this are when the namespace type parameter indicates
 NT_EXPORT_NAME or when the GSS-API implementation is not multi-
 mechanism.

 Parameters:

 name The byte array containing the name to create.

 nameType The Oid specifying the namespace of the name supplied
 in the byte array. Note that nameType serves to
 describe and qualify the interpretation of the input
 name byte array, it does not necessarily imply a type
 for the output GSSName implementation. "null" value
 can be used to specify that a mechanism specific
 default syntax should be assumed by each mechanism
 that examines the byte array.

Kabat & Upadhyay Standards Track [Page 34]

RFC 2853 GSS-API Java Bindings June 2000

6.1.8. createName

 public abstract GSSName createName(String nameStr, Oid nameType,
 Oid mech) throws GSSException

 Factory method to convert a contiguous string name from the specified
 namespace to an GSSName object that is a mechanism name (MN). In
 other words, this method is a utility that does the equivalent of two
 steps: the createName described in 6.1.7 and then also the
 GSSName.canonicalize() described in 6.2.5.

 Parameters:

 nameStr The string representing a printable form of the name
 to create.

 nameType The Oid specifying the namespace of the printable name
 supplied. Note that nameType serves to describe and
 qualify the interpretation of the input nameStr, it
 does not necessarily imply a type for the output
 GSSName implementation. "null" value can be used to
 specify that a mechanism specific default printable
 syntax should be assumed when the mechanism examines
 nameStr.

 mech Oid specifying the mechanism for which this name
 should be created.

6.1.9. createName

 public abstract createName(byte name[], Oid nameType, Oid mech)
 throws GSSException

 Factory method to convert a contiguous byte array containing a name
 from the specified namespace to a GSSName object that is an MN. In
 other words, this method is a utility that does the equivalent of two
 steps: the createName described in 6.1.8 and then also the
 GSSName.canonicalize() described in 6.2.5.

 Parameters:

 name The byte array representing the name to create.

 nameType The Oid specifying the namespace of the name supplied
 in the byte array. Note that nameType serves to
 describe and qualify the interpretation of the input
 name byte array, it does not necessarily imply a type
 for the output GSSName implementation. "null" value

Kabat & Upadhyay Standards Track [Page 35]

RFC 2853 GSS-API Java Bindings June 2000

 can be used to specify that a mechanism specific
 default syntax should be assumed by each mechanism
 that examines the byte array.

 mech Oid specifying the mechanism for which this name
 should be created.

6.1.10. createCredential

 public abstract GSSCredential createCredential (int usage)
 throws GSSException

 Factory method for acquiring default credentials. This will cause
 the GSS-API to use system specific defaults for the set of
 mechanisms, name, and a DEFAULT lifetime.

 Parameters:

 usage The intended usage for this credential object. The
 value of this parameter must be one of:
 GSSCredential.ACCEPT_AND_INITIATE,
 GSSCredential.ACCEPT_ONLY, GSSCredential.INITIATE_ONLY

6.1.11. createCredential

 public abstract GSSCredential createCredential (GSSName aName,
 int lifetime, Oid mech, int usage)
 throws GSSException

 Factory method for acquiring a single mechanism credential.

 Parameters:

 aName Name of the principal for whom this credential is to
 be acquired. Use "null" to specify the default
 principal.

 lifetime The number of seconds that credentials should remain
 valid. Use GSSCredential.INDEFINITE_LIFETIME to
 request that the credentials have the maximum
 permitted lifetime. Use
 GSSCredential.DEFAULT_LIFETIME to request default
 credential lifetime.

 mech The oid of the desired mechanism. Use "(Oid) null" to
 request the default mechanism(s).

Kabat & Upadhyay Standards Track [Page 36]

RFC 2853 GSS-API Java Bindings June 2000

 usage The intended usage for this credential object. The
 value of this parameter must be one of:
 GSSCredential.ACCEPT_AND_INITIATE,
 GSSCredential.ACCEPT_ONLY, GSSCredential.INITIATE_ONLY

6.1.12. createCredential

 public abstract GSSCredential createCredential(GSSName aName,
 int lifetime, Oid mechs[], int usage)
 throws GSSException

 Factory method for acquiring credentials over a set of mechanisms.
 Acquires credentials for each of the mechanisms specified in the
 array called mechs. To determine the list of mechanisms’ for which
 the acquisition of credentials succeeded, the caller should use the
 GSSCredential.getMechs() method.

 Parameters:

 aName Name of the principal for whom this credential is to
 be acquired. Use "null" to specify the default
 principal.

 lifetime The number of seconds that credentials should remain
 valid. Use GSSCredential.INDEFINITE_LIFETIME to
 request that the credentials have the maximum
 permitted lifetime. Use
 GSSCredential.DEFAULT_LIFETIME to request default
 credential lifetime.

 mechs The array of mechanisms over which the credential is
 to be acquired. Use "(Oid[]) null" for requesting a
 system specific default set of mechanisms.

 usage The intended usage for this credential object. The
 value of this parameter must be one of:
 GSSCredential.ACCEPT_AND_INITIATE,
 GSSCredential.ACCEPT_ONLY, GSSCredential.INITIATE_ONLY

6.1.13. createContext

 public abstract GSSContext createContext(GSSName peer, Oid mech,
 GSSCredential myCred, int lifetime)
 throws GSSException

 Factory method for creating a context on the initiator’s side.
 Context flags may be modified through the mutator methods prior to
 calling GSSContext.initSecContext().

Kabat & Upadhyay Standards Track [Page 37]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 peer Name of the target peer.

 mech Oid of the desired mechanism. Use "(Oid) null" to
 request default mechanism.

 myCred Credentials of the initiator. Use "null" to act as a
 default initiator principal.

 lifetime The request lifetime, in seconds, for the context.
 Use GSSContext.INDEFINITE_LIFETIME and
 GSSContext.DEFAULT_LIFETIME to request indefinite or
 default context lifetime.

6.1.14. createContext

 public abstract GSSContext createContext(GSSCredential myCred)
 throws GSSException

 Factory method for creating a context on the acceptor’ side. The
 context’s properties will be determined from the input token supplied
 to the accept method.

 Parameters:

 myCred Credentials for the acceptor. Use "null" to act as a
 default acceptor principal.

6.1.15. createContext

 public abstract GSSContext createContext(byte [] interProcessToken)
 throws GSSException

 Factory method for creating a previously exported context. The
 context properties will be determined from the input token and can’t
 be modified through the set methods.

 Parameters:

 interProcessToken
 The token previously emitted from the export method.

6.1.16. addProviderAtFront

 public abstract void addProviderAtFront(Provider p, Oid mech)
 throws GSSException

Kabat & Upadhyay Standards Track [Page 38]

RFC 2853 GSS-API Java Bindings June 2000

 This method is used to indicate to the GSSManager that the
 application would like a particular provider to be used ahead of all
 others when support is desired for the given mechanism. When a value
 of null is used instead of an Oid for the mechanism, the GSSManager
 must use the indicated provider ahead of all others no matter what
 the mechanism is. Only when the indicated provider does not support
 the needed mechanism should the GSSManager move on to a different
 provider.

 Calling this method repeatedly preserves the older settings but
 lowers them in preference thus forming an ordered list of provider
 and Oid pairs that grows at the top.

 Calling addProviderAtFront with a null Oid will remove all previous
 preferences that were set for this provider in the GSSManager
 instance. Calling addProviderAtFront with a non-null Oid will remove
 any previous preference that was set using this mechanism and this
 provider together.

 If the GSSManager implementation does not support an SPI with a
 pluggable provider architecture it should throw a GSSException with
 the status code GSSException.UNAVAILABLE to indicate that the
 operation is unavailable.

 Parameters:

 p The provider instance that should be used whenever
 support is needed for mech.

 mech The mechanism for which the provider is being set

6.1.16.1. Example Code

 Suppose an application desired that the provider A always be checked
 first when any mechanism is needed, it would call:

 GSSManager mgr = GSSManager.getInstance();
 // mgr may at this point have its own pre-configured list
 // of provider preferences. The following will prepend to
 // any such list:

 mgr.addProviderAtFront(A, null);

 Now if it also desired that the mechanism of Oid m1 always be
 obtained from the provider B before the previously set A was checked,
 it would call:

 mgr.addProviderAtFront(B, m1);

Kabat & Upadhyay Standards Track [Page 39]

RFC 2853 GSS-API Java Bindings June 2000

 The GSSManager would then first check with B if m1 was needed. In
 case B did not provide support for m1, the GSSManager would continue
 on to check with A. If any mechanism m2 is needed where m2 is
 different from m1 then the GSSManager would skip B and check with A
 directly.

 Suppose at a later time the following call is made to the same
 GSSManager instance:

 mgr.addProviderAtFront(B, null)

 then the previous setting with the pair (B, m1) is subsumed by this
 and should be removed. Effectively the list of preferences now
 becomes {(B, null), (A, null),
 ... //followed by the pre-configured list.

 Please note, however, that the following call:

 mgr.addProviderAtFront(A, m3)

 does not subsume the previous setting of (A, null) and the list will
 effectively become {(A, m3), (B, null), (A, null), ...}

6.1.17. addProviderAtEnd

 public abstract addProviderAtEnd(Provider p, Oid mech)
 throws GSSException

 This method is used to indicate to the GSSManager that the
 application would like a particular provider to be used if no other
 provider can be found that supports the given mechanism. When a value
 of null is used instead of an Oid for the mechanism, the GSSManager
 must use the indicated provider for any mechanism.

 Calling this method repeatedly preserves the older settings but
 raises them above newer ones in preference thus forming an ordered
 list of providers and Oid pairs that grows at the bottom. Thus the
 older provider settings will be utilized first before this one is.

 If there are any previously existing preferences that conflict with
 the preference being set here, then the GSSManager should ignore this
 request.

 If the GSSManager implementation does not support an SPI with a
 pluggable provider architecture it should throw a GSSException with
 the status code GSSException.UNAVAILABLE to indicate that the
 operation is unavailable.

Kabat & Upadhyay Standards Track [Page 40]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 p The provider instance that should be used whenever
 support is needed for mech.

 mech The mechanism for which the provider is being set

6.1.17.1. Example Code

 Suppose an application desired that when a mechanism of Oid m1 is
 needed the system default providers always be checked first, and only
 when they do not support m1 should a provider A be checked. It would
 then make the call:

 GSSManager mgr = GSSManager.getInstance();

 mgr.addProviderAtEnd(A, m1);

 Now, if it also desired that for all mechanisms the provider B be
 checked after all configured providers have been checked, it would
 then call:

 mgr.addProviderAtEnd(B, null);

 Effectively the list of preferences now becomes {..., (A, m1), (B,
 null)}.

 Suppose at a later time the following call is made to the same
 GSSManager instance:

 mgr.addProviderAtEnd(B, m2)

 then the previous setting with the pair (B, null) subsumes this and
 therefore this request should be ignored. The same would happen if a
 request is made for the already existing pairs of (A, m1) or (B,
 null).

 Please note, however, that the following call:

 mgr.addProviderAtEnd(A, null)

 is not subsumed by the previous setting of (A, m1) and the list will
 effectively become {..., (A, m1), (B, null), (A, null)}

Kabat & Upadhyay Standards Track [Page 41]

RFC 2853 GSS-API Java Bindings June 2000

6.2. public interface GSSName

 This interface encapsulates a single GSS-API principal entity.
 Different name formats and their definitions are identified with
 universal Object Identifiers (Oids). The format of the names can be
 derived based on the unique oid of its namespace type.

6.2.1. Example Code

 Included below are code examples utilizing the GSSName interface.
 The code below creates a GSSName, converts it to a mechanism name
 (MN), performs a comparison, obtains a printable representation of
 the name, exports it and then re-imports to obtain a new GSSName.

 GSSManager mgr = GSSManager.getInstance();

 // create a host based service name
 GSSName name = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE);

 Oid krb5 = new Oid("1.2.840.113554.1.2.2");

 GSSName mechName = name.canonicalize(krb5);

 // the above two steps are equivalent to the following
 GSSName mechName = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE, krb5);

 // perform name comparison
 if (name.equals(mechName))
 print("Names are equals.");

 // obtain textual representation of name and its printable
 // name type
 print(mechName.toString() +
 mechName.getStringNameType().toString());

 // export and re-import the name
 byte [] exportName = mechName.export();

 // create a new name object from the exported buffer
 GSSName newName = mgr.createName(exportName,
 GSSName.NT_EXPORT_NAME);

Kabat & Upadhyay Standards Track [Page 42]

RFC 2853 GSS-API Java Bindings June 2000

6.2.2. Static Constants

 public static final Oid NT_HOSTBASED_SERVICE

 Oid indicating a host-based service name form. It is used to
 represent services associated with host computers. This name form is
 constructed using two elements, "service" and "hostname", as follows:

 service@hostname

 Values for the "service" element are registered with the IANA. It
 represents the following value: { 1(iso), 3(org), 6(dod),
 1(internet), 5(security), 6(nametypes), 2(gss-host-based-services) }

 public static final Oid NT_USER_NAME

 Name type to indicate a named user on a local system. It represents
 the following value: { iso(1) member-body(2) United States(840)
 mit(113554) infosys(1) gssapi(2) generic(1) user_name(1) }

 public static final Oid NT_MACHINE_UID_NAME

 Name type to indicate a numeric user identifier corresponding to a
 user on a local system. (e.g. Uid). It represents the following
 value: { iso(1) member-body(2) United States(840) mit(113554)
 infosys(1) gssapi(2) generic(1) machine_uid_name(2) }

 public static final Oid NT_STRING_UID_NAME

 Name type to indicate a string of digits representing the numeric
 user identifier of a user on a local system. It represents the
 following value: { iso(1) member-body(2) United States(840)
 mit(113554) infosys(1) gssapi(2) generic(1) string_uid_name(3) }

 public static final Oid NT_ANONYMOUS

 Name type for representing an anonymous entity. It represents the
 following value: { 1(iso), 3(org), 6(dod), 1(internet), 5(security),
 6(nametypes), 3(gss-anonymous-name) }

 public static final Oid NT_EXPORT_NAME

 Name type used to indicate an exported name produced by the export
 method. It represents the following value: { 1(iso), 3(org), 6(dod),
 1(internet), 5(security), 6(nametypes), 4(gss-api-exported-name) }

Kabat & Upadhyay Standards Track [Page 43]

RFC 2853 GSS-API Java Bindings June 2000

6.2.3. equals

 public boolean equals(GSSName another) throws GSSException

 Compares two GSSName objects to determine whether they refer to the
 same entity. This method may throw a GSSException when the names
 cannot be compared. If either of the names represents an anonymous
 entity, the method will return "false".

 Parameters:

 another GSSName object to compare with.

6.2.4. equals

 public boolean equals(Object another)

 A variation of the equals method described in 6.2.3 that is provided
 to override the Object.equals() method that the implementing class
 will inherit. The behavior is exactly the same as that in 6.2.3
 except that no GSSException is thrown; instead, false will be
 returned in the situation where an error occurs. (Note that the Java
 language specification requires that two objects that are equal
 according to the equals(Object) method must return the same integer
 result when the hashCode() method is called on them.)

 Parameters:

 another GSSName object to compare with.

6.2.5. canonicalize

 public GSSName canonicalize(Oid mech) throws GSSException

 Creates a mechanism name (MN) from an arbitrary internal name. This
 is equivalent to using the factory methods described in 6.1.9 or
 6.1.10 that take the mechanism name as one of their parameters.

 Parameters:

 mech The oid for the mechanism for which the canonical form
 of the name is requested.

Kabat & Upadhyay Standards Track [Page 44]

RFC 2853 GSS-API Java Bindings June 2000

6.2.6. export

 public byte[] export() throws GSSException

 Returns a canonical contiguous byte representation of a mechanism
 name (MN), suitable for direct, byte by byte comparison by
 authorization functions. If the name is not an MN, implementations
 may throw a GSSException with the NAME_NOT_MN status code. If an
 implementation chooses not to throw an exception, it should use some
 system specific default mechanism to canonicalize the name and then
 export it. The format of the header of the output buffer is
 specified in RFC 2743.

6.2.7. toString

 public String toString()

 Returns a textual representation of the GSSName object. To retrieve
 the printed name format, which determines the syntax of the returned
 string, the getStringNameType method can be used.

6.2.8. getStringNameType

 public Oid getStringNameType() throws GSSException

 Returns the oid representing the type of name returned through the
 toString method. Using this oid, the syntax of the printable name
 can be determined.

6.2.9. isAnonymous

 public boolean isAnonymous()

 Tests if this name object represents an anonymous entity. Returns
 "true" if this is an anonymous name.

6.2.10. isMN

 public boolean isMN()

 Tests if this name object contains only one mechanism element and is
 thus a mechanism name as defined by RFC 2743.

6.3. public interface GSSCredential implements Cloneable

 This interface encapsulates the GSS-API credentials for an entity. A
 credential contains all the necessary cryptographic information to
 enable the creation of a context on behalf of the entity that it

Kabat & Upadhyay Standards Track [Page 45]

RFC 2853 GSS-API Java Bindings June 2000

 represents. It may contain multiple, distinct, mechanism specific
 credential elements, each containing information for a specific
 security mechanism, but all referring to the same entity.

 A credential may be used to perform context initiation, acceptance,
 or both.

 GSS-API implementations must impose a local access-control policy on
 callers to prevent unauthorized callers from acquiring credentials to
 which they are not entitled. GSS-API credential creation is not
 intended to provide a "login to the network" function, as such a
 function would involve the creation of new credentials rather than
 merely acquiring a handle to existing credentials. Such functions,
 if required, should be defined in implementation-specific extensions
 to the API.

 If credential acquisition is time-consuming for a mechanism, the
 mechanism may choose to delay the actual acquisition until the
 credential is required (e.g. by GSSContext). Such mechanism-
 specific implementation decisions should be invisible to the calling
 application; thus the query methods immediately following the
 creation of a credential object must return valid credential data,
 and may therefore incur the overhead of a deferred credential
 acquisition.

 Applications will create a credential object passing the desired
 parameters. The application can then use the query methods to obtain
 specific information about the instantiated credential object
 (equivalent to the gss_inquire routines). When the credential is no
 longer needed, the application should call the dispose (equivalent to
 gss_release_cred) method to release any resources held by the
 credential object and to destroy any cryptographically sensitive
 information.

 Classes implementing this interface also implement the Cloneable
 interface. This indicates the the class will support the clone()
 method that will allow the creation of duplicate credentials. This
 is useful when called just before the add() call to retain a copy of
 the original credential.

6.3.1. Example Code

 This example code demonstrates the creation of a GSSCredential
 implementation for a specific entity, querying of its fields, and its
 release when it is no longer needed.

Kabat & Upadhyay Standards Track [Page 46]

RFC 2853 GSS-API Java Bindings June 2000

 GSSManager mgr = GSSManager.getInstance();

 // start by creating a name object for the entity
 GSSName name = mgr.createName("userName", GSSName.NT_USER_NAME);

 // now acquire credentials for the entity
 GSSCredential cred = mgr.createCredential(name,
 GSSCredential.ACCEPT_ONLY);

 // display credential information - name, remaining lifetime,
 // and the mechanisms it has been acquired over
 print(cred.getName().toString());
 print(cred.getRemainingLifetime());

 Oid [] mechs = cred.getMechs();
 if (mechs != null) {
 for (int i = 0; i < mechs.length; i++)
 print(mechs[i].toString());
 }

 // release system resources held by the credential
 cred.dispose();

6.3.2. Static Constants

 public static final int INITIATE_AND_ACCEPT

 Credential usage flag requesting that it be able to be used for both
 context initiation and acceptance.

 public static final int INITIATE_ONLY

 Credential usage flag requesting that it be able to be used for
 context initiation only.

 public static final int ACCEPT_ONLY

 Credential usage flag requesting that it be able to be used for
 context acceptance only.

 public static final int DEFAULT_LIFETIME

 A lifetime constant representing the default credential lifetime.

 This value must be set to 0.

 public static final int INDEFINITE_LIFETIME

Kabat & Upadhyay Standards Track [Page 47]

RFC 2853 GSS-API Java Bindings June 2000

 A lifetime constant representing indefinite credential lifetime.
 This value must be set to the maximum integer value in Java -
 Integer.MAX_VALUE.

6.3.3. dispose

 public void dispose() throws GSSException

 Releases any sensitive information that the GSSCredential object may
 be containing. Applications should call this method as soon as the
 credential is no longer needed to minimize the time any sensitive
 information is maintained.

6.3.4. getName

 public GSSName getName() throws GSSException

 Retrieves the name of the entity that the credential asserts.

6.3.5. getName

 public GSSName getName(Oid mechOID) throws GSSException

 Retrieves a mechanism name of the entity that the credential asserts.
 Equivalent to calling canonicalize() on the name returned by 7.3.3.

 Parameters:

 mechOID The mechanism for which information should be
 returned.

6.3.6. getRemainingLifetime

 public int getRemainingLifetime() throws GSSException

 Returns the remaining lifetime in seconds for a credential. The
 remaining lifetime is the minimum lifetime for any of the underlying
 credential mechanisms. A return value of
 GSSCredential.INDEFINITE_LIFETIME indicates that the credential does
 not expire. A return value of 0 indicates that the credential is
 already expired.

Kabat & Upadhyay Standards Track [Page 48]

RFC 2853 GSS-API Java Bindings June 2000

6.3.7. getRemainingInitLifetime

 public int getRemainingInitLifetime(Oid mech) throws GSSException

 Returns the remaining lifetime is seconds for the credential to
 remain capable of initiating security contexts under the specified
 mechanism. A return value of GSSCredential.INDEFINITE_LIFETIME
 indicates that the credential does not expire for context initiation.
 A return value of 0 indicates that the credential is already expired.

 Parameters:

 mechOID The mechanism for which information should be
 returned.

6.3.8. getRemainingAcceptLifetime

 public int getRemainingAcceptLifetime(Oid mech) throws GSSException

 Returns the remaining lifetime is seconds for the credential to
 remain capable of accepting security contexts under the specified
 mechanism. A return value of GSSCredential.INDEFINITE_LIFETIME
 indicates that the credential does not expire for context acceptance.
 A return value of 0 indicates that the credential is already expired.

 Parameters:

 mechOID The mechanism for which information should be
 returned.

6.3.9. getUsage

 public int getUsage() throws GSSException

 Returns the credential usage flag. The return value will be one of
 GSSCredential.INITIATE_ONLY, GSSCredential.ACCEPT_ONLY, or
 GSSCredential.INITIATE_AND_ACCEPT.

6.3.10. getUsage

 public int getUsage(Oid mechOID) throws GSSException

 Returns the credential usage flag for the specified credential
 mechanism. The return value will be one of
 GSSCredential.INITIATE_ONLY, GSSCredential.ACCEPT_ONLY, or
 GSSCredential.INITIATE_AND_ACCEPT.

Kabat & Upadhyay Standards Track [Page 49]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 mechOID The mechanism for which information should be
 returned.

6.3.11. getMechs

 public Oid[] getMechs() throws GSSException

 Returns an array of mechanisms supported by this credential.

6.3.12. add

 public void add(GSSName aName, int initLifetime, int acceptLifetime,
 Oid mech, int usage) throws GSSException

 Adds a mechanism specific credential-element to an existing
 credential. This method allows the construction of credentials one
 mechanism at a time.

 This routine is envisioned to be used mainly by context acceptors
 during the creation of acceptance credentials which are to be used
 with a variety of clients using different security mechanisms.

 This routine adds the new credential element "in-place". To add the
 element in a new credential, first call clone() to obtain a copy of
 this credential, then call its add() method.

 Parameters:

 aName Name of the principal for whom this credential is to
 be acquired. Use "null" to specify the default
 principal.

 initLifetime
 The number of seconds that credentials should remain
 valid for initiating of security contexts. Use
 GSSCredential.INDEFINITE_LIFETIME to request that the
 credentials have the maximum permitted lifetime. Use
 GSSCredential.DEFAULT_LIFETIME to request default
 credential lifetime.

 acceptLifetime
 The number of seconds that credentials should remain
 valid for accepting of security contexts. Use
 GSSCredential.INDEFINITE_LIFETIME to request that the

Kabat & Upadhyay Standards Track [Page 50]

RFC 2853 GSS-API Java Bindings June 2000

 credentials have the maximum permitted lifetime. Use
 GSSCredential.DEFAULT_LIFETIME to request default
 credential lifetime.

 mech The mechanisms over which the credential is to be
 acquired.

 usage The intended usage for this credential object. The
 value of this parameter must be one of:
 GSSCredential.ACCEPT_AND_INITIATE,
 GSSCredential.ACCEPT_ONLY, GSSCredential.INITIATE_ONLY

6.3.13. equals

 public boolean equals(Object another)

 Tests if this GSSCredential refers to the same entity as the supplied
 object. The two credentials must be acquired over the same
 mechanisms and must refer to the same principal. Returns "true" if
 the two GSSCredentials refer to the same entity; "false" otherwise.
 (Note that the Java language specification requires that two objects
 that are equal according to the equals(Object) method must return the
 same integer result when the hashCode() method is called on them.)

 Parameters:

 another Another GSSCredential object for comparison.

6.4. public interface GSSContext

 This interface encapsulates the GSS-API security context and provides
 the security services (wrap, unwrap, getMIC, verifyMIC) that are
 available over the context. Security contexts are established
 between peers using locally acquired credentials. Multiple contexts
 may exist simultaneously between a pair of peers, using the same or
 different set of credentials. GSS-API functions in a manner
 independent of the underlying transport protocol and depends on its
 calling application to transport its tokens between peers.

 Before the context establishment phase is initiated, the context
 initiator may request specific characteristics desired of the
 established context. These can be set using the set methods. After
 the context is established, the caller can check the actual
 characteristic and services offered by the context using the query
 methods.

Kabat & Upadhyay Standards Track [Page 51]

RFC 2853 GSS-API Java Bindings June 2000

 The context establishment phase begins with the first call to the
 init method by the context initiator. During this phase the
 initSecContext and acceptSecContext methods will produce GSS-API
 authentication tokens which the calling application needs to send to
 its peer. If an error occurs at any point, an exception will get
 thrown and the code will start executing in a catch block. If not,
 the normal flow of code continues and the application can make a call
 to the isEstablished() method. If this method returns false it
 indicates that a token is needed from its peer in order to continue
 the context establishment phase. A return value of true signals that
 the local end of the context is established. This may still require
 that a token be sent to the peer, if one is produced by GSS-API.
 During the context establishment phase, the isProtReady() method may
 be called to determine if the context can be used for the per-message
 operations. This allows applications to use per-message operations
 on contexts which aren’t fully established.

 After the context has been established or the isProtReady() method
 returns "true", the query routines can be invoked to determine the
 actual characteristics and services of the established context. The
 application can also start using the per-message methods of wrap and
 getMIC to obtain cryptographic operations on application supplied
 data.

 When the context is no longer needed, the application should call
 dispose to release any system resources the context may be using.

6.4.1. Example Code

 The example code presented below demonstrates the usage of the
 GSSContext interface for the initiating peer. Different operations
 on the GSSContext object are presented, including: object
 instantiation, setting of desired flags, context establishment, query
 of actual context flags, per-message operations on application data,
 and finally context deletion.

 GSSManager mgr = GSSManager.getInstance();

 // start by creating the name for a service entity
 GSSName targetName = mgr.createName("service@host",
 GSSName.NT_HOSTBASED_SERVICE);

 // create a context using default credentials for the above entity
 // and the implementation specific default mechanism
 GSSContext context = mgr.createContext(targetName,
 null, /* default mechanism */
 null, /* default credentials */
 GSSContext.INDEFINITE_LIFETIME);

Kabat & Upadhyay Standards Track [Page 52]

RFC 2853 GSS-API Java Bindings June 2000

 // set desired context options - all others are false by default
 context.requestConf(true);
 context.requestMutualAuth(true);
 context.requestReplayDet(true);
 context.requestSequenceDet(true);

 // establish a context between peers - using byte arrays
 byte []inTok = new byte[0];

 try {
 do {
 byte[] outTok = context.initSecContext(inTok, 0,
 inTok.length);

 // send the token if present
 if (outTok != null)
 sendToken(outTok);

 // check if we should expect more tokens
 if (context.isEstablished())
 break;

 // another token expected from peer
 inTok = readToken();

 } while (true);

 } catch (GSSException e) {
 print("GSSAPI error: " + e.getMessage());
 }

 // display context information
 print("Remaining lifetime in seconds = " + context.getLifetime());
 print("Context mechanism = " + context.getMech().toString());
 print("Initiator = " + context.getSrcName().toString());
 print("Acceptor = " + context.getTargName().toString());

 if (context.getConfState())
 print("Confidentiality security service available");

 if (context.getIntegState())
 print("Integrity security service available");

 // perform wrap on an application supplied message, appMsg,
 // using QOP = 0, and requesting privacy service
 byte [] appMsg ...

Kabat & Upadhyay Standards Track [Page 53]

RFC 2853 GSS-API Java Bindings June 2000

 MessageProp mProp = new MessageProp(0, true);

 byte []tok = context.wrap(appMsg, 0, appMsg.length, mProp);

 if (mProp.getPrivacy())
 print("Message protected with privacy.");

 sendToken(tok);

 // release the local-end of the context
 context.dispose();

6.4.2. Static Constants

 public static final int DEFAULT_LIFETIME

 A lifetime constant representing the default context lifetime. This
 value must be set to 0.

 public static final int INDEFINITE_LIFETIME

 A lifetime constant representing indefinite context lifetime. This
 value must be set to the maximum integer value in Java -
 Integer.MAX_VALUE.

6.4.3. initSecContext

 public byte[] initSecContext(byte inputBuf[], int offset, int len)
 throws GSSException

 Called by the context initiator to start the context creation
 process. This is equivalent to the stream based method except that
 the token buffers are handled as byte arrays instead of using stream
 objects. This method may return an output token which the
 application will need to send to the peer for processing by the
 accept call. Typically, the application would do so by calling the
 flush() method on an OutputStream that encapsulates the connection
 between the two peers. The application can call isEstablished() to
 determine if the context establishment phase is complete for this
 peer. A return value of "false" from isEstablished() indicates that
 more tokens are expected to be supplied to the initSecContext()
 method. Note that it is possible that the initSecContext() method
 return a token for the peer, and isEstablished() return "true" also.
 This indicates that the token needs to be sent to the peer, but the
 local end of the context is now fully established.

Kabat & Upadhyay Standards Track [Page 54]

RFC 2853 GSS-API Java Bindings June 2000

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 Parameters:

 inputBuf Token generated by the peer. This parameter is ignored
 on the first call.

 offset The offset within the inputBuf where the token begins.

 len The length of the token within the inputBuf (starting
 at the offset).

6.4.3.1. Example Code

 // Create a new GSSContext implementation object.
 // GSSContext wrapper implements interface GSSContext.
 GSSContext context = mgr.createContext(...);

 byte []inTok = new byte[0];

 try {

 do {
 byte[] outTok = context.initSecContext(inTok, 0,
 inTok.length);

 // send the token if present
 if (outTok != null)
 sendToken(outTok);

 // check if we should expect more tokens
 if (context.isEstablished())
 break;

 // another token expected from peer
 inTok = readToken();
 } while (true);

 } catch (GSSException e) {
 print("GSSAPI error: " + e.getMessage());
 }

Kabat & Upadhyay Standards Track [Page 55]

RFC 2853 GSS-API Java Bindings June 2000

6.4.4. initSecContext

 public int initSecContext(InputStream inStream,
 OutputStream outStream) throws GSSException

 Called by the context initiator to start the context creation
 process. This is equivalent to the byte array based method. This
 method may write an output token to the outStream, which the
 application will need to send to the peer for processing by the
 accept call. Typically, the application would do so by calling the
 flush() method on an OutputStream that encapsulates the connection
 between the two peers. The application can call isEstablished() to
 determine if the context establishment phase is complete for this
 peer. A return value of "false" from isEstablished indicates that
 more tokens are expected to be supplied to the initSecContext method.
 Note that it is possible that the initSecContext() method return a
 token for the peer, and isEstablished() return "true" also. This
 indicates that the token needs to be sent to the peer, but the local
 end of the context is now fully established.

 The GSS-API authentication tokens contain a definitive start and end.
 This method will attempt to read one of these tokens per invocation,
 and may block on the stream if only part of the token is available.

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 Parameters:

 inStream Contains the token generated by the peer. This
 parameter is ignored on the first call.

 outStream Output stream where the output token will be written.
 During the final stage of context establishment, there
 may be no bytes written.

6.4.4.1. Example Code

 This sample code merely demonstrates the token exchange during the
 context establishment phase. It is expected that most Java
 applications will use custom implementations of the Input and Output
 streams that encapsulate the communication routines. For instance, a
 simple read on the application InputStream, when called by the
 Context, might cause a token to be read from the peer, and a simple
 flush() on the application OutputStream might cause a previously
 written token to be transmitted to the peer.

 // Create a new GSSContext implementation object.

Kabat & Upadhyay Standards Track [Page 56]

RFC 2853 GSS-API Java Bindings June 2000

 // GSSContext wrapper implements interface GSSContext.
 GSSContext context = mgr.createContext(...);

 // use standard java.io stream objects
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ByteArrayInputStream is = null;

 try {

 do {
 context.initSecContext(is, os);

 // send token if present
 if (os.size() > 0)
 sendToken(os);

 // check if we should expect more tokens
 if (context.isEstablished())
 break;

 // another token expected from peer
 is = recvToken();

 } while (true);

 } catch (GSSException e) {
 print("GSSAPI error: " + e.getMessage());
 }

6.4.5. acceptSecContext

 public byte[] acceptSecContext(byte inTok[], int offset, int len)
 throws GSSException

 Called by the context acceptor upon receiving a token from the peer.
 This call is equivalent to the stream based method except that the
 token buffers are handled as byte arrays instead of using stream
 objects.

 This method may return an output token which the application will
 need to send to the peer for further processing by the init call.

 "null" return value indicates that no token needs to be sent to the
 peer. The application can call isEstablished() to determine if the
 context establishment phase is complete for this peer. A return
 value of "false" from isEstablished() indicates that more tokens are
 expected to be supplied to this method.

Kabat & Upadhyay Standards Track [Page 57]

RFC 2853 GSS-API Java Bindings June 2000

 Note that it is possible that acceptSecContext() return a token for
 the peer, and isEstablished() return "true" also. This indicates
 that the token needs to be sent to the peer, but the local end of the
 context is now fully established.

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 Parameters:

 inTok Token generated by the peer.

 offset The offset within the inTok where the token begins.

 len The length of the token within the inTok (starting at
 the offset).

6.4.5.1. Example Code

 // acquire server credentials
 GSSCredential server = mgr.createCredential(...);

 // create acceptor GSS-API context from the default provider
 GSSContext context = mgr.createContext(server, null);

 try {
 do {
 byte [] inTok = readToken();

 byte []outTok = context.acceptSecContext(inTok, 0,
 inTok.length);

 // possibly send token to peer
 if (outTok != null)
 sendToken(outTok);

 // check if local context establishment is complete
 if (context.isEstablished())
 break;
 } while (true);

 } catch (GSSException e) {
 print("GSS-API error: " + e.getMessage());
 }

Kabat & Upadhyay Standards Track [Page 58]

RFC 2853 GSS-API Java Bindings June 2000

6.4.6. acceptSecContext

 public void acceptSecContext(InputStream inStream,
 OutputStream outStream) throws GSSException

 Called by the context acceptor upon receiving a token from the peer.
 This call is equivalent to the byte array method. It may write an
 output token to the outStream, which the application will need to
 send to the peer for processing by its initSecContext method.
 Typically, the application would do so by calling the flush() method
 on an OutputStream that encapsulates the connection between the two
 peers. The application can call isEstablished() to determine if the
 context establishment phase is complete for this peer. A return
 value of "false" from isEstablished() indicates that more tokens are
 expected to be supplied to this method.

 Note that it is possible that acceptSecContext() return a token for
 the peer, and isEstablished() return "true" also. This indicates
 that the token needs to be sent to the peer, but the local end of the
 context is now fully established.

 The GSS-API authentication tokens contain a definitive start and end.
 This method will attempt to read one of these tokens per invocation,
 and may block on the stream if only part of the token is available.

 Upon completion of the context establishment, the available context
 options may be queried through the get methods.

 Parameters:

 inStream Contains the token generated by the peer.

 outStream Output stream where the output token will be written.
 During the final stage of context establishment, there
 may be no bytes written.

6.4.6.1. Example Code

 This sample code merely demonstrates the token exchange during the
 context establishment phase. It is expected that most Java
 applications will use custom implementations of the Input and Output
 streams that encapsulate the communication routines. For instance, a
 simple read on the application InputStream, when called by the
 Context, might cause a token to be read from the peer, and a simple
 flush() on the application OutputStream might cause a previously
 written token to be transmitted to the peer.

 // acquire server credentials

Kabat & Upadhyay Standards Track [Page 59]

RFC 2853 GSS-API Java Bindings June 2000

 GSSCredential server = mgr.createCredential(...);

 // create acceptor GSS-API context from the default provider
 GSSContext context = mgr.createContext(server, null);

 // use standard java.io stream objects
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ByteArrayInputStream is = null;

 try {
 do {

 is = recvToken();

 context.acceptSecContext(is, os);

 // possibly send token to peer
 if (os.size() > 0)
 sendToken(os);

 // check if local context establishment is complete
 if (context.isEstablished())
 break;
 } while (true);

 } catch (GSSException e) {
 print("GSS-API error: " + e.getMessage());
 }

6.4.7. isEstablished

 public boolean isEstablished()

 Used during context establishment to determine the state of the
 context. Returns "true" if this is a fully established context on
 the caller’s side and no more tokens are needed from the peer.
 Should be called after a call to initSecContext() or
 acceptSecContext() when no GSSException is thrown.

6.4.8. dispose

 public void dispose() throws GSSException

 Releases any system resources and cryptographic information stored in
 the context object. This will invalidate the context.

Kabat & Upadhyay Standards Track [Page 60]

RFC 2853 GSS-API Java Bindings June 2000

6.4.9. getWrapSizeLimit

 public int getWrapSizeLimit(int qop, boolean confReq,
 int maxTokenSize) throws GSSException

 Returns the maximum message size that, if presented to the wrap
 method with the same confReq and qop parameters, will result in an
 output token containing no more than the maxTokenSize bytes.

 This call is intended for use by applications that communicate over
 protocols that impose a maximum message size. It enables the
 application to fragment messages prior to applying protection.

 GSS-API implementations are recommended but not required to detect
 invalid QOP values when getWrapSizeLimit is called. This routine
 guarantees only a maximum message size, not the availability of
 specific QOP values for message protection.

 Successful completion of this call does not guarantee that wrap will
 be able to protect a message of the computed length, since this
 ability may depend on the availability of system resources at the
 time that wrap is called. However, if the implementation itself
 imposes an upper limit on the length of messages that may be
 processed by wrap, the implementation should not return a value that
 is greater than this length.

 Parameters:

 qop Indicates the level of protection wrap will be asked
 to provide.

 confReq Indicates if wrap will be asked to provide privacy
 service.

 maxTokenSize
 The desired maximum size of the token emitted by wrap.

6.4.10. wrap

 public byte[] wrap(byte inBuf[], int offset, int len,
 MessageProp msgProp) throws GSSException

 Applies per-message security services over the established security
 context. The method will return a token with a cryptographic MIC and
 may optionally encrypt the specified inBuf. This method is
 equivalent in functionality to its stream counterpart. The returned
 byte array will contain both the MIC and the message.

Kabat & Upadhyay Standards Track [Page 61]

RFC 2853 GSS-API Java Bindings June 2000

 The MessageProp object is instantiated by the application and used to
 specify a QOP value which selects cryptographic algorithms, and a
 privacy service to optionally encrypt the message. The underlying
 mechanism that is used in the call may not be able to provide the
 privacy service. It sets the actual privacy service that it does
 provide in this MessageProp object which the caller should then query
 upon return. If the mechanism is not able to provide the requested
 QOP, it throws a GSSException with the BAD_QOP code.

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations should support
 the wrapping of zero-length messages.

 The application will be responsible for sending the token to the
 peer.

 Parameters:

 inBuf Application data to be protected.

 offset The offset within the inBuf where the data begins.

 len The length of the data within the inBuf (starting at
 the offset).

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP and privacy state.
 Set the desired QOP to 0 to request the default QOP.
 Upon return from this method, this object will contain
 the the actual privacy state that was applied to the
 message by the underlying mechanism.

6.4.11. wrap

 public void wrap(InputStream inStream, OutputStream outStream,
 MessageProp msgProp) throws GSSException

 Allows to apply per-message security services over the established
 security context. The method will produce a token with a
 cryptographic MIC and may optionally encrypt the message in inStream.
 The outStream will contain both the MIC and the message.

 The MessageProp object is instantiated by the application and used to
 specify a QOP value which selects cryptographic algorithms, and a
 privacy service to optionally encrypt the message. The underlying
 mechanism that is used in the call may not be able to provide the
 privacy service. It sets the actual privacy service that it does

Kabat & Upadhyay Standards Track [Page 62]

RFC 2853 GSS-API Java Bindings June 2000

 provide in this MessageProp object which the caller should then query
 upon return. If the mechanism is not able to provide the requested
 QOP, it throws a GSSException with the BAD_QOP code.

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations should support
 the wrapping of zero-length messages.

 The application will be responsible for sending the token to the
 peer.

 Parameters:

 inStream Input stream containing the application data to be
 protected.

 outStream The output stream to write the protected message to.
 The application is responsible for sending this to the
 other peer for processing in its unwrap method.

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP and privacy state.
 Set the desired QOP to 0 to request the default QOP.
 Upon return from this method, this object will contain
 the the actual privacy state that was applied to the
 message by the underlying mechanism.

6.4.12. unwrap

 public byte [] unwrap(byte[] inBuf, int offset, int len,
 MessageProp msgProp) throws GSSException

 Used by the peer application to process tokens generated with the
 wrap call. This call is equal in functionality to its stream
 counterpart. The method will return the message supplied in the peer
 application to the wrap call, verifying the embedded MIC.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP, whether confidentiality was applied to the message, and
 other supplementary message state information.

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations should support
 the wrapping and unwrapping of zero-length messages.

Kabat & Upadhyay Standards Track [Page 63]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 inBuf GSS-API wrap token received from peer.

 offset The offset within the inBuf where the token begins.

 len The length of the token within the inBuf (starting at
 the offset).

 msgProp Upon return from the method, this object will contain
 the applied QOP, the privacy state of the message, and
 supplementary information described in 4.12.3 stating
 whether the token was a duplicate, old, out of
 sequence or arriving after a gap.

6.4.13. unwrap

 public void unwrap(InputStream inStream, OutputStream outStream,
 MessageProp msgProp) throws GSSException

 Used by the peer application to process tokens generated with the
 wrap call. This call is equal in functionality to its byte array
 counterpart. It will produce the message supplied in the peer
 application to the wrap call, verifying the embedded MIC.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP, whether confidentiality was applied to the message, and
 other supplementary message state information.

 Since some application-level protocols may wish to use tokens emitted
 by wrap to provide "secure framing", implementations should support
 the wrapping and unwrapping of zero-length messages.

 Parameters:

 inStream Input stream containing the GSS-API wrap token
 received from the peer.

 outStream The output stream to write the application message to.

 msgProp Upon return from the method, this object will contain
 the applied QOP, the privacy state of the message, and
 supplementary information described in 4.12.3 stating
 whether the token was a duplicate, old, out of
 sequence or arriving after a gap.

Kabat & Upadhyay Standards Track [Page 64]

RFC 2853 GSS-API Java Bindings June 2000

6.4.14. getMIC

 public byte[] getMIC(byte []inMsg, int offset, int len,
 MessageProp msgProp) throws GSSException

 Returns a token containing a cryptographic MIC for the supplied
 message, for transfer to the peer application. Unlike wrap, which
 encapsulates the user message in the returned token, only the message
 MIC is returned in the output token. This method is identical in
 functionality to its stream counterpart.

 Note that privacy can only be applied through the wrap call.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations should support
 derivation of MICs from zero-length messages.

 Parameters:

 inMsg Message to generate MIC over.

 offset The offset within the inMsg where the token begins.

 len The length of the token within the inMsg (starting at
 the offset).

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP. Set the desired
 QOP to 0 in msgProp to request the default QOP.
 Alternatively pass in "null" for msgProp to request
 default QOP.

6.4.15. getMIC

 public void getMIC(InputStream inStream, OutputStream outStream,
 MessageProp msgProp) throws GSSException

 Produces a token containing a cryptographic MIC for the supplied
 message, for transfer to the peer application. Unlike wrap, which
 encapsulates the user message in the returned token, only the message
 MIC is produced in the output token. This method is identical in
 functionality to its byte array counterpart.

 Note that privacy can only be applied through the wrap call.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations should support
 derivation of MICs from zero-length messages.

Kabat & Upadhyay Standards Track [Page 65]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 inStream inStream Input stream containing the message to
 generate MIC over.

 outStream outStream Output stream to write the GSS-API output
 token to.

 msgProp Instance of MessageProp that is used by the
 application to set the desired QOP. Set the desired
 QOP to 0 in msgProp to request the default QOP.
 Alternatively pass in "null" for msgProp to request
 default QOP.

6.4.16. verifyMIC

 public void verifyMIC(byte []inTok, int tokOffset, int tokLen,
 byte[] inMsg, int msgOffset, int msgLen,
 MessageProp msgProp) throws GSSException

 Verifies the cryptographic MIC, contained in the token parameter,
 over the supplied message. This method is equivalent in
 functionality to its stream counterpart.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP indicating the strength of protection that was applied to
 the message and other supplementary message state information.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations should support
 the calculation and verification of MICs over zero-length messages.

 Parameters:

 inTok Token generated by peer’s getMIC method.

 tokOffset The offset within the inTok where the token begins.

 tokLen The length of the token within the inTok (starting at
 the offset).

 inMsg Application message to verify the cryptographic MIC
 over.

 msgOffset The offset within the inMsg where the message begins.

Kabat & Upadhyay Standards Track [Page 66]

RFC 2853 GSS-API Java Bindings June 2000

 msgLen The length of the message within the inMsg (starting
 at the offset).

 msgProp Upon return from the method, this object will contain
 the applied QOP and supplementary information
 described in 4.12.3 stating whether the token was a
 duplicate, old, out of sequence or arriving after a
 gap. The confidentiality state will be set to
 "false".

6.4.17. verifyMIC

 public void verifyMIC(InputStream tokStream, InputStream msgStream,
 MessageProp msgProp) throws GSSException

 Verifies the cryptographic MIC, contained in the token parameter,
 over the supplied message. This method is equivalent in
 functionality to its byte array counterpart.

 The MessageProp object is instantiated by the application and is used
 by the underlying mechanism to return information to the caller such
 as the QOP indicating the strength of protection that was applied to
 the message and other supplementary message state information.

 Since some application-level protocols may wish to use tokens emitted
 by getMIC to provide "secure framing", implementations should support
 the calculation and verification of MICs over zero-length messages.

 Parameters:

 tokStream Input stream containing the token generated by peer’s
 getMIC method.

 msgStream Input stream containing the application message to
 verify the cryptographic MIC over.

 msgProp Upon return from the method, this object will contain
 the applied QOP and supplementary information
 described in 4.12.3 stating whether the token was a
 duplicate, old, out of sequence or arriving after a
 gap. The confidentiality state will be set to
 "false".

Kabat & Upadhyay Standards Track [Page 67]

RFC 2853 GSS-API Java Bindings June 2000

6.4.18. export

 public byte [] export() throws GSSException

 Provided to support the sharing of work between multiple processes.
 This routine will typically be used by the context-acceptor, in an
 application where a single process receives incoming connection
 requests and accepts security contexts over them, then passes the
 established context to one or more other processes for message
 exchange.

 This method deactivates the security context and creates an
 interprocess token which, when passed to the byte array constructor
 of the GSSContext interface in another process, will re-activate the
 context in the second process. Only a single instantiation of a
 given context may be active at any one time; a subsequent attempt by
 a context exporter to access the exported security context will fail.

 The implementation may constrain the set of processes by which the
 interprocess token may be imported, either as a function of local
 security policy, or as a result of implementation decisions. For
 example, some implementations may constrain contexts to be passed
 only between processes that run under the same account, or which are
 part of the same process group.

 The interprocess token may contain security-sensitive information
 (for example cryptographic keys). While mechanisms are encouraged to
 either avoid placing such sensitive information within interprocess
 tokens, or to encrypt the token before returning it to the
 application, in a typical GSS-API implementation this may not be
 possible. Thus the application must take care to protect the
 interprocess token, and ensure that any process to which the token is
 transferred is trustworthy.

6.4.19. requestMutualAuth

 public void requestMutualAuth(boolean state) throws GSSException

 Sets the request state of the mutual authentication flag for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if mutual authentication should
 be requested during context establishment.

Kabat & Upadhyay Standards Track [Page 68]

RFC 2853 GSS-API Java Bindings June 2000

6.4.20. requestReplayDet

 public void requestReplayDet(boolean state) throws GSSException

 Sets the request state of the replay detection service for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if replay detection is desired
 over the established context.

6.4.21. requestSequenceDet

 public void requestSequenceDet(boolean state) throws GSSException

 Sets the request state for the sequence checking service of the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if sequence detection is desired
 over the established context.

6.4.22. requestCredDeleg

 public void requestCredDeleg(boolean state) throws GSSException

 Sets the request state for the credential delegation flag for the
 context. This method is only valid before the context creation
 process begins and only for the initiator.

 Parameters:

 state Boolean representing if credential delegation is
 desired.

6.4.23. requestAnonymity

 public void requestAnonymity(boolean state) throws GSSException

 Requests anonymous support over the context. This method is only
 valid before the context creation process begins and only for the
 initiator.

Kabat & Upadhyay Standards Track [Page 69]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 state Boolean representing if anonymity support is
 requested.

6.4.24. requestConf

 public void requestConf(boolean state) throws GSSException

 Requests that confidentiality service be available over the context.
 This method is only valid before the context creation process begins
 and only for the initiator.

 Parameters:

 state Boolean indicating if confidentiality services are to
 be requested for the context.

6.4.25. requestInteg

 public void requestInteg(boolean state) throws GSSException

 Requests that integrity services be available over the context. This
 method is only valid before the context creation process begins and
 only for the initiator.

 Parameters:

 state Boolean indicating if integrity services are to be
 requested for the context.

6.4.26. requestLifetime

 public void requestLifetime(int lifetime) throws GSSException

 Sets the desired lifetime for the context in seconds. This method is
 only valid before the context creation process begins and only for
 the initiator. Use GSSContext.INDEFINITE_LIFETIME and
 GSSContext.DEFAULT_LIFETIME to request indefinite or default context
 lifetime.

 Parameters:

 lifetime The desired context lifetime in seconds.

Kabat & Upadhyay Standards Track [Page 70]

RFC 2853 GSS-API Java Bindings June 2000

6.4.27. setChannelBinding

 public void setChannelBinding(ChannelBinding cb) throws GSSException

 Sets the channel bindings to be used during context establishment.
 This method is only valid before the context creation process begins.

 Parameters:

 cb Channel bindings to be used.

6.4.28. getCredDelegState

 public boolean getCredDelegState()

 Returns the state of the delegated credentials for the context. When
 issued before context establishment is completed or when the
 isProtReady method returns "false", it returns the desired state,
 otherwise it will indicate the actual state over the established
 context.

6.4.29. getMutualAuthState

 public boolean getMutualAuthState()

 Returns the state of the mutual authentication option for the
 context. When issued before context establishment completes or when
 the isProtReady method returns "false", it returns the desired state,
 otherwise it will indicate the actual state over the established
 context.

6.4.30. getReplayDetState

 public boolean getReplayDetState()

 Returns the state of the replay detection option for the context.
 When issued before context establishment completes or when the
 isProtReady method returns "false", it returns the desired state,
 otherwise it will indicate the actual state over the established
 context.

6.4.31. getSequenceDetState

 public boolean getSequenceDetState()

 Returns the state of the sequence detection option for the context.
 When issued before context establishment completes or when the
 isProtReady method returns "false", it returns the desired state,

Kabat & Upadhyay Standards Track [Page 71]

RFC 2853 GSS-API Java Bindings June 2000

 otherwise it will indicate the actual state over the established
 context.

6.4.32. getAnonymityState

 public boolean getAnonymityState()

 Returns "true" if this is an anonymous context. When issued before
 context establishment completes or when the isProtReady method
 returns "false", it returns the desired state, otherwise it will
 indicate the actual state over the established context.

6.4.33. isTransferable

 public boolean isTransferable() throws GSSException

 Returns "true" if the context is transferable to other processes
 through the use of the export method. This call is only valid on
 fully established contexts.

6.4.34. isProtReady

 public boolean isProtReady()

 Returns "true" if the per message operations can be applied over the
 context. Some mechanisms may allow the usage of per-message
 operations before the context is fully established. This will also
 indicate that the get methods will return actual context state
 characteristics instead of the desired ones.

6.4.35. getConfState

 public boolean getConfState()

 Returns the confidentiality service state over the context. When
 issued before context establishment completes or when the isProtReady
 method returns "false", it returns the desired state, otherwise it
 will indicate the actual state over the established context.

6.4.36. getIntegState

 public boolean getIntegState()

 Returns the integrity service state over the context. When issued
 before context establishment completes or when the isProtReady method
 returns "false", it returns the desired state, otherwise it will
 indicate the actual state over the established context.

Kabat & Upadhyay Standards Track [Page 72]

RFC 2853 GSS-API Java Bindings June 2000

6.4.37. getLifetime

 public int getLifetime()

 Returns the context lifetime in seconds. When issued before context
 establishment completes or when the isProtReady method returns
 "false", it returns the desired lifetime, otherwise it will indicate
 the remaining lifetime for the context.

6.4.38. getSrcName

 public GSSName getSrcName() throws GSSException

 Returns the name of the context initiator. This call is valid only
 after the context is fully established or the isProtReady method
 returns "true". It is guaranteed to return an MN.

6.4.39. getTargName

 public GSSName getTargName() throws GSSException

 Returns the name of the context target (acceptor). This call is
 valid only after the context is fully established or the isProtReady
 method returns "true". It is guaranteed to return an MN.

6.4.40. getMech

 public Oid getMech() throws GSSException

 Returns the mechanism oid for this context. This method may be called
 before the context is fully established, but the mechanism returned
 may change on successive calls in negotiated mechanism case.

6.4.41. getDelegCred

 public GSSCredential getDelegCred() throws GSSException

 Returns the delegated credential object on the acceptor’s side. To
 check for availability of delegated credentials call
 getDelegCredState. This call is only valid on fully established
 contexts.

6.4.42. isInitiator

 public boolean isInitiator() throws GSSException

 Returns "true" if this is the initiator of the context. This call is
 only valid after the context creation process has started.

Kabat & Upadhyay Standards Track [Page 73]

RFC 2853 GSS-API Java Bindings June 2000

6.5. public class MessageProp

 This is a utility class used within the per-message GSSContext
 methods to convey per-message properties.

 When used with the GSSContext interface’s wrap and getMIC methods, an
 instance of this class is used to indicate the desired QOP and to
 request if confidentiality services are to be applied to caller
 supplied data (wrap only). To request default QOP, the value of 0
 should be used for QOP.

 When used with the unwrap and verifyMIC methods of the GSSContext
 interface, an instance of this class will be used to indicate the
 applied QOP and confidentiality services over the supplied message.
 In the case of verifyMIC, the confidentiality state will always be
 "false". Upon return from these methods, this object will also
 contain any supplementary status values applicable to the processed
 token. The supplementary status values can indicate old tokens, out
 of sequence tokens, gap tokens or duplicate tokens.

6.5.1. Constructors

 public MessageProp(boolean privState)

 Constructor which sets QOP to 0 indicating that the default QOP is
 requested.

 Parameters:

 privState The desired privacy state. "true" for privacy and
 "false" for integrity only.

 public MessageProp(int qop, boolean privState)

 Constructor which sets the values for the qop and privacy state.

 Parameters:

 qop The desired QOP. Use 0 to request a default QOP.

 privState The desired privacy state. "true" for privacy and
 "false" for integrity only.

Kabat & Upadhyay Standards Track [Page 74]

RFC 2853 GSS-API Java Bindings June 2000

6.5.2. getQOP

 public int getQOP()

 Retrieves the QOP value.

6.5.3. getPrivacy

 public boolean getPrivacy()

 Retrieves the privacy state.

6.5.4. getMinorStatus

 public int getMinorStatus()

 Retrieves the minor status that the underlying mechanism might have
 set.

6.5.5. getMinorString

 public String getMinorString()

 Returns a string explaining the mechanism specific error code. null
 will be returned when no mechanism error code has been set.

6.5.6. setQOP

 public void setQOP(int qopVal)

 Sets the QOP value.

 Parameters:

 qopVal The QOP value to be set. Use 0 to request a default
 QOP value.

6.5.7. setPrivacy

 public void setPrivacy(boolean privState)

 Sets the privacy state.

 Parameters:

 privState The privacy state to set.

Kabat & Upadhyay Standards Track [Page 75]

RFC 2853 GSS-API Java Bindings June 2000

6.5.8. isDuplicateToken

 public boolean isDuplicateToken()

 Returns "true" if this is a duplicate of an earlier token.

6.5.9. isOldToken

 public boolean isOldToken()

 Returns "true" if the token’s validity period has expired.

6.5.10. isUnseqToken

 public boolean isUnseqToken()

 Returns "true" if a later token has already been processed.

6.5.11. isGapToken

 public boolean isGapToken()

 Returns "true" if an expected per-message token was not received.

6.5.12. setSupplementaryStates

 public void setSupplementaryStates(boolean duplicate,
 boolean old, boolean unseq, boolean gap,
 int minorStatus, String minorString)

 This method sets the state for the supplementary information flags
 and the minor status in MessageProp. It is not used by the
 application but by the GSS implementation to return this information
 to the caller of a per-message context method.

 Parameters:

 duplicate true if the token was a duplicate of an earlier token,
 false otherwise

 old true if the token’s validity period has expired, false
 otherwise

 unseq true if a later token has already been processed,
 false otherwise

 gap true if one or more predecessor tokens have not yet
 been successfully processed, false otherwise

Kabat & Upadhyay Standards Track [Page 76]

RFC 2853 GSS-API Java Bindings June 2000

 minorStatus the integer minor status code that the underlying
 mechanism wants to set

 minorString the textual representation of the minorStatus
 value

6.6. public class ChannelBinding

 The GSS-API accommodates the concept of caller-provided channel
 binding information. Channel bindings are used to strengthen the
 quality with which peer entity authentication is provided during
 context establishment. They enable the GSS-API callers to bind the
 establishment of the security context to relevant characteristics
 like addresses or to application specific data.

 The caller initiating the security context must determine the
 appropriate channel binding values to set in the GSSContext object.
 The acceptor must provide an identical binding in order to validate
 that received tokens possess correct channel-related characteristics.

 Use of channel bindings is optional in GSS-API. Since channel-
 binding information may be transmitted in context establishment
 tokens, applications should therefore not use confidential data as
 channel-binding components.

6.6.1. Constructors

 public ChannelBinding(InetAddress initAddr, InetAddress acceptAddr,
 byte[] appData)

 Create a ChannelBinding object with user supplied address information
 and data. "null" values can be used for any fields which the
 application does not want to specify.

 Parameters:

 initAddr The address of the context initiator. "null" value
 can be supplied to indicate that the application does
 not want to set this value.

 acceptAddrThe address of the context acceptor. "null" value can
 be supplied to indicate that the application does not
 want to set this value.

 appData Application supplied data to be used as part of the
 channel bindings. "null" value can be supplied to
 indicate that the application does not want to set
 this value.

Kabat & Upadhyay Standards Track [Page 77]

RFC 2853 GSS-API Java Bindings June 2000

 public ChannelBinding(byte[] appData)

 Creates a ChannelBinding object without any addressing information.

 Parameters:

 appData Application supplied data to be used as part of the
 channel bindings.

6.6.2. getInitiatorAddress

 public InetAddress getInitiatorAddress()

 Returns the initiator’s address for this channel binding. "null" is
 returned if the address has not been set.

6.6.3. getAcceptorAddress

 public InetAddress getAcceptorAddress()

 Returns the acceptor’s address for this channel binding. "null" is
 returned if the address has not been set.

6.6.4. getApplicationData

 public byte[] getApplicationData()

 Returns application data being used as part of the ChannelBinding.
 "null" is returned if no application data has been specified for the
 channel binding.

6.6.5. equals

 public boolean equals(Object obj)

 Returns "true" if two channel bindings match. (Note that the Java
 language specification requires that two objects that are equal
 according to the equals(Object) method must return the same integer
 result when the hashCode() method is called on them.)

 Parameters:

 obj Another channel binding to compare with.

Kabat & Upadhyay Standards Track [Page 78]

RFC 2853 GSS-API Java Bindings June 2000

6.7. public class Oid

 This class represents Universal Object Identifiers (Oids) and their
 associated operations.

 Oids are hierarchically globally-interpretable identifiers used
 within the GSS-API framework to identify mechanisms and name formats.

 The structure and encoding of Oids is defined in ISOIEC-8824 and
 ISOIEC-8825. For example the Oid representation of Kerberos V5
 mechanism is "1.2.840.113554.1.2.2"

 The GSSName name class contains public static Oid objects
 representing the standard name types defined in GSS-API.

6.7.1. Constructors

 public Oid(String strOid) throws GSSException

 Creates an Oid object from a string representation of its integer
 components (e.g. "1.2.840.113554.1.2.2").

 Parameters:

 strOid The string representation for the oid.

 public Oid(InputStream derOid) throws GSSException

 Creates an Oid object from its DER encoding. This refers to the full
 encoding including tag and length. The structure and encoding of
 Oids is defined in ISOIEC-8824 and ISOIEC-8825. This method is
 identical in functionality to its byte array counterpart.

 Parameters:

 derOid Stream containing the DER encoded oid.

 public Oid(byte[] DEROid) throws GSSException

 Creates an Oid object from its DER encoding. This refers to the full
 encoding including tag and length. The structure and encoding of
 Oids is defined in ISOIEC-8824 and ISOIEC-8825. This method is
 identical in functionality to its byte array counterpart.

 Parameters:

 derOid Byte array storing a DER encoded oid.

Kabat & Upadhyay Standards Track [Page 79]

RFC 2853 GSS-API Java Bindings June 2000

6.7.2. toString

 public String toString()

 Returns a string representation of the oid’s integer components in
 dot separated notation (e.g. "1.2.840.113554.1.2.2").

6.7.3. equals

 public boolean equals(Object Obj)

 Returns "true" if the two Oid objects represent the same oid value.
 (Note that the Java language specification requires that two objects
 that are equal according to the equals(Object) method must return the
 same integer result when the hashCode() method is called on them.)

 Parameters:

 obj Another Oid object to compare with.

6.7.4. getDER

 public byte[] getDER()

 Returns the full ASN.1 DER encoding for this oid object, which
 includes the tag and length.

6.7.5. containedIn

 public boolean containedIn(Oid[] oids)

 A utility method to test if an Oid object is contained within the
 supplied Oid object array.

 Parameters:

 oids An array of oids to search.

6.8. public class GSSException extends Exception

 This exception is thrown whenever a fatal GSS-API error occurs
 including mechanism specific errors. It may contain both, the major
 and minor, GSS-API status codes. The mechanism implementers are
 responsible for setting appropriate minor status codes when throwing
 this exception. Aside from delivering the numeric error code(s) to
 the caller, this class performs the mapping from their numeric values
 to textual representations. All Java GSS-API methods are declared
 throwing this exception.

Kabat & Upadhyay Standards Track [Page 80]

RFC 2853 GSS-API Java Bindings June 2000

 All implementations are encouraged to use the Java
 internationalization techniques to provide local translations of the
 message strings.

6.8.1. Static Constants

 All valid major GSS-API error code values are declared as constants
 in this class.

 public static final int BAD_BINDINGS

 Channel bindings mismatch error.

 public static final int BAD_MECH

 Unsupported mechanism requested error.

 public static final int BAD_NAME

 Invalid name provided error.

 public static final int BAD_NAMETYPE

 Name of unsupported type provided error.

 public static final int BAD_STATUS

 Invalid status code error - this is the default status value.

 public static final int BAD_MIC

 Token had invalid integrity check error.

 public static final int CONTEXT_EXPIRED

 Specified security context expired error.

 public static final int CREDENTIALS_EXPIRED

 Expired credentials detected error.

Kabat & Upadhyay Standards Track [Page 81]

RFC 2853 GSS-API Java Bindings June 2000

 public static final int DEFECTIVE_CREDENTIAL

 Defective credential error.

 public static final int DEFECTIVE_TOKEN

 Defective token error.

 public static final int FAILURE

 General failure, unspecified at GSS-API level.

 public static final int NO_CONTEXT

 Invalid security context error.

 public static final int NO_CRED

 Invalid credentials error.

 public static final int BAD_QOP

 Unsupported QOP value error.

 public static final int UNAUTHORIZED

 Operation unauthorized error.

 public static final int UNAVAILABLE

 Operation unavailable error.

 public static final int DUPLICATE_ELEMENT

 Duplicate credential element requested error.

 public static final int NAME_NOT_MN

 Name contains multi-mechanism elements error.

Kabat & Upadhyay Standards Track [Page 82]

RFC 2853 GSS-API Java Bindings June 2000

 public static final int DUPLICATE_TOKEN

 The token was a duplicate of an earlier token. This is a fatal error
 code that may occur during context establishment. It is not used to
 indicate supplementary status values. The MessageProp object is used
 for that purpose.

 public static final int OLD_TOKEN

 The token’s validity period has expired. This is a fatal error code
 that may occur during context establishment. It is not used to
 indicate supplementary status values. The MessageProp object is used
 for that purpose.

 public static final int UNSEQ_TOKEN

 A later token has already been processed. This is a fatal error code
 that may occur during context establishment. It is not used to
 indicate supplementary status values. The MessageProp object is used
 for that purpose.

 public static final int GAP_TOKEN

 An expected per-message token was not received. This is a fatal
 error code that may occur during context establishment. It is not
 used to indicate supplementary status values. The MessageProp object
 is used for that purpose.

6.8.2. Constructors

 public GSSException(int majorCode)

 Creates a GSSException object with a specified major code.

 Parameters:

 majorCode The GSS error code causing this exception to be
 thrown.

 public GSSException(int majorCode, int minorCode, String minorString)

 Creates a GSSException object with the specified major code, minor
 code, and minor code textual explanation. This constructor is to be
 used when the exception is originating from the security mechanism.
 It allows to specify the GSS code and the mechanism code.

Kabat & Upadhyay Standards Track [Page 83]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 majorCode The GSS error code causing this exception to be
 thrown.

 minorCode The mechanism error code causing this exception
 to be thrown.

 minorString The textual explanation of the mechanism error
 code.

6.8.3. getMajor

 public int getMajor()

 Returns the major code representing the GSS error code that caused
 this exception to be thrown.

6.8.4. getMinor

 public int getMinor()

 Returns the mechanism error code that caused this exception. The
 minor code is set by the underlying mechanism. Value of 0 indicates
 that mechanism error code is not set.

6.8.5. getMajorString

 public String getMajorString()

 Returns a string explaining the GSS major error code causing this
 exception to be thrown.

6.8.6. getMinorString

 public String getMinorString()

 Returns a string explaining the mechanism specific error code. null
 will be returned when no mechanism error code has been set.

6.8.7. setMinor

 public void setMinor(int minorCode, String message)

 Used internally by the GSS-API implementation and the underlying
 mechanisms to set the minor code and its textual representation.

Kabat & Upadhyay Standards Track [Page 84]

RFC 2853 GSS-API Java Bindings June 2000

 Parameters:

 minorCode The mechanism specific error code.

 message A textual explanation of the mechanism error code.

6.8.8. toString

 public String toString()

 Returns a textual representation of both the major and minor status
 codes.

6.8.9. getMessage

 public String getMessage()

 Returns a detailed message of this exception. Overrides
 Throwable.getMessage. It is customary in Java to use this method to
 obtain exception information.

7. Sample Applications

7.1. Simple GSS Context Initiator

 import org.ietf.jgss.*;

 /**
 * This is a partial sketch for a simple client program that acts
 * as a GSS context initiator. It illustrates how to use the Java
 * bindings for the GSS-API specified in
 * Generic Security Service API Version 2 : Java bindings
 *
 *
 * This code sketch assumes the existence of a GSS-API
 * implementation that supports the mechanism that it will need and
 * is present as a library package (org.ietf.jgss) either as part of
 * the standard JRE or in the CLASSPATH the application specifies.
 */

 public class SimpleClient {

 private String serviceName; // name of peer (ie. server)
 private GSSCredential clientCred = null;
 private GSSContext context = null;
 private Oid mech; // underlying mechanism to use

 private GSSManager mgr = GSSManager.getInstance();

Kabat & Upadhyay Standards Track [Page 85]

RFC 2853 GSS-API Java Bindings June 2000

 ...
 ...

 private void clientActions() {
 initializeGSS();
 establishContext();
 doCommunication();
 }

 /**
 * Acquire credentials for the client.
 */
 private void initializeGSS() {

 try {

 clientCred = mgr.createCredential(null /*default princ*/,
 GSSCredential.INDEFINITE_LIFETIME /* max lifetime */,
 mech /* mechanism to use */,
 GSSCredential.INITIATE_ONLY /* init context */);

 print("GSSCredential created for " +
 cred.getName().toString());
 print("Credential lifetime (sec)=" +
 cred.getRemainingLifetime());
 } catch (GSSException e) {
 print("GSS-API error in credential acquisition: "
 + e.getMessage());
 ...
 ...
 }

 ...
 ...
 }

 /**
 * Does the security context establishment with the
 * server.
 */
 private void establishContext() {

 byte[] inToken = new byte[0];
 byte[] outToken = null;

 try {

 GSSName peer = mgr.createName(serviceName,

Kabat & Upadhyay Standards Track [Page 86]

RFC 2853 GSS-API Java Bindings June 2000

 GSSName.NT_HOSTBASED_SERVICE);

 context = mgr.createContext(peer, mech, gssCred,
 GSSContext.INDEFINITE_LIFETIME/*lifetime*/);

 // Will need to support confidentiality
 context.requestConf(true);

 while (!context.isEstablished()) {

 outToken = context.initSecContext(inToken, 0,
 inToken.length);

 if (outToken != null)
 writeGSSToken(outToken);

 if (!context.isEstablished())
 inToken = readGSSToken();
 }

 GSSName peer = context.getSrcName();
 print("Security context established with " + peer +
 " using underlying mechanism " + mech.toString());
 } catch (GSSException e) {
 print("GSS-API error during context establishment: "
 + e.getMessage());
 ...
 ...
 }

 ...
 ...
 }

 /**
 * Sends some data to the server and reads back the
 * response.
 */
 private void doCommunication() {
 byte[] inToken = null;
 byte[] outToken = null;
 byte[] buffer;

 // Container for multiple input-output arguments to and
 // from the per-message routines (e.g., wrap/unwrap).
 MessageProp messgInfo = new MessageProp();

 try {

Kabat & Upadhyay Standards Track [Page 87]

RFC 2853 GSS-API Java Bindings June 2000

 /*
 * Now send some bytes to the server to be
 * processed. They will be integrity protected but
 * not encrypted for privacy.
 */

 buffer = readFromFile();

 // Set privacy to false and use the default QOP
 messgInfo.setPrivacy(false);

 outToken = context.wrap(buffer, 0, buffer.length,
 messgInfo);

 writeGSSToken(outToken);

 /*
 * Now read the response from the server.
 */

 inToken = readGSSToken();
 buffer = context.unwrap(inToken, 0, inToken.length,
 messgInfo);
 // All ok if no exception was thrown!

 GSSName peer = context.getSrcName();

 print("Message from " + peer.toString()
 + " arrived.");
 print("Was it encrypted? " +
 messgInfo.getPrivacy());
 print("Duplicate Token? " +
 messgInfo.isDuplicateToken());
 print("Old Token? " +
 messgInfo.isOldToken());
 print("Unsequenced Token? " +
 messgInfo.isUnseqToken());
 print("Gap Token? " +
 messgInfo.isGapToken());

 ...
 ...

 } catch (GSSException e) {
 print("GSS-API error in per-message calls: "
 + e.getMessage());
 ...
 ...

Kabat & Upadhyay Standards Track [Page 88]

RFC 2853 GSS-API Java Bindings June 2000

 }

 ...

 ...

 } // end of doCommunication method

 ...
 ...

 } // end of class SimpleClient

7.2. Simple GSS Context Acceptor

 import org.ietf.jgss.*;

 /**
 * This is a partial sketch for a simple server program that acts
 * as a GSS context acceptor. It illustrates how to use the Java
 * bindings for the GSS-API specified in
 * Generic Security Service API Version 2 : Java bindings
 *
 * This code sketch assumes the existence of a GSS-API
 * implementation that supports the mechanisms that it will need and
 * is present as a library package (org.ietf.jgss) either as part of
 * the standard JRE or in the CLASSPATH the application specifies.
 */

 import org.ietf.jgss.*;

 public class SimpleServer {

 private String serviceName;
 private GSSName name;
 private GSSCredential cred;

 private GSSManager mgr;

 ...
 ...

 /**
 * Wait for client connections, establish security contexts and
 * provide service.
 */
 private void loop() {

Kabat & Upadhyay Standards Track [Page 89]

RFC 2853 GSS-API Java Bindings June 2000

 ...
 ...

 mgr = GSSManager.getInstance();

 name = mgr.createName(serviceName,
 GSSName.NT_HOSTBASED_SERVICE);

 cred = mgr.createCredential(name,
 GSSCredential.INDEFINITE_LIFETIME,
 null,
 GSSCredential.ACCEPT_ONLY);

 // Loop infinitely
 while (true) {

 Socket s = serverSock.accept();

 // Start a new thread to serve this connection
 Thread serverThread = new ServerThread(s);
 serverThread.start();

 }
 }

 /**
 * Inner class ServerThread whose run() method provides the
 * secure service to a connection.
 */

 private class ServerThread extends Thread {

 ...
 ...

 /**
 * Deals with the connection from one client. It also
 * handles all GSSException’s thrown while talking to
 * this client.
 */
 public void run() {

 byte[] inToken = null;
 byte[] outToken = null;
 byte[] buffer;

 GSSName peer;

Kabat & Upadhyay Standards Track [Page 90]

RFC 2853 GSS-API Java Bindings June 2000

 // Container for multiple input-output arguments to and
 // from the per-message routines (ie. wrap/unwrap).
 MessageProp supplInfo = new MessageProp();

 GSSContext secContext = null;

 try {

 // Now do the context establishment loop

 GSSContext context = mgr.createContext(cred);

 while (!context.isEstablished()) {

 inToken = readGSSToken();

 outToken = context.acceptSecContext(inToken, 0,
 inToken.length);

 if (outToken != null)
 writeGSSToken(outToken);

 }

 // SimpleServer wants confidentiality to be
 // available. Check for it.
 if (!context.getConfState()){
 ...
 ...
 }

 GSSName peer = context.getSrcName();
 Oid mech = context.getMech();
 print("Security context established with " +
 peer.toString() +
 " using underlying mechanism " +
 mech.toString() +
 " from Provider " +
 context.getProvider().getName());

 // Now read the bytes sent by the client to be
 // processed.
 inToken = readGSSToken();

 // Unwrap the message

Kabat & Upadhyay Standards Track [Page 91]

RFC 2853 GSS-API Java Bindings June 2000

 buffer = context.unwrap(inToken, 0, inToken.length,
 supplInfo);
 // All ok if no exception was thrown!

 // Print other supplementary per-message status
 // information

 print("Message from " +
 peer.toString() + " arrived.");
 print("Was it encrypted? " +
 supplInfo.getPrivacy());
 print("Duplicate Token? " +
 supplInfo.isDuplicateToken());
 print("Old Token? " + supplInfo.isOldToken());
 print("Unsequenced Token? " +
 supplInfo.isUnseqToken());
 print("Gap Token? " + supplInfo.isGapToken());

 /*
 * Now process the bytes and send back an encrypted
 * response.
 */

 buffer = serverProcess(buffer);

 // Encipher it and send it across

 supplInfo.setPrivacy(true); // privacy requested
 supplInfo.setQOP(0); // default QOP
 outToken = context.wrap(buffer, 0, buffer.length,
 supplInfo);
 writeGSSToken(outToken);

 } catch (GSSException e) {
 print("GSS-API Error: " + e.getMessage());
 // Alternatively, could call e.getMajorMessage()
 // and e.getMinorMessage()
 print("Abandoning security context.");

 ...
 ...

 }

 ...
 ...

 } // end of run method in ServerThread

Kabat & Upadhyay Standards Track [Page 92]

RFC 2853 GSS-API Java Bindings June 2000

 } // end of inner class ServerThread

 ...
 ...

 } // end of class SimpleServer

8. Security Considerations

 The Java language security model allows platform providers to have
 policy based fine-grained access control over any resource that an
 application wants. When using a Java security manager (such as, but
 not limited to, the case of applets running in browsers) the
 application code is in a sandbox by default.

 Administrators of the platform JRE determine what permissions, if
 any, are to be given to source from different codebases. Thus the
 administrator has to be aware of any special requirements that the
 GSS provider might have for system resources. For instance, a
 Kerberos provider might wish to make a network connection to the KDC
 to obtain initial credentials. This would not be allowed under the
 sandbox unless the administrator had granted permissions for this.
 Also note that this granting and checking of permissions happens
 transparently to the application and is outside the scope of this
 document.

 The Java language allows administrators to pre-configure a list of
 security service providers in the <JRE>/lib/security/java.security
 file. At runtime, the system approaches these providers in order of
 preference when looking for security related services. Applications
 have a means to modify this list through methods in the "Security"
 class in the "java.security" package. However, since these
 modifications would be visible in the entire JVM and thus affect all
 code executing in it, this operation is not available in the sandbox
 and requires special permissions to perform. Thus when a GSS
 application has special needs that are met by a particular security
 provider, it has two choices:

 1) To install the provider on a JVM wide basis using the
 java.security.Security class and then depend on the system to
 find the right provider automatically when the need arises.
 (This would require the application to be granted a
 "insertProvider SecurityPermission".)

 2) To pass an instance of the provider to the local instance of
 GSSManager so that only factory calls going through that
 GSSManager use the desired provider. (This would not require
 any permissions.)

Kabat & Upadhyay Standards Track [Page 93]

RFC 2853 GSS-API Java Bindings June 2000

9. Acknowledgments

 This proposed API leverages earlier work performed by the IETF’s CAT
 WG as outlined in both RFC 2743 and RFC 2744. Many conceptual
 definitions, implementation directions, and explanations have been
 included from these documents.

 We would like to thank Mike Eisler, Lin Ling, Ram Marti, Michael
 Saltz and other members of Sun’s development team for their helpful
 input, comments and suggestions.

 We would also like to thank Joe Salowey, and Michael Smith for many
 insightful ideas and suggestions that have contributed to this
 document.

10. Bibliography

 [GSSAPIv2] Linn, J., "Generic Security Service Application
 Program Interface, Version 2", RFC 2078, January
 1997.

 [GSSAPIv2-UPDATE] Linn, J., "Generic Security Service Application
 Program Interface, Version 2, Update 1", RFC 2743,
 January 2000.

 [GSSAPI-Cbind] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

 [KERBV5] Linn, J., "The Kerberos Version 5 GSS-API
 Mechanism", RFC 1964, June 1996.

 [SPKM] Adams, C., "The Simple Public-Key GSS-API
 Mechanism", RFC 2025, October 1996.

Kabat & Upadhyay Standards Track [Page 94]

RFC 2853 GSS-API Java Bindings June 2000

11. Authors’ Addresses

 Address comments related to this memorandum to:

 <cat-ietf@mit.edu>

 Jack Kabat
 ValiCert, Inc.
 339 N. Bernardo Avenue
 Mountain View, CA
 94043, USA

 Phone: +1-650-567-5496
 EMail: jackk@valicert.com

 Mayank Upadhyay
 Sun Microsystems, Inc.
 901 San Antonio Road, MS CUP02-102
 Palo Alto, CA 94303

 Phone: +1-408-517-5956
 EMail: mdu@eng.sun.com

Kabat & Upadhyay Standards Track [Page 95]

RFC 2853 GSS-API Java Bindings June 2000

12. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kabat & Upadhyay Standards Track [Page 96]

