
Network Working Group T. Howes
Request for Comments: 2891 Loudcloud
Category: Standards Track M. Wahl
 Sun Microsystems
 A. Anantha
 Microsoft
 August 2000

 LDAP Control Extension for Server Side Sorting of Search Results

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes two LDAPv3 control extensions for server side
 sorting of search results. These controls allows a client to specify
 the attribute types and matching rules a server should use when
 returning the results to an LDAP search request. The controls may be
 useful when the LDAP client has limited functionality or for some
 other reason cannot sort the results but still needs them sorted.
 Other permissible controls on search operations are not defined in
 this extension.

 The sort controls allow a server to return a result code for the
 sorting of the results that is independent of the result code
 returned for the search operation.

 The key words "MUST", "SHOULD", and "MAY" used in this document are
 to be interpreted as described in [bradner97].

Howes, et al. Standards Track [Page 1]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

1. The Controls

1.1 Request Control

 This control is included in the searchRequest message as part of the
 controls field of the LDAPMessage, as defined in Section 4.1.12 of
 [LDAPv3].

 The controlType is set to "1.2.840.113556.1.4.473". The criticality
 MAY be either TRUE or FALSE (where absent is also equivalent to
 FALSE) at the client’s option. The controlValue is an OCTET STRING,
 whose value is the BER encoding of a value of the following SEQUENCE:

 SortKeyList ::= SEQUENCE OF SEQUENCE {
 attributeType AttributeDescription,
 orderingRule [0] MatchingRuleId OPTIONAL,
 reverseOrder [1] BOOLEAN DEFAULT FALSE }

 The SortKeyList sequence is in order of highest to lowest sort key
 precedence.

 The MatchingRuleId, as defined in section 4.1.9 of [LDAPv3], SHOULD
 be one that is valid for the attribute type it applies to. If it is
 not, the server will return inappropriateMatching.

 Each attributeType should only occur in the SortKeyList once. If an
 attributeType is included in the sort key list multiple times, the
 server should return an error in the sortResult of
 unwillingToPerform.

 If the orderingRule is omitted, the ordering MatchingRule defined for
 use with this attribute MUST be used.

 Any conformant implementation of this control MUST allow a sort key
 list with at least one key.

1.2 Response Control

 This control is included in the searchResultDone message as part of
 the controls field of the LDAPMessage, as defined in Section 4.1.12
 of [LDAPv3].

 The controlType is set to "1.2.840.113556.1.4.474". The criticality
 is FALSE (MAY be absent). The controlValue is an OCTET STRING, whose
 value is the BER encoding of a value of the following SEQUENCE:

Howes, et al. Standards Track [Page 2]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

 SortResult ::= SEQUENCE {
 sortResult ENUMERATED {
 success (0), -- results are sorted
 operationsError (1), -- server internal failure
 timeLimitExceeded (3), -- timelimit reached before
 -- sorting was completed
 strongAuthRequired (8), -- refused to return sorted
 -- results via insecure
 -- protocol
 adminLimitExceeded (11), -- too many matching entries
 -- for the server to sort
 noSuchAttribute (16), -- unrecognized attribute
 -- type in sort key
 inappropriateMatching (18), -- unrecognized or
 -- inappropriate matching
 -- rule in sort key
 insufficientAccessRights (50), -- refused to return sorted
 -- results to this client
 busy (51), -- too busy to process
 unwillingToPerform (53), -- unable to sort
 other (80)
 },
 attributeType [0] AttributeDescription OPTIONAL }

2. Client-Server Interaction

 The sortKeyRequestControl specifies one or more attribute types and
 matching rules for the results returned by a search request. The
 server SHOULD return all results for the search request in the order
 specified by the sort keys. If the reverseOrder field is set to TRUE,
 then the entries will be presented in reverse sorted order for the
 specified key.

 There are six possible scenarios that may occur as a result of the
 sort control being included on the search request:

 1 - If the server does not support this sorting control and the
 client specified TRUE for the control’s criticality field, then
 the server MUST return unavailableCriticalExtension as a return
 code in the searchResultDone message and not send back any other
 results. This behavior is specified in section 4.1.12 of
 [LDAPv3].

 2 - If the server does not support this sorting control and the
 client specified FALSE for the control’s criticality field, then
 the server MUST ignore the sort control and process the search
 request as if it were not present. This behavior is specified in
 section 4.1.12 of [LDAPv3].

Howes, et al. Standards Track [Page 3]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

 3 - If the server supports this sorting control but for some reason
 cannot sort the search results using the specified sort keys and
 the client specified TRUE for the control’s criticality field,
 then the server SHOULD do the following: return
 unavailableCriticalExtension as a return code in the
 searchResultDone message; include the sortKeyResponseControl in
 the searchResultDone message, and not send back any search result
 entries.

 4 - If the server supports this sorting control but for some reason
 cannot sort the search results using the specified sort keys and
 the client specified FALSE for the control’s criticality field,
 then the server should return all search results unsorted and
 include the sortKeyResponseControl in the searchResultDone
 message.

 5 - If the server supports this sorting control and can sort the
 search results using the specified sort keys, then it should
 include the sortKeyResponseControl in the searchResultDone
 message with a sortResult of success.

 6 - If the search request failed for any reason and/or there are no
 searchResultEntry messages returned for the search response, then
 the server SHOULD omit the sortKeyResponseControl from the
 searchResultDone message.

 The client application is assured that the results are sorted in the
 specified key order if and only if the result code in the
 sortKeyResponseControl is success. If the server omits the
 sortKeyResponseControl from the searchResultDone message, the client
 SHOULD assume that the sort control was ignored by the server.

 The sortKeyResponseControl, if included by the server in the
 searchResultDone message, should have the sortResult set to either
 success if the results were sorted in accordance with the keys
 specified in the sortKeyRequestControl or set to the appropriate
 error code as to why it could not sort the data (such as
 noSuchAttribute or inappropriateMatching). Optionally, the server MAY
 set the attributeType to the first attribute type specified in the
 SortKeyList that was in error. The client SHOULD ignore the
 attributeType field if the sortResult is success.

 The server may not be able to sort the results using the specified
 sort keys because it may not recognize one of the attribute types,
 the matching rule associated with an attribute type is not
 applicable, or none of the attributes in the search response are of
 these types. Servers may also restrict the number of keys allowed in
 the control, such as only supporting a single key.

Howes, et al. Standards Track [Page 4]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

 Servers that chain requests to other LDAP servers should ensure that
 the server satisfying the client’s request sort the entire result set
 prior to sending back the results.

2.1 Behavior in a chained environment

 If a server receives a sort request, the client expects to receive a
 set of sorted results. If a client submits a sort request to a server
 which chains the request and gets entries from multiple servers, and
 the client has set the criticality of the sort extension to TRUE, the
 server MUST merge sort the results before returning them to the
 client or MUST return unwillingToPerform.

2.2 Other sort issues

 An entry that meets the search criteria may be missing one or more of
 the sort keys. In that case, the entry is considered to have a value
 of NULL for that key. This standard considers NULL to be a larger
 value than all other valid values for that key. For example, if only
 one key is specified, entries which meet the search criteria but do
 not have that key collate after all the entries which do have that
 key. If the reverseOrder flag is set, and only one key is specified,
 entries which meet the search criteria but do not have that key
 collate BEFORE all the entries which do have that key.

 If a sort key is a multi-valued attribute, and an entry happens to
 have multiple values for that attribute and no other controls are
 present that affect the sorting order, then the server SHOULD use the
 least value (according to the ORDERING rule for that attribute).

3. Interaction with other search controls

 When the sortKeyRequestControl control is included with the
 pagedResultsControl control as specified in [LdapPaged], then the
 server should send the searchResultEntry messages sorted according to
 the sort keys applied to the entire result set. The server should not
 simply sort each page, as this will give erroneous results to the
 client.

 The sortKeyList must be present on each searchRequest message for the
 paged result. It also must not change between searchRequests for the
 same result set. If the server has sorted the data, then it SHOULD
 send back a sortKeyResponseControl control on every searchResultDone
 message for each page. This will allow clients to quickly determine
 if the result set is sorted, rather than waiting to receive the
 entire result set.

Howes, et al. Standards Track [Page 5]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

4. Security Considerations

 Implementors and administrators should be aware that allowing sorting
 of results could enable the retrieval of a large number of records
 from a given directory service, regardless of administrative limits
 set on the maximum number of records to return.

 A client that desired to pull all records out of a directory service
 could use a combination of sorting and updating of search filters to
 retrieve all records in a database in small result sets, thus
 circumventing administrative limits.

 This behavior can be overcome by the judicious use of permissions on
 the directory entries by the administrator and by intelligent
 implementations of administrative limits on the number of records
 retrieved by a client.

5. References

 [LDAPv3] Wahl, M, Kille, S. and T. Howes, "Lightweight Directory
 Access Protocol (v3)", RFC 2251, December 1997.

 [Bradner97] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [LdapPaged] Weider, C., Herron, A., Anantha, A. and T. Howes, "LDAP
 Control Extension for Simple Paged Results Manipulation",
 RFC 2696, September 1999.

Howes, et al. Standards Track [Page 6]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

6. Authors’ Addresses

 Anoop Anantha
 Microsoft Corp.
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 882-8080
 EMail: anoopa@microsoft.com

 Tim Howes
 Loudcloud, Inc.
 615 Tasman Dr.
 Sunnyvale, CA 94089
 USA

 EMail: howes@loudcloud.com

 Mark Wahl
 Sun Microsystems, Inc.
 8911 Capital of Texas Hwy Suite 4140
 Austin, TX 78759
 USA

 EMail: Mark.Wahl@sun.com

Howes, et al. Standards Track [Page 7]

RFC 2891 LDAP Control Extension for Server Side Sorting August 2000

7. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Howes, et al. Standards Track [Page 8]

