
Network Working Group K. White
Request for Comments: 2925 IBM Corp.
Category: Standards Track September 2000

 Definitions of Managed Objects for Remote Ping, Traceroute, and
 Lookup Operations

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memo defines Management Information Bases (MIBs) for performing
 remote ping, traceroute and lookup operations at a remote host. When
 managing a network it is useful to be able to initiate and retrieve
 the results of ping or traceroute operations when performed at a
 remote host. A Lookup capability is defined in order to enable
 resolving of either an IP address to an DNS name or an DNS name to an
 IP address at a remote host.

 Currently, there are several enterprise-specific MIBs for performing
 remote ping or traceroute operations. The purpose of this memo is to
 define a standards-based solution to enable interoperability.

Table of Contents

 1.0 Introduction . 2
 2.0 The SNMP Network Management Framework 4
 3.0 Structure of the MIBs 5
 3.1 Ping MIB . 6
 3.1.1 pingMaxConcurrentRequests 6
 3.1.2 pingCtlTable . 6
 3.1.3 pingResultsTable . 7
 3.1.4 pingProbeHistoryTable 7
 3.2 Traceroute MIB . 8
 3.2.1 traceRouteMaxConcurrentRequests 8
 3.2.2 traceRouteCtlTable 8
 3.2.3 traceRouteResultsTable 9

White Standards Track [Page 1]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 3.2.4 traceRouteProbeHistoryTable 9
 3.2.5 traceRouteHopsTable 10
 3.3 Lookup MIB . 10
 3.3.1 lookupMaxConcurrentRequests and lookupPurgeTime 10
 3.3.2 lookupCtlTable . 10
 3.3.3 lookupResultsTable 11
 4.0 Definitions . 12
 4.1 DISMAN-PING-MIB . 12
 4.2 DISMAN-TRACEROUTE-MIB 36
 4.3 DISMAN-NSLOOKUP-MIB . 63
 5.0 Security Considerations 73
 6.0 Intellectual Property 74
 7.0 Acknowledgments . 74
 8.0 References . 74
 9.0 Author’s Address . 76
 10.0 Full Copyright Statement 77

1.0 Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, reference
 [13].

 This document is a product of the Distributed Management (DISMAN)
 Working Group. Its purpose is to define standards-based MIB modules
 for performing specific remote operations. The remote operations
 defined by this document consist of the ping, traceroute and lookup
 functions.

 Ping and traceroute are two very useful functions for managing
 networks. Ping is typically used to determine if a path exists
 between two hosts while traceroute shows an actual path. Ping is
 usually implemented using the Internet Control Message Protocol
 (ICMP) "ECHO" facility. It is also possible to implement a ping
 capability using alternate methods, some of which are:

 o Using the UDP echo port (7), if supported.

 This is defined by RFC 862 [2].

 o Timing an SNMP query.

 o Timing a TCP connect attempt.

 In general, almost any request/response flow can be used to generate
 a round-trip time. Often many of the non-ICMP ECHO facility methods
 stand a better chance of yielding a good response (not timing out for

White Standards Track [Page 2]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 example) since some routers don’t honor Echo Requests (timeout
 situation) or they are handled at lower priority, hence possibly
 giving false indications of round trip times.

 It must be noted that almost any of the various methods used for
 generating a round-trip time can be considered a form of system
 attack when used excessively. Sending a system requests too often
 can negatively effect its performance. Attempting to connect to what
 is supposed to be an unused port can be very unpredictable. There
 are tools that attempt to connect to a range of TCP ports to test
 that any receiving server can handle erroneous connection attempts.

 It also is important to the management application using a remote
 ping capability to know which method is being used. Different
 methods will yield different response times since the protocol and
 resulting processing will be different. It is RECOMMENDED that the
 ping capability defined within this memo be implemented using the
 ICMP Echo Facility.

 Traceroute is usually implemented by transmitting a series of probe
 packets with increasing time-to-live values. A probe packet is a UDP
 datagram encapsulated into an IP packet. Each hop in a path to the
 target (destination) host rejects the probe packet (probe’s TTL too
 small) until its time-to-live value becomes large enough for the
 probe to be forwarded. Each hop in a traceroute path returns an ICMP
 message that is used to discover the hop and to calculate a round
 trip time. Some systems use ICMP probes (ICMP Echo request packets)
 instead of UDP ones to implement traceroute. In both cases
 traceroute relies on the probes being rejected via an ICMP message to
 discover the hops taken along a path to the final destination. Both
 probe types, UDP and ICMP, are encapsulated into an IP packet and
 thus have a TTL field that can be used to cause a path rejection.

 Implementations of the remote traceroute capability as defined within
 this memo SHOULD be done using UDP packets to a (hopefully) unused
 port. ICMP probes (ICMP Echo Request packets) SHOULD NOT be used.
 Many PC implementations of traceroute use the ICMP probe method,
 which they should not, since this implementation method has been
 known to have a high probability of failure. Intermediate hops
 become invisible when a router either refuses to send an ICMP TTL
 expired message in response to an incoming ICMP packet or simply
 tosses ICMP echo requests altogether.

 The behavior of some routers not to return a TTL expired message in
 response to an ICMP Echo request is due in part to the following text
 extracted from RFC 792 [20]:

White Standards Track [Page 3]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "The ICMP messages typically report errors in the processing of
 datagrams. To avoid the infinite regress of messages about messages
 etc., no ICMP messages are sent about ICMP messages."

 Both ping and traceroute yield round-trip times measured in
 milliseconds. These times can be used as a rough approximation for
 network transit time.

 The Lookup operation enables the equivalent of either a
 gethostbyname() or a gethostbyaddr() call being performed at a remote
 host. The Lookup gethostbyname() capability can be used to determine
 the symbolic name of a hop in a traceroute path.

 Consider the following diagram:

+--+
| |
| Remote ping, traceroute, Actual ping, traceroute, |
| +-----+or Lookup op. +------+or Lookup op. +------+ |
| |Local|---------------->|Remote|---------------->|Target| |
| | Host| | Host | | Host | |
| +-----+ +------+ +------+ |
| |
| |
+--+

 A local host is the host from which the remote ping, traceroute, or
 Lookup operation is initiated using an SNMP request. The remote host
 is a host where the MIBs defined by this memo are implemented that
 receives the remote operation via SNMP and performs the actual ping,
 traceroute, or lookup function.

2.0 The SNMP Network Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [7].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in STD
 16, RFC 1155 [14], STD 16, RFC 1212 [15] and RFC 1215 [16]. The
 second version, called SMIv2, is described in STD 58, RFC 2578
 [3], STD 58, RFC 2579 [4] and STD 58, RFC 2580 [5].

White Standards Track [Page 4]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [1]. A second version of the SNMP
 message protocol, which is not an Internet standards track
 protocol, is called SNMPv2c and described in RFC 1901 [17] and
 RFC 1906 [18]. The third version of the message protocol is
 called SNMPv3 and described in RFC 1906 [18], RFC 2572 [8] and
 RFC 2574 [10].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [1]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [6].

 o A set of fundamental applications described in RFC 2573 [9] and
 the view-based access control mechanism described in RFC 2575
 [11].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo specifies MIB modules that are compliant to the SMIv2. A
 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB.

3.0 Structure of the MIBs

 This document defines three MIB modules:

 o DISMAN-PING-MIB

 Defines a ping MIB.

 o DISMAN-TRACEROUTE-MIB

 Defines a traceroute MIB.

White Standards Track [Page 5]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 o DISMAN-NSLOOKUP-MIB

 Provides access to the resolver gethostbyname() and
 gethostbyaddr() functions at a remote host.

 The ping and traceroute MIBs are structured to allow creation of ping
 or traceroute tests that can be set up to periodically issue a series
 of operations and generate NOTIFICATIONs to report on test results.
 Many network administrators have in the past written UNIX shell
 scripts or command batch files to operate in fashion similar to the
 functionality provided by the ping and traceroute MIBs defined within
 this memo. The intent of this document is to acknowledge the
 importance of these functions and to provide a standards-based
 solution.

3.1 Ping MIB

 The DISMAN-PING-MIB consists of the following components:

 o pingMaxConcurrentRequests

 o pingCtlTable

 o pingResultsTable

 o pingProbeHistoryTable

3.1.1 pingMaxConcurrentRequests

 The object pingMaxConcurrentRequests enables control of the maximum
 number of concurrent active requests that an agent implementation
 supports. It is permissible for an agent either to limit the maximum
 upper range allowed for this object or to implement this object as
 read-only with an implementation limit expressed as its value.

3.1.2 pingCtlTable

 A remote ping test is started by setting pingCtlAdminStatus to
 enabled(1). The corresponding pingCtlEntry MUST have been created
 and its pingCtlRowStatus set to active(1) prior to starting the test.
 A single SNMP PDU can be used to create and start a remote ping test.
 Within the PDU, pingCtlTargetAddress should be set to the target
 host’s address (pingCtlTargetAddressType will default to ipv4(1)),
 pingCtlAdminStatus to enabled(1), and pingCtlRowStatus to
 createAndGo(4).

White Standards Track [Page 6]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 The first index element, pingCtlOwnerIndex, is of type
 SnmpAdminString, a textual convention that allows for use of the
 SNMPv3 View-Based Access Control Model (RFC 2575 [11], VACM) and
 allows a management application to identify its entries. The send
 index, pingCtlTestName (also an SnmpAdminString), enables the same
 management application to have multiple requests outstanding.

 Using the maximum value for the parameters defined within a pingEntry
 can result in a single remote ping test taking at most 15 minutes
 (pingCtlTimeOut times pingCtlProbeCount) plus whatever time it takes
 to send the ping request and receive its response over the network
 from the target host. Use of the defaults for pingCtlTimeOut and
 pingCtlProbeCount yields a maximum of 3 seconds to perform a "normal"
 ping test.

 A management application can delete an active remote ping request by
 setting the corresponding pingCtlRowStatus object to destroy(6).

 The contents of the pingCtlTable is preserved across reIPLs (Initial
 Program Loads) of its agent according the values of each of the
 pingCtlStorageType objects.

3.1.3 pingResultsTable

 An entry in the pingResultsTable is created for a corresponding
 pingCtlEntry once the test defined by this entry is started.

3.1.4 pingProbeHistoryTable

 The results of past ping probes can be stored in this table on a per
 pingCtlEntry basis. This table is initially indexed by
 pingCtlOwnerIndex and pingCtlTestName in order for the results of a
 probe to relate to the pingCtlEntry that caused it. The maximum
 number of entries stored in this table per pingCtlEntry is determined
 by the value of pingCtlMaxRows.

 An implementation of this MIB will remove the oldest entry in the
 pingProbeHistoryTable to allow the addition of an new entry once the
 number of rows in the pingProbeHistoryTable reaches the value
 specified by pingCtlMaxRows. An implementation MUST start assigning
 pingProbeHistoryIndex values at 1 and wrap after exceeding the
 maximum possible value as defined by the limit of this object
 (’ffffffff’h).

White Standards Track [Page 7]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

3.2 Traceroute MIB

 The DISMAN-TRACEROUTE-MIB consists of the following components:

 o traceRouteMaxConcurrentRequests

 o traceRouteCtlTable

 o traceRouteResultsTable

 o traceRouteProbeHistoryTable

 o traceRouteHopsTable

3.2.1 traceRouteMaxConcurrentRequests

 The object traceRouteMaxConcurrentRequests enables control of the
 maximum number of concurrent active requests that an agent
 implementation supports. It is permissible for an agent either to
 limit the maximum upper range allowed for this object or to implement
 this object as read-only with an implementation limit expressed as
 its value.

3.2.2 traceRouteCtlTable

 A remote traceroute test is started by setting
 traceRouteCtlAdminStatus to enabled(1). The corresponding
 traceRouteCtlEntry MUST have been created and its
 traceRouteCtlRowStatus set to active(1) prior to starting the test.
 A single SNMP PDU can be used to create and start a remote traceroute
 test. Within the PDU, traceRouteCtlTargetAddress should be set to
 the target host’s address (traceRouteCtlTargetAddressType will
 default to ipv4(1)), traceRouteCtlAdminStatus to enabled(1), and
 traceRouteCtlRowStatus to createAndGo(4).

 The first index element, traceRouteCtlOwnerIndex, is of type
 SnmpAdminString, a textual convention that allows for use of the
 SNMPv3 View-Based Access Control Model (RFC 2575 [11], VACM) and
 allows a management application to identify its entries. The second
 index, traceRouteCtlTestName (also an SnmpAdminString), enables the
 same management application to have multiple requests outstanding.

 Traceroute has a much longer theoretical maximum time for completion
 than ping. Basically 42 hours and 30 minutes (the product of
 traceRouteCtlTimeOut, traceRouteCtlProbesPerHop, and
 traceRouteCtlMaxTtl) plus some network transit time! Use of the
 defaults defined within an traceRouteCtlEntry yields a maximum of 4
 minutes and 30 seconds for a default traceroute operation. Clearly

White Standards Track [Page 8]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 42 plus hours is too long to wait for a traceroute operation to
 complete.

 The maximum TTL value in effect for traceroute determines how long
 the traceroute function will keep increasing the TTL value in the
 probe it transmits hoping to reach the target host. The function
 ends whenever the maximum TTL is exceeded or the target host is
 reached. The object traceRouteCtlMaxFailures was created in order to
 impose a throttle for how long traceroute continues to increase the
 TTL field in a probe without receiving any kind of response
 (timeouts). It is RECOMMENDED that agent implementations impose a
 time limit for how long it allows a traceroute operation to take
 relative to how the function is implemented. For example, an
 implementation that can’t process multiple traceroute operations at
 the same time SHOULD impose a shorter maximum allowed time period.

 A management application can delete an active remote traceroute
 request by setting the corresponding traceRouteCtlRowStatus object to
 destroy(6).

 The contents of the traceRouteCtlTable is preserved across reIPLs
 (Initial Program Loads) of its agent according to the values of each
 of the traceRouteCtlStorageType objects.

3.2.3 traceRouteResultsTable

 An entry in the traceRouteResultsTable is created upon determining
 the results of a specific traceroute operation. Entries in this
 table relate back to the traceRouteCtlEntry that caused the
 corresponding traceroute operation to occur. The objects
 traceRouteResultsCurHopCount and traceRouteResultsCurProbeCount can
 be examined to determine how far the current remote traceroute
 operation has reached.

3.2.4 traceRouteProbeHistoryTable

 The results of past traceroute probes can be stored in this table on
 a per traceRouteCtlEntry basis. This table is initially indexed by
 traceRouteCtlOwnerIndex and traceRouteCtlTestName in order for the
 results of a probe to relate to the traceRouteCtlEntry that caused
 it. The number of entries stored in this table per
 traceRouteCtlEntry is determined by the value of
 traceRouteCtlMaxRows.

 An implementation of this MIB will remove the oldest entry in the
 traceRouteProbeHistoryTable to allow the addition of an new entry
 once the number of rows in the traceRouteProbeHistoryTable reaches
 the value of traceRouteCtlMaxRows. An implementation MUST start

White Standards Track [Page 9]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 assigning traceRouteProbeHistoryIndex values at 1 and wrap after
 exceeding the maximum possible value as defined by the limit of this
 object (’ffffffff’h).

3.2.5 traceRouteHopsTable

 The current traceroute path can be stored in this table on a per
 traceRouteCtlEntry basis. This table is initially indexed by
 traceRouteCtlOwnerIndex and traceRouteCtlTestName in order for a
 traceroute path to relate to the traceRouteCtlEntry that caused it.
 A third index, traceRouteHopsHopIndex, enables keeping one
 traceRouteHopsEntry per traceroute hop. Creation of
 traceRouteHopsTable entries is enabled by setting the corresponding
 traceRouteCtlCreateHopsEntries object to true(1).

3.3 Lookup MIB

 The DISMAN-NSLOOKUP-MIB consists of the following components:

 o lookupMaxConcurrentRequests, and lookupPurgeTime

 o lookupCtlTable

 o lookupResultsTable

3.3.1 lookupMaxConcurrentRequests and lookupPurgeTime

 The object lookupMaxConcurrentRequests enables control of the maximum
 number of concurrent active requests that an agent implementation is
 structured to support. It is permissible for an agent either to
 limit the maximum upper range allowed for this object or to implement
 this object as read-only with an implementation limit expressed as
 its value.

 The object lookupPurgeTime provides a method for entries in the
 lookupCtlTable and lookupResultsTable to be automatically deleted
 after the corresponding operation completes.

3.3.2 lookupCtlTable

 A remote lookup operation is initiated by performing an SNMP SET
 request on lookupCtlRowStatus. A single SNMP PDU can be used to
 create and start a remote lookup operation. Within the PDU,
 lookupCtlTargetAddress should be set to the entity to be resolved
 (lookupCtlTargetAddressType will default to ipv4(1)) and
 lookupCtlRowStatus to createAndGo(4). The object lookupCtlOperStatus

White Standards Track [Page 10]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 can be examined to determine the state of an lookup operation. A
 management application can delete an active remote lookup request by
 setting the corresponding lookupCtlRowStatus object to destroy(6).

 An lookupCtlEntry is initially indexed by lookupCtlOwnerIndex, which
 is of type SnmpAdminString, a textual convention that allows for use
 of the SNMPv3 View-Based Access Control Model (RFC 2575 [11], VACM)
 and also allows for a management application to identify its entries.
 The lookupCtlOwnerIndex portion of the index is then followed by
 lookupCtlOperationName. The lookupCtlOperationName index enables the
 same lookupCtlOwnerIndex entity to have multiple outstanding
 requests.

 The value of lookupCtlTargetAddressType determines which lookup
 function to perform. Specification of dns(16) as the value of this
 index implies that the gethostbyname function should be performed to
 determine the numeric addresses associated with a symbolic name via
 lookupResultsTable entries. Use of a value of either ipv4(1) or
 ipv6(2) implies that the gethostbyaddr function should be performed
 to determine the symbolic name(s) associated with a numeric address
 at a remote host.

3.3.3 lookupResultsTable

 The lookupResultsTable is used to store the results of lookup
 operations. The lookupResultsTable is initially indexed by the same
 index elements that the lookupCtlTable contains (lookupCtlOwnerIndex
 and lookupCtlOperationName) but has a third index element,
 lookupResultsIndex (Unsigned32 textual convention), in order to
 associate multiple results with the same lookupCtlEntry.

 Both the gethostbyname and gethostbyaddr functions typically return a
 pointer to a hostent structure after being called. The hostent
 structure is defined as:

 struct hostent {
 char *h_name; /* official host name */
 char *h_aliases[]; /* list of other aliases */
 int h_addrtype; /* host address type */
 int h_length; /* length of host address */
 char **h_addr_list; /* list of address for host */
 };

 The hostent structure is listed here in order to address the fact
 that a remote host can be multi-homed and can have multiple symbolic
 (DNS) names. It is not intended to imply that implementations of the
 DISMAN-LOOKUP-MIB are limited to systems where the hostent structure
 is supported.

White Standards Track [Page 11]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 The gethostbyaddr function is called with a host address as its
 parameter and is used primarily to determine a symbolic name to
 associate with the host address. Entries in the lookupResultsTable
 MUST be made for each host name returned. The official host name
 MUST be assigned a lookupResultsIndex of 1.

 The gethostbyname function is called with a symbolic host name and is
 used primarily to retrieve a host address. Normally, the first
 h_addr_list host address is considered to be the primary address and
 as such is associated with the symbolic name passed on the call.

 Entries MUST be stored in the lookupResultsTable in the order that
 they are retrieved. Values assigned to lookupResultsIndex MUST start
 at 1 and increase in order.

 An implementation SHOULD NOT retain SNMP-created entries in the
 lookupTable across reIPLs (Initial Program Loads) of its agent, since
 management applications need to see consistent behavior with respect
 to the persistence of the table entries that they create.

4.0 Definitions

4.1 DISMAN-PING-MIB

DISMAN-PING-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Integer32,
 Unsigned32, mib-2,
 NOTIFICATION-TYPE, OBJECT-IDENTITY
 FROM SNMPv2-SMI -- RFC2578
 TEXTUAL-CONVENTION, RowStatus,
 StorageType, DateAndTime, TruthValue
 FROM SNMPv2-TC -- RFC2579
 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- RFC2580
 InterfaceIndexOrZero -- RFC2863
 FROM IF-MIB
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB -- RFC2571
 InetAddressType, InetAddress
 FROM INET-ADDRESS-MIB; -- RFC2851

 pingMIB MODULE-IDENTITY
 LAST-UPDATED "200009210000Z" -- 21 September 2000
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO

White Standards Track [Page 12]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "Kenneth White

 International Business Machines Corporation
 Network Computing Software Division
 Research Triangle Park, NC, USA

 E-mail: wkenneth@us.ibm.com"
 DESCRIPTION
 "The Ping MIB (DISMAN-PING-MIB) provides the capability of
 controlling the use of the ping function at a remote
 host."

 -- Revision history

 REVISION "200009210000Z" -- 21 September 2000
 DESCRIPTION
 "Initial version, published as RFC 2925."

 ::= { mib-2 80 }

 -- Textual Conventions

 OperationResponseStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Used to report the result of an operation:

 responseReceived(1) - Operation completes successfully.
 unknown(2) - Operation failed due to unknown error.
 internalError(3) - An implementation detected an error
 in its own processing that caused an operation
 to fail.
 requestTimedOut(4) - Operation failed to receive a
 valid reply within the time limit imposed on it.
 unknownDestinationAddress(5) - Invalid destination
 address.
 noRouteToTarget(6) - Could not find a route to target.
 interfaceInactiveToTarget(7) - The interface to be
 used in sending a probe is inactive without an
 alternate route existing.
 arpFailure(8) - Unable to resolve a target address to a
 media specific address.
 maxConcurrentLimitReached(9) - The maximum number of
 concurrent active operations would have been exceeded
 if the corresponding operation was allowed.
 unableToResolveDnsName(10) - The DNS name specified was
 unable to be mapped to an IP address.
 invalidHostAddress(11) - The IP address for a host

White Standards Track [Page 13]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 has been determined to be invalid. Examples of this
 are broadcast or multicast addresses."
 SYNTAX INTEGER {
 responseReceived(1),
 unknown(2),
 internalError(3),
 requestTimedOut(4),
 unknownDestinationAddress(5),
 noRouteToTarget(6),
 interfaceInactiveToTarget(7),
 arpFailure(8),
 maxConcurrentLimitReached(9),
 unableToResolveDnsName(10),
 invalidHostAddress(11)
 }

 -- Top level structure of the MIB

 pingNotifications OBJECT IDENTIFIER ::= { pingMIB 0 }
 pingObjects OBJECT IDENTIFIER ::= { pingMIB 1 }
 pingConformance OBJECT IDENTIFIER ::= { pingMIB 2 }

 -- The registration node (point) for ping implementation types

 pingImplementationTypeDomains OBJECT IDENTIFIER ::= { pingMIB 3 }

 pingIcmpEcho OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Indicates that an implementation is using the Internet
 Control Message Protocol (ICMP) ’ECHO’ facility."
 ::= { pingImplementationTypeDomains 1 }

 pingUdpEcho OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Indicates that an implementation is using the UDP echo
 port (7)."
 REFERENCE
 "RFC 862, ’Echo Protocol’."
 ::= { pingImplementationTypeDomains 2 }

 pingSnmpQuery OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Indicates that an implementation is an SNMP query to
 calculate a round trip time."

White Standards Track [Page 14]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 ::= { pingImplementationTypeDomains 3 }

 pingTcpConnectionAttempt OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Indicates that an implementation is attempting to
 connect to a TCP port in order to calculate a round
 trip time."
 ::= { pingImplementationTypeDomains 4 }

 -- Simple Object Definitions

 pingMaxConcurrentRequests OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "requests"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of concurrent active ping requests
 that are allowed within an agent implementation. A value
 of 0 for this object implies that there is no limit for
 the number of concurrent active requests in effect."
 DEFVAL { 10 }
 ::= { pingObjects 1 }

 -- Ping Control Table

 pingCtlTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PingCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the ping Control Table for providing, via SNMP,
 the capability of performing ping operations at
 a remote host. The results of these operations are
 stored in the pingResultsTable and the
 pingProbeHistoryTable."
 ::= { pingObjects 2 }

 pingCtlEntry OBJECT-TYPE
 SYNTAX PingCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the pingCtlTable. The first index
 element, pingCtlOwnerIndex, is of type SnmpAdminString,
 a textual convention that allows for use of the SNMPv3

White Standards Track [Page 15]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 View-Based Access Control Model (RFC 2575 [11], VACM)
 and allows an management application to identify its
 entries. The second index, pingCtlTestName (also an
 SnmpAdminString), enables the same management
 application to have multiple outstanding requests."
 INDEX {
 pingCtlOwnerIndex,
 pingCtlTestName
 }
 ::= { pingCtlTable 1 }

 PingCtlEntry ::=
 SEQUENCE {
 pingCtlOwnerIndex SnmpAdminString,
 pingCtlTestName SnmpAdminString,
 pingCtlTargetAddressType InetAddressType,
 pingCtlTargetAddress InetAddress,
 pingCtlDataSize Unsigned32,
 pingCtlTimeOut Unsigned32,
 pingCtlProbeCount Unsigned32,
 pingCtlAdminStatus INTEGER,
 pingCtlDataFill OCTET STRING,
 pingCtlFrequency Unsigned32,
 pingCtlMaxRows Unsigned32,
 pingCtlStorageType StorageType,
 pingCtlTrapGeneration BITS,
 pingCtlTrapProbeFailureFilter Unsigned32,
 pingCtlTrapTestFailureFilter Unsigned32,
 pingCtlType OBJECT IDENTIFIER,
 pingCtlDescr SnmpAdminString,
 pingCtlSourceAddressType InetAddressType,
 pingCtlSourceAddress InetAddress,
 pingCtlIfIndex InterfaceIndexOrZero,
 pingCtlByPassRouteTable TruthValue,
 pingCtlDSField Unsigned32,
 pingCtlRowStatus RowStatus
 }

 pingCtlOwnerIndex OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "To facilitate the provisioning of access control by a
 security administrator using the View-Based Access
 Control Model (RFC 2575, VACM) for tables in which
 multiple users may need to independently create or
 modify entries, the initial index is used as an ’owner

White Standards Track [Page 16]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 index’. Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a
 securityName or groupName as defined in VACM, in
 accordance with a security policy.

 When used in conjunction with such a security policy all
 entries in the table belonging to a particular user (or
 group) will have the same value for this initial index.
 For a given user’s entries in a particular table, the
 object identifiers for the information in these entries
 will have the same subidentifiers (except for the ’column’
 subidentifier) up to the end of the encoded owner index.
 To configure VACM to permit access to this portion of the
 table, one would create vacmViewTreeFamilyTable entries
 with the value of vacmViewTreeFamilySubtree including
 the owner index portion, and vacmViewTreeFamilyMask
 ’wildcarding’ the column subidentifier. More elaborate
 configurations are possible."
 ::= { pingCtlEntry 1 }

 pingCtlTestName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The name of the ping test. This is locally unique, within
 the scope of an pingCtlOwnerIndex."
 ::= { pingCtlEntry 2 }

 pingCtlTargetAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the type of host address to be used at a remote
 host for performing a ping operation."
 DEFVAL { unknown }
 ::= { pingCtlEntry 3 }

 pingCtlTargetAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the host address to be used at a remote host for
 performing a ping operation. The host address type is
 determined by the object value of corresponding
 pingCtlTargetAddressType.

White Standards Track [Page 17]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 A value for this object MUST be set prior to transitioning
 its corresponding pingCtlEntry to active(1) via
 pingCtlRowStatus."
 DEFVAL { ’’H }
 ::= { pingCtlEntry 4 }

 pingCtlDataSize OBJECT-TYPE
 SYNTAX Unsigned32 (0..65507)
 UNITS "octets"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the size of the data portion to be
 transmitted in a ping operation in octets. A ping
 request is usually an ICMP message encoded
 into an IP packet. An IP packet has a maximum size
 of 65535 octets. Subtracting the size of the ICMP
 or UDP header (both 8 octets) and the size of the IP
 header (20 octets) yields a maximum size of 65507
 octets."
 DEFVAL { 0 }
 ::= { pingCtlEntry 5 }

 pingCtlTimeOut OBJECT-TYPE
 SYNTAX Unsigned32 (1..60)
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the time-out value, in seconds, for a
 remote ping operation."
 DEFVAL { 3 }
 ::= { pingCtlEntry 6 }

 pingCtlProbeCount OBJECT-TYPE
 SYNTAX Unsigned32 (1..15)
 UNITS "probes"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the number of times to perform a ping
 operation at a remote host."
 DEFVAL { 1 }
 ::= { pingCtlEntry 7 }

 pingCtlAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1), -- test should be started

White Standards Track [Page 18]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 disabled(2) -- test should be stopped
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Reflects the desired state that a pingCtlEntry should be
 in:

 enabled(1) - Attempt to activate the test as defined by
 this pingCtlEntry.
 disabled(2) - Deactivate the test as defined by this
 pingCtlEntry.

 Refer to the corresponding pingResultsOperStatus to
 determine the operational state of the test defined by
 this entry."
 DEFVAL { disabled }
 ::= { pingCtlEntry 8 }

 pingCtlDataFill OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The content of this object is used together with the
 corresponding pingCtlDataSize value to determine how to
 fill the data portion of a probe packet. The option of
 selecting a data fill pattern can be useful when links
 are compressed or have data pattern sensitivities. The
 contents of pingCtlDataFill should be repeated in a ping
 packet when the size of the data portion of the ping
 packet is greater than the size of pingCtlDataFill."
 DEFVAL { ’00’H }
 ::= { pingCtlEntry 9 }

 pingCtlFrequency OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The number of seconds to wait before repeating a ping test
 as defined by the value of the various objects in the
 corresponding row.

 A single ping test consists of a series of ping probes.
 The number of probes is determined by the value of the
 corresponding pingCtlProbeCount object. After a single

White Standards Track [Page 19]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 test completes the number of seconds as defined by the
 value of pingCtlFrequency MUST elapse before the
 next ping test is started.

 A value of 0 for this object implies that the test
 as defined by the corresponding entry will not be
 repeated."
 DEFVAL { 0 }
 ::= { pingCtlEntry 10 }

 pingCtlMaxRows OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "rows"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The maximum number of entries allowed in the
 pingProbeHistoryTable. An implementation of this
 MIB will remove the oldest entry in the
 pingProbeHistoryTable to allow the addition of an
 new entry once the number of rows in the
 pingProbeHistoryTable reaches this value.

 Old entries are not removed when a new test is
 started. Entries are added to the pingProbeHistoryTable
 until pingCtlMaxRows is reached before entries begin to
 be removed.

 A value of 0 for this object disables creation of
 pingProbeHistoryTable entries."
 DEFVAL { 50 }
 ::= { pingCtlEntry 11 }

 pingCtlStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { pingCtlEntry 12 }

 pingCtlTrapGeneration OBJECT-TYPE
 SYNTAX BITS {
 probeFailure(0),
 testFailure(1),

White Standards Track [Page 20]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 testCompletion(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object determines when and if
 to generate a notification for this entry:

 probeFailure(0) - Generate a pingProbeFailed
 notification subject to the value of
 pingCtlTrapProbeFailureFilter. The object
 pingCtlTrapProbeFailureFilter can be used
 to specify the number of successive probe failures
 that are required before a pingProbeFailed
 notification can be generated.
 testFailure(1) - Generate a pingTestFailed
 notification. In this instance the object
 pingCtlTrapTestFailureFilter can be used to
 determine the number of probe failures that
 signal when a test fails.
 testCompletion(2) - Generate a pingTestCompleted
 notification.

 The value of this object defaults to zero, indicating
 that none of the above options have been selected."
 ::= { pingCtlEntry 13 }

 pingCtlTrapProbeFailureFilter OBJECT-TYPE
 SYNTAX Unsigned32 (0..15)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object is used to determine when
 to generate a pingProbeFailed NOTIFICATION.

 Setting pingCtlTrapGeneration
 to probeFailure(0) implies that a pingProbeFailed
 NOTIFICATION is generated only when the number of
 successive probe failures as indicated by the
 value of pingCtlTrapPrbefailureFilter fail within
 a given ping test."
 DEFVAL { 1 }
 ::= { pingCtlEntry 14 }

 pingCtlTrapTestFailureFilter OBJECT-TYPE
 SYNTAX Unsigned32 (0..15)
 MAX-ACCESS read-create
 STATUS current

White Standards Track [Page 21]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DESCRIPTION
 "The value of this object is used to determine when
 to generate a pingTestFailed NOTIFICATION.

 Setting pingCtlTrapGeneration to testFailure(1)
 implies that a pingTestFailed NOTIFICATION is
 generated only when the number of ping failures
 within a test exceed the value of
 pingCtlTrapTestFailureFilter."
 DEFVAL { 1 }
 ::= { pingCtlEntry 15 }

 pingCtlType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object is used to either report or
 select the implementation method to be used for
 calculating a ping response time. The value of this
 object MAY be selected from pingImplementationTypeDomains.

 Additional implementation types SHOULD be allocated as
 required by implementers of the DISMAN-PING-MIB under
 their enterprise specific registration point and not
 beneath pingImplementationTypeDomains."
 DEFVAL { pingIcmpEcho }
 ::= { pingCtlEntry 16 }

 pingCtlDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The purpose of this object is to provide a
 descriptive name of the remote ping test."
 DEFVAL { ’00’H }
 ::= { pingCtlEntry 17 }

 pingCtlSourceAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the type of the source address,
 pingCtlSourceAddress, to be used at a remote host
 when performing a ping operation."
 DEFVAL { ipv4 }

White Standards Track [Page 22]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 ::= { pingCtlEntry 18 }

 pingCtlSourceAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Use the specified IP address (which must be given
 in numeric form, not as a hostname) as the source
 address in outgoing probe packets. On hosts with
 more than one IP address, this option can be used
 to force the source address to be something other
 than the primary IP address of the interface the
 probe packet is sent on. If the IP address is not
 one of this machine’s interface addresses, an error
 is returned and nothing is sent. A zero length
 octet string value for this object disables source
 address specification.

 The address type (InetAddressType) that relates to
 this object is specified by the corresponding value
 of pingCtlSourceAddressType."
 DEFVAL { ’’H }
 ::= { pingCtlEntry 19 }

 pingCtlIfIndex OBJECT-TYPE
 SYNTAX InterfaceIndexOrZero
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Setting this object to an interface’s ifIndex prior
 to starting a remote ping operation directs
 the ping probes to be transmitted over the
 specified interface. A value of zero for this object
 means that this option is not enabled."
 DEFVAL { 0 }
 ::= { pingCtlEntry 20 }

 pingCtlByPassRouteTable OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The purpose of this object is to optionally enable
 bypassing the route table. If enabled, the remote
 host will bypass the normal routing tables and send
 directly to a host on an attached network. If the
 host is not on a directly-attached network, an

White Standards Track [Page 23]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 error is returned. This option can be used to perform
 the ping operation to a local host through an
 interface that has no route defined (e.g., after the
 interface was dropped by routed)."
 DEFVAL { false }
 ::= { pingCtlEntry 21 }

 pingCtlDSField OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the value to store in the Differentiated
 Services (DS) Field in the IP packet used to
 encapsulate the ping probe. The DS Field is defined
 as the Type of Service (TOS) octet in a IPv4 header
 or as the Traffic Class octet in a IPv6 header.

 The value of this object must be a decimal integer
 in the range from 0 to 255. This option can be used
 to determine what effect an explicit DS Field setting
 has on a ping response. Not all values are legal or
 meaningful. A value of 0 means that the function
 represented by this option is not supported. DS Field
 usage is often not supported by IP implementations and
 not all values are supported. Refer to RFC 2474 for
 guidance on usage of this field."
 REFERENCE
 "Refer to RFC 2474 for the definition of the
 Differentiated Services Field and to RFC 1812
 Section 5.3.2 for Type of Service (TOS)."
 DEFVAL { 0 }
 ::= { pingCtlEntry 22 }

 pingCtlRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object allows entries to be created and deleted
 in the pingCtlTable. Deletion of an entry in this
 table results in all corresponding (same
 pingCtlOwnerIndex and pingCtlTestName index values)
 pingResultsTable and pingProbeHistoryTable entries
 being deleted.

 A value MUST be specified for pingCtlTargetAddress
 prior to a transition to active(1) state being

White Standards Track [Page 24]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 accepted.

 Activation of a remote ping operation is controlled
 via pingCtlAdminStatus and not by changing
 this object’s value to active(1).

 Transitions in and out of active(1) state are not
 allowed while an entry’s pingResultsOperStatus is
 active(1) with the exception that deletion of
 an entry in this table by setting its RowStatus
 object to destroy(6) will stop an active
 ping operation.

 The operational state of a ping operation
 can be determined by examination of its
 pingResultsOperStatus object."
 REFERENCE
 "See definition of RowStatus in RFC 2579, ’Textual
 Conventions for SMIv2.’"
 ::= { pingCtlEntry 23 }

-- Ping Results Table

 pingResultsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PingResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Ping Results Table for providing
 the capability of performing ping operations at
 a remote host. The results of these operations are
 stored in the pingResultsTable and the pingPastProbeTable.

 An entry is added to the pingResultsTable when an
 pingCtlEntry is started by successful transition
 of its pingCtlAdminStatus object to enabled(1).
 An entry is removed from the pingResultsTable when
 its corresponding pingCtlEntry is deleted."
 ::= { pingObjects 3 }

 pingResultsEntry OBJECT-TYPE
 SYNTAX PingResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the pingResultsTable. The
 pingResultsTable has the same indexing as the
 pingCtlTable in order for a pingResultsEntry to

White Standards Track [Page 25]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 correspond to the pingCtlEntry that caused it to
 be created."
 INDEX {
 pingCtlOwnerIndex,
 pingCtlTestName
 }
 ::= { pingResultsTable 1 }

 PingResultsEntry ::=
 SEQUENCE {
 pingResultsOperStatus INTEGER,
 pingResultsIpTargetAddressType InetAddressType,
 pingResultsIpTargetAddress InetAddress,
 pingResultsMinRtt Unsigned32,
 pingResultsMaxRtt Unsigned32,
 pingResultsAverageRtt Unsigned32,
 pingResultsProbeResponses Unsigned32,
 pingResultsSentProbes Unsigned32,
 pingResultsRttSumOfSquares Unsigned32,
 pingResultsLastGoodProbe DateAndTime
 }

 pingResultsOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1), -- test is in progress
 disabled(2) -- test has stopped
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reflects the operational state of a pingCtlEntry:
 enabled(1) - Test is active.
 disabled(2) - Test has stopped."
 ::= { pingResultsEntry 1 }

 pingResultsIpTargetAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects indicates the type of address stored
 in the corresponding pingResultsIpTargetAddress
 object."
 DEFVAL { unknown }
 ::= { pingResultsEntry 2 }

 pingResultsIpTargetAddress OBJECT-TYPE
 SYNTAX InetAddress

White Standards Track [Page 26]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects reports the IP address associated
 with a pingCtlTargetAddress value when the destination
 address is specified as a DNS name. The value of
 this object should be a zero length octet string
 when a DNS name is not specified or when a
 specified DNS name fails to resolve."
 DEFVAL { ’’H }
 ::= { pingResultsEntry 3 }

 pingResultsMinRtt OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The minimum ping round-trip-time (RTT) received. A value
 of 0 for this object implies that no RTT has been received."
 ::= { pingResultsEntry 4 }

 pingResultsMaxRtt OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The maximum ping round-trip-time (RTT) received. A value
 of 0 for this object implies that no RTT has been received."
 ::= { pingResultsEntry 5 }

 pingResultsAverageRtt OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current average ping round-trip-time (RTT)."
 ::= { pingResultsEntry 6 }

 pingResultsProbeResponses OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "responses"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of responses received for the corresponding

White Standards Track [Page 27]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 pingCtlEntry and pingResultsEntry. The value of this object
 MUST be reported as 0 when no probe responses have been
 received."
 ::= { pingResultsEntry 7 }

 pingResultsSentProbes OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "probes"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object reflects the number of probes sent
 for the corresponding pingCtlEntry and pingResultsEntry.
 The value of this object MUST be reported as 0 when no probes
 have been sent."
 ::= { pingResultsEntry 8 }

 pingResultsRttSumOfSquares OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object contains the sum of the squares for all ping
 responses received. Its purpose is to enable standard
 deviation calculation. The value of this object MUST
 be reported as 0 when no ping responses have been
 received."
 ::= { pingResultsEntry 9 }

 pingResultsLastGoodProbe OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Date and time when the last response was received for
 a probe."
 ::= { pingResultsEntry 10 }

 -- Ping Probe History Table

 pingProbeHistoryTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PingProbeHistoryEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines a table for storing the results of a ping
 operation. Entries in this table are limited by

White Standards Track [Page 28]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 the value of the corresponding pingCtlMaxRows
 object.

 An entry in this table is created when the result of
 a ping probe is determined. The initial 2 instance
 identifier index values identify the pingCtlEntry
 that a probe result (pingProbeHistoryEntry) belongs
 to. An entry is removed from this table when
 its corresponding pingCtlEntry is deleted.

 An implementation of this MIB will remove the oldest
 entry in the pingProbeHistoryTable to allow the
 addition of an new entry once the number of rows in
 the pingProbeHistoryTable reaches the value specified
 by pingCtlMaxRows."
 ::= { pingObjects 4 }

 pingProbeHistoryEntry OBJECT-TYPE
 SYNTAX PingProbeHistoryEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the pingProbeHistoryTable.
 The first two index elements identify the
 pingCtlEntry that a pingProbeHistoryEntry belongs
 to. The third index element selects a single
 probe result."
 INDEX {
 pingCtlOwnerIndex,
 pingCtlTestName,
 pingProbeHistoryIndex
 }
 ::= { pingProbeHistoryTable 1 }

 PingProbeHistoryEntry ::=
 SEQUENCE {
 pingProbeHistoryIndex Unsigned32,
 pingProbeHistoryResponse Unsigned32,
 pingProbeHistoryStatus OperationResponseStatus,
 pingProbeHistoryLastRC Integer32,
 pingProbeHistoryTime DateAndTime
 }

 pingProbeHistoryIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..’ffffffff’h)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

White Standards Track [Page 29]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "An entry in this table is created when the result of
 a ping probe is determined. The initial 2 instance
 identifier index values identify the pingCtlEntry
 that a probe result (pingProbeHistoryEntry) belongs
 to.

 An implementation MUST start assigning
 pingProbeHistoryIndex values at 1 and wrap after
 exceeding the maximum possible value as defined by
 the limit of this object (’ffffffff’h)."
 ::= { pingProbeHistoryEntry 1 }

 pingProbeHistoryResponse OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The amount of time measured in milliseconds from when
 a probe was sent to when its response was received or
 when it timed out. The value of this object is reported
 as 0 when it is not possible to transmit a probe."
 ::= { pingProbeHistoryEntry 2 }

 pingProbeHistoryStatus OBJECT-TYPE
 SYNTAX OperationResponseStatus
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The result of a particular probe done by a remote host."
 ::= { pingProbeHistoryEntry 3 }

 pingProbeHistoryLastRC OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The last implementation method specific reply code received.
 If the ICMP Echo capability is being used then a successful
 probe ends when an ICMP response is received that contains
 the code ICMP_ECHOREPLY(0). The ICMP responses are defined
 normally in the ip_icmp include file."
 ::= { pingProbeHistoryEntry 4 }

 pingProbeHistoryTime OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current

White Standards Track [Page 30]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DESCRIPTION
 "Timestamp for when this probe result was determined."
 ::= { pingProbeHistoryEntry 5 }

 -- Notification Definition section

 pingProbeFailed NOTIFICATION-TYPE
 OBJECTS {
 pingCtlTargetAddressType,
 pingCtlTargetAddress,
 pingResultsOperStatus,
 pingResultsIpTargetAddressType,
 pingResultsIpTargetAddress,
 pingResultsMinRtt,
 pingResultsMaxRtt,
 pingResultsAverageRtt,
 pingResultsProbeResponses,
 pingResultsSentProbes,
 pingResultsRttSumOfSquares,
 pingResultsLastGoodProbe
 }
 STATUS current
 DESCRIPTION
 "Generated when a probe failure is detected when the
 corresponding pingCtlTrapGeneration object is set to
 probeFailure(0) subject to the value of
 pingCtlTrapProbeFailureFilter. The object
 pingCtlTrapProbeFailureFilter can be used to specify the
 number of successive probe failures that are required
 before this notification can be generated."
 ::= { pingNotifications 1 }

 pingTestFailed NOTIFICATION-TYPE
 OBJECTS {
 pingCtlTargetAddressType,
 pingCtlTargetAddress,
 pingResultsOperStatus,
 pingResultsIpTargetAddressType,
 pingResultsIpTargetAddress,
 pingResultsMinRtt,
 pingResultsMaxRtt,
 pingResultsAverageRtt,
 pingResultsProbeResponses,
 pingResultsSentProbes,
 pingResultsRttSumOfSquares,
 pingResultsLastGoodProbe
 }

White Standards Track [Page 31]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 STATUS current
 DESCRIPTION
 "Generated when a ping test is determined to have failed
 when the corresponding pingCtlTrapGeneration object is
 set to testFailure(1). In this instance
 pingCtlTrapTestFailureFilter should specify the number of
 probes in a test required to have failed in order to
 consider the test as failed."
 ::= { pingNotifications 2 }

 pingTestCompleted NOTIFICATION-TYPE
 OBJECTS {
 pingCtlTargetAddressType,
 pingCtlTargetAddress,
 pingResultsOperStatus,
 pingResultsIpTargetAddressType,
 pingResultsIpTargetAddress,
 pingResultsMinRtt,
 pingResultsMaxRtt,
 pingResultsAverageRtt,
 pingResultsProbeResponses,
 pingResultsSentProbes,
 pingResultsRttSumOfSquares,
 pingResultsLastGoodProbe
 }
 STATUS current
 DESCRIPTION
 "Generated at the completion of a ping test when the
 corresponding pingCtlTrapGeneration object is set to
 testCompletion(4)."
 ::= { pingNotifications 3 }

 -- Conformance information
 -- Compliance statements

 pingCompliances OBJECT IDENTIFIER ::= { pingConformance 1 }
 pingGroups OBJECT IDENTIFIER ::= { pingConformance 2 }

 -- Compliance statements

 pingCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for the DISMAN-PING-MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 pingGroup,
 pingNotificationsGroup

White Standards Track [Page 32]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 }
 GROUP pingTimeStampGroup
 DESCRIPTION
 "This group is mandatory for implementations that have
 access to a system clock and are capable of setting
 the values for DateAndTime objects. It is RECOMMENDED
 that when this group is not supported that the values
 for the objects in this group be reported as
 ’0000000000000000’H."

 OBJECT pingMaxConcurrentRequests
 MIN-ACCESS read-only
 DESCRIPTION
 "The agent is not required to support set
 operations to this object."

 OBJECT pingCtlStorageType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. It is also allowed
 for implementations to support only the volatile
 StorageType enumeration."

 OBJECT pingCtlType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. In addition, the only
 value that MUST be supported by an implementation is
 pingIcmpEcho."

 OBJECT pingCtlByPassRouteTable
 MIN-ACCESS read-only
 DESCRIPTION
 "This object is not required by implementations that
 are not capable of its implementation. The function
 represented by this object is implementable if the
 setsockopt SOL_SOCKET SO_DONTROUTE option is
 supported."

 OBJECT pingCtlSourceAddressType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS read-only
 DESCRIPTION
 "This object is not required by implementations that
 are not capable of binding the send socket with a
 source address. An implementation is only required to
 support IPv4 and IPv6 addresses."

White Standards Track [Page 33]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 OBJECT pingCtlSourceAddress
 SYNTAX InetAddress (SIZE(0|4|16))
 MIN-ACCESS read-only
 DESCRIPTION
 "This object is not required by implementations that
 are not capable of binding the send socket with a
 source address. An implementation is only required to
 support IPv4 and globally unique IPv6 addresses."

 OBJECT pingCtlIfIndex
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. When write access is
 not supported return a 0 as the value of this object.
 A value of 0 means that the function represented by
 this option is not supported."

 OBJECT pingCtlDSField
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. When write access is
 not supported return a 0 as the value of this object.
 A value of 0 means that the function represented by
 this option is not supported."

 OBJECT pingResultsIpTargetAddressType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation is only required to
 support IPv4 and IPv6 addresses."

 OBJECT pingResultsIpTargetAddress
 SYNTAX InetAddress (SIZE(0|4|16))
 DESCRIPTION
 "An implementation is only required to
 support IPv4 and globally unique IPv6 addresses."

 ::= { pingCompliances 1 }

 -- MIB groupings

 pingGroup OBJECT-GROUP
 OBJECTS {
 pingMaxConcurrentRequests,
 pingCtlTargetAddressType,
 pingCtlTargetAddress,
 pingCtlDataSize,
 pingCtlTimeOut,

White Standards Track [Page 34]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 pingCtlProbeCount,
 pingCtlAdminStatus,
 pingCtlDataFill,
 pingCtlFrequency,
 pingCtlMaxRows,
 pingCtlStorageType,
 pingCtlTrapGeneration,
 pingCtlTrapProbeFailureFilter,
 pingCtlTrapTestFailureFilter,
 pingCtlType,
 pingCtlDescr,
 pingCtlByPassRouteTable,
 pingCtlSourceAddressType,
 pingCtlSourceAddress,
 pingCtlIfIndex,
 pingCtlDSField,
 pingCtlRowStatus,
 pingResultsOperStatus,
 pingResultsIpTargetAddressType,
 pingResultsIpTargetAddress,
 pingResultsMinRtt,
 pingResultsMaxRtt,
 pingResultsAverageRtt,
 pingResultsProbeResponses,
 pingResultsSentProbes,
 pingResultsRttSumOfSquares,
 pingProbeHistoryResponse,
 pingProbeHistoryStatus,
 pingProbeHistoryLastRC
 }
 STATUS current
 DESCRIPTION
 "The group of objects that comprise the remote ping
 capability."
 ::= { pingGroups 1 }

 pingTimeStampGroup OBJECT-GROUP
 OBJECTS {
 pingResultsLastGoodProbe,
 pingProbeHistoryTime
 }
 STATUS current
 DESCRIPTION
 "The group of DateAndTime objects."
 ::= { pingGroups 2 }

 pingNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {

White Standards Track [Page 35]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 pingProbeFailed,
 pingTestFailed,
 pingTestCompleted
 }
 STATUS current
 DESCRIPTION
 "The notification which are required to be supported by
 implementations of this MIB."
 ::= { pingGroups 3 }

END

4.2 DISMAN-TRACEROUTE-MIB

DISMAN-TRACEROUTE-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, Integer32,
 Gauge32, Unsigned32, mib-2,
 NOTIFICATION-TYPE,
 OBJECT-IDENTITY
 FROM SNMPv2-SMI -- RFC2578
 RowStatus, StorageType,
 TruthValue, DateAndTime
 FROM SNMPv2-TC -- RFC2579
 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP
 FROM SNMPv2-CONF -- RFC2580
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB -- RFC2571
 InterfaceIndexOrZero -- RFC2863
 FROM IF-MIB
 InetAddressType, InetAddress
 FROM INET-ADDRESS-MIB -- RFC2851
 OperationResponseStatus
 FROM DISMAN-PING-MIB; -- RFC2925

 traceRouteMIB MODULE-IDENTITY
 LAST-UPDATED "200009210000Z" -- 21 September 2000

 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "Kenneth White

 International Business Machines Corporation
 Network Computing Software Division
 Research Triangle Park, NC, USA

White Standards Track [Page 36]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 E-mail: wkenneth@us.ibm.com"
 DESCRIPTION
 "The Traceroute MIB (DISMAN-TRACEROUTE-MIB) provides
 access to the traceroute capability at a remote host."

 -- Revision history

 REVISION "200009210000Z" -- 21 September 2000
 DESCRIPTION
 "Initial version, published as RFC 2925."

 ::= { mib-2 81 }

 -- Top level structure of the MIB

 traceRouteNotifications OBJECT IDENTIFIER ::= { traceRouteMIB 0 }
 traceRouteObjects OBJECT IDENTIFIER ::= { traceRouteMIB 1 }
 traceRouteConformance OBJECT IDENTIFIER ::= { traceRouteMIB 2 }

 -- The registration node (point) for traceroute implementation types

 traceRouteImplementationTypeDomains OBJECT IDENTIFIER
 ::= { traceRouteMIB 3 }

 traceRouteUsingUdpProbes OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "Indicates that an implementation is using UDP probes to
 perform the traceroute operation."
 ::= { traceRouteImplementationTypeDomains 1 }

 -- Simple Object Definitions

 traceRouteMaxConcurrentRequests OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "requests"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of concurrent active traceroute requests
 that are allowed within an agent implementation. A value
 of 0 for this object implies that there is no limit for
 the number of concurrent active requests in effect."
 DEFVAL { 10 }
 ::= { traceRouteObjects 1 }

White Standards Track [Page 37]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 -- Traceroute Control Table

 traceRouteCtlTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TraceRouteCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Remote Operations Traceroute Control Table for
 providing the capability of invoking traceroute from a remote
 host. The results of traceroute operations can be stored in
 the traceRouteResultsTable, traceRouteProbeHistoryTable, and
 the traceRouteHopsTable."
 ::= { traceRouteObjects 2 }

 traceRouteCtlEntry OBJECT-TYPE
 SYNTAX TraceRouteCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the traceRouteCtlTable. The first
 index element, traceRouteCtlOwnerIndex, is of type
 SnmpAdminString, a textual convention that allows for
 use of the SNMPv3 View-Based Access Control Model
 (RFC 2575 [11], VACM) and allows an management
 application to identify its entries. The second index,
 traceRouteCtlTestName (also an SnmpAdminString),
 enables the same management application to have
 multiple requests outstanding."
 INDEX {
 traceRouteCtlOwnerIndex,
 traceRouteCtlTestName
 }
 ::= { traceRouteCtlTable 1 }

 TraceRouteCtlEntry ::=
 SEQUENCE {
 traceRouteCtlOwnerIndex SnmpAdminString,
 traceRouteCtlTestName SnmpAdminString,
 traceRouteCtlTargetAddressType InetAddressType,
 traceRouteCtlTargetAddress InetAddress,
 traceRouteCtlByPassRouteTable TruthValue,
 traceRouteCtlDataSize Unsigned32,
 traceRouteCtlTimeOut Unsigned32,
 traceRouteCtlProbesPerHop Unsigned32,
 traceRouteCtlPort Unsigned32,
 traceRouteCtlMaxTtl Unsigned32,
 traceRouteCtlDSField Unsigned32,
 traceRouteCtlSourceAddressType InetAddressType,

White Standards Track [Page 38]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceRouteCtlSourceAddress InetAddress,
 traceRouteCtlIfIndex InterfaceIndexOrZero,
 traceRouteCtlMiscOptions SnmpAdminString,
 traceRouteCtlMaxFailures Unsigned32,
 traceRouteCtlDontFragment TruthValue,
 traceRouteCtlInitialTtl Unsigned32,
 traceRouteCtlFrequency Unsigned32,
 traceRouteCtlStorageType StorageType,
 traceRouteCtlAdminStatus INTEGER,
 traceRouteCtlMaxRows Unsigned32,
 traceRouteCtlTrapGeneration BITS,
 traceRouteCtlDescr SnmpAdminString,
 traceRouteCtlCreateHopsEntries TruthValue,
 traceRouteCtlType OBJECT IDENTIFIER,
 traceRouteCtlRowStatus RowStatus
 }

 traceRouteCtlOwnerIndex OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "To facilitate the provisioning of access control by a
 security administrator using the View-Based Access
 Control Model (RFC 2575, VACM) for tables in which
 multiple users may need to independently create or
 modify entries, the initial index is used as an ’owner
 index’. Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a
 securityName or groupName as defined in VACM, in
 accordance with a security policy.

 When used in conjunction with such a security policy
 all entries in the table belonging to a particular user
 (or group) will have the same value for this initial
 index. For a given user’s entries in a particular
 table, the object identifiers for the information in
 these entries will have the same subidentifiers (except
 for the ’column’ subidentifier) up to the end of the
 encoded owner index. To configure VACM to permit access
 to this portion of the table, one would create
 vacmViewTreeFamilyTable entries with the value of
 vacmViewTreeFamilySubtree including the owner index
 portion, and vacmViewTreeFamilyMask ’wildcarding’ the
 column subidentifier. More elaborate configurations
 are possible."
 ::= { traceRouteCtlEntry 1 }

White Standards Track [Page 39]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceRouteCtlTestName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The name of a traceroute test. This is locally unique,
 within the scope of an traceRouteCtlOwnerIndex."
 ::= { traceRouteCtlEntry 2 }

 traceRouteCtlTargetAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the type of host address to be used on the
 traceroute request at the remote host."
 DEFVAL { ipv4 }
 ::= { traceRouteCtlEntry 3 }

 traceRouteCtlTargetAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the host address used on the
 traceroute request at the remote host. The
 host address type can be determined by the
 examining the value of the corresponding
 traceRouteCtlTargetAddressType index element.

 A value for this object MUST be set prior to
 transitioning its corresponding traceRouteCtlEntry to
 active(1) via traceRouteCtlRowStatus."
 ::= { traceRouteCtlEntry 4 }

 traceRouteCtlByPassRouteTable OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The purpose of this object is to optionally enable
 bypassing the route table. If enabled, the remote
 host will bypass the normal routing tables and send
 directly to a host on an attached network. If the
 host is not on a directly-attached network, an
 error is returned. This option can be used to perform
 the traceroute operation to a local host through an
 interface that has no route defined (e.g., after the

White Standards Track [Page 40]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 interface was dropped by routed)."
 DEFVAL { false }
 ::= { traceRouteCtlEntry 5 }

 traceRouteCtlDataSize OBJECT-TYPE
 SYNTAX Unsigned32 (0..65507)
 UNITS "octets"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the size of the data portion of a traceroute
 request in octets. A traceroute request is essentially
 transmitted by encoding a UDP datagram into a
 IP packet. So subtracting the size of a UDP header
 (8 octets) and the size of a IP header (20 octets)
 yields a maximum of 65507 octets."
 DEFVAL { 0 }
 ::= { traceRouteCtlEntry 6 }

 traceRouteCtlTimeOut OBJECT-TYPE
 SYNTAX Unsigned32 (1..60)
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the time-out value, in seconds, for
 a traceroute request."
 DEFVAL { 3 }
 ::= { traceRouteCtlEntry 7 }

 traceRouteCtlProbesPerHop OBJECT-TYPE
 SYNTAX Unsigned32 (1..10)
 UNITS "probes"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the number of times to reissue a traceroute
 request with the same time-to-live (TTL) value."
 DEFVAL { 3 }
 ::= { traceRouteCtlEntry 8 }

 traceRouteCtlPort OBJECT-TYPE
 SYNTAX Unsigned32 (1..65535)
 UNITS "UDP Port"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the UDP port to send the traceroute

White Standards Track [Page 41]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 request to. Need to specify a port that is not in
 use at the destination (target) host. The default
 value for this object is the IANA assigned port,
 33434, for the traceroute function."
 DEFVAL { 33434 }
 ::= { traceRouteCtlEntry 9 }

 traceRouteCtlMaxTtl OBJECT-TYPE
 SYNTAX Unsigned32 (1..255)
 UNITS "time-to-live value"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the maximum time-to-live value."
 DEFVAL { 30 }
 ::= { traceRouteCtlEntry 10 }

 traceRouteCtlDSField OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the value to store in the Differentiated
 Services (DS) Field in the IP packet used to
 encapsulate the traceroute probe. The DS Field is
 defined as the Type of Service (TOS) octet in a IPv4
 header or as the Traffic Class octet in a IPv6 header.

 The value of this object must be a decimal integer
 in the range from 0 to 255. This option can be used
 to determine what effect an explicit DS Field setting
 has on a traceroute response. Not all values are legal
 or meaningful. DS Field usage is often not supported
 by IP implementations. A value of 0 means that the
 function represented by this option is not supported.
 Useful TOS octet values are probably ’16’ (low delay)
 and ’8’ (high throughput)."
 REFERENCE
 "Refer to RFC 2474 for the definition of the
 Differentiated Services Field and to RFC 1812
 Section 5.3.2 for Type of Service (TOS)."
 DEFVAL { 0 }
 ::= { traceRouteCtlEntry 11 }

 traceRouteCtlSourceAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current

White Standards Track [Page 42]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DESCRIPTION
 "Specifies the type of the source address,
 traceRouteCtlSourceAddress, to be used at a remote host
 when performing a traceroute operation."
 DEFVAL { unknown }
 ::= { traceRouteCtlEntry 12 }

 traceRouteCtlSourceAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Use the specified IP address (which must be given
 as an IP number, not a hostname) as the source
 address in outgoing probe packets. On hosts with
 more than one IP address, this option can be used
 to force the source address to be something other
 than the primary IP address of the interface the
 probe packet is sent on. If the IP address is not
 one of this machine’s interface addresses, an error
 is returned and nothing is sent. A zero length
 octet string value for this object disables source
 address specification.

 The address type (InetAddressType) that relates to
 this object is specified by the corresponding value
 of traceRouteCtlSourceAddressType."
 DEFVAL { ’’H }
 ::= { traceRouteCtlEntry 13 }

 traceRouteCtlIfIndex OBJECT-TYPE
 SYNTAX InterfaceIndexOrZero
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Setting this object to an interface’s ifIndex prior
 to starting a remote traceroute operation directs
 the traceroute probes to be transmitted over the
 specified interface. A value of zero for this object
 implies that this option is not enabled."
 DEFVAL { 0 }
 ::= { traceRouteCtlEntry 14 }

 traceRouteCtlMiscOptions OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

White Standards Track [Page 43]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "Enables an application to specify implementation
 dependent options."
 DEFVAL { ’’H }
 ::= { traceRouteCtlEntry 15 }

 traceRouteCtlMaxFailures OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 UNITS "timeouts"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object indicates the maximum number
 of consecutive timeouts allowed before terminating
 a remote traceroute request. A value of either 255 (maximum
 hop count/possible TTL value) or a 0 indicates that the
 function of terminating a remote traceroute request when a
 specific number of successive timeouts are detected is
 disabled."
 DEFVAL { 5 }
 ::= { traceRouteCtlEntry 16 }

 traceRouteCtlDontFragment OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object enables setting of the don’t fragment flag (DF)
 in the IP header for a probe. Use of this object enables
 performing a manual PATH MTU test."
 DEFVAL { false }
 ::= { traceRouteCtlEntry 17 }

 traceRouteCtlInitialTtl OBJECT-TYPE
 SYNTAX Unsigned32 (0..255)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object specifies the initial TTL value to
 use. This enables bypassing the initial (often well known)
 portion of a path."
 DEFVAL { 1 }
 ::= { traceRouteCtlEntry 18 }

 traceRouteCtlFrequency OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current

White Standards Track [Page 44]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DESCRIPTION
 "The number of seconds to wait before repeating a
 traceroute test as defined by the value of the
 various objects in the corresponding row.

 The number of hops in a single traceroute test
 is determined by the value of the corresponding
 traceRouteCtlProbesPerHop object. After a
 single test completes the number of seconds as defined
 by the value of traceRouteCtlFrequency MUST elapse
 before the next traceroute test is started.

 A value of 0 for this object implies that the test
 as defined by the corresponding entry will not be
 repeated."
 DEFVAL { 0 }
 ::= { traceRouteCtlEntry 19 }

 traceRouteCtlStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { traceRouteCtlEntry 20 }

 traceRouteCtlAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1), -- operation should be started
 disabled(2) -- operation should be stopped
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Reflects the desired state that an traceRouteCtlEntry
 should be in:

 enabled(1) - Attempt to activate the test as defined by
 this traceRouteCtlEntry.
 disabled(2) - Deactivate the test as defined by this
 traceRouteCtlEntry.

 Refer to the corresponding traceRouteResultsOperStatus to
 determine the operational state of the test defined by
 this entry."

White Standards Track [Page 45]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DEFVAL { disabled }
 ::= { traceRouteCtlEntry 21 }

 traceRouteCtlDescr OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The purpose of this object is to provide a
 descriptive name of the remote traceroute
 test."
 DEFVAL { ’00’H }
 ::= { traceRouteCtlEntry 22 }

 traceRouteCtlMaxRows OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "rows"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The maximum number of entries allowed in the
 traceRouteProbeHistoryTable. An implementation of
 this MIB will remove the oldest entry in the
 traceRouteProbeHistoryTable to allow the addition
 of an new entry once the number of rows in the
 traceRouteProbeHistoryTable reaches this value.

 Old entries are not removed when a new test is
 started. Entries are added to the
 traceRouteProbeHistoryTable until traceRouteCtlMaxRows
 is reached before entries begin to be removed.

 A value of 0 for this object disables creation of
 traceRouteProbeHistoryTable entries."
 DEFVAL { 50 }
 ::= { traceRouteCtlEntry 23 }

 traceRouteCtlTrapGeneration OBJECT-TYPE
 SYNTAX BITS {
 pathChange(0),
 testFailure(1),
 testCompletion(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object determines when and if to
 to generate a notification for this entry:

White Standards Track [Page 46]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 pathChange(0) - Generate a traceRoutePathChange
 notification when the current path varies from a
 previously determined path.
 testFailure(1) - Generate a traceRouteTestFailed
 notification when the full path to a target
 can’t be determined.
 testCompletion(2) - Generate a traceRouteTestCompleted
 notification when the path to a target has been
 determined.

 The value of this object defaults to zero, indicating
 that none of the above options have been selected."
 ::= { traceRouteCtlEntry 24 }

 traceRouteCtlCreateHopsEntries OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The current path for a traceroute test is kept in the
 traceRouteHopsTable on a per hop basis when the value of
 this object is true(1)."
 DEFVAL { false }
 ::= { traceRouteCtlEntry 25 }

 traceRouteCtlType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object is used either to report or
 select the implementation method to be used for
 performing a traceroute operation. The value of this
 object may be selected from
 traceRouteImplementationTypeDomains.

 Additional implementation types should be allocated as
 required by implementers of the DISMAN-TRACEROUTE-MIB
 under their enterprise specific registration point and
 not beneath traceRouteImplementationTypeDomains."
 DEFVAL { traceRouteUsingUdpProbes }
 ::= { traceRouteCtlEntry 26 }

 traceRouteCtlRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

White Standards Track [Page 47]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "This object allows entries to be created and deleted
 in the traceRouteCtlTable. Deletion of an entry in
 this table results in all corresponding (same
 traceRouteCtlOwnerIndex and traceRouteCtlTestName
 index values) traceRouteResultsTable,
 traceRouteProbeHistoryTable, and traceRouteHopsTable
 entries being deleted.

 A value MUST be specified for traceRouteCtlTargetAddress
 prior to a transition to active(1) state being
 accepted.

 Activation of a remote traceroute operation is
 controlled via traceRouteCtlAdminStatus and not
 by transitioning of this object’s value to active(1).

 Transitions in and out of active(1) state are not
 allowed while an entry’s traceRouteResultsOperStatus
 is active(1) with the exception that deletion of
 an entry in this table by setting its RowStatus
 object to destroy(6) will stop an active
 traceroute operation.

 The operational state of an traceroute operation
 can be determined by examination of the corresponding
 traceRouteResultsOperStatus object."
 REFERENCE
 "See definition of RowStatus in RFC 2579, ’Textual
 Conventions for SMIv2.’"
 ::= { traceRouteCtlEntry 27 }

 -- Traceroute Results Table

 traceRouteResultsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TraceRouteResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Remote Operations Traceroute Results Table for
 keeping track of the status of a traceRouteCtlEntry.

 An entry is added to the traceRouteResultsTable when an
 traceRouteCtlEntry is started by successful transition
 of its traceRouteCtlAdminStatus object to enabled(1).
 An entry is removed from the traceRouteResultsTable when
 its corresponding traceRouteCtlEntry is deleted."
 ::= { traceRouteObjects 3 }

White Standards Track [Page 48]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceRouteResultsEntry OBJECT-TYPE
 SYNTAX TraceRouteResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the traceRouteResultsTable. The
 traceRouteResultsTable has the same indexing as the
 traceRouteCtlTable in order for a traceRouteResultsEntry
 to correspond to the traceRouteCtlEntry that caused it to
 be created."
 INDEX {
 traceRouteCtlOwnerIndex,
 traceRouteCtlTestName
 }
 ::= { traceRouteResultsTable 1 }

 TraceRouteResultsEntry ::=
 SEQUENCE {
 traceRouteResultsOperStatus INTEGER,
 traceRouteResultsCurHopCount Gauge32,
 traceRouteResultsCurProbeCount Gauge32,
 traceRouteResultsIpTgtAddrType InetAddressType,
 traceRouteResultsIpTgtAddr InetAddress,
 traceRouteResultsTestAttempts Unsigned32,
 traceRouteResultsTestSuccesses Unsigned32,
 traceRouteResultsLastGoodPath DateAndTime
 }

 traceRouteResultsOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 enabled(1), -- test is in progress
 disabled(2) -- test has stopped
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reflects the operational state of an traceRouteCtlEntry:

 enabled(1) - Test is active.
 disabled(2) - Test has stopped."
 ::= { traceRouteResultsEntry 1 }

 traceRouteResultsCurHopCount OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "hops"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

White Standards Track [Page 49]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "Reflects the current TTL value (range from 1 to
 255) for a remote traceroute operation.
 Maximum TTL value is determined by
 traceRouteCtlMaxTtl."
 ::= { traceRouteResultsEntry 2 }

 traceRouteResultsCurProbeCount OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "probes"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reflects the current probe count (1..10) for
 a remote traceroute operation. The maximum
 probe count is determined by
 traceRouteCtlProbesPerHop."
 ::= { traceRouteResultsEntry 3 }

 traceRouteResultsIpTgtAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects indicates the type of address stored
 in the corresponding traceRouteResultsIpTgtAddr
 object."
 ::= { traceRouteResultsEntry 4 }

 traceRouteResultsIpTgtAddr OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects reports the IP address associated
 with a traceRouteCtlTargetAddress value when the
 destination address is specified as a DNS name.
 The value of this object should be a zero length
 octet string when a DNS name is not specified or
 when a specified DNS name fails to resolve."
 ::= { traceRouteResultsEntry 5 }

 traceRouteResultsTestAttempts OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "tests"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current number of attempts to determine a path

White Standards Track [Page 50]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 to a target. The value of this object MUST be started
 at 0."
 ::= { traceRouteResultsEntry 6 }

 traceRouteResultsTestSuccesses OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "tests"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current number of attempts to determine a path
 to a target that have succeeded. The value of this
 object MUST be reported as 0 when no attempts have
 succeeded."
 ::= { traceRouteResultsEntry 7 }

 traceRouteResultsLastGoodPath OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The date and time when the last complete path
 was determined."
 ::= { traceRouteResultsEntry 8 }

 -- Trace Route Probe History Table

 traceRouteProbeHistoryTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TraceRouteProbeHistoryEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Remote Operations Traceroute Results Table for
 storing the results of a traceroute operation.

 An implementation of this MIB will remove the oldest
 entry in the traceRouteProbeHistoryTable to allow the
 addition of an new entry once the number of rows in
 the traceRouteProbeHistoryTable reaches the value specified
 by traceRouteCtlMaxRows."
 ::= { traceRouteObjects 4 }

 traceRouteProbeHistoryEntry OBJECT-TYPE
 SYNTAX TraceRouteProbeHistoryEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines a table for storing the results of a traceroute

White Standards Track [Page 51]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 operation. Entries in this table are limited by
 the value of the corresponding traceRouteCtlMaxRows
 object.

 The first two index elements identify the
 traceRouteCtlEntry that a traceRouteProbeHistoryEntry
 belongs to. The third index element selects a single
 traceroute operation result. The fourth and fifth indexes
 select the hop and the probe for a particular
 traceroute operation."
 INDEX {
 traceRouteCtlOwnerIndex,
 traceRouteCtlTestName,
 traceRouteProbeHistoryIndex,
 traceRouteProbeHistoryHopIndex,
 traceRouteProbeHistoryProbeIndex
 }
 ::= { traceRouteProbeHistoryTable 1 }

 TraceRouteProbeHistoryEntry ::=
 SEQUENCE {
 traceRouteProbeHistoryIndex Unsigned32,
 traceRouteProbeHistoryHopIndex Unsigned32,
 traceRouteProbeHistoryProbeIndex Unsigned32,
 traceRouteProbeHistoryHAddrType InetAddressType,
 traceRouteProbeHistoryHAddr InetAddress,
 traceRouteProbeHistoryResponse Unsigned32,
 traceRouteProbeHistoryStatus OperationResponseStatus,
 traceRouteProbeHistoryLastRC Integer32,
 traceRouteProbeHistoryTime DateAndTime
 }

 traceRouteProbeHistoryIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..’ffffffff’h)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table is created when the result of
 a traceroute probe is determined. The initial 2 instance
 identifier index values identify the traceRouteCtlEntry
 that a probe result (traceRouteProbeHistoryEntry) belongs
 to. An entry is removed from this table when
 its corresponding traceRouteCtlEntry is deleted.

 An implementation MUST start assigning
 traceRouteProbeHistoryIndex values at 1 and wrap after
 exceeding the maximum possible value as defined by the
 limit of this object (’ffffffff’h)."

White Standards Track [Page 52]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 ::= { traceRouteProbeHistoryEntry 1 }

 traceRouteProbeHistoryHopIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..255)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Indicates which hop in a traceroute path that the probe’s
 results are for. The value of this object is initially
 determined by the value of traceRouteCtlInitialTtl."
 ::= { traceRouteProbeHistoryEntry 2 }

 traceRouteProbeHistoryProbeIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..10)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Indicates the index of a probe for a particular
 hop in a traceroute path. The number of probes per
 hop is determined by the value of the corresponding
 traceRouteCtlProbesPerHop object."
 ::= { traceRouteProbeHistoryEntry 3 }

 traceRouteProbeHistoryHAddrType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects indicates the type of address stored
 in the corresponding traceRouteProbeHistoryHAddr
 object."
 ::= { traceRouteProbeHistoryEntry 4 }

 traceRouteProbeHistoryHAddr OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The address of a hop in a traceroute path. This object
 is not allowed to be a DNS name. The value of the
 corresponding object, traceRouteProbeHistoryHAddrType,
 indicates this object’s IP address type."
 ::= { traceRouteProbeHistoryEntry 5 }

 traceRouteProbeHistoryResponse OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only

White Standards Track [Page 53]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 STATUS current
 DESCRIPTION
 "The amount of time measured in milliseconds from when
 a probe was sent to when its response was received or
 when it timed out. The value of this object is reported
 as 0 when it is not possible to transmit a probe."
 ::= { traceRouteProbeHistoryEntry 6 }

 traceRouteProbeHistoryStatus OBJECT-TYPE
 SYNTAX OperationResponseStatus
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The result of a traceroute operation made by a remote
 host for a particular probe."
 ::= { traceRouteProbeHistoryEntry 7 }

 traceRouteProbeHistoryLastRC OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The last implementation method specific reply code received.

 Traceroute is usually implemented by transmitting a series of
 probe packets with increasing time-to-live values. A probe
 packet is a UDP datagram encapsulated into an IP packet.
 Each hop in a path to the target (destination) host rejects
 the probe packets (probe’s TTL too small, ICMP reply) until
 either the maximum TTL is exceeded or the target host is
 received."
 ::= { traceRouteProbeHistoryEntry 8 }

 traceRouteProbeHistoryTime OBJECT-TYPE
 SYNTAX DateAndTime
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Timestamp for when this probe results were determined."
 ::= { traceRouteProbeHistoryEntry 9 }

 -- Traceroute Hop Results Table

 traceRouteHopsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TraceRouteHopsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

White Standards Track [Page 54]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "Defines the Remote Operations Traceroute Hop Table for
 keeping track of the results of traceroute tests on a
 per hop basis."
 ::= { traceRouteObjects 5 }

 traceRouteHopsEntry OBJECT-TYPE
 SYNTAX TraceRouteHopsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the traceRouteHopsTable.

 The first two index elements identify the
 traceRouteCtlEntry that a traceRouteHopsEntry
 belongs to. The third index element,
 traceRouteHopsHopIndex, selects a
 hop in a traceroute path."
 INDEX {
 traceRouteCtlOwnerIndex,
 traceRouteCtlTestName,
 traceRouteHopsHopIndex
 }
 ::= { traceRouteHopsTable 1 }

 TraceRouteHopsEntry ::=
 SEQUENCE {
 traceRouteHopsHopIndex Unsigned32,
 traceRouteHopsIpTgtAddressType InetAddressType,
 traceRouteHopsIpTgtAddress InetAddress,
 traceRouteHopsMinRtt Unsigned32,
 traceRouteHopsMaxRtt Unsigned32,
 traceRouteHopsAverageRtt Unsigned32,
 traceRouteHopsRttSumOfSquares Unsigned32,
 traceRouteHopsSentProbes Unsigned32,
 traceRouteHopsProbeResponses Unsigned32,
 traceRouteHopsLastGoodProbe DateAndTime
 }

 traceRouteHopsHopIndex OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Specifies the hop index for a traceroute hop. Values
 for this object with respect to the same
 traceRouteCtlOwnerIndex and traceRouteCtlTestName
 MUST start at 1 and increase monotonically.

White Standards Track [Page 55]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 The traceRouteHopsTable keeps the current traceroute
 path per traceRouteCtlEntry if enabled by
 setting the corresponding traceRouteCtlCreateHopsEntries
 to true(1).

 All hops (traceRouteHopsTable entries) in a traceroute
 path MUST be updated at the same time when a traceroute
 operation completes. Care needs to be applied when either
 a path changes or can’t be determined. The initial portion
 of the path, up to the first hop change, MUST retain the
 same traceRouteHopsHopIndex values. The remaining portion
 of the path SHOULD be assigned new traceRouteHopsHopIndex
 values."
 ::= { traceRouteHopsEntry 1 }

 traceRouteHopsIpTgtAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This objects indicates the type of address stored
 in the corresponding traceRouteHopsIpTargetAddress
 object."
 ::= { traceRouteHopsEntry 2 }

 traceRouteHopsIpTgtAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object reports the IP address associated with
 the hop. A value for this object should be reported
 as a numeric IP address and not as a DNS name."
 ::= { traceRouteHopsEntry 3 }

 traceRouteHopsMinRtt OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The minimum traceroute round-trip-time (RTT) received for
 this hop. A value of 0 for this object implies that no
 RTT has been received."
 ::= { traceRouteHopsEntry 4 }

 traceRouteHopsMaxRtt OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only

White Standards Track [Page 56]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 STATUS current
 DESCRIPTION
 "The maximum traceroute round-trip-time (RTT) received for
 this hop. A value of 0 for this object implies that no
 RTT has been received."
 ::= { traceRouteHopsEntry 5 }

 traceRouteHopsAverageRtt OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The current average traceroute round-trip-time (RTT) for
 this hop."
 ::= { traceRouteHopsEntry 6 }

 traceRouteHopsRttSumOfSquares OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object contains the sum of all traceroute responses
 received for this hop. Its purpose is to enable standard
 deviation calculation."
 ::= { traceRouteHopsEntry 7 }

 traceRouteHopsSentProbes OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of this object reflects the number of probes sent
 for this hop during this traceroute test. The value of this
 object should start at 0."
 ::= { traceRouteHopsEntry 8 }

 traceRouteHopsProbeResponses OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Number of responses received for this hop during this
 traceroute test. This value of this object should start
 at 0."
 ::= { traceRouteHopsEntry 9 }

 traceRouteHopsLastGoodProbe OBJECT-TYPE
 SYNTAX DateAndTime

White Standards Track [Page 57]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Date and time was the last response was received for a probe
 for this hop during this traceroute test."
 ::= { traceRouteHopsEntry 10 }

 -- Notification Definition section

 traceRoutePathChange NOTIFICATION-TYPE
 OBJECTS {
 traceRouteCtlTargetAddressType,
 traceRouteCtlTargetAddress,
 traceRouteResultsIpTgtAddrType,
 traceRouteResultsIpTgtAddr
 }
 STATUS current
 DESCRIPTION
 "The path to a target has changed."
 ::= { traceRouteNotifications 1 }

 traceRouteTestFailed NOTIFICATION-TYPE
 OBJECTS {
 traceRouteCtlTargetAddressType,
 traceRouteCtlTargetAddress,
 traceRouteResultsIpTgtAddrType,
 traceRouteResultsIpTgtAddr
 }
 STATUS current
 DESCRIPTION
 "Could not determine the path to a target."
 ::= { traceRouteNotifications 2 }

 traceRouteTestCompleted NOTIFICATION-TYPE
 OBJECTS {
 traceRouteCtlTargetAddressType,
 traceRouteCtlTargetAddress,
 traceRouteResultsIpTgtAddrType,
 traceRouteResultsIpTgtAddr
 }
 STATUS current
 DESCRIPTION
 "The path to a target has just been determined."
 ::= { traceRouteNotifications 3 }

 -- Conformance information
 -- Compliance statements

White Standards Track [Page 58]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceRouteCompliances OBJECT IDENTIFIER ::= { traceRouteConformance 1 }
 traceRouteGroups OBJECT IDENTIFIER ::= { traceRouteConformance 2 }

 -- Compliance statements

 traceRouteCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for the DISMAN-TRACEROUTE-MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 traceRouteGroup
 }
 GROUP traceRouteTimeStampGroup
 DESCRIPTION
 "This group is mandatory for implementations that have
 access to a system clock and are capable of setting
 the values for DateAndTime objects."

 GROUP traceRouteNotificationsGroup
 DESCRIPTION
 "This group defines a collection of optional
 notifications."

 GROUP traceRouteHopsTableGroup
 DESCRIPTION
 "This group lists the objects that make up a
 traceRouteHopsEntry. Support of the traceRouteHopsTable
 is optional."

 OBJECT traceRouteMaxConcurrentRequests
 MIN-ACCESS read-only
 DESCRIPTION
 "The agent is not required to support SET
 operations to this object."

 OBJECT traceRouteCtlByPassRouteTable
 MIN-ACCESS read-only
 DESCRIPTION
 "This object is not required by implementations that
 are not capable of its implementation. The function
 represented by this object is implementable if the
 setsockopt SOL_SOCKET SO_DONTROUTE option is
 supported."

 OBJECT traceRouteCtlSourceAddressType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 MIN-ACCESS read-only

White Standards Track [Page 59]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 DESCRIPTION
 "This object is not required by implementations that
 are not capable of binding the send socket with a
 source address. An implementation is only required to
 support IPv4 and IPv6 addresses."

 OBJECT traceRouteCtlSourceAddress
 SYNTAX InetAddress (SIZE(0|4|16))
 MIN-ACCESS read-only
 DESCRIPTION
 "This object is not required by implementations that
 are not capable of binding the send socket with a
 source address. An implementation is only required to
 support IPv4 and globally unique IPv6 addresses."

 OBJECT traceRouteCtlIfIndex
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. When write access is
 not supported return a 0 as the value of this object.
 A value of 0 implies that the function represented by
 this option is not supported."

 OBJECT traceRouteCtlMiscOptions
 MIN-ACCESS read-only
 DESCRIPTION
 "Support of this object is optional. When not
 supporting do not allow write access and return a
 zero length octet string as the value of the object."

 OBJECT traceRouteCtlStorageType
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. It is also allowed
 for implementations to support only the volatile
 StorageType enumeration."

 OBJECT traceRouteCtlDSField
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required. When write access is
 not supported return a 0 as the value of this object.
 A value of 0 implies that the function represented by
 this option is not supported."

 OBJECT traceRouteCtlType
 MIN-ACCESS read-only
 DESCRIPTION

White Standards Track [Page 60]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "Write access is not required. In addition, the only
 value that is RECOMMENDED to be supported by an
 implementation is traceRouteUsingUdpProbes."

 OBJECT traceRouteResultsIpTgtAddrType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."

 OBJECT traceRouteResultsIpTgtAddr
 SYNTAX InetAddress (SIZE(0|4|16))
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."

 OBJECT traceRouteProbeHistoryHAddrType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."
 OBJECT traceRouteProbeHistoryHAddr
 SYNTAX InetAddress (SIZE(0|4|16))
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."

 OBJECT traceRouteHopsIpTgtAddressType
 SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."

 OBJECT traceRouteHopsIpTgtAddress
 SYNTAX InetAddress (SIZE(0|4|16))
 DESCRIPTION
 "An implementation should only support IPv4 and
 globally unique IPv6 address values for this object."
 ::= { traceRouteCompliances 1 }

 -- MIB groupings

 traceRouteGroup OBJECT-GROUP
 OBJECTS {
 traceRouteMaxConcurrentRequests,
 traceRouteCtlTargetAddressType,
 traceRouteCtlTargetAddress,
 traceRouteCtlByPassRouteTable,

White Standards Track [Page 61]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceRouteCtlDataSize,
 traceRouteCtlTimeOut,
 traceRouteCtlProbesPerHop,
 traceRouteCtlPort,
 traceRouteCtlMaxTtl,
 traceRouteCtlDSField,
 traceRouteCtlSourceAddressType,
 traceRouteCtlSourceAddress,
 traceRouteCtlIfIndex,
 traceRouteCtlMiscOptions,
 traceRouteCtlMaxFailures,
 traceRouteCtlDontFragment,
 traceRouteCtlInitialTtl,
 traceRouteCtlFrequency,
 traceRouteCtlStorageType,
 traceRouteCtlAdminStatus,
 traceRouteCtlMaxRows,
 traceRouteCtlTrapGeneration,
 traceRouteCtlDescr,
 traceRouteCtlCreateHopsEntries,
 traceRouteCtlType,
 traceRouteCtlRowStatus,
 traceRouteResultsOperStatus,
 traceRouteResultsCurHopCount,
 traceRouteResultsCurProbeCount,
 traceRouteResultsIpTgtAddrType,
 traceRouteResultsIpTgtAddr,
 traceRouteResultsTestAttempts,
 traceRouteResultsTestSuccesses,
 traceRouteProbeHistoryHAddrType,
 traceRouteProbeHistoryHAddr,
 traceRouteProbeHistoryResponse,
 traceRouteProbeHistoryStatus,
 traceRouteProbeHistoryLastRC
 }
 STATUS current
 DESCRIPTION
 "The group of objects that comprise the remote traceroute
 operation."
 ::= { traceRouteGroups 1 }

 traceRouteTimeStampGroup OBJECT-GROUP
 OBJECTS {
 traceRouteResultsLastGoodPath,
 traceRouteProbeHistoryTime
 }
 STATUS current
 DESCRIPTION

White Standards Track [Page 62]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 "The group of DateAndTime objects."
 ::= { traceRouteGroups 2 }

 traceRouteNotificationsGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 traceRoutePathChange,
 traceRouteTestFailed,
 traceRouteTestCompleted
 }
 STATUS current
 DESCRIPTION
 "The notifications which are required to be supported by
 implementations of this MIB."
 ::= { traceRouteGroups 3 }

 traceRouteHopsTableGroup OBJECT-GROUP
 OBJECTS {
 traceRouteHopsIpTgtAddressType,
 traceRouteHopsIpTgtAddress,
 traceRouteHopsMinRtt,
 traceRouteHopsMaxRtt,
 traceRouteHopsAverageRtt,
 traceRouteHopsRttSumOfSquares,
 traceRouteHopsSentProbes,
 traceRouteHopsProbeResponses,
 traceRouteHopsLastGoodProbe
 }
 STATUS current
 DESCRIPTION
 "The group of objects that comprise the traceRouteHopsTable."
 ::= { traceRouteGroups 4 }

END

4.3 DISMAN-NSLOOKUP-MIB

DISMAN-NSLOOKUP-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Unsigned32, mib-2, Integer32
 FROM SNMPv2-SMI -- RFC2578
 RowStatus
 FROM SNMPv2-TC -- RFC2579
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF -- RFC2580
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB -- RFC2571

White Standards Track [Page 63]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 InetAddressType, InetAddress
 FROM INET-ADDRESS-MIB; -- RFC2851

 lookupMIB MODULE-IDENTITY
 LAST-UPDATED "200009210000Z" -- 21 September 2000
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO
 "Kenneth White

 International Business Machines Corporation
 Network Computing Software Division
 Research Triangle Park, NC, USA

 E-mail: wkenneth@us.ibm.com"
 DESCRIPTION
 "The Lookup MIB (DISMAN-NSLOOKUP-MIB) enables determination
 of either the name(s) corresponding to a host address or of
 the address(es) associated with a host name at a remote host."

 -- Revision history

 REVISION "200009210000Z" -- 21 September 2000
 DESCRIPTION
 "Initial version, published as RFC 2925."

 ::= { mib-2 82 }

 -- Top level structure of the MIB

 lookupObjects OBJECT IDENTIFIER ::= { lookupMIB 1 }
 lookupConformance OBJECT IDENTIFIER ::= { lookupMIB 2 }

 -- Simple Object Definitions

 lookupMaxConcurrentRequests OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "requests"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of concurrent active lookup requests
 that are allowed within an agent implementation. A value
 of 0 for this object implies that there is no limit for
 the number of concurrent active requests in effect."
 DEFVAL { 10 }
 ::= { lookupObjects 1 }

White Standards Track [Page 64]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 lookupPurgeTime OBJECT-TYPE
 SYNTAX Unsigned32 (0..86400)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The amount of time to wait before automatically
 deleting an entry in the lookupCtlTable and any
 dependent lookupResultsTable entries
 after the lookup operation represented by an
 lookupCtlEntry has completed.

 An lookupCtEntry is considered complete
 when its lookupCtlOperStatus object has a
 value of completed(3)."
 DEFVAL { 900 } -- 15 minutes as default
 ::= { lookupObjects 2 }

 -- Lookup Control Table

 lookupCtlTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LookupCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Lookup Control Table for providing
 the capability of performing a lookup operation,
 gethostbyname or gethostbyaddr, from a remote host."
 ::= { lookupObjects 3 }

 lookupCtlEntry OBJECT-TYPE
 SYNTAX LookupCtlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the lookupCtlTable. A
 lookupCtlEntry is initially indexed by
 lookupCtlOwnerIndex, which is of type SnmpAdminString,
 a textual convention that allows for use of the SNMPv3
 View-Based Access Control Model (RFC 2575 [11], VACM)
 and also allows an management application to identify
 its entries. The second index element,
 lookupCtlOperationName, enables the same
 lookupCtlOwnerIndex entity to have multiple outstanding
 requests.

 The value of lookupCtlTargetAddressType determines which
 lookup function to perform. Specification of dns(16)

White Standards Track [Page 65]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 as the value of this index implies that the gethostbyname
 function should be performed to determine the numeric
 addresses associated with a symbolic name via
 lookupResultsTable entries. Use of a value of either
 ipv4(1) or ipv6(2) implies that the gethostbyaddr function
 should be performed to determine the symbolic name(s)
 associated with a numeric address at a remote host."
 INDEX {
 lookupCtlOwnerIndex,
 lookupCtlOperationName
 }
 ::= { lookupCtlTable 1 }

 LookupCtlEntry ::=
 SEQUENCE {
 lookupCtlOwnerIndex SnmpAdminString,
 lookupCtlOperationName SnmpAdminString,
 lookupCtlTargetAddressType InetAddressType,
 lookupCtlTargetAddress InetAddress,
 lookupCtlOperStatus INTEGER,
 lookupCtlTime Unsigned32,
 lookupCtlRc Integer32,
 lookupCtlRowStatus RowStatus
 }

 lookupCtlOwnerIndex OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "To facilitate the provisioning of access control by a
 security administrator using the View-Based Access
 Control Model (RFC 2575, VACM) for tables in which
 multiple users may need to independently create or
 modify entries, the initial index is used as an ’owner
 index’. Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a
 securityName or groupName as defined in VACM, in
 accordance with a security policy.

 When used in conjunction with such a security policy all
 entries in the table belonging to a particular user (or
 group) will have the same value for this initial index.
 For a given user’s entries in a particular table, the
 object identifiers for the information in these entries
 will have the same subidentifiers (except for the
 ’column’ subidentifier) up to the end of the encoded
 owner index. To configure VACM to permit access to this

White Standards Track [Page 66]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 portion of the table, one would create
 vacmViewTreeFamilyTable entries with the value of
 vacmViewTreeFamilySubtree including the owner index
 portion, and vacmViewTreeFamilyMask ’wildcarding’ the
 column subidentifier. More elaborate configurations
 are possible."
 ::= { lookupCtlEntry 1 }

 lookupCtlOperationName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The name of a lookup operation. This is locally unique,
 within the scope of an lookupCtlOwnerIndex."
 ::= { lookupCtlEntry 2 }

 lookupCtlTargetAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the type of address for either performing a
 gethostbyname or a gethostbyaddr function at a remote host.
 Specification of dns(16) as the value for this object
 means that the gethostbyname function should be performed
 to return one or more numeric addresses. Use of a value
 of either ipv4(1) or ipv6(2) means that the gethostbyaddr
 function should be used to return the symbolic names
 associated with a remote host."
 ::= { lookupCtlEntry 3 }

 lookupCtlTargetAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the address used for a resolver lookup at a
 remote host. The corresponding lookupCtlAddressType
 objects determines its type as well as the function
 that can be requested.

 A value for this object MUST be set prior to
 transitioning its corresponding lookupCtlEntry to
 active(1) via lookupCtlRowStatus."
 ::= { lookupCtlEntry 4 }

 lookupCtlOperStatus OBJECT-TYPE

White Standards Track [Page 67]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 SYNTAX INTEGER {
 notStarted(2), -- operation has not started
 completed(3) -- operation is done
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reflects the operational state of an lookupCtlEntry:

 enabled(1) - Operation is active.
 notStarted(2) - Operation has not been enabled.
 completed(3) - Operation has completed.

 An operation is automatically enabled(1) when its
 lookupCtlRowStatus object is transitioned to active(1)
 status. Until this occurs lookupCtlOperStatus MUST
 report a value of notStarted(2). After the lookup
 operation completes (success or failure) the value
 for lookupCtlOperStatus MUST be transitioned to
 completed(3)."
 ::= { lookupCtlEntry 5 }

 lookupCtlTime OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reports the number of milliseconds that a lookup
 operation required to be completed at a remote host.
 Completed means operation failure as well as
 success."
 ::= { lookupCtlEntry 6 }

 lookupCtlRc OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The system specific return code from a lookup
 operation. All implementations MUST return a value
 of 0 for this object when the remote lookup
 operation succeeds. A non-zero value for this
 objects indicates failure. It is recommended that
 implementations that support errno use it as the
 value of this object to aid a management
 application in determining the cause of failure."
 ::= { lookupCtlEntry 7 }

White Standards Track [Page 68]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 lookupCtlRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object allows entries to be created and deleted
 in the lookupCtlTable.

 A remote lookup operation is started when an
 entry in this table is created via an SNMP SET
 request and the entry is activated. This
 occurs by setting the value of this object
 to CreateAndGo(4) during row creation or
 by setting this object to active(1) after
 the row is created.

 A value MUST be specified for lookupCtlTargetAddress
 prior to a transition to active(1) state being
 accepted.

 A remote lookup operation starts when its entry
 first becomes active(1). Transitions in and
 out of active(1) state have no effect on the
 operational behavior of a remote lookup
 operation, with the exception that deletion of
 an entry in this table by setting its RowStatus
 object to destroy(6) will stop an active
 remote lookup operation.

 The operational state of a remote lookup operation
 can be determined by examination of its
 lookupCtlOperStatus object."
 REFERENCE
 "See definition of RowStatus in RFC 2579,
 ’Textual Conventions for SMIv2.’"
 ::= { lookupCtlEntry 8 }

-- Lookup Results Table

 lookupResultsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LookupResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines the Lookup Results Table for providing
 the capability of determining the results of a
 operation at a remote host.

White Standards Track [Page 69]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 One or more entries are added to the
 lookupResultsTable when a lookup operation,
 as reflected by an lookupCtlEntry, completes
 successfully. All entries related to a
 successful lookup operation MUST be added
 to the lookupResultsTable at the same time
 that the associating lookupCtlOperStatus
 object is transitioned to completed(2).

 The number of entries added depends on the
 results determined for a particular lookup
 operation. All entries associated with an
 lookupCtlEntry are removed when the
 lookupCtlEntry is deleted.

 A remote host can be multi-homed and have more
 than one IP address associated with it
 (gethostbyname results) and/or it can have more
 than one symbolic name (gethostbyaddr results).

 The gethostbyaddr function is called with a
 host address as its parameter and is used
 primarily to determine a symbolic name to
 associate with the host address. Entries in
 the lookupResultsTable MUST be made for each
 host name returned. The official host name MUST
 be assigned a lookupResultsIndex of 1.

 The gethostbyname function is called with a
 symbolic host name and is used primarily to
 retrieve a host address. If possible the
 primary host address SHOULD be assigned a
 lookupResultsIndex of 1."
 ::= { lookupObjects 4 }

 lookupResultsEntry OBJECT-TYPE
 SYNTAX LookupResultsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Defines an entry in the lookupResultsTable. The
 first two index elements identify the
 lookupCtlEntry that a lookupResultsEntry belongs
 to. The third index element selects a single
 lookup operation result."
 INDEX {
 lookupCtlOwnerIndex,
 lookupCtlOperationName,

White Standards Track [Page 70]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 lookupResultsIndex
 }
 ::= { lookupResultsTable 1 }

 LookupResultsEntry ::=
 SEQUENCE {
 lookupResultsIndex Unsigned32,
 lookupResultsAddressType InetAddressType,
 lookupResultsAddress InetAddress
 }

 lookupResultsIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..’ffffffff’h)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Entries in the lookupResultsTable are created when
 the result of a lookup operation is determined.

 Entries MUST be stored in the lookupResultsTable in
 the order that they are retrieved. Values assigned
 to lookupResultsIndex MUST start at 1 and increase
 in order."
 ::= { lookupResultsEntry 1 }

 lookupResultsAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Indicates the type of result of a remote lookup
 operation. A value of unknown(0) implies that
 either the operation hasn’t been started or that
 it has failed."
 ::= { lookupResultsEntry 2 }

 lookupResultsAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Reflects a result for a remote lookup operation
 as per the value of lookupResultsAddressType."
 ::= { lookupResultsEntry 3 }

 -- Conformance information
 -- Compliance statements

White Standards Track [Page 71]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 lookupCompliances OBJECT IDENTIFIER ::= { lookupConformance 1 }
 lookupGroups OBJECT IDENTIFIER ::= { lookupConformance 2 }

 -- Compliance statements

 lookupCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for the DISMAN-NSLOOKUP-MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 lookupGroup
 }

 OBJECT lookupMaxConcurrentRequests
 MIN-ACCESS read-only
 DESCRIPTION
 "The agent is not required to support SET
 operations to this object."

 OBJECT lookupPurgeTime
 MIN-ACCESS read-only
 DESCRIPTION
 "The agent is not required to support a SET
 operation to this object."
 ::= { lookupCompliances 1 }

 -- MIB groupings

 lookupGroup OBJECT-GROUP
 OBJECTS {
 lookupMaxConcurrentRequests,
 lookupPurgeTime,
 lookupCtlOperStatus,
 lookupCtlTargetAddressType,
 lookupCtlTargetAddress,
 lookupCtlTime,
 lookupCtlRc,
 lookupCtlRowStatus,
 lookupResultsAddressType,
 lookupResultsAddress
 }
 STATUS current
 DESCRIPTION
 "The group of objects that comprise the remote
 Lookup operation."
 ::= { lookupGroups 1 }

White Standards Track [Page 72]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

END

5.0 Security Considerations

 Certain management information in the MIBs defined by this document
 may be considered sensitive in some network environments. Therefore,
 authentication of received SNMP requests and controlled access to
 management information SHOULD be employed in such environments. The
 method for this authentication is a function of the SNMP
 Administrative Framework, and has not been expanded by this MIB.

 To facilitate the provisioning of access control by a security
 administrator using the View-Based Access Control Model (VACM)
 defined in RFC 2575 [11] for tables in which multiple users may need
 to independently create or modify entries, the initial index is used
 as an "owner index". Such an initial index has a syntax of
 SnmpAdminString, and can thus be trivially mapped to a securityName
 or groupName as defined in VACM, in accordance with a security
 policy.

 All entries in related tables belonging to a particular user will
 have the same value for this initial index. For a given user’s
 entries in a particular table, the object identifiers for the
 information in these entries will have the same subidentifiers
 (except for the "column" subidentifier) up to the end of the encoded
 owner index. To configure VACM to permit access to this portion of
 the table, one would create vacmViewTreeFamilyTable entries with the
 value of vacmViewTreeFamilySubtree including the owner index portion,
 and vacmViewTreeFamilyMask "wildcarding" the column subidentifier.
 More elaborate configurations are possible. The VACM access control
 mechanism described above provides control.

 In general, both the ping and traceroute functions when used
 excessively are considered a form of system attack. In the case of
 ping sending a system requests too often can negatively effect its
 performance or attempting to connect to what is supposed to be an
 unused port can be very unpredictable. Excessive use of the

White Standards Track [Page 73]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 traceroute capability can like ping negatively affect system
 performance. In insecure environments it is RECOMMENDED that the
 MIBs defined within this memo not be supported.

6.0 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

7.0 Acknowledgments

 This document is a product of the DISMAN Working Group.

8.0 References

 [1] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, May 1990.

 [2] Postel, J., "Echo Protocol", STD 20, RFC 862, May 1983.

 [3] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [4] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
 RFC 2579, April 1999.

 [5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
 58, RFC 2580, April 1999.

White Standards Track [Page 74]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 [6] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
 Operations for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1905, January 1996.

 [7] Harrington D., Presuhn, R. and B. Wijnen, "An Architecture for
 Describing SNMP Management Frameworks", RFC 2571, April 1999.

 [8] Case, J., Harrington D., Presuhn, R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2572, April 1999.

 [9] Levi D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
 2573, April 1999.

 [10] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
 for version 3 of the Simple Network Management Protocol
 (SNMPv3)", RFC 2574, April 1999.

 [11] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", RFC 2575, April 1999.

 [12] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [13] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [14] Rose, M. and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", RFC 1155,
 May 1990.

 [15] Rose, M. and K. McCloghrie, "Concise MIB Definitions", RFC 1212,
 March 1991.

 [16] Rose, M., "A Convention for Defining Traps for use with the
 SNMP", RFC 1215, March 1991.

 [17] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January
 1996.

 [18] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
 Mappings for Version 2 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1906, January 1996.

 [19] Bradner, S., "The Internet Standards Process -- Revision 3", RFC
 2026, BCP 9, October 1996.

White Standards Track [Page 75]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

 [20] Postel, J., "Internet Control Message Protocol", RFC 792,
 September 1981.

 [21] Nichols, K., Blake, S., Baker, F. and D. Black, "Definition of
 the Differentiated Services Field (DS Field) in the IPv4 and
 IPv6 Headers", RFC 2474, December 1998.

 [22] Daniele, M., Haberman, B., Routhier, S. and J. Schoenwaelder,
 "Textual Conventions for Internet Network Addresses", RFC 2851,
 June 2000.

 [23] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB",
 RFC 2863, June 2000.

9.0 Author’s Address

 Kenneth D. White
 Dept. BRQA/Bldg. 501/G114
 IBM Corporation
 P.O.Box 12195
 3039 Cornwallis
 Research Triangle Park, NC 27709, USA

 EMail: wkenneth@us.ibm.com

White Standards Track [Page 76]

RFC 2925 Ping, Traceroute, and Lookup MIBs September 2000

10. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

White Standards Track [Page 77]

