
Network Working Group R. Kavasseri
Request for Comments: 2981 (Editor of this version)
Category: Standards Track B. Stewart
 (Author of previous version)
 Cisco Systems, Inc.
 October 2000

 Event MIB

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes managed objects that can be used to
 manage and monitor MIB objects and take action through events.

 The Event MIB provides the ability to monitor MIB objects on the
 local system or on a remote system and take simple action when a
 trigger condition is met.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Table of Contents

 1 The SNMP Management Framework 2
 2 Overview .. 3
 3 Relationship to Other MIBs 3
 4 MIB Sections .. 4
 5 Operation ... 5
 6 Security .. 7
 7 Definitions ... 7
 8 Intellectual Property 47
 9 Acknowledgements .. 47

Kavasseri & Stewart Standards Track [Page 1]

RFC 2981 Event MIB October 2000

 10 References ... 47
 11 Security Considerations 49
 12 Author’s Address ... 49
 13 Editor’s Address ... 49
 14 Full Copyright Statement 50

1. The SNMP Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [RFC2571].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in
 STD 16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC
 1215 [RFC1215]. The second version, called SMIv2, is described
 in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and
 STD 58, RFC 2580 [RFC2580].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [RFC1157]. A second version of
 the SNMP message protocol, which is not an Internet standards
 track protocol, is called SNMPv2c and described in RFC 1901
 [RFC1901] and RFC 1906 [RFC1906]. The third version of the
 message protocol is called SNMPv3 and described in RFC 1906
 [RFC1906], RFC 2572 [RFC2572] and RFC 2574 [RFC2574].

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [RFC1157]. A second set of
 protocol operations and associated PDU formats is described in
 RFC 1905 [RFC1905].

 o A set of fundamental applications described in RFC 2573
 [RFC2573] and the view-based access control mechanism described
 in RFC 2575 [RFC2575].

 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [RFC2570].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

Kavasseri & Stewart Standards Track [Page 2]

RFC 2981 Event MIB October 2000

 This memo specifies a MIB module that is compliant to the SMIv2. A
 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB. It may not be possible to meaningfully monitor Counter64
 objects using an SMIv1 version of the MIB.

2. Overview

 With network sizes well beyond the ability of people to manage them
 directly, automated, distributed management is vital. An important
 aspect of such management is the ability of a system to monitor
 itself or for some other system to monitor it.

 The Event MIB provides the ability to monitor MIB objects on the
 local system or on a remote system and take simple action when a
 trigger condition is met.

 The MIB is intended to suit either a relatively powerful manager or
 mid- level manager, as well as a somewhat more limited self-managing
 system.

3. Relationship to Other MIBs

 The Event MIB is based on extensive experience with the RMON MIB
 [RFC1757] and provides a superset of the capabilities of the RMON
 alarm and event groups. Conceptually, the key extension is the
 ability to allow alarms to be generated for MIB objects that are on
 another network element. The Event MIB calls "triggers" what the
 RMON MIB called "alarms," but the concepts are the same. Event MIB
 triggers maintain the RMON handling of thresholds and add the concept
 of booleans. Event MIB events maintain the RMON concept of sending
 an SNMP notification in response to a trigger and add the concept of
 setting a MIB object.

 The Event MIB is the successor and update to SNMPv2’s Manager-to-
 Manager MIB [RFC1451] which was declared Historic pending this work.

 The Event MIB depends on the services of the SNMPv3 Management Target
 and Notification MIBs [RFC2573].

 The Event MIB is nicely complemented by the Distributed Management
 Expression MIB [RFC2982], which is the expected source of boolean
 objects to monitor. Note that there is considerable overlap between

Kavasseri & Stewart Standards Track [Page 3]

RFC 2981 Event MIB October 2000

 the wildcard and delta sample capabilities of the Event and
 Expression MIBs. A carefully-planned implementation might well use
 common code to provide the overlapping functions.

4. MIB Sections

 The MIB has four sections: triggers, objects, events, and
 notifications. Triggers define the conditions that lead to events.
 Events may cause notifications.

 The trigger table lists what objects are to be monitored and how and
 relates each trigger to an event. It has supplementary, companion
 tables for additional objects that depend on the type of test done
 for the trigger.

 The objects table lists objects that can be added to notifications
 based on the trigger, the trigger test type, or the event that
 resulted in the notification.

 The event table defines what happens when an event is triggered:
 sending a notification, setting a MIB object or both. It has
 supplementary, companion tables for additional objects that depend on
 the action taken.

 The notification section defines a set of generic notifications to go
 with the events and for Event MIB error handling, and it defines a
 set of objects to put in those notifications.

 The following diagram describes the relationships between the tables
 in the Event MIB.

Kavasseri & Stewart Standards Track [Page 4]

RFC 2981 Event MIB October 2000

 +-----------------------------+
 | mteTriggerEntry | subclassed by:
 | { mteOwner, |---+
 | IMPLIED mteTriggerName } | +-- mteTriggerDeltaEntry
 | | |
 | | +-- mteTriggerExistenceEntry
 | | |
 | | +-- mteTriggerBooleanEntry
 | | |
 | | +-- mteTriggerThresholdEntry
 | |
 | mteTrigger*Event -------------------------------->+
 | | |
 | mteTriggerObjects ------------------>+ |
 +-----------------------------+ | |
 | |
 +-----------------------------+ V |
mteObjectsEntry		
{ mteOwner,	<-------------+	
mteObjectsName,		
mteObjectsIndex }		
 +-----------------------------+ |
 V
 +---------------------------+ |
 | mteEventEntry |<----------------------------+
 | { mteOwner, |
 | IMPLIED mteEventName } |
 | |
 | mteEventAction---> + (condition)
 +---------------------------+ |
 V
 +---------------------------+ | +---------------------------+
mteEventNotificationEntry			mteEventSetEntry
{ mteOwner,	<--+-->	{ mteOwner,	
IMPLIED mteEventName }		IMPLIED mteEventName }	
 +---------------------------+ +---------------------------+

5. Operation

 The Event MIB is instrumentation for a distributed management
 application that monitors MIB objects. In its simplest form this
 application monitors individual, local MIB objects, just as an RMON
 probe fulfills the functions implied by RMON’s alarm and event
 operation. Additionally the application can monitor remote objects
 and wildcarded groups of objects.

Kavasseri & Stewart Standards Track [Page 5]

RFC 2981 Event MIB October 2000

 Remote monitoring uses the tag service of the Management Target MIB
 [RFC2573] to select and access remote systems as an ordinary SNMP-
 based management application. Local monitoring may be via a more
 intimate, local interface which may, for example, bypass SNMP
 encoding but otherwise is functionally identical to remote SNMP
 operation, including the application of access control. A self-
 management only system MAY not implement remote monitoring.

 Wildcards indicate that the application SHOULD use a GetNext-type
 operation to find the zero or more instances implied by a truncated
 object identifier, just like an ordinary SNMP-based management
 application. Each instance of a wildcard is treated as if it were a
 separate entry, that is the instances of a wildcarded object are
 independent of one another. For example, a wild-carded object may
 trigger an event, and result in the setting of another wildcarded
 object. The instance that satisfied the trigger function is used to
 perform the set function. All of this takes place independently of
 any additional instances that may fill the wildcard.

 Error handling is by notification. These error notifications SHOULD
 be enabled only for the diagnosis of problems indicated by error
 counters. If minimizing the probability of notification loss is a
 concern they SHOULD be transmitted as Inform PDUs as described in the
 [SNMP-TARGET-MIB] or directed to a log as described in the
 Notification Log MIB [rfcNotificationLogMIB]. Note that this does
 not mean the Notification Log MIB is REQUIRED, since in fact
 notifications usually are not lost, but that the Notification Log MIB
 can be helpful with this as well as other MIBs that include
 notifications.

 Although like most MIBs this one has no explicit controls for the
 persistence of the values set in configuring events, a robust, polite
 implementation would certainly not force its managing applications to
 reconfigure it whenever it resets.

 Again, as with most MIBs, it is implementation-specific how a system
 provides and manages such persistence. To speculate, one could
 imagine, for example, that persistence depended on the context in
 which the expression was configured, or perhaps system-specific
 characteristics of the expression’s owner. Or perhaps everything in
 a MIB such as this one, which is clearly aimed at persistent
 configuration, is automatically part of a system’s other persistent
 configuration.

Kavasseri & Stewart Standards Track [Page 6]

RFC 2981 Event MIB October 2000

6. Security

 Security of Event MIB entries depends on SNMPv3 access control for
 the entire MIB or for subsets based on entry owner names.

 Security of monitored objects for remote access depends on the
 Management Target MIB [RFC2573]. Security for local access can
 depend on the Management Target MIB or on recording appropriate
 security credentials of the creator of an entry and using those to
 access the local objects. These security credentials are the
 parameters necessary as inputs to isAccessAllowed from the
 Architecture for Describing SNMP Management Frameworks. When
 accessing local objects without using a local target tag, the system
 MUST (conceptually) use isAccessAllowed to ensure that it does not
 violate security.

 To facilitate the provisioning of access control by a security
 administrator for this MIB itself using the View-Based Access Control
 Model (VACM) defined in RFC 2275 [RFC2575] for tables in which
 multiple users may need to independently create or modify entries,
 the initial index is used as an "owner index". Such an initial index
 has a syntax of SnmpAdminString, and can thus be trivially mapped to
 a securityName or groupName as defined in VACM, in accordance with a
 security policy.

 If a security administrator were to employ such an approach, all
 entries in related tables belonging to a particular user will have
 the same value for this initial index. For a given user’s entries in
 a particular table, the object identifiers for the information in
 these entries will have the same sub-identifiers (except for the
 "column" sub-identifier) up to the end of the encoded owner index.
 To configure VACM to permit access to this portion of the table, one
 would create vacmViewTreeFamilyTable entries with the value of
 vacmViewTreeFamilySubtree including the owner index portion, and
 vacmViewTreeFamilyMask "wildcarding" the column sub-identifier. More
 elaborate configurations are possible.

7. Definitions

DISMAN-EVENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 Integer32, Unsigned32,
 NOTIFICATION-TYPE, Counter32,
 Gauge32, mib-2, zeroDotZero FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, RowStatus,
 TruthValue FROM SNMPv2-TC

Kavasseri & Stewart Standards Track [Page 7]

RFC 2981 Event MIB October 2000

 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP FROM SNMPv2-CONF
 sysUpTime FROM SNMPv2-MIB
 SnmpTagValue FROM SNMP-TARGET-MIB
 SnmpAdminString FROM SNMP-FRAMEWORK-MIB;

dismanEventMIB MODULE-IDENTITY
 LAST-UPDATED "200010160000Z" -- 16 October 2000
 ORGANIZATION "IETF Distributed Management Working Group"
 CONTACT-INFO "Ramanathan Kavasseri
 Cisco Systems, Inc.
 170 West Tasman Drive,
 San Jose CA 95134-1706.
 Phone: +1 408 526 4527
 Email: ramk@cisco.com"
 DESCRIPTION
 "The MIB module for defining event triggers and actions
 for network management purposes."
-- Revision History

 REVISION "200010160000Z" -- 16 October 2000
 DESCRIPTION "This is the initial version of this MIB.
 Published as RFC 2981"
 ::= { mib-2 88 }

dismanEventMIBObjects OBJECT IDENTIFIER ::= { dismanEventMIB 1 }

-- Management Triggered Event (MTE) objects

mteResource OBJECT IDENTIFIER ::= { dismanEventMIBObjects 1 }
mteTrigger OBJECT IDENTIFIER ::= { dismanEventMIBObjects 2 }
mteObjects OBJECT IDENTIFIER ::= { dismanEventMIBObjects 3 }
mteEvent OBJECT IDENTIFIER ::= { dismanEventMIBObjects 4 }

--
-- Textual Conventions
--

FailureReason ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Reasons for failures in an attempt to perform a management
 request.

 The first group of errors, numbered less than 0, are related
 to problems in sending the request. The existence of a
 particular error code here does not imply that all
 implementations are capable of sensing that error and

Kavasseri & Stewart Standards Track [Page 8]

RFC 2981 Event MIB October 2000

 returning that code.

 The second group, numbered greater than 0, are copied
 directly from SNMP protocol operations and are intended to
 carry exactly the meanings defined for the protocol as returned
 in an SNMP response.

 localResourceLack some local resource such as memory
 lacking or
 mteResourceSampleInstanceMaximum
 exceeded
 badDestination unrecognized domain name or otherwise
 invalid destination address
 destinationUnreachable can’t get to destination address
 noResponse no response to SNMP request
 badType the data syntax of a retrieved object
 as not as expected
 sampleOverrun another sample attempt occurred before
 the previous one completed"

 SYNTAX INTEGER { localResourceLack(-1),
 badDestination(-2),
 destinationUnreachable(-3),
 noResponse(-4),
 badType(-5),
 sampleOverrun(-6),

 noError(0),

 tooBig(1),
 noSuchName(2),
 badValue(3),
 readOnly(4),
 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18) }
--

Kavasseri & Stewart Standards Track [Page 9]

RFC 2981 Event MIB October 2000

-- Resource Control Section
--

mteResourceSampleMinimum OBJECT-TYPE
 SYNTAX Integer32 (1..2147483647)
 UNITS "seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The minimum mteTriggerFrequency this system will
 accept. A system may use the larger values of this minimum to
 lessen the impact of constant sampling. For larger
 sampling intervals the system samples less often and
 suffers less overhead. This object provides a way to enforce
 such lower overhead for all triggers created after it is
 set.

 Unless explicitly resource limited, a system’s value for
 this object SHOULD be 1, allowing as small as a 1 second
 interval for ongoing trigger sampling.

 Changing this value will not invalidate an existing setting
 of mteTriggerFrequency."
 ::= { mteResource 1 }

mteResourceSampleInstanceMaximum OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "instances"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of instance entries this system will
 support for sampling.

 These are the entries that maintain state, one for each
 instance of each sampled object as selected by
 mteTriggerValueID. Note that wildcarded objects result
 in multiple instances of this state.

 A value of 0 indicates no preset limit, that is, the limit
 is dynamic based on system operation and resources.

 Unless explicitly resource limited, a system’s value for
 this object SHOULD be 0.

 Changing this value will not eliminate or inhibit existing
 sample state but could prevent allocation of additional state
 information."

Kavasseri & Stewart Standards Track [Page 10]

RFC 2981 Event MIB October 2000

 ::= { mteResource 2 }

mteResourceSampleInstances OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "instances"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of currently active instance entries as
 defined for mteResourceSampleInstanceMaximum."
 ::= { mteResource 3 }

mteResourceSampleInstancesHigh OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "instances"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The highest value of mteResourceSampleInstances that has
 occurred since initialization of the management system."
 ::= { mteResource 4 }

mteResourceSampleInstanceLacks OBJECT-TYPE
 SYNTAX Counter32
 UNITS "instances"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times this system could not take a new sample
 because that allocation would have exceeded the limit set by
 mteResourceSampleInstanceMaximum."
 ::= { mteResource 5 }

--
-- Trigger Section
--

-- Counters

mteTriggerFailures OBJECT-TYPE
 SYNTAX Counter32
 UNITS "failures"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an attempt to check for a trigger
 condition has failed. This counts individually for each
 attempt in a group of targets or each attempt for a

Kavasseri & Stewart Standards Track [Page 11]

RFC 2981 Event MIB October 2000

 wildcarded object."
 ::= { mteTrigger 1 }

--
-- Trigger Table
--

mteTriggerTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteTriggerEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event trigger information."
 ::= { mteTrigger 2 }

mteTriggerEntry OBJECT-TYPE
 SYNTAX MteTriggerEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single trigger. Applications create and
 delete entries using mteTriggerEntryStatus."
 INDEX { mteOwner, IMPLIED mteTriggerName }
 ::= { mteTriggerTable 1 }

MteTriggerEntry ::= SEQUENCE {
 mteOwner SnmpAdminString,
 mteTriggerName SnmpAdminString,
 mteTriggerComment SnmpAdminString,
 mteTriggerTest BITS,
 mteTriggerSampleType INTEGER,
 mteTriggerValueID OBJECT IDENTIFIER,
 mteTriggerValueIDWildcard TruthValue,
 mteTriggerTargetTag SnmpTagValue,
 mteTriggerContextName SnmpAdminString,
 mteTriggerContextNameWildcard TruthValue,
 mteTriggerFrequency Unsigned32,
 mteTriggerObjectsOwner SnmpAdminString,
 mteTriggerObjects SnmpAdminString,
 mteTriggerEnabled TruthValue,
 mteTriggerEntryStatus RowStatus
}

mteOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

Kavasseri & Stewart Standards Track [Page 12]

RFC 2981 Event MIB October 2000

 "The owner of this entry. The exact semantics of this
 string are subject to the security policy defined by the
 security administrator."
 ::= { mteTriggerEntry 1 }

mteTriggerName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A locally-unique, administratively assigned name for the
 trigger within the scope of mteOwner."
 ::= { mteTriggerEntry 2 }

mteTriggerComment OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A description of the trigger’s function and use."
 DEFVAL { ’’H }
 ::= { mteTriggerEntry 3 }

mteTriggerTest OBJECT-TYPE
 SYNTAX BITS { existence(0), boolean(1), threshold(2) }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of trigger test to perform. For ’boolean’ and
 ’threshold’ tests, the object at mteTriggerValueID MUST
 evaluate to an integer, that is, anything that ends up encoded
 for transmission (that is, in BER, not ASN.1) as an integer.

 For ’existence’, the specific test is as selected by
 mteTriggerExistenceTest. When an object appears, vanishes
 or changes value, the trigger fires. If the object’s
 appearance caused the trigger firing, the object MUST
 vanish before the trigger can be fired again for it, and
 vice versa. If the trigger fired due to a change in the
 object’s value, it will be fired again on every successive
 value change for that object.

 For ’boolean’, the specific test is as selected by
 mteTriggerBooleanTest. If the test result is true the trigger
 fires. The trigger will not fire again until the value has
 become false and come back to true.

 For ’threshold’ the test works as described below for

Kavasseri & Stewart Standards Track [Page 13]

RFC 2981 Event MIB October 2000

 mteTriggerThresholdStartup, mteTriggerThresholdRising, and
 mteTriggerThresholdFalling.

 Note that combining ’boolean’ and ’threshold’ tests on the
 same object may be somewhat redundant."
 DEFVAL { { boolean } }
 ::= { mteTriggerEntry 4 }

mteTriggerSampleType OBJECT-TYPE
 SYNTAX INTEGER { absoluteValue(1), deltaValue(2) }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of sampling to perform.

 An ’absoluteValue’ sample requires only a single sample to be
 meaningful, and is exactly the value of the object at
 mteTriggerValueID at the sample time.

 A ’deltaValue’ requires two samples to be meaningful and is
 thus not available for testing until the second and subsequent
 samples after the object at mteTriggerValueID is first found
 to exist. It is the difference between the two samples. For
 unsigned values it is always positive, based on unsigned
 arithmetic. For signed values it can be positive or negative.

 For SNMP counters to be meaningful they should be sampled as a
 ’deltaValue’.

 For ’deltaValue’ mteTriggerDeltaTable contains further
 parameters.

 If only ’existence’ is set in mteTriggerTest this object has
 no meaning."
 DEFVAL { absoluteValue }
 ::= { mteTriggerEntry 5 }

mteTriggerValueID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The object identifier of the MIB object to sample to see
 if the trigger should fire.

 This may be wildcarded by truncating all or part of the
 instance portion, in which case the value is obtained
 as if with a GetNext function, checking multiple values

Kavasseri & Stewart Standards Track [Page 14]

RFC 2981 Event MIB October 2000

 if they exist. If such wildcarding is applied,
 mteTriggerValueIDWildcard must be ’true’ and if not it must
 be ’false’.

 Bad object identifiers or a mismatch between truncating the
 identifier and the value of mteTriggerValueIDWildcard result
 in operation as one would expect when providing the wrong
 identifier to a Get or GetNext operation. The Get will fail
 or get the wrong object. The GetNext will indeed get whatever
 is next, proceeding until it runs past the initial part of the
 identifier and perhaps many unintended objects for confusing
 results. If the value syntax of those objects is not usable,
 that results in a ’badType’ error that terminates the scan.

 Each instance that fills the wildcard is independent of any
 additional instances, that is, wildcarded objects operate
 as if there were a separate table entry for each instance
 that fills the wildcard without having to actually predict
 all possible instances ahead of time."
 DEFVAL { zeroDotZero }
 ::= { mteTriggerEntry 6 }

mteTriggerValueIDWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Control for whether mteTriggerValueID is to be treated as
 fully-specified or wildcarded, with ’true’ indicating wildcard."
 DEFVAL { false }
 ::= { mteTriggerEntry 7 }

mteTriggerTargetTag OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The tag for the target(s) from which to obtain the condition
 for a trigger check.

 A length of 0 indicates the local system. In this case,
 access to the objects indicated by mteTriggerValueID is under
 the security credentials of the requester that set
 mteTriggerEntryStatus to ’active’. Those credentials are the
 input parameters for isAccessAllowed from the Architecture for
 Describing SNMP Management Frameworks.

 Otherwise access rights are checked according to the security

Kavasseri & Stewart Standards Track [Page 15]

RFC 2981 Event MIB October 2000

 parameters resulting from the tag."
 DEFVAL { ’’H }
 ::= { mteTriggerEntry 8 }

mteTriggerContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The management context from which to obtain mteTriggerValueID.

 This may be wildcarded by leaving characters off the end. For
 example use ’Repeater’ to wildcard to ’Repeater1’,
 ’Repeater2’, ’Repeater-999.87b’, and so on. To indicate such
 wildcarding is intended, mteTriggerContextNameWildcard must
 be ’true’.

 Each instance that fills the wildcard is independent of any
 additional instances, that is, wildcarded objects operate
 as if there were a separate table entry for each instance
 that fills the wildcard without having to actually predict
 all possible instances ahead of time.

 Operation of this feature assumes that the local system has a
 list of available contexts against which to apply the
 wildcard. If the objects are being read from the local
 system, this is clearly the system’s own list of contexts.
 For a remote system a local version of such a list is not
 defined by any current standard and may not be available, so
 this function MAY not be supported."
 DEFVAL { ’’H }
 ::= { mteTriggerEntry 9 }

mteTriggerContextNameWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Control for whether mteTriggerContextName is to be treated as
 fully-specified or wildcarded, with ’true’ indicating wildcard."
 DEFVAL { false }
 ::= { mteTriggerEntry 10 }

mteTriggerFrequency OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "seconds"
 MAX-ACCESS read-create
 STATUS current

Kavasseri & Stewart Standards Track [Page 16]

RFC 2981 Event MIB October 2000

 DESCRIPTION
 "The number of seconds to wait between trigger samples. To
 encourage consistency in sampling, the interval is measured
 from the beginning of one check to the beginning of the next
 and the timer is restarted immediately when it expires, not
 when the check completes.

 If the next sample begins before the previous one completed the
 system may either attempt to make the check or treat this as an
 error condition with the error ’sampleOverrun’.

 A frequency of 0 indicates instantaneous recognition of the
 condition. This is not possible in many cases, but may
 be supported in cases where it makes sense and the system is
 able to do so. This feature allows the MIB to be used in
 implementations where such interrupt-driven behavior is
 possible and is not likely to be supported for all MIB objects
 even then since such sampling generally has to be tightly
 integrated into low-level code.

 Systems that can support this SHOULD document those cases
 where it can be used. In cases where it can not, setting this
 object to 0 should be disallowed."
 DEFVAL { 600 }
 ::= { mteTriggerEntry 11 }

mteTriggerObjectsOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "To go with mteTriggerObjects, the mteOwner of a group of
 objects from mteObjectsTable."
 DEFVAL { ’’H }
 ::= { mteTriggerEntry 12 }

mteTriggerObjects OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The mteObjectsName of a group of objects from
 mteObjectsTable. These objects are to be added to any
 Notification resulting from the firing of this trigger.

 A list of objects may also be added based on the event or on
 the value of mteTriggerTest.

Kavasseri & Stewart Standards Track [Page 17]

RFC 2981 Event MIB October 2000

 A length of 0 indicates no additional objects."
 DEFVAL { ’’H }
 ::= { mteTriggerEntry 13 }

mteTriggerEnabled OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A control to allow a trigger to be configured but not used.
 When the value is ’false’ the trigger is not sampled."
 DEFVAL { false }
 ::= { mteTriggerEntry 14 }

mteTriggerEntryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The control that allows creation and deletion of entries.
 Once made active an entry may not be modified except to
 delete it."
 ::= { mteTriggerEntry 15 }

--
-- Trigger Delta Table
--

mteTriggerDeltaTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteTriggerDeltaEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event trigger information for delta
 sampling."
 ::= { mteTrigger 3 }

mteTriggerDeltaEntry OBJECT-TYPE
 SYNTAX MteTriggerDeltaEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single trigger’s delta sampling. Entries
 automatically exist in this this table for each mteTriggerEntry
 that has mteTriggerSampleType set to ’deltaValue’."
 INDEX { mteOwner, IMPLIED mteTriggerName }
 ::= { mteTriggerDeltaTable 1 }

Kavasseri & Stewart Standards Track [Page 18]

RFC 2981 Event MIB October 2000

MteTriggerDeltaEntry ::= SEQUENCE {
 mteTriggerDeltaDiscontinuityID OBJECT IDENTIFIER,
 mteTriggerDeltaDiscontinuityIDWildcard TruthValue,
 mteTriggerDeltaDiscontinuityIDType INTEGER
}

sysUpTimeInstance OBJECT IDENTIFIER ::= { sysUpTime 0 }

mteTriggerDeltaDiscontinuityID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The OBJECT IDENTIFIER (OID) of a TimeTicks, TimeStamp, or
 DateAndTime object that indicates a discontinuity in the value
 at mteTriggerValueID.

 The OID may be for a leaf object (e.g. sysUpTime.0) or may
 be wildcarded to match mteTriggerValueID.

 This object supports normal checking for a discontinuity in a
 counter. Note that if this object does not point to sysUpTime
 discontinuity checking MUST still check sysUpTime for an overall
 discontinuity.

 If the object identified is not accessible the sample attempt
 is in error, with the error code as from an SNMP request.

 Bad object identifiers or a mismatch between truncating the
 identifier and the value of mteDeltaDiscontinuityIDWildcard
 result in operation as one would expect when providing the
 wrong identifier to a Get operation. The Get will fail or get
 the wrong object. If the value syntax of those objects is not
 usable, that results in an error that terminates the sample
 with a ’badType’ error code."
 DEFVAL { sysUpTimeInstance }
 ::= { mteTriggerDeltaEntry 1 }

mteTriggerDeltaDiscontinuityIDWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Control for whether mteTriggerDeltaDiscontinuityID is to be
 treated as fully-specified or wildcarded, with ’true’
 indicating wildcard. Note that the value of this object will
 be the same as that of the corresponding instance of
 mteTriggerValueIDWildcard when the corresponding

Kavasseri & Stewart Standards Track [Page 19]

RFC 2981 Event MIB October 2000

 mteTriggerSampleType is ’deltaValue’."
 DEFVAL { false }
 ::= { mteTriggerDeltaEntry 2 }

mteTriggerDeltaDiscontinuityIDType OBJECT-TYPE
 SYNTAX INTEGER { timeTicks(1), timeStamp(2), dateAndTime(3) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The value ’timeTicks’ indicates the
 mteTriggerDeltaDiscontinuityID of this row is of syntax
 TimeTicks. The value ’timeStamp’ indicates syntax TimeStamp.
 The value ’dateAndTime’ indicates syntax DateAndTime."
 DEFVAL { timeTicks }
 ::= { mteTriggerDeltaEntry 3 }

--
-- Trigger Existence Table
--

mteTriggerExistenceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteTriggerExistenceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event trigger information for existence
 triggers."
 ::= { mteTrigger 4 }

mteTriggerExistenceEntry OBJECT-TYPE
 SYNTAX MteTriggerExistenceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single existence trigger. Entries
 automatically exist in this this table for each mteTriggerEntry
 that has ’existence’ set in mteTriggerTest."
 INDEX { mteOwner, IMPLIED mteTriggerName }
 ::= { mteTriggerExistenceTable 1 }

MteTriggerExistenceEntry ::= SEQUENCE {
 mteTriggerExistenceTest BITS,
 mteTriggerExistenceStartup BITS,
 mteTriggerExistenceObjectsOwner SnmpAdminString,
 mteTriggerExistenceObjects SnmpAdminString,
 mteTriggerExistenceEventOwner SnmpAdminString,
 mteTriggerExistenceEvent SnmpAdminString
}

Kavasseri & Stewart Standards Track [Page 20]

RFC 2981 Event MIB October 2000

mteTriggerExistenceTest OBJECT-TYPE
 SYNTAX BITS { present(0), absent(1), changed(2) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The type of existence test to perform. The trigger fires
 when the object at mteTriggerValueID is seen to go from
 present to absent, from absent to present, or to have it’s
 value changed, depending on which tests are selected:

 present(0) - when this test is selected, the trigger fires
 when the mteTriggerValueID object goes from absent to present.

 absent(1) - when this test is selected, the trigger fires
 when the mteTriggerValueID object goes from present to absent.
 changed(2) - when this test is selected, the trigger fires
 the mteTriggerValueID object value changes.

 Once the trigger has fired for either presence or absence it
 will not fire again for that state until the object has been
 to the other state. "
 DEFVAL { { present, absent } }
 ::= { mteTriggerExistenceEntry 1 }

mteTriggerExistenceStartup OBJECT-TYPE
 SYNTAX BITS { present(0), absent(1) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Control for whether an event may be triggered when this entry
 is first set to ’active’ and the test specified by
 mteTriggerExistenceTest is true. Setting an option causes
 that trigger to fire when its test is true."
 DEFVAL { { present, absent } }
 ::= { mteTriggerExistenceEntry 2 }

mteTriggerExistenceObjectsOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerExistenceObjects, the mteOwner of a
 group of objects from mteObjectsTable."
 DEFVAL { ’’H }
 ::= { mteTriggerExistenceEntry 3 }

mteTriggerExistenceObjects OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))

Kavasseri & Stewart Standards Track [Page 21]

RFC 2981 Event MIB October 2000

 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteObjectsName of a group of objects from
 mteObjectsTable. These objects are to be added to any
 Notification resulting from the firing of this trigger for
 this test.

 A list of objects may also be added based on the overall
 trigger, the event or other settings in mteTriggerTest.

 A length of 0 indicates no additional objects."
 DEFVAL { ’’H }
 ::= { mteTriggerExistenceEntry 4 }

mteTriggerExistenceEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerExistenceEvent, the mteOwner of an event
 entry from the mteEventTable."
 DEFVAL { ’’H }
 ::= { mteTriggerExistenceEntry 5 }

mteTriggerExistenceEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’existence’ and this trigger fires. A length of 0 indicates no
 event."
 DEFVAL { ’’H }
 ::= { mteTriggerExistenceEntry 6 }

--
-- Trigger Boolean Table
--

mteTriggerBooleanTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteTriggerBooleanEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event trigger information for boolean
 triggers."
 ::= { mteTrigger 5 }

Kavasseri & Stewart Standards Track [Page 22]

RFC 2981 Event MIB October 2000

mteTriggerBooleanEntry OBJECT-TYPE
 SYNTAX MteTriggerBooleanEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single boolean trigger. Entries
 automatically exist in this this table for each mteTriggerEntry
 that has ’boolean’ set in mteTriggerTest."
 INDEX { mteOwner, IMPLIED mteTriggerName }
 ::= { mteTriggerBooleanTable 1 }

MteTriggerBooleanEntry ::= SEQUENCE {
 mteTriggerBooleanComparison INTEGER,
 mteTriggerBooleanValue Integer32,
 mteTriggerBooleanStartup TruthValue,
 mteTriggerBooleanObjectsOwner SnmpAdminString,
 mteTriggerBooleanObjects SnmpAdminString,
 mteTriggerBooleanEventOwner SnmpAdminString,
 mteTriggerBooleanEvent SnmpAdminString
}

mteTriggerBooleanComparison OBJECT-TYPE
 SYNTAX INTEGER { unequal(1), equal(2),
 less(3), lessOrEqual(4),
 greater(5), greaterOrEqual(6) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The type of boolean comparison to perform.

 The value at mteTriggerValueID is compared to
 mteTriggerBooleanValue, so for example if
 mteTriggerBooleanComparison is ’less’ the result would be true
 if the value at mteTriggerValueID is less than the value of
 mteTriggerBooleanValue."
 DEFVAL { unequal }
 ::= { mteTriggerBooleanEntry 1 }

mteTriggerBooleanValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The value to use for the test specified by
 mteTriggerBooleanTest."
 DEFVAL { 0 }
 ::= { mteTriggerBooleanEntry 2 }

Kavasseri & Stewart Standards Track [Page 23]

RFC 2981 Event MIB October 2000

mteTriggerBooleanStartup OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Control for whether an event may be triggered when this entry
 is first set to ’active’ or a new instance of the object at
 mteTriggerValueID is found and the test specified by
 mteTriggerBooleanComparison is true. In that case an event is
 triggered if mteTriggerBooleanStartup is ’true’."
 DEFVAL { true }
 ::= { mteTriggerBooleanEntry 3 }

mteTriggerBooleanObjectsOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerBooleanObjects, the mteOwner of a group
 of objects from mteObjectsTable."
 DEFVAL { ’’H }
 ::= { mteTriggerBooleanEntry 4 }

mteTriggerBooleanObjects OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteObjectsName of a group of objects from
 mteObjectsTable. These objects are to be added to any
 Notification resulting from the firing of this trigger for
 this test.

 A list of objects may also be added based on the overall
 trigger, the event or other settings in mteTriggerTest.

 A length of 0 indicates no additional objects."
 DEFVAL { ’’H }
 ::= { mteTriggerBooleanEntry 5 }

mteTriggerBooleanEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerBooleanEvent, the mteOwner of an event
 entry from mteEventTable."
 DEFVAL { ’’H }

Kavasseri & Stewart Standards Track [Page 24]

RFC 2981 Event MIB October 2000

 ::= { mteTriggerBooleanEntry 6 }

mteTriggerBooleanEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’boolean’ and this trigger fires. A length of 0 indicates no
 event."
 DEFVAL { ’’H }
 ::= { mteTriggerBooleanEntry 7 }

--
-- Trigger Threshold Table
--

mteTriggerThresholdTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteTriggerThresholdEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event trigger information for threshold
 triggers."
 ::= { mteTrigger 6 }

mteTriggerThresholdEntry OBJECT-TYPE
 SYNTAX MteTriggerThresholdEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single threshold trigger. Entries
 automatically exist in this table for each mteTriggerEntry
 that has ’threshold’ set in mteTriggerTest."
 INDEX { mteOwner, IMPLIED mteTriggerName }
 ::= { mteTriggerThresholdTable 1 }

MteTriggerThresholdEntry ::= SEQUENCE {
 mteTriggerThresholdStartup INTEGER,
 mteTriggerThresholdRising Integer32,
 mteTriggerThresholdFalling Integer32,
 mteTriggerThresholdDeltaRising Integer32,
 mteTriggerThresholdDeltaFalling Integer32,
 mteTriggerThresholdObjectsOwner SnmpAdminString,
 mteTriggerThresholdObjects SnmpAdminString,
 mteTriggerThresholdRisingEventOwner SnmpAdminString,
 mteTriggerThresholdRisingEvent SnmpAdminString,
 mteTriggerThresholdFallingEventOwner SnmpAdminString,

Kavasseri & Stewart Standards Track [Page 25]

RFC 2981 Event MIB October 2000

 mteTriggerThresholdFallingEvent SnmpAdminString,
 mteTriggerThresholdDeltaRisingEventOwner SnmpAdminString,
 mteTriggerThresholdDeltaRisingEvent SnmpAdminString,
 mteTriggerThresholdDeltaFallingEventOwner SnmpAdminString,
 mteTriggerThresholdDeltaFallingEvent SnmpAdminString
}

mteTriggerThresholdStartup OBJECT-TYPE
 SYNTAX INTEGER { rising(1), falling(2), risingOrFalling(3) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The event that may be triggered when this entry is first
 set to ’active’ and a new instance of the object at
 mteTriggerValueID is found. If the first sample after this
 instance becomes active is greater than or equal to
 mteTriggerThresholdRising and mteTriggerThresholdStartup is
 equal to ’rising’ or ’risingOrFalling’, then one
 mteTriggerThresholdRisingEvent is triggered for that instance.
 If the first sample after this entry becomes active is less
 than or equal to mteTriggerThresholdFalling and
 mteTriggerThresholdStartup is equal to ’falling’ or
 ’risingOrFalling’, then one mteTriggerThresholdRisingEvent is
 triggered for that instance."
 DEFVAL { risingOrFalling }
 ::= { mteTriggerThresholdEntry 1 }

mteTriggerThresholdRising OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A threshold value to check against if mteTriggerType is
 ’threshold’.

 When the current sampled value is greater than or equal to
 this threshold, and the value at the last sampling interval
 was less than this threshold, one
 mteTriggerThresholdRisingEvent is triggered. That event is
 also triggered if the first sample after this entry becomes
 active is greater than or equal to this threshold and
 mteTriggerThresholdStartup is equal to ’rising’ or
 ’risingOrFalling’.

 After a rising event is generated, another such event is not
 triggered until the sampled value falls below this threshold
 and reaches mteTriggerThresholdFalling."
 DEFVAL { 0 }

Kavasseri & Stewart Standards Track [Page 26]

RFC 2981 Event MIB October 2000

 ::= { mteTriggerThresholdEntry 2 }

mteTriggerThresholdFalling OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A threshold value to check against if mteTriggerType is
 ’threshold’.

 When the current sampled value is less than or equal to this
 threshold, and the value at the last sampling interval was
 greater than this threshold, one
 mteTriggerThresholdFallingEvent is triggered. That event is
 also triggered if the first sample after this entry becomes
 active is less than or equal to this threshold and
 mteTriggerThresholdStartup is equal to ’falling’ or
 ’risingOrFalling’.

 After a falling event is generated, another such event is not
 triggered until the sampled value rises above this threshold
 and reaches mteTriggerThresholdRising."
 DEFVAL { 0 }
 ::= { mteTriggerThresholdEntry 3 }

mteTriggerThresholdDeltaRising OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A threshold value to check against if mteTriggerType is
 ’threshold’.

 When the delta value (difference) between the current sampled
 value (value(n)) and the previous sampled value (value(n-1))
 is greater than or equal to this threshold,
 and the delta value calculated at the last sampling interval
 (i.e. value(n-1) - value(n-2)) was less than this threshold,
 one mteTriggerThresholdDeltaRisingEvent is triggered. That event
 is also triggered if the first delta value calculated after this
 entry becomes active, i.e. value(2) - value(1), where value(1)
 is the first sample taken of that instance, is greater than or
 equal to this threshold.

 After a rising event is generated, another such event is not
 triggered until the delta value falls below this threshold and
 reaches mteTriggerThresholdDeltaFalling."
 DEFVAL { 0 }

Kavasseri & Stewart Standards Track [Page 27]

RFC 2981 Event MIB October 2000

 ::= { mteTriggerThresholdEntry 4 }

mteTriggerThresholdDeltaFalling OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "A threshold value to check against if mteTriggerType is
 ’threshold’.

 When the delta value (difference) between the current sampled
 value (value(n)) and the previous sampled value (value(n-1))
 is less than or equal to this threshold,
 and the delta value calculated at the last sampling interval
 (i.e. value(n-1) - value(n-2)) was greater than this threshold,
 one mteTriggerThresholdDeltaFallingEvent is triggered. That event
 is also triggered if the first delta value calculated after this
 entry becomes active, i.e. value(2) - value(1), where value(1)
 is the first sample taken of that instance, is less than or
 equal to this threshold.

 After a falling event is generated, another such event is not
 triggered until the delta value falls below this threshold and
 reaches mteTriggerThresholdDeltaRising."
 DEFVAL { 0 }
 ::= { mteTriggerThresholdEntry 5 }

mteTriggerThresholdObjectsOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerThresholdObjects, the mteOwner of a group
 of objects from mteObjectsTable."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 6 }

mteTriggerThresholdObjects OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteObjectsName of a group of objects from
 mteObjectsTable. These objects are to be added to any
 Notification resulting from the firing of this trigger for
 this test.

 A list of objects may also be added based on the overall

Kavasseri & Stewart Standards Track [Page 28]

RFC 2981 Event MIB October 2000

 trigger, the event or other settings in mteTriggerTest.

 A length of 0 indicates no additional objects."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 7 }

mteTriggerThresholdRisingEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerThresholdRisingEvent, the mteOwner of an
 event entry from mteEventTable."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 8 }

mteTriggerThresholdRisingEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’threshold’ and this trigger fires based on
 mteTriggerThresholdRising. A length of 0 indicates no event."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 9 }

mteTriggerThresholdFallingEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerThresholdFallingEvent, the mteOwner of an
 event entry from mteEventTable."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 10 }

mteTriggerThresholdFallingEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’threshold’ and this trigger fires based on
 mteTriggerThresholdFalling. A length of 0 indicates no event."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 11 }

Kavasseri & Stewart Standards Track [Page 29]

RFC 2981 Event MIB October 2000

mteTriggerThresholdDeltaRisingEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerThresholdDeltaRisingEvent, the mteOwner
 of an event entry from mteEventTable."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 12 }

mteTriggerThresholdDeltaRisingEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’threshold’ and this trigger fires based on
 mteTriggerThresholdDeltaRising. A length of 0 indicates
 no event."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 13 }

mteTriggerThresholdDeltaFallingEventOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteTriggerThresholdDeltaFallingEvent, the mteOwner
 of an event entry from mteEventTable."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 14 }

mteTriggerThresholdDeltaFallingEvent OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteEventName of the event to invoke when mteTriggerType is
 ’threshold’ and this trigger fires based on
 mteTriggerThresholdDeltaFalling. A length of 0 indicates
 no event."
 DEFVAL { ’’H }
 ::= { mteTriggerThresholdEntry 15 }

--
-- Objects Table
--

Kavasseri & Stewart Standards Track [Page 30]

RFC 2981 Event MIB October 2000

mteObjectsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteObjectsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of objects that can be added to notifications based
 on the trigger, trigger test, or event, as pointed to by
 entries in those tables."
 ::= { mteObjects 1 }

mteObjectsEntry OBJECT-TYPE
 SYNTAX MteObjectsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A group of objects. Applications create and delete entries
 using mteObjectsEntryStatus.

 When adding objects to a notification they are added in the
 lexical order of their index in this table. Those associated
 with a trigger come first, then trigger test, then event."
 INDEX { mteOwner, mteObjectsName, mteObjectsIndex }
 ::= { mteObjectsTable 1 }

MteObjectsEntry ::= SEQUENCE {
 mteObjectsName SnmpAdminString,
 mteObjectsIndex Unsigned32,
 mteObjectsID OBJECT IDENTIFIER,
 mteObjectsIDWildcard TruthValue,
 mteObjectsEntryStatus RowStatus
 }

mteObjectsName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A locally-unique, administratively assigned name for a group
 of objects."
 ::= { mteObjectsEntry 1 }

mteObjectsIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An arbitrary integer for the purpose of identifying
 individual objects within a mteObjectsName group.

Kavasseri & Stewart Standards Track [Page 31]

RFC 2981 Event MIB October 2000

 Objects within a group are placed in the notification in the
 numerical order of this index.

 Groups are placed in the notification in the order of the
 selections for overall trigger, trigger test, and event.
 Within trigger test they are in the same order as the
 numerical values of the bits defined for mteTriggerTest.

 Bad object identifiers or a mismatch between truncating the
 identifier and the value of mteDeltaDiscontinuityIDWildcard
 result in operation as one would expect when providing the
 wrong identifier to a Get operation. The Get will fail or get
 the wrong object. If the object is not available it is omitted
 from the notification."
 ::= { mteObjectsEntry 2 }

mteObjectsID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The object identifier of a MIB object to add to a
 Notification that results from the firing of a trigger.

 This may be wildcarded by truncating all or part of the
 instance portion, in which case the instance portion of the
 OID for obtaining this object will be the same as that used
 in obtaining the mteTriggerValueID that fired. If such
 wildcarding is applied, mteObjectsIDWildcard must be
 ’true’ and if not it must be ’false’.

 Each instance that fills the wildcard is independent of any
 additional instances, that is, wildcarded objects operate
 as if there were a separate table entry for each instance
 that fills the wildcard without having to actually predict
 all possible instances ahead of time."
 DEFVAL { zeroDotZero }
 ::= { mteObjectsEntry 3 }

mteObjectsIDWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Control for whether mteObjectsID is to be treated as
 fully-specified or wildcarded, with ’true’ indicating wildcard."
 DEFVAL { false }
 ::= { mteObjectsEntry 4 }

Kavasseri & Stewart Standards Track [Page 32]

RFC 2981 Event MIB October 2000

mteObjectsEntryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The control that allows creation and deletion of entries.
 Once made active an entry MAY not be modified except to
 delete it."
 ::= { mteObjectsEntry 5 }

--
-- Event Section
--

-- Counters

mteEventFailures OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an attempt to invoke an event
 has failed. This counts individually for each
 attempt in a group of targets or each attempt for a
 wildcarded trigger object."
 ::= { mteEvent 1 }

--
-- Event Table
--

mteEventTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteEventEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event action information."
 ::= { mteEvent 2 }

mteEventEntry OBJECT-TYPE
 SYNTAX MteEventEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single event. Applications create and
 delete entries using mteEventEntryStatus."
 INDEX { mteOwner, IMPLIED mteEventName }
 ::= { mteEventTable 1 }

Kavasseri & Stewart Standards Track [Page 33]

RFC 2981 Event MIB October 2000

MteEventEntry ::= SEQUENCE {
 mteEventName SnmpAdminString,
 mteEventComment SnmpAdminString,
 mteEventActions BITS,
 mteEventEnabled TruthValue,
 mteEventEntryStatus RowStatus
 }

mteEventName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A locally-unique, administratively assigned name for the
 event."
 ::= { mteEventEntry 1 }

mteEventComment OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A description of the event’s function and use."
 DEFVAL { ’’H }
 ::= { mteEventEntry 2 }

mteEventActions OBJECT-TYPE
 SYNTAX BITS { notification(0), set(1) }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The actions to perform when this event occurs.

 For ’notification’, Traps and/or Informs are sent according
 to the configuration in the SNMP Notification MIB.

 For ’set’, an SNMP Set operation is performed according to
 control values in this entry."
 DEFVAL { {} } -- No bits set.
 ::= { mteEventEntry 3 }

mteEventEnabled OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A control to allow an event to be configured but not used.
 When the value is ’false’ the event does not execute even if

Kavasseri & Stewart Standards Track [Page 34]

RFC 2981 Event MIB October 2000

 triggered."
 DEFVAL { false }
 ::= { mteEventEntry 4 }

mteEventEntryStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The control that allows creation and deletion of entries.
 Once made active an entry MAY not be modified except to
 delete it."
 ::= { mteEventEntry 5 }

--
-- Event Notification Table
--

mteEventNotificationTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteEventNotificationEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of information about notifications to be sent as a
 consequence of management events."
 ::= { mteEvent 3 }

mteEventNotificationEntry OBJECT-TYPE
 SYNTAX MteEventNotificationEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a single event’s notification. Entries
 automatically exist in this this table for each mteEventEntry
 that has ’notification’ set in mteEventActions."
 INDEX { mteOwner, IMPLIED mteEventName }
 ::= { mteEventNotificationTable 1 }

MteEventNotificationEntry ::= SEQUENCE {
 mteEventNotification OBJECT IDENTIFIER,
 mteEventNotificationObjectsOwner SnmpAdminString,
 mteEventNotificationObjects SnmpAdminString
 }

mteEventNotification OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current

Kavasseri & Stewart Standards Track [Page 35]

RFC 2981 Event MIB October 2000

 DESCRIPTION
 "The object identifier from the NOTIFICATION-TYPE for the
 notification to use if metEventActions has ’notification’ set."
 DEFVAL { zeroDotZero }
 ::= { mteEventNotificationEntry 1 }

mteEventNotificationObjectsOwner OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "To go with mteEventNotificationObjects, the mteOwner of a
 group of objects from mteObjectsTable."
 DEFVAL { ’’H }
 ::= { mteEventNotificationEntry 2 }

mteEventNotificationObjects OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The mteObjectsName of a group of objects from
 mteObjectsTable if mteEventActions has ’notification’ set.
 These objects are to be added to any Notification generated by
 this event.

 Objects may also be added based on the trigger that stimulated
 the event.

 A length of 0 indicates no additional objects."
 DEFVAL { ’’H }
 ::= { mteEventNotificationEntry 3 }

--
-- Event Set Table
--

mteEventSetTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MteEventSetEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of management event action information."
 ::= { mteEvent 4 }

mteEventSetEntry OBJECT-TYPE
 SYNTAX MteEventSetEntry
 MAX-ACCESS not-accessible

Kavasseri & Stewart Standards Track [Page 36]

RFC 2981 Event MIB October 2000

 STATUS current
 DESCRIPTION
 "Information about a single event’s set option. Entries
 automatically exist in this this table for each mteEventEntry
 that has ’set’ set in mteEventActions."
 INDEX { mteOwner, IMPLIED mteEventName }
 ::= { mteEventSetTable 1 }

MteEventSetEntry ::= SEQUENCE {
 mteEventSetObject OBJECT IDENTIFIER,
 mteEventSetObjectWildcard TruthValue,
 mteEventSetValue Integer32,
 mteEventSetTargetTag SnmpTagValue,
 mteEventSetContextName SnmpAdminString,
 mteEventSetContextNameWildcard TruthValue
 }

mteEventSetObject OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The object identifier from the MIB object to set if
 mteEventActions has ’set’ set.

 This object identifier may be wildcarded by leaving
 sub-identifiers off the end, in which case
 nteEventSetObjectWildCard must be ’true’.

 If mteEventSetObject is wildcarded the instance used to set the
 object to which it points is the same as the instance from the
 value of mteTriggerValueID that triggered the event.

 Each instance that fills the wildcard is independent of any
 additional instances, that is, wildcarded objects operate
 as if there were a separate table entry for each instance
 that fills the wildcard without having to actually predict
 all possible instances ahead of time.

 Bad object identifiers or a mismatch between truncating the
 identifier and the value of mteSetObjectWildcard
 result in operation as one would expect when providing the
 wrong identifier to a Set operation. The Set will fail or set
 the wrong object. If the value syntax of the destination
 object is not correct, the Set fails with the normal SNMP
 error code."
 DEFVAL { zeroDotZero }
 ::= { mteEventSetEntry 1 }

Kavasseri & Stewart Standards Track [Page 37]

RFC 2981 Event MIB October 2000

mteEventSetObjectWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Control over whether mteEventSetObject is to be treated as
 fully-specified or wildcarded, with ’true’ indicating wildcard
 if mteEventActions has ’set’ set."
 DEFVAL { false }
 ::= { mteEventSetEntry 2 }

mteEventSetValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The value to which to set the object at mteEventSetObject
 if mteEventActions has ’set’ set."
 DEFVAL { 0 }
 ::= { mteEventSetEntry 3 }

mteEventSetTargetTag OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The tag for the target(s) at which to set the object at
 mteEventSetObject to mteEventSetValue if mteEventActions
 has ’set’ set.

 Systems limited to self management MAY reject a non-zero
 length for the value of this object.

 A length of 0 indicates the local system. In this case,
 access to the objects indicated by mteEventSetObject is under
 the security credentials of the requester that set
 mteTriggerEntryStatus to ’active’. Those credentials are the
 input parameters for isAccessAllowed from the Architecture for
 Describing SNMP Management Frameworks.

 Otherwise access rights are checked according to the security
 parameters resulting from the tag."
 DEFVAL { ’’H }
 ::= { mteEventSetEntry 4 }

mteEventSetContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-write

Kavasseri & Stewart Standards Track [Page 38]

RFC 2981 Event MIB October 2000

 STATUS current
 DESCRIPTION
 "The management context in which to set mteEventObjectID.
 if mteEventActions has ’set’ set.

 This may be wildcarded by leaving characters off the end. To
 indicate such wildcarding mteEventSetContextNameWildcard must
 be ’true’.

 If this context name is wildcarded the value used to complete
 the wildcarding of mteTriggerContextName will be appended."
 DEFVAL { ’’H }
 ::= { mteEventSetEntry 5 }

mteEventSetContextNameWildcard OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Control for whether mteEventSetContextName is to be treated as
 fully-specified or wildcarded, with ’true’ indicating wildcard
 if mteEventActions has ’set’ set."
 DEFVAL { false }
 ::= { mteEventSetEntry 6 }

--
-- Notifications
--

dismanEventMIBNotificationPrefix OBJECT IDENTIFIER ::=
 { dismanEventMIB 2 }
dismanEventMIBNotifications OBJECT IDENTIFIER ::=
 { dismanEventMIBNotificationPrefix 0 }
dismanEventMIBNotificationObjects OBJECT IDENTIFIER
 ::= { dismanEventMIBNotificationPrefix 1 }

--
-- Notification Objects
--

mteHotTrigger OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The name of the trigger causing the notification."
 ::= { dismanEventMIBNotificationObjects 1 }

Kavasseri & Stewart Standards Track [Page 39]

RFC 2981 Event MIB October 2000

mteHotTargetName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The SNMP Target MIB’s snmpTargetAddrName related to the
 notification."
 ::= { dismanEventMIBNotificationObjects 2 }

mteHotContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The context name related to the notification. This MUST be as
 fully-qualified as possible, including filling in wildcard
 information determined in processing."
 ::= { dismanEventMIBNotificationObjects 3 }

mteHotOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The object identifier of the destination object related to the
 notification. This MUST be as fully-qualified as possible,
 including filling in wildcard information determined in
 processing.

 For a trigger-related notification this is from
 mteTriggerValueID.

 For a set failure this is from mteEventSetObject."
 ::= { dismanEventMIBNotificationObjects 4 }

mteHotValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The value of the object at mteTriggerValueID when a
 trigger fired."
 ::= { dismanEventMIBNotificationObjects 5 }

mteFailedReason OBJECT-TYPE
 SYNTAX FailureReason
 MAX-ACCESS accessible-for-notify
 STATUS current

Kavasseri & Stewart Standards Track [Page 40]

RFC 2981 Event MIB October 2000

 DESCRIPTION
 "The reason for the failure of an attempt to check for a
 trigger condition or set an object in response to an event."
 ::= { dismanEventMIBNotificationObjects 6 }

--
-- Notifications
--

mteTriggerFired NOTIFICATION-TYPE
 OBJECTS { mteHotTrigger,
 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteHotValue }
 STATUS current
 DESCRIPTION
 "Notification that the trigger indicated by the object
 instances has fired, for triggers with mteTriggerType
 ’boolean’ or ’existence’."
 ::= { dismanEventMIBNotifications 1 }

mteTriggerRising NOTIFICATION-TYPE
 OBJECTS { mteHotTrigger,
 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteHotValue }
 STATUS current
 DESCRIPTION
 "Notification that the rising threshold was met for triggers
 with mteTriggerType ’threshold’."
 ::= { dismanEventMIBNotifications 2 }

mteTriggerFalling NOTIFICATION-TYPE
 OBJECTS { mteHotTrigger,
 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteHotValue }
 STATUS current
 DESCRIPTION
 "Notification that the falling threshold was met for triggers
 with mteTriggerType ’threshold’."
 ::= { dismanEventMIBNotifications 3 }

mteTriggerFailure NOTIFICATION-TYPE
 OBJECTS { mteHotTrigger,

Kavasseri & Stewart Standards Track [Page 41]

RFC 2981 Event MIB October 2000

 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteFailedReason }
 STATUS current
 DESCRIPTION
 "Notification that an attempt to check a trigger has failed.

 The network manager must enable this notification only with
 a certain fear and trembling, as it can easily crowd out more
 important information. It should be used only to help diagnose
 a problem that has appeared in the error counters and can not
 be found otherwise."
 ::= { dismanEventMIBNotifications 4 }

mteEventSetFailure NOTIFICATION-TYPE
 OBJECTS { mteHotTrigger,
 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteFailedReason }
 STATUS current
 DESCRIPTION
 "Notification that an attempt to do a set in response to an
 event has failed.

 The network manager must enable this notification only with
 a certain fear and trembling, as it can easily crowd out more
 important information. It should be used only to help diagnose
 a problem that has appeared in the error counters and can not
 be found otherwise."
 ::= { dismanEventMIBNotifications 5 }

--
-- Conformance
--

dismanEventMIBConformance OBJECT IDENTIFIER ::= { dismanEventMIB 3 }
dismanEventMIBCompliances OBJECT IDENTIFIER ::=
 { dismanEventMIBConformance 1 }
dismanEventMIBGroups OBJECT IDENTIFIER ::=
 { dismanEventMIBConformance 2 }

-- Compliance

dismanEventMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION

Kavasseri & Stewart Standards Track [Page 42]

RFC 2981 Event MIB October 2000

 "The compliance statement for entities which implement
 the Event MIB."
 MODULE -- this module
 MANDATORY-GROUPS {
 dismanEventResourceGroup,
 dismanEventTriggerGroup,
 dismanEventObjectsGroup,
 dismanEventEventGroup,
 dismanEventNotificationObjectGroup,
 dismanEventNotificationGroup
 }

 OBJECT mteTriggerTargetTag
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required, thus limiting
 monitoring to the local system or pre-configured
 remote systems."

 OBJECT mteEventSetTargetTag
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required, thus limiting
 setting to the local system or pre-configured
 remote systems."

 OBJECT mteTriggerValueIDWildcard
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required, thus allowing
 the system not to implement wildcarding."

 OBJECT mteTriggerContextNameWildcard
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required, thus allowing
 the system not to implement wildcarding."

 OBJECT mteObjectsIDWildcard
 MIN-ACCESS read-only
 DESCRIPTION
 "Write access is not required, thus allowing
 the system not to implement wildcarding."

 OBJECT mteEventSetContextNameWildcard
 MIN-ACCESS read-only
 DESCRIPTION

Kavasseri & Stewart Standards Track [Page 43]

RFC 2981 Event MIB October 2000

 "Write access is not required, thus allowing
 the system not to implement wildcarding."

 ::= { dismanEventMIBCompliances 1 }

-- Units of Conformance

dismanEventResourceGroup OBJECT-GROUP
 OBJECTS {
 mteResourceSampleMinimum,
 mteResourceSampleInstanceMaximum,
 mteResourceSampleInstances,
 mteResourceSampleInstancesHigh,
 mteResourceSampleInstanceLacks
 }
 STATUS current
 DESCRIPTION
 "Event resource status and control objects."
 ::= { dismanEventMIBGroups 1 }

dismanEventTriggerGroup OBJECT-GROUP
 OBJECTS {
 mteTriggerFailures,

 mteTriggerComment,
 mteTriggerTest,
 mteTriggerSampleType,
 mteTriggerValueID,
 mteTriggerValueIDWildcard,
 mteTriggerTargetTag,
 mteTriggerContextName,
 mteTriggerContextNameWildcard,
 mteTriggerFrequency,
 mteTriggerObjectsOwner,
 mteTriggerObjects,
 mteTriggerEnabled,
 mteTriggerEntryStatus,

 mteTriggerDeltaDiscontinuityID,
 mteTriggerDeltaDiscontinuityIDWildcard,
 mteTriggerDeltaDiscontinuityIDType,
 mteTriggerExistenceTest,
 mteTriggerExistenceStartup,
 mteTriggerExistenceObjectsOwner,
 mteTriggerExistenceObjects,
 mteTriggerExistenceEventOwner,
 mteTriggerExistenceEvent,

Kavasseri & Stewart Standards Track [Page 44]

RFC 2981 Event MIB October 2000

 mteTriggerBooleanComparison,
 mteTriggerBooleanValue,
 mteTriggerBooleanStartup,
 mteTriggerBooleanObjectsOwner,
 mteTriggerBooleanObjects,
 mteTriggerBooleanEventOwner,
 mteTriggerBooleanEvent,

 mteTriggerThresholdStartup,
 mteTriggerThresholdObjectsOwner,
 mteTriggerThresholdObjects,
 mteTriggerThresholdRising,
 mteTriggerThresholdFalling,
 mteTriggerThresholdDeltaRising,
 mteTriggerThresholdDeltaFalling,
 mteTriggerThresholdRisingEventOwner,
 mteTriggerThresholdRisingEvent,
 mteTriggerThresholdFallingEventOwner,
 mteTriggerThresholdFallingEvent,
 mteTriggerThresholdDeltaRisingEventOwner,
 mteTriggerThresholdDeltaRisingEvent,
 mteTriggerThresholdDeltaFallingEventOwner,
 mteTriggerThresholdDeltaFallingEvent
 }
 STATUS current
 DESCRIPTION
 "Event triggers."
 ::= { dismanEventMIBGroups 2 }

dismanEventObjectsGroup OBJECT-GROUP
 OBJECTS {
 mteObjectsID,
 mteObjectsIDWildcard,
 mteObjectsEntryStatus
 }
 STATUS current
 DESCRIPTION
 "Supplemental objects."
 ::= { dismanEventMIBGroups 3 }

dismanEventEventGroup OBJECT-GROUP
 OBJECTS {
 mteEventFailures,

 mteEventComment,
 mteEventActions,
 mteEventEnabled,
 mteEventEntryStatus,

Kavasseri & Stewart Standards Track [Page 45]

RFC 2981 Event MIB October 2000

 mteEventNotification,
 mteEventNotificationObjectsOwner,
 mteEventNotificationObjects,

 mteEventSetObject,
 mteEventSetObjectWildcard,
 mteEventSetValue,
 mteEventSetTargetTag,
 mteEventSetContextName,
 mteEventSetContextNameWildcard
 }
 STATUS current
 DESCRIPTION
 "Events."
 ::= { dismanEventMIBGroups 4 }

dismanEventNotificationObjectGroup OBJECT-GROUP
 OBJECTS {
 mteHotTrigger,
 mteHotTargetName,
 mteHotContextName,
 mteHotOID,
 mteHotValue,
 mteFailedReason
 }
 STATUS current
 DESCRIPTION
 "Notification objects."
 ::= { dismanEventMIBGroups 5 }

dismanEventNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 mteTriggerFired,
 mteTriggerRising,
 mteTriggerFalling,
 mteTriggerFailure,
 mteEventSetFailure
 }
 STATUS current
 DESCRIPTION
 "Notifications."
 ::= { dismanEventMIBGroups 6 }

END

Kavasseri & Stewart Standards Track [Page 46]

RFC 2981 Event MIB October 2000

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards- related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

9. Acknowledgements

 This MIB contains considerable contributions from the RMON MIB, the
 Distributed Management Design Team (Andy Bierman, Maria Greene, Bob
 Stewart, and Steve Waldbusser), the Distributed Management Working
 Group, and colleagues at Cisco.

10. References

 [RFC2571] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing SNMP Management Frameworks",
 RFC 2571, April 1999.

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based Internets",
 STD 16, RFC 1155, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions",
 STD 16, RFC 1212, March 1991.

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with
 the SNMP", RFC 1215, March 1991.

Kavasseri & Stewart Standards Track [Page 47]

RFC 2981 Event MIB October 2000

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Transport Mappings for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1906, January 1996.

 [RFC2572] Case, J., Harrington D., Presuhn R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", RFC 2572, April
 1999.

 [RFC2574] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", RFC 2574, April 1999.

 [RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Protocol Operations for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1905, January 1996.

 [RFC2573] Levi, D., Meyer, P. and B. Stewart, "SNMPv3
 Applications", RFC 2573, April 1999.

 [RFC2575] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", RFC 2575, April 1999.

 [RFC2570] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction to Version 3 of the Internet-standard
 Network Management Framework", RFC 2570, April 1999.

Kavasseri & Stewart Standards Track [Page 48]

RFC 2981 Event MIB October 2000

 [RFC1903] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Coexistence between Version 1 and version 2 of the
 Internet-standard Network Management Framework", RFC
 1903, January 1996.

 [RFC2981] Stewart, B., "Event MIB", RFC 2981, October 2000.

 [RFC1757] Waldbusser, S., "Remote Network Monitoring Management
 Information Base", RFC 1757, February 1995.

 [RFC1451] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Manager-to- Manager Management Information Base", RFC
 1451, April 1993.

 [RFC2982] Stewart, B., "Distributed Management Expression MIB", RFC
 2982, October 2000.

 [LOG-MIB] Stewart, B., "Notification Log MIB", Work in Progress.

11. Security Considerations

 Security issues are discussed in the Security section and in the
 DESCRIPTION clauses of relevant objects.

12. Author’s Address

 Bob Stewart
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 U.S.A.

13. Editor’s Address

 Ramanathan Kavasseri
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 U.S.A.

 Phone: +1 408 527 2446
 EMail: ramk@cisco.com

Kavasseri & Stewart Standards Track [Page 49]

RFC 2981 Event MIB October 2000

14. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kavasseri & Stewart Standards Track [Page 50]

