
Network Working Group M. Allman
Request for Comments: 3042 NASA GRC/BBN
Category: Standards Track H. Balakrishnan
 MIT
 S. Floyd
 ACIRI
 January 2001

 Enhancing TCP’s Loss Recovery Using Limited Transmit

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document proposes a new Transmission Control Protocol (TCP)
 mechanism that can be used to more effectively recover lost segments
 when a connection’s congestion window is small, or when a large
 number of segments are lost in a single transmission window. The
 "Limited Transmit" algorithm calls for sending a new data segment in
 response to each of the first two duplicate acknowledgments that
 arrive at the sender. Transmitting these segments increases the
 probability that TCP can recover from a single lost segment using the
 fast retransmit algorithm, rather than using a costly retransmission
 timeout. Limited Transmit can be used both in conjunction with, and
 in the absence of, the TCP selective acknowledgment (SACK) mechanism.

1 Introduction

 A number of researchers have observed that TCP’s loss recovery
 strategies do not work well when the congestion window at a TCP
 sender is small. This can happen, for instance, because there is
 only a limited amount of data to send, or because of the limit
 imposed by the receiver-advertised window, or because of the
 constraints imposed by end-to-end congestion control over a
 connection with a small bandwidth-delay product
 [Riz96,Mor97,BPS+98,Bal98,LK98]. When a TCP detects a missing
 segment, it enters a loss recovery phase using one of two methods.

Allman, et al. Standards Track [Page 1]

RFC 3042 Enhancing TCP Loss Recovery January 2001

 First, if an acknowledgment (ACK) for a given segment is not received
 in a certain amount of time a retransmission timeout occurs and the
 segment is resent [RFC793,PA00]. Second, the "Fast Retransmit"
 algorithm resends a segment when three duplicate ACKs arrive at the
 sender [Jac88,RFC2581]. However, because duplicate ACKs from the
 receiver are also triggered by packet reordering in the Internet, the
 TCP sender waits for three duplicate ACKs in an attempt to
 disambiguate segment loss from packet reordering. Once in a loss
 recovery phase, a number of techniques can be used to retransmit lost
 segments, including slow start-based recovery or Fast Recovery
 [RFC2581], NewReno [RFC2582], and loss recovery based on selective
 acknowledgments (SACKs) [RFC2018,FF96].

 TCP’s retransmission timeout (RTO) is based on measured round-trip
 times (RTT) between the sender and receiver, as specified in [PA00].
 To prevent spurious retransmissions of segments that are only delayed
 and not lost, the minimum RTO is conservatively chosen to be 1
 second. Therefore, it behooves TCP senders to detect and recover
 from as many losses as possible without incurring a lengthy timeout
 when the connection remains idle. However, if not enough duplicate
 ACKs arrive from the receiver, the Fast Retransmit algorithm is never
 triggered---this situation occurs when the congestion window is small
 or if a large number of segments in a window are lost. For instance,
 consider a congestion window (cwnd) of three segments. If one
 segment is dropped by the network, then at most two duplicate ACKs
 will arrive at the sender. Since three duplicate ACKs are required
 to trigger Fast Retransmit, a timeout will be required to resend the
 dropped packet.

 [BPS+97] found that roughly 56% of retransmissions sent by a busy web
 server were sent after the RTO expires, while only 44% were handled
 by Fast Retransmit. In addition, only 4% of the RTO-based
 retransmissions could have been avoided with SACK, which of course
 has to continue to disambiguate reordering from genuine loss. In
 contrast, using the technique outlined in this document and in
 [Bal98], 25% of the RTO-based retransmissions in that dataset would
 have likely been avoided.

 The next section of this document outlines small changes to TCP
 senders that will decrease the reliance on the retransmission timer,
 and thereby improve TCP performance when Fast Retransmit is not
 triggered. These changes do not adversely affect the performance of
 TCP nor interact adversely with other connections, in other
 circumstances.

Allman, et al. Standards Track [Page 2]

RFC 3042 Enhancing TCP Loss Recovery January 2001

1.1 Terminology

 In this document, he key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 AND "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for protocols.

2 The Limited Transmit Algorithm

 When a TCP sender has previously unsent data queued for transmission
 it SHOULD use the Limited Transmit algorithm, which calls for a TCP
 sender to transmit new data upon the arrival of the first two
 consecutive duplicate ACKs when the following conditions are
 satisfied:

 * The receiver’s advertised window allows the transmission of the
 segment.

 * The amount of outstanding data would remain less than or equal
 to the congestion window plus 2 segments. In other words, the
 sender can only send two segments beyond the congestion window
 (cwnd).

 The congestion window (cwnd) MUST NOT be changed when these new
 segments are transmitted. Assuming that these new segments and the
 corresponding ACKs are not dropped, this procedure allows the sender
 to infer loss using the standard Fast Retransmit threshold of three
 duplicate ACKs [RFC2581]. This is more robust to reordered packets
 than if an old packet were retransmitted on the first or second
 duplicate ACK.

 Note: If the connection is using selective acknowledgments [RFC2018],
 the data sender MUST NOT send new segments in response to duplicate
 ACKs that contain no new SACK information, as a misbehaving receiver
 can generate such ACKs to trigger inappropriate transmission of data
 segments. See [SCWA99] for a discussion of attacks by misbehaving
 receivers.

 Limited Transmit follows the "conservation of packets" congestion
 control principle [Jac88]. Each of the first two duplicate ACKs
 indicate that a segment has left the network. Furthermore, the
 sender has not yet decided that a segment has been dropped and
 therefore has no reason to assume that the current congestion control
 state is inaccurate. Therefore, transmitting segments does not
 deviate from the spirit of TCP’s congestion control principles.

Allman, et al. Standards Track [Page 3]

RFC 3042 Enhancing TCP Loss Recovery January 2001

 [BPS99] shows that packet reordering is not a rare network event.
 [RFC2581] does not provide for sending of data on the first two
 duplicate ACKs that arrive at the sender. This causes a burst of
 segments to be sent when an ACK for new data does arrive following
 packet reordering. Using Limited Transmit, data packets will be
 clocked out by incoming ACKs and therefore transmission will not be
 as bursty.

 Note: Limited Transmit is implemented in the ns simulator [NS].
 Researchers wishing to investigate this mechanism further can do so
 by enabling "singledup_" for the given TCP connection.

3 Related Work

 Deployment of Explicit Congestion Notification (ECN) [Flo94,RFC2481]
 may benefit connections with small congestion window sizes [SA00].
 ECN provides a method for indicating congestion to the end-host
 without dropping segments. While some segment drops may still occur,
 ECN may allow TCP to perform better with small congestion window
 sizes because the sender can avoid many of the Fast Retransmits and
 Retransmit Timeouts that would otherwise have been needed to detect
 dropped segments [SA00].

 When ECN-enabled TCP traffic competes with non-ECN-enabled TCP
 traffic, ECN-enabled traffic can receive up to 30% higher goodput.
 For bulk transfers, the relative performance benefit of ECN is
 greatest when on average each flow has 3-4 outstanding packets during
 each round-trip time [ZQ00]. This should be a good estimate for the
 performance impact of a flow using Limited Transmit, since both ECN
 and Limited Transmit reduce the reliance on the retransmission timer
 for signaling congestion.

 The Rate-Halving congestion control algorithm [MSML99] uses a form of
 limited transmit, as it calls for transmitting a data segment on
 every second duplicate ACK that arrives at the sender. The algorithm
 decouples the decision of what to send from the decision of when to
 send. However, similar to Limited Transmit the algorithm will always
 send a new data segment on the second duplicate ACK that arrives at
 the sender.

4 Security Considerations

 The additional security implications of the changes proposed in this
 document, compared to TCP’s current vulnerabilities, are minimal.
 The potential security issues come from the subversion of end-to-end
 congestion control from "false" duplicate ACKs, where a "false"
 duplicate ACK is a duplicate ACK that does not actually acknowledge
 new data received at the TCP receiver. False duplicate ACKs could

Allman, et al. Standards Track [Page 4]

RFC 3042 Enhancing TCP Loss Recovery January 2001

 result from duplicate ACKs that are themselves duplicated in the
 network, or from misbehaving TCP receivers that send false duplicate
 ACKs to subvert end-to-end congestion control [SCWA99,RFC2581].

 When the TCP data receiver has agreed to use the SACK option, the TCP
 data sender has fairly strong protection against false duplicate
 ACKs. In particular, with SACK, a duplicate ACK that acknowledges
 new data arriving at the receiver reports the sequence numbers of
 that new data. Thus, with SACK, the TCP sender can verify that an
 arriving duplicate ACK acknowledges data that the TCP sender has
 actually sent, and for which no previous acknowledgment has been
 received, before sending new data as a result of that acknowledgment.
 For further protection, the TCP sender could keep a record of packet
 boundaries for transmitted data packets, and recognize at most one
 valid acknowledgment for each packet (e.g., the first acknowledgment
 acknowledging the receipt of all of the sequence numbers in that
 packet).

 One could imagine some limited protection against false duplicate
 ACKs for a non-SACK TCP connection, where the TCP sender keeps a
 record of the number of packets transmitted, and recognizes at most
 one acknowledgment per packet to be used for triggering the sending
 of new data. However, this accounting of packets transmitted and
 acknowledged would require additional state and extra complexity at
 the TCP sender, and does not seem necessary.

 The most important protection against false duplicate ACKs comes from
 the limited potential of duplicate ACKs in subverting end-to-end
 congestion control. There are two separate cases to consider: when
 the TCP sender receives less than a threshold number of duplicate
 ACKs, and when the TCP sender receives at least a threshold number of
 duplicate ACKs. In the latter case a TCP with Limited Transmit will
 behave essentially the same as a TCP without Limited Transmit in that
 the congestion window will be halved and a loss recovery period will
 be initiated.

 When a TCP sender receives less than a threshold number of duplicate
 ACKs a misbehaving receiver could send two duplicate ACKs after each
 regular ACK. One might imagine that the TCP sender would send at
 three times its allowed sending rate. However, using Limited
 Transmit as outlined in section 2 the sender is only allowed to
 exceed the congestion window by less than the duplicate ACK threshold
 (of three segments), and thus would not send a new packet for each
 duplicate ACK received.

Allman, et al. Standards Track [Page 5]

RFC 3042 Enhancing TCP Loss Recovery January 2001

Acknowledgments

 Bill Fenner, Jamshid Mahdavi and the Transport Area Working Group
 provided valuable feedback on an early version of this document.

References

 [Bal98] Hari Balakrishnan. Challenges to Reliable Data Transport
 over Heterogeneous Wireless Networks. Ph.D. Thesis,
 University of California at Berkeley, August 1998.

 [BPS+97] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan,
 Mark Stemm, and Randy Katz. TCP Behavior of a Busy Web
 Server: Analysis and Improvements. Technical Report
 UCB/CSD-97-966, August 1997. Available from
 http://nms.lcs.mit.edu/˜hari/papers/csd-97-966.ps. (Also
 in Proc. IEEE INFOCOM Conf., San Francisco, CA, March
 1998.)

 [BPS99] Jon Bennett, Craig Partridge, Nicholas Shectman. Packet
 Reordering is Not Pathological Network Behavior. IEEE/ACM
 Transactions on Networking, December 1999.

 [FF96] Kevin Fall, Sally Floyd. Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP. ACM Computer Communication
 Review, July 1996.

 [Flo94] Sally Floyd. TCP and Explicit Congestion Notification.
 ACM Computer Communication Review, October 1994.

 [Jac88] Van Jacobson. Congestion Avoidance and Control. ACM
 SIGCOMM 1988.

 [LK98] Dong Lin, H.T. Kung. TCP Fast Recovery Strategies:
 Analysis and Improvements. Proceedings of InfoCom, March
 1998.

 [MSML99] Matt Mathis, Jeff Semke, Jamshid Mahdavi, Kevin Lahey. The
 Rate Halving Algorithm, 1999. URL:
 http://www.psc.edu/networking/rate_halving.html.

 [Mor97] Robert Morris. TCP Behavior with Many Flows. Proceedings
 of the Fifth IEEE International Conference on Network
 Protocols. October 1997.

 [NS] Ns network simulator. URL: http://www.isi.edu/nsnam/.

Allman, et al. Standards Track [Page 6]

RFC 3042 Enhancing TCP Loss Recovery January 2001

 [PA00] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [Riz96] Luigi Rizzo. Issues in the Implementation of Selective
 Acknowledgments for TCP. January, 1996. URL:
 http://www.iet.unipi.it/˜luigi/selack.ps

 [SA00] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks", RFC
 2884, July 2000.

 [SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, Tom
 Anderson. TCP Congestion Control with a Misbehaving
 Receiver. ACM Computer Communications Review, October
 1999.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2481] Ramakrishnan, K. and S. Floyd, "A Proposal to Add Explicit
 Congestion Notification (ECN) to IP", RFC 2481, January
 1999.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2582] Floyd, S. and T. Henderson, "The NewReno Modification to
 TCP’s Fast Recovery Algorithm", RFC 2582, April 1999.

 [ZQ00] Yin Zhang and Lili Qiu, Understanding the End-to-End
 Performance Impact of RED in a Heterogeneous Environment,
 Cornell CS Technical Report 2000-1802, July 2000. URL
 http://www.cs.cornell.edu/yzhang/papers.htm.

Allman, et al. Standards Track [Page 7]

RFC 3042 Enhancing TCP Loss Recovery January 2001

Authors’ Addresses

 Mark Allman
 NASA Glenn Research Center/BBN Technologies
 Lewis Field
 21000 Brookpark Rd. MS 54-5
 Cleveland, OH 44135

 Phone: +1-216-433-6586
 Fax: +1-216-433-8705
 EMail: mallman@grc.nasa.gov
 http://roland.grc.nasa.gov/˜mallman

 Hari Balakrishnan
 Laboratory for Computer Science
 545 Technology Square
 Massachusetts Institute of Technology
 Cambridge, MA 02139

 EMail: hari@lcs.mit.edu
 http://nms.lcs.mit.edu/˜hari/

 Sally Floyd
 AT&T Center for Internet Research at ICSI (ACIRI)
 1947 Center St, Suite 600
 Berkeley, CA 94704

 Phone: +1-510-666-2989
 EMail: floyd@aciri.org
 http://www.aciri.org/floyd/

Allman, et al. Standards Track [Page 8]

RFC 3042 Enhancing TCP Loss Recovery January 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Allman, et al. Standards Track [Page 9]

