
Network Working Group J. Lennox
Request for Comments: 3050 H. Schulzrinne
Category: Informational Columbia U.
 J. Rosenberg
 dynamicsoft
 January 2001

 Common Gateway Interface for SIP

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 In Internet telephony, there must be a means by which new services
 are created and deployed rapidly. In the World Wide Web, the Common
 Gateway Interface (CGI) has served as popular means towards
 programming web services. Due to the similarities between the
 Session Initiation Protocol (SIP) and the Hyper Text Transfer
 Protocol (HTTP), CGI is a good candidate for service creation in a
 SIP environment. This document defines a SIP CGI interface for
 providing SIP services on a SIP server.

IESG Note

 The IESG notes that the mechanism specified here depends on the
 Common Gateway Interface. Should this interface change or be
 enhanced changes in this specification may also be necessary or
 appropriate. According to the W3C, the CGI is presently maintained
 by the NCSA Software Development Group. See

 http://www.w3c.org/cgi

 for additional information on the current state of the CGI interface.

Lennox, et al. Informational [Page 1]

RFC 3050 CGI for SIP January 2001

Table of Contents

 1 Introduction 3
 2 Motivations .. 4
 3 Differences from HTTP CGI 5
 3.1 Basic Model .. 6
 3.2 Persistence Model 8
 3.3 SIP CGI Triggers 9
 3.4 Naming ... 9
 3.5 Environment Variables 9
 3.6 Timers ... 10
 4 Overview of SIP CGI 10
 5 SIP CGI Specification 12
 5.1 Introduction 12
 5.1.1 Relationship with HTTP CGI 12
 5.1.2 Conventions of This Document 12
 5.1.3 Specifications 12
 5.1.4 Terminology .. 13
 5.2 Notational Conventions and Generic Grammar 13
 5.3 Invoking the Script 14
 5.4 The SIP CGI Script Command Line 14
 5.5 Data Input to the SIP CGI Script 14
 5.5.1 Message Metadata (Metavariables) 14
 5.5.1.1 AUTH_TYPE .. 16
 5.5.1.2 CONTENT_LENGTH 16
 5.5.1.3 CONTENT_TYPE 17
 5.5.1.4 GATEWAY_INTERFACE 17
 5.5.1.5 Protocol-Specific Metavariables 18
 5.5.1.6 REGISTRATIONS 18
 5.5.1.7 REMOTE_ADDR .. 19
 5.5.1.8 REMOTE_HOST .. 19
 5.5.1.9 REMOTE_IDENT 19
 5.5.1.10 REMOTE_USER .. 20
 5.5.1.11 REQUEST_METHOD 20
 5.5.1.12 REQUEST_TOKEN 21
 5.5.1.13 REQUEST_URI .. 21
 5.5.1.14 RESPONSE_STATUS 21
 5.5.1.15 RESPONSE_REASON 21
 5.5.1.16 RESPONSE_TOKEN 21
 5.5.1.17 SCRIPT_COOKIE 22
 5.5.1.18 SERVER_NAME .. 22
 5.5.1.19 SERVER_PORT .. 22
 5.5.1.20 SERVER_PROTOCOL 22
 5.5.1.21 SERVER_SOFTWARE 23
 5.5.2 Message Bodies 23
 5.6 Data Output from the SIP CGI Script 23
 5.6.1 CGI Action Lines 25
 5.6.1.1 Status ... 25

Lennox, et al. Informational [Page 2]

RFC 3050 CGI for SIP January 2001

 5.6.1.2 Proxy Request 25
 5.6.1.3 Forward Response 26
 5.6.1.4 Script Cookie 26
 5.6.1.5 CGI Again .. 27
 5.6.1.6 Default Action 27
 5.6.2 CGI Header Fields 28
 5.6.2.1 Request-Token 28
 5.6.2.2 Remove ... 28
 5.7 Local Expiration Handling 28
 5.8 Locally-Generated Responses 29
 5.9 SIP CGI and REGISTER 29
 5.10 SIP CGI and CANCEL 29
 5.11 SIP CGI and ACK 30
 5.11.1 Receiving ACK’s 30
 5.11.2 Sending ACK’s 30
 6 System Specifications 30
 6.1 Unix ... 30
 6.2 Microsoft Windows 31
 7 Security Considerations 31
 7.1 Request Initiation 31
 7.2 Authenticated and Encrypted Messages 31
 7.3 SIP Header Fields Containing Sensitive Information.. 32
 7.4 Script Interference with the Server 32
 7.5 Data Length and Buffering Considerations 32
 8 Acknowledgements 33
 9 Authors’ Addresses 33
 10 Bibliography 34
 11 Full Copyright Statement 35

1 Introduction

 In Internet telephony, there must be a means by which new services
 are created and deployed rapidly. In traditional telephony networks,
 this was accomplished through IN service creation environments, which
 provided an interface for creating new services, often using GUI-
 based tools.

 The WWW has evolved with its own set of tools for service creation.
 Originally, web servers simply translated URLs into filenames stored
 on a local system, and returned the file content. Over time, servers
 evolved to provide dynamic content, and forms provided a means for
 soliciting user input. In essence, what evolved was a means for
 service creation in a web environment. There are now many means for
 creation of dynamic web content, including server side JavaScript,
 servlets, and the common gateway interface (CGI) [1].

Lennox, et al. Informational [Page 3]

RFC 3050 CGI for SIP January 2001

 Multimedia communications, including Internet telephony, will also
 require a mechanism for creating services. This mechanism is
 strongly tied to the features provided by the signaling protocols.
 The Session Initiation Protocol (SIP) [2] has been developed for
 initiation and termination of multimedia sessions. SIP borrows
 heavily from HTTP, inheriting its client-server interaction and much
 of its syntax and semantics. For this reason, the web service
 creation environments, and CGI in particular, seem attractive as
 starting points for developing SIP based service creation
 environments.

2 Motivations

 CGI has a number of strengths which make it attractive as an
 environment for creating SIP services:

 Language independence: CGI works with perl, C, VisualBasic, tcl,
 and many other languages, as long as they support access to
 environment variables.

 Exposes all headers: CGI exposes the content of all the headers
 in an HTTP request to the CGI application. An application
 can make use of these as it sees fit, and ignore those it
 doesn’t care about. This allows all aspects of an HTTP
 request to be considered for creation of content. In a SIP
 environment, headers have greater importance than in HTTP.
 They carry critical information about the transaction,
 including caller and callee, subject, contact addresses,
 organizations, extension names, registration parameters and
 expirations, call status, and call routes, to name a few.
 It is therefore critical for SIP services to have as much
 access to these headers as possible. For this reason, CGI
 is very attractive.

 Creation of responses: CGI is advantageous in that it can create
 all parts of a response, including headers, status codes
 and reason phrases, in addition to message bodies. This is
 not the case for other mechanisms, such as Java servlets,
 which are focused primarily on the body. In a SIP
 environment, it is critical to be able to generate all
 aspects of a response (and, all aspects of new or proxied
 requests), since the body is usually not of central
 importance in SIP service creation.

Lennox, et al. Informational [Page 4]

RFC 3050 CGI for SIP January 2001

 Component reuse: Many of the CGI utilities allow for easy
 reading of environment variables, parsing of form data, and
 often parsing and generation of header fields. Since SIP
 reuses the basic RFC822 [3] syntax of HTTP, many of these
 tools are applicable to SIP CGI.

 Familiar environment: Many web programmers are familiar with
 CGI.

 Ease of extensibility: Since CGI is an interface and not a
 language, it becomes easy to extend and reapply to other
 protocols, such as SIP.

 The generality, extensibility, and detailed control and access to
 information provided by CGI, coupled with the range of tools that
 exist for it, which can be immediately applied to SIP, make it a good
 mechanism for SIP service creation.

3 Differences from HTTP CGI

 While SIP and HTTP share a basic syntax and a request-response model,
 there are important differences. Proxies play a critical role in
 services for SIP, while they are less important for HTTP. SIP
 servers can fork requests (proxying multiple requests when a single
 request is received), an important capability absent from HTTP. SIP
 supports additional features, such as registrations, which are absent
 from HTTP. These differences are reflected in the differences
 between SIP CGI and HTTP CGI. SIP CGI runs primarily on proxy,
 redirect, and registrar servers, rather than user agent servers
 (which are the equivalent of origin servers in HTTP). SIP CGI allows
 the script to perform specific messaging functions not supported in
 HTTP CGI (such as proxying requests), and SIP CGI introduces a
 persistence model that allow a script to maintain control through
 multiple message exchanges. HTTP CGI has no persistence for scripts.

Lennox, et al. Informational [Page 5]

RFC 3050 CGI for SIP January 2001

3.1 Basic Model

 The basic model for HTTP CGI is depicted in figure 1.

 ----- ------------
 ˜˜˜˜˜˜˜˜ |req | | -------- |
 | |----------| | http | |
 | client | |resp | | | server | |
 | |----------| | | |w
 ˜˜˜˜˜˜˜˜ | | | -------- |e
 ----- | s| /\s |b
 net | t| |t |
 |e d| C |d |s
 |n i| G |o |e
 |v n| I |u |r
 | | |t |v
 | \/ | |e
 | ------- |r
 | | | |
 | | CGI | |
 | | prog. | |
 | | | |
 | ------- |

 Figure 1: HTTP CGI Model

 A client issues an HTTP request, which is passed either directly to
 the origin server (as shown), or is forwarded through a proxy server.
 The origin server executes a CGI script, and the CGI script returns a
 response, which is passed back to the client. The main job of the
 script is to generate the body for the response. Only origin servers
 execute CGI scripts, not proxy servers.

Lennox, et al. Informational [Page 6]

RFC 3050 CGI for SIP January 2001

 In a SIP server, the model is different, and is depicted in Figure 2.

 ˜˜˜˜˜˜˜˜ req ------- req ------- req ˜˜˜˜˜˜˜˜
 | |------| |-------| |---------| |
 | client | resp | server| resp | server| resp | client |
 | |------| |-------| |---------| |
 ˜˜˜˜˜˜˜˜ ------- ------- --------
 | | CGI
 | |

 | |
 | CGI |
 | prog. |
 | |

 Figure 2: SIP CGI Model

 The client generates a request, which is forwarded to a server. The
 server may generate a response (such as an error or redirect
 response). Or, if the server is a proxy server, the request is
 proxied to another server, and eventually to a user agent, and the
 response is passed back upstream, through the server, and back
 towards the client. A SIP proxy server may additionally fork
 requests, generating multiple requests in response to a received
 request. Generally, a proxy server will not generate the content in
 responses. These contain session descriptions created by user
 agents. Services, such as call forward and mobility services, are
 based on the decisions the server makes about (1) when, to where, and
 how many requests to proxy downstream, and (2) when to send a
 response back upstream. Creation of services such as ad-hoc bridging
 (where the server acts as a media mixer in a multiparty call, without
 being asked to do so by the end users) will require the server to
 generate new requests of its own, and for it to modify and generate
 the body in responses.

 An HTTP server is mainly concerned about generation of responses. A
 SIP server is generally concerned about performing four basic
 operations:

 Proxying of Requests: Receiving a request, adding or modifying
 any of the headers, deciding on a set of servers to forward
 the request to, and forwarding it to them.

 Returning Responses: Receiving a response, adding or modifying
 any of the headers, and passing the response towards the
 client.

Lennox, et al. Informational [Page 7]

RFC 3050 CGI for SIP January 2001

 Generating Requests: Creating a new request, originating at the
 server, placing headers and a body into the message, and
 sending it to a server.

 Generation of Responses: Receiving a request, generating a
 response to it, and sending it back to the client.

 When a request is received, one or more of the above operations may
 occur at once. For example, a SIP server may generate a provisional
 response, generate a new request, and proxy the original request to
 two servers. This implies that SIP CGI must encompass a greater set
 of functions than HTTP CGI. These functions are a super-set of the
 simple end-server request/response model.

3.2 Persistence Model

 In HTTP CGI, a script is executed once for each request. It
 generates the response, and then terminates. There is no state
 maintained across requests from the same user, as a general rule
 (although this can be done -- and is -- for more complex services
 such as database accesses, which essentially encapsulate state in
 client-side cookies or dynamically-generated URLs). A transaction is
 just a single request, and a response.

 In SIP CGI, since a request can generate many new and proxied
 requests, these themselves will generate responses. A service will
 often require these responses to be processed, and additional
 requests or responses to be generated. As a result, whereas an HTTP
 CGI script executes once per transaction, a SIP CGI script must
 maintain control somehow over numerous events.

 In order to enable this, and to stay with the original CGI model, we
 mandate that a SIP CGI script executes when a message arrives, and
 after generating output (in the form of additional messages),
 terminate. State is maintained by allowing the CGI to return an
 opaque token to the server. When the CGI script is called again for
 the same transaction, this token is passed back to the CGI script.
 When called for a new transaction, no token is passed.

 For example, consider a request which arrives at a SIP server. The
 server calls a CGI script, which generates a provisional response and
 a proxied request. It also returns a token to the server, and then
 terminates. The response is returned upstream towards the client,
 and the request is proxied. When the response to the proxied request
 arrives, the script is executed again. The environment variables are
 set based on the content of the new response. The script is also
 passed back the token. Using the token as its state, the script
 decides to proxy the request to a different location. It therefore

Lennox, et al. Informational [Page 8]

RFC 3050 CGI for SIP January 2001

 returns a proxied request, and another token. The server forwards
 this new request, and when the response comes, calls the CGI script
 once more, and passes back the token. This time, the script
 generates a final response, and passes this back to the server. The
 server sends the response to the client, destroys the token, and the
 transaction is complete.

3.3 SIP CGI Triggers

 In many cases, calling the CGI script on the reception of every
 message is inefficient. CGI scripts come at the cost of significant
 overhead since they generally require creation of a new process.
 Therefore, it is important in SIP CGI for a script to indicate, after
 it is called the first time, under what conditions it will be called
 for the remainder of the transaction. If the script is not called,
 the server will take the "default" action, as specified in this
 document. This allows an application designer to trade off
 flexibility for computational resources. Making an analogy to the
 Intelligent Network (IN) - a script is able to define the triggers
 for its future execution.

 So, in summary, whereas an HTTP CGI script executes once during a
 transaction, a single SIP CGI script may execute many times during a
 transaction, and may specify at which points it would like to have
 control for the remainder of the transaction.

3.4 Naming

 In HTTP CGI, the CGI script itself is generally the resource named in
 the request URI of the HTTP request. This is not so in SIP. In
 general, the request URI names a user to be called. The mapping to a
 script to be executed may depend on other SIP headers, including To
 and From fields, the SIP method, status codes, and reason phrases.
 As such, the mapping of a message to a CGI script is purely a matter
 of local policy administration at a server. A server may have a
 single script which always executes, or it may have multiple scripts,
 and the target is selected by some parts of the header.

3.5 Environment Variables

 In HTTP CGI, environment variables are set with the values of the
 paths and other aspects of the request. As there is no notion of a
 path in SIP, some of these environment variables do not make sense.

Lennox, et al. Informational [Page 9]

RFC 3050 CGI for SIP January 2001

3.6 Timers

 In SIP, certain services require that the script gets called not only
 when a message arrives, but when some timer expires. The classic
 example of this is "call forward no answer." To be implemented with
 SIP CGI, the first time the script is executed, it must generate a
 proxied request, and also indicate a time at which to be called again
 if no response comes. This kind of feature is not present in HTTP
 CGI, and some rudimentary support for it is needed in SIP CGI.

4 Overview of SIP CGI

 When a request arrives at a SIP server, initiating a new transaction,
 the server will set a number of environment variables, and call a CGI
 script. The script is passed the body of the request through stdin.

 The script returns, on stdout, a set of SIP action lines, each of
 which may be modified by CGI and/or SIP headers. This set is
 delimited through the use of two carriage returns. The action lines
 allow the script to specify any of the four operations defined above,
 in addition to the default operation. Generating a response is done
 by copying the the status line of the response into an action line of
 the CGI output. For example, the following will create a 200 OK to
 the original request:

 SIP/2.0 200 OK

 The operation of proxying a request is supported by the CGI-PROXY-
 REQUEST CGI action, which takes the URL to proxy to as an argument.
 For example, to proxy a request to dante@inferno.com:

 CGI-PROXY-REQUEST sip:dante@inferno.com SIP/2.0
 Contact: sip:server1@company.com

 In this example, the server will take the original request, and
 modify any header fields normally changed during the proxy operation
 (such as decrementing Max-Forwards, and adding a Via field). This
 message is then "merged" with the output of the CGI script - SIP
 headers specified below the action line in the CGI output will be
 added to the outbound request. In the above example, the Contact
 header will be added. Note that the action line looks like the
 request line of a SIP request message. This is done in order to
 simplify parsing.

 To delete headers from the outgoing request, the merge process also
 supports the CGI header CGI-Remove. Like SIP headers, CGI headers
 are written underneath the action line. They are extracted by the
 SIP server, and used to provide the server with additional guidance.

Lennox, et al. Informational [Page 10]

RFC 3050 CGI for SIP January 2001

 CGI headers always begin with CGI to differentiate them from SIP
 headers. In this case, the supported values for the CGI-Remove
 header are the names of headers in the original message.

 Returning of responses is more complex. A server may receive
 multiple responses as the result of forking a request. The script
 should be able to ask the server to return any of the responses it
 had received previously. To support this, the server will pass an
 opaque token to the script through environment variables, unique for
 each response received. To return a response, a CGI script needs to
 indicate which response is to be returned. For example, to return a
 response named with the token abcdefghij, the following output is
 generated:

 CGI-FORWARD-RESPONSE abcdefghij SIP/2.0

 Finally, if the script does not output any of the above actions, the
 server does what it would normally do upon receiving the message that
 triggered the script.

 A SIP CGI script is normally only executed when the original request
 arrives. If the script also wants to be called for subsequent
 messages in a transaction -- due to responses to proxied requests, or
 (in certain circumstances) ACK and CANCEL requests, it can perform
 the CGI-AGAIN action:

 CGI-AGAIN yes SIP/2.0

 This action applies only to the next invocation of the script; it
 means to invoke the script one more time. Outputting "no" is
 identical to outputting "yes" on this invocation of the script and
 outputting nothing the next time the script is called.

 When the script is re-executed, it may need access to some state in
 order to continue processing. A script can generate one piece of
 state, called a cookie, for any new request or proxied request. It
 is passed to the server through the CGI-SET-COOKIE action. The
 action contains a token, which is the cookie itself. The server does
 not examine or parse the cookie. It is simply stored. When the
 script is re-executed, the cookie is passed back to the script
 through an environment variable.

 CGI-SET-COOKIE khsihppii8asdl SIP/2.0

 Finally, when the script causes the server to proxy a request,
 responses to these requests will arrive. To ease matching of
 responses to requests, the script can place a request token in the
 CGI CGI-Request-Token header. This header is removed by the server

Lennox, et al. Informational [Page 11]

RFC 3050 CGI for SIP January 2001

 when the request is proxied. Any responses received to this request
 will have the token passed in an environment variable.

5 SIP CGI Specification

5.1 Introduction

5.1.1 Relationship with HTTP CGI

 This SIP CGI specification is based on work-in-progress revision 1.1
 of the HTTP CGI specification [1]. That document is a product of the
 CGI-WG mailing list, which is not an official IETF working group.
 CGI-WG’s homepage is located at the URL
 http://Web.Golux.Com/coar/cgi/, and the most recent versions of the
 CGI specification are available there. This specification
 incorporates a great deal of text from the work-in-progress version
 of that document as of February 23, 2000. A future version of this
 specification may be changed to cite parts of that document by
 reference instead.

5.1.2 Conventions of This Document

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant SIP CGI implementations.

 Some paragraphs are indented, like this; they give
 motivations of design choices, or questions for future
 discussion in the development of SIP CGI. They are not
 normative to the specification of the protocol.

5.1.3 Specifications

 Not all of the functions and features of SIP CGI are defined in the
 main part of this specification. The following phrases are used to
 describe the features which are not specified:

 System-defined: The feature may differ between systems, but
 must be the same for different implementations using the
 same system. A system will usually identify a class of
 operating systems. Some systems are defined in section 6
 of this document. New systems may be defined by new
 specifications without revision of this document.

 Implementation-defined: The behavior of the feature may vary
 from implementation to implementation, but a particular
 implementation should be consistent in its behavior.

Lennox, et al. Informational [Page 12]

RFC 3050 CGI for SIP January 2001

5.1.4 Terminology

 This specification uses many terms defined in the SIP/2.0
 specification [2]; however, the following terms are used here in a
 sense which may not accord with their definitions in that document,
 or with their common meaning.

 metavariable: A named parameter that carries information from
 the server to the script. It is not necessarily a
 variable in the operating system’s environment, although
 that is the most common implementation.

 script: The software which is invoked by the server via this
 interface. It need not be a standalone program, but
 could be a dynamically-loaded or shared library, or even
 a subroutine in the server. It may be a set of
 statements interpreted at run-time, as the term ‘script’
 is frequently understood, but that is not a requirement
 and within the context of this specification the term has
 the broader definition stated.

 server: The application program which invokes the script in
 order to service messages.

 message: A SIP request or response, typically either the one
 that triggered the invocation of the CGI script, or one
 that the CGI script caused to be sent.

5.2 Notational Conventions and Generic Grammar

 In this specification we use the Augmented Backus-Naur Form notation
 as described in appendix C of the SIP/2.0 specification, RFC 2543
 [2].

 The following grammatical constructs are taken from other documents;
 this table lists the appropriate sources.

 OCTET SIP/2.0 [2] Appendix C.1
 CHAR SIP/2.0 [2] Appendix C.1
 digit SIP/2.0 [2] Appendix C.1
 alphanum SIP/2.0 [2] Appendix C.1
 token SIP/2.0 [2] Appendix C.1
 hostname SIP/2.0 [2] Section 2
 SIP-URL SIP/2.0 [2] Section 2
 SIP-Version SIP/2.0 [2] Section 4.3.1
 Status-Code SIP/2.0 [2] Section 5.1.1
 Reason-Phrase SIP/2.0 [2] Section 5.1.1
 media-type HTTP/1.1 [5] Section 3.7

Lennox, et al. Informational [Page 13]

RFC 3050 CGI for SIP January 2001

 (via SIP/2.0 [2] Section 6.16)
 field-name SIP/2.0 [2] Section 6.6

 Other grammatical constructs taken from outside sources are noted in
 the text.

5.3 Invoking the Script

 The script is invoked in a system-defined manner. Unless specified
 otherwise, the file containing the script will be invoked as an
 executable program.

 Only one CGI script at a time may be outstanding for a SIP
 transaction. If subsequently arriving responses would cause a CGI
 script to be invoked, handling of them is deferred, except for ACK,
 until CGI scripts for previous messages in the transaction terminate.
 Messages are processed in the order they are received.

5.4 The SIP CGI Script Command Line

 The server SHOULD NOT provide any command line arguments to the
 script.

 Command line arguments are used for indexed queries in HTTP
 CGI; HTTP indexed queries do not have an equivalent in SIP.

5.5 Data Input to the SIP CGI Script

 Information about a message comes from two different sources: the
 message header, and any associated content-body. Servers MUST make
 portions of this information available to scripts.

5.5.1 Message Metadata (Metavariables)

 Each SIP CGI server implementation MUST define a mechanism to pass
 data about the message from the server to the script. The
 metavariables containing these data are accessed by the script in a
 system-defined manner. The representation of the characters in the
 metavariables is system-defined.

 The representation of metavariables MUST distinguish between
 undefined values (which are not present) and null values (which are
 present, but have zero length). Null values are only allowed for
 those metavariables whose grammar permits this.

Lennox, et al. Informational [Page 14]

RFC 3050 CGI for SIP January 2001

 For historical reasons, HTTP CGI does not distinguish
 between null values and undefined values. This
 specification eliminates this misfeature; null values and
 undefined values are semantically different.

 Case is not significant in the metavariable names, in that there
 cannot be two different variables whose names differ in case only.
 Here they are shown using a canonical representation of capitals plus
 underscore ("_"). The actual representation of the names is system
 defined; for a particular system the representation MAY be defined
 differently than this.

 Metavariable values MUST be considered case-sensitive except as noted
 otherwise.

 The canonical metavariables defined by this specification are:

 AUTH_TYPE
 CONTENT_LENGTH
 CONTENT_TYPE
 GATEWAY_INTERFACE
 REMOTE_ADDR
 REMOTE_HOST
 REMOTE_IDENT
 REMOTE_USER
 REGISTRATIONS
 REQUEST_METHOD
 REQUEST_TOKEN
 REQUEST_URI
 RESPONSE_STATUS
 RESPONSE_REASON
 RESPONSE_TOKEN
 SCRIPT_COOKIE
 SERVER_NAME
 SERVER_PORT
 SERVER_PROTOCOL
 SERVER_SOFTWARE

 Metavariables with names beginning with the protocol name (e.g.,
 "SIP_ACCEPT") are also canonical in their description of message
 header fields. The number and meaning of these fields may change
 independently of this specification. (See also section 5.5.1.5.)

 A server MAY also specify additional non-canonical metavariables.

Lennox, et al. Informational [Page 15]

RFC 3050 CGI for SIP January 2001

5.5.1.1 AUTH_TYPE

 If the target of the message required access authentication for
 external access, then the server MUST set the value of this variable
 from the auth-scheme token in the message’s Authorization header
 field. Otherwise it is not defined.

 AUTH_TYPE = "" | auth-scheme
 auth-scheme = "Basic" | "Digest" | "PGP" | token

 SIP access authentication schemes are described in sections 14 and 15
 of the SIP/2.0 specification [2]. The auth-scheme is not case-
 sensitive.

 Servers MUST provide this metavariable to scripts if the message
 header included an Authorization field that was authenticated.

 For the complex authentication schemes, the server SHOULD perform the
 authentication checking itself. If the authentication failed, this
 metavariable SHOULD NOT be set.

 If several authentication credentials, with multiple schemes, are
 present in the message, this variable SHOULD be set to correspond to
 the authenticated credentials with the strongest scheme the server
 supports. If credentials are present for several domains, the server
 SHOULD NOT perform any action on credentials from domains external to
 it.

 If both Authorization and Proxy-Authorization headers are present,
 the server SHOULD perform the authorizations based on the appropriate
 header for the context in which it is running. For example, a server
 which is a proxy server and a registrar would use Authorization
 headers for REGISTER messages aimed at its local domains, and Proxy-
 Authorization headers for all other messages.

5.5.1.2 CONTENT_LENGTH

 This metavariable is set to the size of the message-body entity
 attached to the message, if any, in decimal number of octets. If no
 data are attached, then this metavariable is not defined. The syntax
 is the same as for the SIP Content-Length header field (section 6.15,
 SIP/2.0 specification [2]).

 CONTENT_LENGTH = "" | 1*digit

 Servers MUST provide this metavariable to scripts if the message was
 a accompanied by a content-body entity, even if the message did not
 include a Content-Length header field.

Lennox, et al. Informational [Page 16]

RFC 3050 CGI for SIP January 2001

5.5.1.3 CONTENT_TYPE

 If the message includes a message-body, CONTENT_TYPE is set to the
 Internet Media Type [6] of the attached entity if the type was
 provided via a Content-type field in the message header, or if the
 server can determine it in the absence of a supplied Content-type
 field. The syntax is the same as for the SIP Content-Type header
 field.

 CONTENT_TYPE = "" | media-type

 The type, subtype, and parameter attribute names are not case-
 sensitive. Parameter values MAY be case sensitive. Media types and
 their use in SIP are described in section 6.16 of the SIP/2.0
 specification [2], and by reference in section 3.7 of the HTTP/1.1
 specification [5].

 Since in SIP the Content-Type header MUST be specified if a body is
 present, servers MUST provide this metavariable to scripts if a body
 was present in the original message, unless the "body" is actually an
 encrypted payload.

5.5.1.4 GATEWAY_INTERFACE

 This metavariable is set to the dialect of SIP CGI being used by the
 server to communicate with the script. Syntax:

 GATEWAY_INTERFACE = "SIP-CGI" "/" major "." minor
 major = 1*digit
 minor = 1*digit

 Note that the major and minor numbers are treated as separate
 integers and hence each may be more than a single digit. Thus SIP-
 CGI/2.4 is a lower version than SIP-CGI/2.13 which in turn is lower
 than SIP-CGI/12.3. Leading zeros in either the major or the minor
 number MUST be ignored by scripts and SHOULD NOT be generated by
 servers.

 This document defines the 1.1 version of the SIP CGI interface
 ("SIP-CGI/1.1").

 Servers MUST provide this metavariable to scripts.

 For maximal compatibility with existing HTTP CGI libraries,
 we want to keep this as similar as possible to the syntax
 of CGI 1.1. However, we do want it to be clear that this is
 indeed SIP CGI. Making HTTP CGI’s version identifier a
 substring of the SIP CGI identifier seemed like a

Lennox, et al. Informational [Page 17]

RFC 3050 CGI for SIP January 2001

 reasonable compromise. (The existing CGI libraries we
 checked do not seem to check the version.)

5.5.1.5 Protocol-Specific Metavariables

 These metavariables are specific to the protocol via which the method
 is sent. Interpretation of these variables depends on the value of
 the SERVER_PROTOCOL metavariable (see section 5.5.1.20).

 Metavariables with names beginning with "SIP_" contain values from
 the message header, if the protocol used was SIP. Each SIP header
 field name is converted to upper case, has all occurrences of "-"
 replaced with "_", and has "SIP_" prepended to form the metavariable
 name. Similar transformations are applied for other protocols. The
 header data MAY be presented as sent by the client, or MAY be
 rewritten in ways which do not change its semantics. If multiple
 header fields with the same field-name are received then the server
 MUST rewrite them as though they had been received as a single header
 field having the same semantics before being represented in a
 metavariable. Similarly, a header field that is received on more
 than one line MUST be merged into a single line. The server MUST, if
 necessary, change the representation of the data (for example, the
 character set) to be appropriate for a CGI metavariable.

 Note: these metavariables’ names were changed from HTTP_*
 to SIP_* since the first draft of this specification. The
 intention had been to make it easier to use existing CGI
 libraries unmodified, but this convenience was felt to be
 outweighed by the confusion this introduced.

 Servers are not required to create metavariables for all the message
 header fields they receive. However, because of the relatively high
 importance of headers in SIP for messages’ semantic content, the
 server SHOULD provide all headers which do not contain potentially
 sensitive authorization information, such as Authorization. Servers
 SHOULD provide protocol-specific metavariables even for information
 which is available through other SIP CGI metavariables, such as
 CONTENT_LENGTH and CONTENT_TYPE.

 This allows a SIP CGI script to determine, if necessary,
 whether the information in the other metavariables was in
 the original message, or was synthesized by the server.

5.5.1.6 REGISTRATIONS

 This metavariable contains a list the current locations the server
 has registered for the user in the Request-URI of the initial request
 of a transaction. It is syntactically identical to the protocol

Lennox, et al. Informational [Page 18]

RFC 3050 CGI for SIP January 2001

 metavariable SIP_CONTACT, and thus is defined by section 5.5.1.5 of
 this document and by section 6.13 of the SIP/2.0 specification [2].
 It contains all the uris, uri parameters, display names, and contact
 parameters for the addresses registered with the server.

 The syntax of REGISTRATIONS is identical to how SIP_CONTACT
 would appear in a 302 response from a redirection server.
 This allows parsing code to be re-used.

 If a user’s registrations change in the course of a transaction, the
 server SHOULD update this metavariable accordingly for subsequent
 script invocations for the transaction.

5.5.1.7 REMOTE_ADDR

 The IP address of the client that sent the message to the server.
 This is not necessarily that of the originating user agent client or
 server.

 REMOTE_ADDR = hostnumber
 hostnumber = IPv4address | IPv6address

 The definitions of IPv4address and Ipv6address are provided in
 Appendix B of RFC 2373 [7].

 For locally-generated responses (see section 5.8), this SHOULD be the
 loopback address (i.e., 127.0.0.1 for IPv4 or ::1 for IPv6).

 Servers MUST supply this value to scripts.

5.5.1.8 REMOTE_HOST

 This is the fully qualified domain name of the host sending the
 message to this server, if available, otherwise not defined. (See
 section 5.5.1.7). Domain names are not case sensitive.

 REMOTE_HOST = hostname

 Servers SHOULD provide this information to scripts.

5.5.1.9 REMOTE_IDENT

 The identity information supported about the connection by a RFC 1413
 [8] request, if available.

 REMOTE_IDENT = *CHAR

Lennox, et al. Informational [Page 19]

RFC 3050 CGI for SIP January 2001

 The server MAY choose not to support this feature, and it is
 anticipated that not many implementations will, as the information is
 not particularly useful in the presence of complex proxy paths.

5.5.1.10 REMOTE_USER

 If the message requested authentication (i.e., the AUTH_TYPE
 metavariable is set), then the value of the REMOTE_USER metavariable
 is set to the user-ID supplied for the authentication. For Basic
 authentication this is the content of the (decoded) "userid" grammar
 element; for Digest it is content of "username-value." For PGP
 authentication, it is the URI specified in the "signed-by" parameter
 of the Authorization header, if present, otherwise the URI part of
 the From header.

 If some other authentication scheme was requested, this metavariable
 SHOULD be set to an appropriate component of the authorization
 information identifying the user or entity associated with the
 credentials. If authentication was not requested, this metavariable
 is not defined.

 REMOTE_USER = *OCTET

 Servers SHOULD provide this metavariable to scripts.

5.5.1.11 REQUEST_METHOD

 If the message triggering the script was a request, the
 REQUEST_METHOD metavariable is set to the method with which the
 request was made, as described in section 4.2 of the SIP/2.0
 specification [2]; otherwise not defined.

 REQUEST_METHOD = sip-method
 sip-method = "INVITE" | "BYE" | "OPTIONS" | "CANCEL"
 | "REGISTER" | "ACK"
 | extension-method
 extension-method = token

 Note that ACK is usually not appropriate for the SIP CGI 1.1
 environment; however, see section 5.11. The implications of REGISTER
 in the CGI context are discussed in section 5.9, and CANCEL is
 discussed in section 5.10. A SIP CGI 1.1 server MAY choose to
 process some methods directly rather than passing them to scripts.

 Servers MUST provide this metavariable to scripts if the triggering
 message was a request.

Lennox, et al. Informational [Page 20]

RFC 3050 CGI for SIP January 2001

5.5.1.12 REQUEST_TOKEN

 REQUEST_TOKEN = token

 If the script specified a request token in a proxied request, this
 token is returned to the server in responses to that request. Note
 that this token is chosen by the script, not by the server. Each
 response to a proxied request contains the same value for this token.

5.5.1.13 REQUEST_URI

 This metavariable is specific to requests made with SIP.

 REQUEST_URI = absoluteURI ; defined in RFC 2396 [9]

 If the message triggering the script was a request, this variable
 indicates the URI specified with the request method. This
 metavariable is only defined if REQUEST_METHOD is defined; in that
 case, servers MUST provide it to scripts.

 This metavariable fills the roles of HTTP CGI’s
 SCRIPT_NAME, PATH_INFO, and QUERY_STRING.

5.5.1.14 RESPONSE_STATUS

 RESPONSE_STATUS = Status-Code

 If the message triggering the script was a response, this variable
 indicates the numeric code specified in the response; otherwise it is
 not defined. In the former case, servers MUST provide this
 metavariable to scripts.

5.5.1.15 RESPONSE_REASON

 RESPONSE_REASON = Reason-Phrase

 If the message triggering the script was a response, this variable
 indicates the textual string specified in the response.

5.5.1.16 RESPONSE_TOKEN

 RESPONSE_TOKEN = token

 If the message triggering the script was a response, the server MUST
 specify a token which subsequent invocations of the CGI script can
 use to identify this response. This string is chosen by the server
 and is opaque to the CGI script. See the discussion of CGI-FORWARD-
 RESPONSE in section 5.6.1 below.

Lennox, et al. Informational [Page 21]

RFC 3050 CGI for SIP January 2001

5.5.1.17 SCRIPT_COOKIE

 SCRIPT_COOKIE = token

 This is the value an earlier invocation of this script for this
 transaction passed to the server in CGI action line CGI-SET-COOKIE.
 See the description of that action in section 5.6.1.4 below.

5.5.1.18 SERVER_NAME

 The SERVER_NAME metavariable is set to the name of the server.

 SERVER_NAME = hostname | hostnumber

 Servers MUST provide this metavariable to scripts.

5.5.1.19 SERVER_PORT

 The SERVER_PORT metavariable is set to the port on which the message
 was received.

 SERVER_PORT = 1*digit

 Servers MUST provide this metavariable to scripts.

5.5.1.20 SERVER_PROTOCOL

 The SERVER_PROTOCOL metavariable is set to the name and revision of
 the protocol with which the message arrived. This will usually be
 "SIP/2.0". This is not necessarily the same as the protocol version
 used by the server in its response to the client.

 SERVER_PROTOCOL = SIP-Version | extension-version
 | extension-token
 extension-version = protocol "/" 1*digit "." 1*digit
 protocol = 1*(alphanum | "+" | "-" | ".")
 extension-token = token

 Servers MUST provide this metavariable to scripts.

Lennox, et al. Informational [Page 22]

RFC 3050 CGI for SIP January 2001

5.5.1.21 SERVER_SOFTWARE

 The SERVER_SOFTWARE metavariable is set to the name and version of
 the information server software handling the message (and running the
 gateway).

 SERVER_SOFTWARE = 1*product
 product = token ["/" product-version]
 product-version = token

 Servers MUST provide this metavariable to scripts.

5.5.2 Message Bodies

 As there may be a data entity attached to the message, there MUST be
 a system-defined method for the script to read these data. Unless
 defined otherwise, this will be via the ‘standard input’ file
 descriptor.

 If the metavariable CONTENT_LENGTH (see section 5.5.1.2) is defined,
 the server MUST supply at least that many bytes to scripts on the
 standard input stream. Scripts are not obliged to read the data.
 Servers MAY signal an EOF condition after CONTENT_LENGTH bytes have
 been read, but are not obligated to do so. Therefore, scripts MUST
 NOT attempt to read more than CONTENT_LENGTH bytes, even if more data
 are available.

5.6 Data Output from the SIP CGI Script

 There MUST be a system-defined method for the script to send data
 back to the server or client. Unless defined otherwise, this will be
 via the ‘standard output’ file descriptor.

 Servers MAY implement a timeout period within which data must be
 received from scripts, a maximum number of requests or responses that
 a particular CGI script can initiate, a maximum total number of
 requests or responses that can be sent by scripts over the lifetime
 of a transaction, or any other resource limitations it desires. If a
 script exceeds one of these limitations, the server MAY terminate the
 script process and SHOULD abort the transaction with either a ‘504
 Gateway Timed Out’ or a ‘500 Internal Server Error’ response.

Lennox, et al. Informational [Page 23]

RFC 3050 CGI for SIP January 2001

 A SIP CGI script’s output consists of any number of messages, each
 corresponding to actions which the script is requesting that the
 server perform. Messages consist of an action line, whose syntax is
 specific to the type of action, followed by CGI header fields and SIP
 header fields. Action lines determine the nature of the action
 performed, and are described in section 5.6.1. CGI header fields
 pass additional instructions or information to the server, and are
 described in section 5.6.2.

 A message MUST contain exactly one action line, MAY also contain any
 number of CGI header fields and SIP header fields, and MAY contain a
 SIP body.

 All header fields (both SIP and CGI) occurring in an output message
 MUST be specified one per line; SIP CGI 1.1 makes no provision for
 continuation lines.

 The generic syntax of CGI header fields is specified in section
 5.6.2.

 A server MAY choose to honor only some of the requests or responses;
 in particular, it SHOULD NOT accept any responses following a Status
 message which sends a definitive non-success response.

 The messages sent by a script are delimited as follows:

 1. A message begins with an action line.

 2. If the message does not contain a Content-Type header
 field, or if it contains the header field "Content-Length:
 0", then it is terminated by a blank line.

 3. If the message contains both Content-Type and Content-
 Length header fields, the message has a body consisting of
 the Content-Length octets following the blank line below
 the set. The next message begins after the body (and
 optionally some number of blank lines). If the script
 closes its output prematurely, the server SHOULD report a
 500-class server error.

 4. If the message contains Content-Type but not Content-
 Length, the message’s body similarly begins with the blank
 line following the set; this body extends until the script
 closes its output. In this case, this is necessarily the
 last message the script can send. The server SHOULD insert
 a Content-Length header containing the amount of data read
 before the script closed its output.

Lennox, et al. Informational [Page 24]

RFC 3050 CGI for SIP January 2001

 5. If a message contains a non-zero Content-Length but does
 not contain a Content-Type, it is an error. The server
 SHOULD report a 500-class server error.

 The output of a SIP CGI script is intended to be
 syntactically identical to that of a UDP packet in which
 multiple requests or responses are sent, so that the same
 message parser may be used.

5.6.1 CGI Action Lines

5.6.1.1 Status

 Status = SIP-Version 3*digit SP reason-phrase NL

 This action line causes the server to generate a SIP response and
 relay it upstream towards the client. The server MUST copy the To,
 From, Call-ID, and CSeq headers from the original request into the
 response if these headers are not specified in the script output.
 The server SHOULD copy any other headers from the request which would
 normally be copied in the response if these are not specified in the
 script output.

 For compatibility with HTTP CGI, a server MAY interpret a message
 containing a Content-Type header field and no action line as though
 it contained "SIP/2.0 200 OK". This usage is deprecated.

5.6.1.2 Proxy Request

 Proxy-Request = "CGI-PROXY-REQUEST" SIP-URL SIP-Version

 This action line causes the server to forward a request to the
 specified SIP URI. It may be sent either by a script triggered by a
 request, in which case the triggering request is forwarded; or by a
 script triggered by a response on a server which is running
 statefully, in which case the initial request of the transaction is
 sent.

 Any SIP header field MAY be specified below the action line.
 Specified SIP headers replace all those in the original message in
 their entirety; if a script wants to preserve header elements from
 the original message as well as adding new ones, it can concatenate
 them by the usual rules of header concatenation, and place the result
 in the script output. New header fields are added to the message
 after any Via headers but before any other headers.

Lennox, et al. Informational [Page 25]

RFC 3050 CGI for SIP January 2001

 Any headers from the original request which are not generated by the
 CGI script are copied into the proxied request, after modifications
 normally performed by a proxy server. In particular, the server MUST
 append a Via field and decrement Max-Forwards. A server MAY perform
 additional modifications as it sees fit, such as adding a Record-
 Route header. A server SHOULD NOT append these headers if they are
 specified in the script output.

 A script MAY specify that a SIP header is to be deleted from the
 message by using the CGI-Remove CGI header; see section 5.6.2.

 If the message does not specify a body, the body from the initial
 request is used. A message with "Content-Length: 0" is specifying an
 empty body; this causes the body to be deleted from the message.

 If the original request was authenticated by any means other than
 ‘basic,’ the script SHOULD NOT add, change, or remove any end-to-end
 headers, as this would break the authentication.

5.6.1.3 Forward Response

 Forward-Response = "CGI-FORWARD-RESPONSE" Response-Name
 SIP-Version
 Response-Name = response-token | "this"

 This action line causes the server to forward a response on to its
 appropriate final destination. The same rules apply for accompanying
 SIP headers and message bodies as for CGI-PROXY-REQUEST.

 The specified response name may either be a response token the server
 previously submitted in a RESPONSE_TOKEN metavariable, or the string
 "this." The string "this" may only be sent if the message which
 triggered this CGI script was a response; it indicates that this
 triggering response should be forwarded.

5.6.1.4 Script Cookie

 Script-Cookie = "CGI-SET-COOKIE" token SIP-Version

 This action line causes the server to store a script cookie, passed
 as a token in the action line. Subsequent script invocations for
 messages within the same transaction carry the token in a meta-
 header. The script can alter the value of the cookie by subsequent
 script cookie actions. This alteration will take affect for all
 subsequent script invocations.

Lennox, et al. Informational [Page 26]

RFC 3050 CGI for SIP January 2001

5.6.1.5 CGI Again

 CGI-Again = "CGI-AGAIN" ("yes" | "no") SIP-Version

 This action line determines whether the script will be invoked for
 subsequent requests and responses for this transaction. If the
 parameter "yes" is given to this action, the script will be executed
 again when the next message arrives. If the parameter is "no," or
 this action is not specified, the script will not be executed again,
 and the server will perform its default action for all subsequent
 messages.

5.6.1.6 Default Action

 If none of the actions CGI-PROXY-REQUEST, CGI-FORWARD-RESPONSE, or a
 new response are performed -- that is to say, the script outputs only
 CGI-AGAIN, CGI-SET-COOKIE, or nothing -- the script performs its
 default action. The default action to take depends on the event
 which triggered the script:

 Request received: When the request is first received, the
 default action of the server is to check whether the
 domain of the server matches the domain of the Request-
 URI. If it does not, the request is proxied to the
 request in the Request-URI. Otherwise, the server checks
 its registration database against the request, and either
 proxies or redirects the request based on the action
 specified by the user agent in the registration.

 Proxied response received: If a response is received to a
 proxied request, the server forwards the response towards
 the caller if the response was a 200 or 600 class
 response, and sends a CANCEL on all pending branches. If
 the response was 100 class, the state machinery for that
 branch is updated, and the response is proxied upstream
 towards the caller unless the it was a 100 response, not
 some other 1xx. For 300, 400, and 500 class responses,
 an ACK is sent, and the response is forwarded upstream
 towards the caller if all other branches have terminated,
 and the response is the best received so far. If not all
 branches have terminated, the server does nothing. If
 all branches have terminated, but this response is not
 the best, the best is forwarded upstream. This is the
 basic algorithm outlined in the SIP specification.

Lennox, et al. Informational [Page 27]

RFC 3050 CGI for SIP January 2001

5.6.2 CGI Header Fields

 CGI header fields syntactically resemble SIP header fields, but their
 names all begin with the string "CGI-". The SIP server MUST strip
 all CGI header fields from any message before sending it, including
 those it does not recognize.

 CGI header fields have the generic syntax specified in section 6.6 of
 the SIP/2.0 specification [2]. The field-name is not case sensitive;
 the field value MUST conform to the grammar of that specific field in
 the specification where it is defined.

5.6.2.1 Request-Token

 Request-Token = "CGI-Request-Token" ":" token

 To assist in matching responses to proxied requests, the script can
 place a CGI-Request-Token CGI header in a CGI-PROXY-REQUEST or new
 request. This header contains a token, opaque to the server. When a
 response to this request arrives, the token is passed back to the
 script as a meta-header.

 This allows scripts to "fork" a proxy request, and
 correlate which response corresponds to which branch of the
 request.

5.6.2.2 Remove

 Remove = "CGI-Remove" ":" 1#field-name

 The CGI-Remove header allows the script to remove SIP headers from
 the outgoing request or response. The value of this header is a
 comma-separated list of SIP headers which should be removed before
 sending out the message.

 A script MAY specify headers which are not in the request; the server
 SHOULD silently ignore these. A script SHOULD NOT both specify a SIP
 header in its output and also list that header in a CGI-Remove
 header; the result of doing this is undefined.

5.7 Local Expiration Handling

 If a CGI script specifies an Expires header field along with CGI-
 PROXY-REQUEST, the SIP server SHOULD track the expiration timeout
 locally as well as sending the message to the remote server. When
 the timeout expires, the server SHOULD generate a "408 Request

Lennox, et al. Informational [Page 28]

RFC 3050 CGI for SIP January 2001

 Timeout" response. The timeout response SHOULD be handled as
 specified in section 5.8. At the time the request is timed out, the
 server SHOULD also transmit CANCEL messages for the request.

 This allows a SIP CGI script in a proxy server to implement
 services like "Call Forward No Answer" to trigger after a
 user-determined time, even if the remote user-agent server
 is not responding or does not properly handle the Expires
 header field.

5.8 Locally-Generated Responses

 In a proxy environment, locally-generated responses such as "408
 Request Timeout" SHOULD be sent to the CGI script in the same manner
 as received messages are. However, messages which merely report a
 problem with a message, such as "400 Bad Request", SHOULD NOT be.

 This is the other half of the requirements for the
 implementation of the "Call Forward No Answer" service,
 along with the local handling of the Expires header.

5.9 SIP CGI and REGISTER

 The specific semantics of a SIP CGI script which is triggered by a
 REGISTER request are somewhat different than that of those triggered
 by call-related requests; however, allowing user control of
 registration may in some cases be useful. The two specific actions
 for REGISTER that need to be discussed are the response "200" and the
 default action. In the former case, the server SHOULD assume that
 the CGI script is handling the registration internally, and SHOULD
 NOT add the registration to its internal registration database; in
 the latter case, the server SHOULD add the registration to its own
 database. The server also SHOULD NOT add the registration if a 3xx,
 4xx, 5xx, or 6xx status was returned, or if the registration request
 was proxied to another location.

5.10 SIP CGI and CANCEL

 SIP CGI servers SHOULD execute scripts when a CANCEL message is
 received. The script SHOULD clean up any state it has for the
 transaction as quickly as possible.

Lennox, et al. Informational [Page 29]

RFC 3050 CGI for SIP January 2001

 When a CANCEL is received at a server for an existing transaction,
 the server SHOULD send a 200 OK response to the cancel and cancel all
 currently outstanding branches. The transmission of the script on a
 CANCEL message is purely advisory, and the script SHOULD NOT perform
 any actions in response to it.

5.11 SIP CGI and ACK

5.11.1 Receiving ACK’s

 Under normal circumstances, if the server receives an ACK, the script
 is not re-executed. If the ACK is destined for the proxy
 (acknowledging a 300, 400, 500, or 600 response), the ACK causes
 response retransmissions to cease. If the ACK is for a 200 response
 forwarded from a downstream server, the ACK is proxied downstream.

 However, if the script generated its own 200 response to an INVITE
 request, the script SHOULD be re-executed with the ACK message. This
 is necessary in cases where the script is causing the proxy to act as
 a UAS. ACK messages can contain bodies, and would therefore be
 useful to the script.

5.11.2 Sending ACK’s

 When the server receives a non-200 final response to an INVITE
 request, it SHOULD generate an ACK on its own, and not depend on the
 script to do so. There is no way in SIP CGI 1.1 to override this
 behavior. However, since the server will not generate an ACK for 200
 responses to INVITE, a script causing the server to act as a UAC MUST
 generate ACK’s for them.

6 System Specifications

6.1 Unix

 The implementation of SIP CGI on a Unix operating system platform
 SHOULD use environment variables as the mechanism of providing
 request metadata to CGI scripts.

 For Unix compatible operating systems, the following are defined:

 Environment variables: These are accessed by the C library
 routine getenv.

Lennox, et al. Informational [Page 30]

RFC 3050 CGI for SIP January 2001

 The current working directory: The current working directory for
 the script SHOULD be set to the directory containing the
 script.

 Character set: The US-ASCII character set is used for the
 definition of environment variable names and header field
 names; the newline (NL) sequence is LF; servers SHOULD also
 accept CR LF as a newline.

6.2 Microsoft Windows

 The implementation of SIP CGI on 32-bit Microsoft Windows system
 platforms (Windows 95, 98, NT, and 2000) SHOULD use environment
 variables as the mechanism of providing request metadata to CGI
 scripts.

 For Microsoft Windows, the following are defined:

 Environment variables: These are accessed by the C library
 routine getenv.

 The current working directory: The current working directory for
 the script SHOULD be set to the directory containing the
 script.

 Character set: The US-ASCII character set is used for the
 definition of environment variable names and header field
 names; the newline (NL) sequence is CR LF; servers SHOULD
 also accept LF as a newline.

7 Security Considerations

7.1 Request Initiation

 CGI scripts are able to initiate arbitrary SIP transactions, or to
 produce spoofed responses of any sort. This protocol does not
 attempt to restrict the actions CGI scripts can take. Server
 administrators MUST consider CGI scripts to be as security-sensitive
 as their SIP server itself, and perform equivalent levels of security
 review before installing them.

7.2 Authenticated and Encrypted Messages

 CGI scripts must be careful not to interfere with authentication. In
 particular, adding or removing header fields that are below the
 Authorization header will cause the message to fail authentication at
 the user agent.

Lennox, et al. Informational [Page 31]

RFC 3050 CGI for SIP January 2001

 When a SIP request is encrypted, the headers which are in the clear
 are passed to the server according to this specification. The
 encrypted portion of the request is passed to the script as a body.
 Any SIP headers output by the script will be added to the message.
 However, scripts should be aware that these may be discarded if they
 also exist within the encrypted portion.

7.3 SIP Header Fields Containing Sensitive Information

 Some SIP header fields may carry sensitive information which the
 server SHOULD NOT pass on to the script unless explicitly configured
 to do so. For example, if the server protects the script using the
 Basic authentication scheme, then the client will send an
 Authorization header field containing a username and password. If
 the server, rather than the script, validates this information then
 the password SHOULD NOT be passed on to the script via the
 HTTP_AUTHORIZATION metavariable.

7.4 Script Interference with the Server

 The most common implementation of CGI invokes the script as a child
 process using the same user and group as the server process. It
 SHOULD therefore be ensured that the script cannot interfere with the
 server process, its configuration, or documents.

 If the script is executed by calling a function linked in to the
 server software (either at compile-time or run-time) then precautions
 SHOULD be taken to protect the core memory of the server, or to
 ensure that untrusted code cannot be executed.

7.5 Data Length and Buffering Considerations

 This specification places no limits on the length of entity bodies
 presented to the script. Scripts SHOULD NOT assume that statically
 allocated buffers of any size are sufficient to contain the entire
 submission at one time. Use of a fixed length buffer without careful
 overflow checking may result in an attacker exploiting ‘stack-
 smashing’ or ‘stack-overflow’ vulnerabilities of the operating
 system. Scripts may spool large submissions to disk or other
 buffering media, but a rapid succession of large submissions may
 result in denial of service conditions. If the CONTENT_LENGTH of an
 entity-body is larger than resource considerations allow, scripts
 SHOULD respond with ‘413 Request Entity Too Large.’

Lennox, et al. Informational [Page 32]

RFC 3050 CGI for SIP January 2001

8 Acknowledgements

 This work draws extremely heavily upon the HTTP CGI specification
 [1]; approximately half the text of the specification section is
 taken from that document.

9 Authors’ Addresses

 Jonathan Lennox
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 EMail: lennox@cs.columbia.edu

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Ave.
 First Floor
 East Hanover, NJ 07936

 EMail: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 EMail: schulzrinne@cs.columbia.edu

Lennox, et al. Informational [Page 33]

RFC 3050 CGI for SIP January 2001

10 Bibliography

 [1] http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

 [2] Handley, M, Schulzrinne, H., Schooler, E. and J. Rosenberg,
 "SIP: Session Initiation Protocol", RFC 2543, March 1999.

 [3] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 10, RFC 822, August 1982.

 [4] Bradner, S., "Key words for use in RFCs to indicate requirement
 levels", BCP 14, RFC 2119, March 1997.

 [5] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [6] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

 [7] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [8] St. Johns, M., "Identification Protocol", RFC 1413, January
 1993.

 [9] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
 Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

Lennox, et al. Informational [Page 34]

RFC 3050 CGI for SIP January 2001

11 Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Lennox, et al. Informational [Page 35]

