
Network Working Group B. Moore
Request for Comments: 3060 IBM
Category: Standards Track E. Ellesson
 LongBoard, Inc.
 J. Strassner
 A. Westerinen
 Cisco Systems
 February 2001

 Policy Core Information Model -- Version 1 Specification

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document presents the object-oriented information model for
 representing policy information developed jointly in the IETF Policy
 Framework WG and as extensions to the Common Information Model (CIM)
 activity in the Distributed Management Task Force (DMTF). This model
 defines two hierarchies of object classes: structural classes
 representing policy information and control of policies, and
 association classes that indicate how instances of the structural
 classes are related to each other. Subsequent documents will define
 mappings of this information model to various concrete
 implementations, for example, to a directory that uses LDAPv3 as its
 access protocol.

Table of Contents

 1. Introduction.. 4
 2. Modeling Policies... 5
 2.1. Policy Scope... 8
 2.2. Declarative versus Procedural Model........................ 8
 3. Overview of the Policy Core Information Model.................. 10
 4. Inheritance Hierarchies for the Policy Core Information Model.. 13
 4.1. Implications of CIM Inheritance........................... 15
 5. Details of the Model... 15

Moore, et al. Standards Track [Page 1]

RFC 3060 Policy Core Information Model February 2001

 5.1. Reusable versus Rule-Specific Conditions and Actions...... 15
 5.2. Roles... 17
 5.2.1. Roles and Role Combinations............................. 17
 5.2.2. The PolicyRoles Property................................ 21
 5.3. Local Time and UTC Time in PolicyTimePeriodConditions..... 21
 5.4. CIM Data Types.. 23
 5.5. Comparison between CIM and LDAP Class Specifications...... 24
 6. Class Definitions.. 25
 6.1. The Abstract Class "Policy"............................... 25
 6.1.1. The Property "CommonName (CN)".......................... 26
 6.1.2. The Multi-valued Property "PolicyKeywords".............. 26
 6.1.3. The Property "Caption" (Inherited from ManagedElement).. 27
 6.1.4. The Property "Description" (Inherited from
 ManagedElement)... 27
 6.2. The Class "PolicyGroup"................................... 27
 6.3. The Class "PolicyRule".................................... 29
 6.3.1. The Property "Enabled".................................. 31
 6.3.2. The Property "ConditionListType"........................ 31
 6.3.3. The Property "RuleUsage"................................ 31
 6.3.4. The Property "Priority"................................. 32
 6.3.5. The Property "Mandatory"................................ 32
 6.3.6. The Property "SequencedActions"......................... 33
 6.3.7. The Multi-valued Property "PolicyRoles"................. 33
 6.4. The Abstract Class "PolicyCondition"...................... 34
 6.5. The Class "PolicyTimePeriodCondition"..................... 36
 6.5.1. The Property "TimePeriod"............................... 38
 6.5.2. The Property "MonthOfYearMask".......................... 39
 6.5.3. The Property "DayOfMonthMask"........................... 39
 6.5.4. The Property "DayOfWeekMask"............................ 40
 6.5.5. The Property "TimeOfDayMask"............................ 41
 6.5.6. The Property "LocalOrUtcTime"........................... 42
 6.6. The Class "VendorPolicyCondition"......................... 42
 6.6.1. The Multi-valued Property "Constraint".................. 43
 6.6.2. The Property "ConstraintEncoding"....................... 43
 6.7. The Abstract Class "PolicyAction"......................... 44
 6.8. The Class "VendorPolicyAction"............................ 45
 6.8.1. The Multi-valued Property "ActionData".................. 45
 6.8.2. The Property "ActionEncoding"........................... 46
 6.9. The Class "PolicyRepository".............................. 46
 7. Association and Aggregation Definitions........................ 46
 7.1. Associations.. 47
 7.2. Aggregations.. 47
 7.3. The Abstract Aggregation "PolicyComponent................. 47
 7.4. The Aggregation "PolicyGroupInPolicyGroup"................ 47
 7.4.1. The Reference "GroupComponent".......................... 48
 7.4.2. The Reference "PartComponent"........................... 48
 7.5. The Aggregation "PolicyRuleInPolicyGroup"................. 48
 7.5.1. The Reference "GroupComponent".......................... 49

Moore, et al. Standards Track [Page 2]

RFC 3060 Policy Core Information Model February 2001

 7.5.2. The Reference "PartComponent"........................... 49
 7.6. The Aggregation "PolicyConditionInPolicyRule"............. 49
 7.6.1. The Reference "GroupComponent".......................... 50
 7.6.2. The Reference "PartComponent"........................... 50
 7.6.3. The Property "GroupNumber".............................. 50
 7.6.4. The Property "ConditionNegated"......................... 51
 7.7. The Aggregation "PolicyRuleValidityPeriod"................ 51
 7.7.1. The Reference "GroupComponent".......................... 52
 7.7.2. The Reference "PartComponent"........................... 52
 7.8. The Aggregation "PolicyActionInPolicyRule"................ 52
 7.8.1. The Reference "GroupComponent".......................... 53
 7.8.2. The Reference "PartComponent"........................... 53
 7.8.3. The Property "ActionOrder".............................. 53
 7.9. The Abstract Association "PolicyInSystem"................. 54
 7.10. The Weak Association "PolicyGroupInSystem"............... 55
 7.10.1. The Reference "Antecedent"............................. 55
 7.10.2. The Reference "Dependent".............................. 55
 7.11. The Weak Association "PolicyRuleInSystem"................ 56
 7.11.1. The Reference "Antecedent"............................. 56
 7.11.2. The Reference "Dependent".............................. 56
 7.12. The Association "PolicyConditionInPolicyRepository"...... 56
 7.12.1. The Reference "Antecedent"............................. 57
 7.12.2. The Reference "Dependent".............................. 57
 7.13. The Association "PolicyActionInPolicyRepository"......... 57
 7.13.1. The Reference "Antecedent"............................. 58
 7.13.2. The Reference "Dependent".............................. 58
 7.14. The Aggregation "PolicyRepositoryInPolicyRepository"..... 58
 7.14.1. The Reference "GroupComponent"......................... 58
 7.14.2. The Reference "PartComponent".......................... 59
 8. Intellectual Property.. 59
 9. Acknowledgements... 59
 10. Security Considerations....................................... 60
 11. References.. 62
 12. Authors’ Addresses.. 64
 13. Appendix A: Class Identification in a Native CIM
 Implementation.. 65
 13.1. Naming Instances of PolicyGroup and PolicyRule........... 65
 13.1.1. PolicyGroup’s CIM Keys................................. 65
 13.1.2. PolicyRule’s CIM Keys.................................. 66
 13.2. Naming Instances of PolicyCondition and Its Subclasses... 67
 13.2.1. PolicyCondition’s CIM Keys............................. 69
 13.3. Naming Instances of PolicyAction and Its Subclasses...... 71
 13.4. Naming Instances of PolicyRepository..................... 72
 13.5. Role of the CreationClassName Property in Naming......... 73
 13.6. Object References.. 73
 14. Appendix B: The Core Policy MOF.............................. 75
 15. Full Copyright Statement..................................... 100

Moore, et al. Standards Track [Page 3]

RFC 3060 Policy Core Information Model February 2001

1. Introduction

 This document presents the object-oriented information model for
 representing policy information currently under joint development in
 the IETF Policy Framework WG and as extensions to the Common
 Information Model (CIM) activity in the Distributed Management Task
 Force (DMTF). This model defines two hierarchies of object classes:
 structural classes representing policy information and control of
 policies, and association classes that indicate how instances of the
 structural classes are related to each other. Subsequent documents
 will define mappings of this information model to various concrete
 implementations, for example, to a directory that uses LDAPv3 as its
 access protocol. The components of the CIM schema are available via
 the following URL: http://www.dmtf.org/spec/cims.html [1].

 The policy classes and associations defined in this model are
 sufficiently generic to allow them to represent policies related to
 anything. However, it is expected that their initial application in
 the IETF will be for representing policies related to QoS (DiffServ
 and IntServ) and to IPSec. Policy models for application-specific
 areas such as these may extend the Core Model in several ways. The
 preferred way is to use the PolicyGroup, PolicyRule, and
 PolicyTimePeriodCondition classes directly, as a foundation for
 representing and communicating policy information. Then, specific
 subclasses derived from PolicyCondition and PolicyAction can capture
 application-specific definitions of conditions and actions of
 policies.

 Two subclasses, VendorPolicyCondition and VendorPolicyAction, are
 also included in this document, to provide a standard extension
 mechanism for vendor-specific extensions to the Policy Core
 Information Model.

 This document fits into the overall framework for representing,
 deploying, and managing policies being developed by the Policy
 Framework Working Group. It traces its origins to work that was
 originally done for the Directory-enabled Networks (DEN)
 specification, reference [5]. Work on the DEN specification by the
 DEN Ad-Hoc Working Group itself has been completed. Further work to
 standardize the models contained in it will be the responsibility of
 selected working groups of the CIM effort in the Distributed
 Management Task Force (DMTF). DMTF standardization of the core
 policy model is the responsibility of the SLA Policy working group in
 the DMTF.

Moore, et al. Standards Track [Page 4]

RFC 3060 Policy Core Information Model February 2001

 This document is organized in the following manner:

 o Section 2 provides a general overview of policies and how they are
 modeled.

 o Section 3 presents a high-level overview of the classes and
 associations comprising the Policy Core Information Model.

 o The remainder of the document presents the detailed specifications
 for each of the classes and associations.

 o Appendix A overviews naming for native CIM implementations. Other
 mappings, such as LDAPv3, will have their own naming mechanisms.

 o Appendix B reproduces the DMTF’s Core Policy MOF specification.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119, reference
 [3].

2. Modeling Policies

 The classes comprising the Policy Core Information Model are intended
 to serve as an extensible class hierarchy (through specialization)
 for defining policy objects that enable application developers,
 network administrators, and policy administrators to represent
 policies of different types.

 One way to think of a policy-controlled network is to first model the
 network as a state machine and then use policy to control which state
 a policy-controlled device should be in or is allowed to be in at any
 given time. Given this approach, policy is applied using a set of
 policy rules. Each policy rule consists of a set of conditions and a
 set of actions. Policy rules may be aggregated into policy groups.
 These groups may be nested, to represent a hierarchy of policies.

 The set of conditions associated with a policy rule specifies when
 the policy rule is applicable. The set of conditions can be
 expressed as either an ORed set of ANDed sets of condition statements
 or an ANDed set of ORed sets of statements. Individual condition
 statements can also be negated. These combinations are termed,
 respectively, Disjunctive Normal Form (DNF) and Conjunctive Normal
 Form (CNF) for the conditions.

 If the set of conditions associated with a policy rule evaluates to
 TRUE, then a set of actions that either maintain the current state of
 the object or transition the object to a new state may be executed.

Moore, et al. Standards Track [Page 5]

RFC 3060 Policy Core Information Model February 2001

 For the set of actions associated with a policy rule, it is possible
 to specify an order of execution, as well as an indication of whether
 the order is required or merely recommended. It is also possible to
 indicate that the order in which the actions are executed does not
 matter.

 Policy rules themselves can be prioritized. One common reason for
 doing this is to express an overall policy that has a general case
 with a few specific exceptions.

 For example, a general QoS policy rule might specify that traffic
 originating from members of the engineering group is to get Bronze
 Service. A second policy rule might express an exception: traffic
 originating from John, a specific member of the engineering group, is
 to get Gold Service. Since traffic originating from John satisfies
 the conditions of both policy rules, and since the actions associated
 with the two rules are incompatible, a priority needs to be
 established. By giving the second rule (the exception) a higher
 priority than the first rule (the general case), a policy
 administrator can get the desired effect: traffic originating from
 John gets Gold Service, and traffic originating from all the other
 members of the engineering group gets Bronze Service.

 Policies can either be used in a stand-alone fashion or aggregated
 into policy groups to perform more elaborate functions. Stand-alone
 policies are called policy rules. Policy groups are aggregations of
 policy rules, or aggregations of policy groups, but not both. Policy
 groups can model intricate interactions between objects that have
 complex interdependencies. Examples of this include a sophisticated
 user logon policy that sets up application access, security, and
 reconfigures network connections based on a combination of user
 identity, network location, logon method and time of day. A policy
 group represents a unit of reusability and manageability in that its
 management is handled by an identifiable group of administrators and
 its policy rules would be consistently applied

 Stand-alone policies are those that can be expressed in a simple
 statement. They can be represented effectively in schemata or MIBs.
 Examples of this are VLAN assignments, simple YES/NO QoS requests,
 and IP address allocations. A specific design goal of this model is
 to support both stand-alone and aggregated policies.

 Policy groups and rules can be classified by their purpose and
 intent. This classification is useful in querying or grouping policy
 rules. It indicates whether the policy is used to motivate when or
 how an action occurs, or to characterize services (that can then be
 used, for example, to bind clients to network services). Describing
 each of these concepts in more detail,

Moore, et al. Standards Track [Page 6]

RFC 3060 Policy Core Information Model February 2001

 o Motivational Policies are solely targeted at whether or how a
 policy’s goal is accomplished. Configuration and Usage Policies
 are specific kinds of Motivational Policies. Another example is
 the scheduling of file backup based on disk write activity from
 8am to 3pm, M-F.

 o Configuration Policies define the default (or generic) setup of a
 managed entity (for example, a network service). Examples of
 Configuration Policies are the setup of a network forwarding
 service or a network-hosted print queue.

 o Installation Policies define what can and cannot be put on a
 system or component, as well as the configuration of the
 mechanisms that perform the install. Installation policies
 typically represent specific administrative permissions, and can
 also represent dependencies between different components (e.g., to
 complete the installation of component A, components B and C must
 be previously successfully installed or uninstalled).

 o Error and Event Policies. For example, if a device fails between
 8am and 9pm, call the system administrator, otherwise call the
 Help Desk.

 o Usage Policies control the selection and configuration of entities
 based on specific "usage" data. Configuration Policies can be
 modified or simply re-applied by Usage Policies. Examples of
 Usage Policies include upgrading network forwarding services after
 a user is verified to be a member of a "gold" service group, or
 reconfiguring a printer to be able to handle the next job in its
 queue.

 o Security Policies deal with verifying that the client is actually
 who the client purports to be, permitting or denying access to
 resources, selecting and applying appropriate authentication
 mechanisms, and performing accounting and auditing of resources.

 o Service Policies characterize network and other services (not use
 them). For example, all wide-area backbone interfaces shall use a
 specific type of queuing.

 Service policies describe services available in the network.
 Usage policies describe the particular binding of a client of the
 network to services available in the network.

 These categories are represented in the Policy Core Information Model
 by special values defined for the PolicyKeywords property of the
 abstract class Policy.

Moore, et al. Standards Track [Page 7]

RFC 3060 Policy Core Information Model February 2001

2.1. Policy Scope

 Policies represent business goals and objectives. A translation must
 be made between these goals and objectives and their realization in
 the network. An example of this could be a Service Level Agreement
 (SLA), and its objectives and metrics (Service Level Objectives, or
 SLOs), that are used to specify services that the network will
 provide for a given client. The SLA will usually be written in
 high-level business terminology. SLOs address more specific metrics
 in support of the SLA. These high-level descriptions of network
 services and metrics must be translated into lower-level, but also
 vendor-and device-independent specifications. The Policy Core
 Information Model classes are intended to serve as the foundation for
 these lower-level, vendor- and device-independent specifications.

 It is envisioned that the definition of the Policy Core Informational
 Model in this document is generic in nature and is applicable to
 Quality of Service (QoS), to non-QoS networking applications (e.g.,
 DHCP and IPSec), and to non-networking applications (e.g., backup
 policies, auditing access, etc.).

2.2. Declarative versus Procedural Model

 The design of the Policy Core Information Model is influenced by a
 declarative, not procedural, approach. More formally, a declarative
 language is used to describe relational and functional languages.
 Declarative languages describe relationships between variables in
 terms of functions or inference rules, to which the interpreter or
 compiler can apply a fixed algorithm in order to produce a result.
 An imperative (or procedural) language specifies an explicit sequence
 of steps to follow in order to produce a result.

 It is important to note that this information model does not rule out
 the use of procedural languages. Rather, it recognizes that both
 declarative as well as procedural languages can be used to implement
 policy. This information model is better viewed as being declarative
 because the sequence of steps for doing the processing of declarative
 statements tends to be left to the implementer. However, we have
 provided the option of expressing the desired order of action
 execution in this policy information model, and for expressing
 whether the order is mandatory or not. In addition, rather than
 trying to define algorithms or sets of instructions or steps that
 must be followed by a policy rule, we instead define a set of modular
 building blocks and relationships that can be used in a declarative
 or procedural fashion to define policies.

Moore, et al. Standards Track [Page 8]

RFC 3060 Policy Core Information Model February 2001

 Compare this to a strictly procedural model. Taking such an approach
 would require that we specify the condition testing sequence, and the
 action execution sequence, in the policy repository itself. This
 would, indeed, constrain the implementer. This is why the policy
 model is characterized as a declarative one. That is, the
 information model defines a set of attributes, and a set of entities
 that contain these attributes. However, it does NOT define either
 the algorithm to produce a result using the attributes or an explicit
 sequence of steps to produce a result.

 There are several design considerations and trade-offs to make in
 this respect.

 1. On the one hand, we would like a policy definition language to be
 reasonably human-friendly for ease of definitions and diagnostics.
 On the other hand, given the diversity of devices (in terms of
 their processing capabilities) which could act as policy decision
 points, we would like to keep the language somewhat machine-
 friendly. That is, it should be relatively simple to automate the
 parsing and processing of the language in network elements. The
 approach taken is to provide a set of classes and attributes that
 can be combined in either a declarative or procedural approach to
 express policies that manage network elements and services. The
 key point is to avoid trying to standardize rules or sets of steps
 to be followed in defining a policy. These must be left up to an
 implementation. Interoperability is achieved by standardizing the
 building blocks that are used to represent policy data and
 information.

 2. An important decision to make is the semantic style of the
 representation of the information.

 The declarative approach that we are describing falls short of
 being a "true" declarative model. Such a model would also specify
 the algorithms used to combine the information and policy rules to
 achieve particular behavior. We avoid specifying algorithms for
 the same reason that we avoid specifying sets of steps to be
 followed in a policy rule. However, the design of the information
 model more closely follows that of a declarative language, and may
 be easier to understand if such a conceptual model is used. This
 leads to our third point, acknowledging a lack of "completeness"
 and instead relying on presenting information that the policy
 processing entity will work with.

 3. It is important to control the complexity of the specification,
 trading off richness of expression of data in the core information
 model for ease of implementation and use. It is important to
 acknowledge the collective lack of experience in the field

Moore, et al. Standards Track [Page 9]

RFC 3060 Policy Core Information Model February 2001

 regarding policies to control and manage network services and
 hence avoid the temptation of aiming for "completeness". We
 should instead strive to facilitate definition of a set of common
 policies that customers require today (e.g., VPN and QoS) and
 allow migration paths towards supporting complex policies as
 customer needs and our understanding of these policies evolve with
 experience. Specifically, in the context of the declarative style
 language discussed above, it is important to avoid having full
 blown predicate calculus as the language, as it would render many
 important problems such as consistency checking and policy
 decision point algorithms intractable. It is useful to consider a
 reasonably constrained language from these perspectives.

 The Policy Core Information Model strikes a balance between
 complexity and lack of power by using the well understood logical
 concepts of Disjunctive Normal Form and Conjunctive Normal Form for
 combining simple policy conditions into more complex ones.

3. Overview of the Policy Core Information Model

 The following diagram provides an overview of the five central
 classes comprising the Policy Core Information Model, their
 associations to each other, and their associations to other classes
 in the overall CIM model. Note that the abstract class Policy and
 the two extension classes VendorPolicyCondition and
 VendorPolicyAction are not shown.

 NOTE: For cardinalities, "*" is an abbreviation for "0..n".

Moore, et al. Standards Track [Page 10]

RFC 3060 Policy Core Information Model February 2001

 +-----------+
 | System |
 +--^-----^--+
 . . 1. 1. . .
 .(a). .(b) .(c) *.(d).*
 +--v---v---------+ . . +-v---v------------+
 | PolicyGroup <........ . | PolicyRepository |
 | | w * . | |
 +------^---------+ . +-----^---------^--+
 *. . 0..1 . 0..1 .
 .(e) . .(f) .(g)
 *. . . .
 +------v------+ w * . . .
 | <................. . .
 | PolicyRule | . .
 | | . .
 | | . .
 | <........................ . .
 | |* (h) . . .
 | | . . .
 | | . . .
 | | . . .
 | | . . .
 | | . . .
 | | . . .
 | | .* .* .
 | | +---------v-------v--+ .
 | | | PolicyCondition | .
 | | *+--------------------+ .
 | | (i) ^ .
 | <.............. I .
 | |* . I .
 | | .* ^ .
 | | +----v----------------------+ .
 | | | PolicyTimePeriodCondition | .
 | | +---------------------------+ .
 | | (j) .
 | <......................... .
 | |* . .
 | | .* .
 | | +----------v---------+* .
 | | | PolicyAction <.......
 +-------------+ +--------------------+

 Figure 1. Overview of the Core Policy Classes and Relationships

Moore, et al. Standards Track [Page 11]

RFC 3060 Policy Core Information Model February 2001

 In this figure the boxes represent the classes, and the dotted arrows
 represent the associations. The following associations appear:

 (a) PolicyGroupInPolicyGroup

 (b) PolicyGroupInSystem

 (c) PolicyRuleInSystem

 (d) PolicyRepositoryInPolicyRepository

 (e) PolicyRuleInPolicyGroup

 (f) PolicyConditionInPolicyRepository

 (g) PolicyActionInPolicyRepository

 (h) PolicyConditionInPolicyRule

 (i) PolicyRuleValidityPeriod

 (j) PolicyActionInPolicyRule

 An association always connects two classes. The "two" classes may,
 however, be the same class, as is the case with the
 PolicyGroupInPolicyGroup association, which represents the recursive
 containment of PolicyGroups in other PolicyGroups. The
 PolicyRepositoryInPolicyRepository association is recursive in the
 same way.

 An association includes cardinalities for each of the related
 classes. These cardinalities indicate how many instances of each
 class may be related to an instance of the other class. For example,
 the PolicyRuleInPolicyGroup association has the cardinality range "*’
 (that is, "0..n") for both the PolicyGroup and PolicyRule classes.
 These ranges are interpreted as follows:

 o The "*" written next to PolicyGroup indicates that a PolicyRule
 may be related to no PolicyGroups, to one PolicyGroup, or to more
 than one PolicyGroup via the PolicyRuleInPolicyGroup association.
 In other words, a PolicyRule may be contained in no PolicyGroups,
 in one PolicyGroups, or in more than one PolicyGroup.

 o The "*" written next to PolicyRule indicates that a PolicyGroup
 may be related to no PolicyRules, to one PolicyRule, or to more
 than one PolicyRule via the PolicyRuleInPolicyGroup association.
 In other words, a PolicyGroup may contain no PolicyRules, one
 PolicyRule, or more than one PolicyRule.

Moore, et al. Standards Track [Page 12]

RFC 3060 Policy Core Information Model February 2001

 The "w" written next to the PolicyGroupInSystem and
 PolicyRuleInSystem indicates that these are what CIM terms
 "aggregations with weak references", or more briefly, "weak
 aggregations". A weak aggregation is simply an indication of a
 naming scope. Thus these two aggregations indicate that an instance
 of a PolicyGroup or PolicyRule is named within the scope of a System
 object. A weak aggregation implicitly has the cardinality 1..1 at
 the end opposite the ’w’.

 The associations shown in Figure 1 are discussed in more detail in
 Section 7.

4. Inheritance Hierarchies for the Policy Core Information Model

 The following diagram illustrates the inheritance hierarchy for the
 core policy classes:

 ManagedElement (abstract)
 |
 +--Policy (abstract)
 | |
 | +---PolicyGroup
 | |
 | +---PolicyRule
 | |
 | +---PolicyCondition (abstract)
 | | |
 | | +---PolicyTimePeriodCondition
 | | |
 | | +---VendorPolicyCondition
 | |
 | +---PolicyAction (abstract)
 | |
 | +---VendorPolicyAction
 |
 +--ManagedSystemElement (abstract)
 |
 +--LogicalElement (abstract)
 |
 +--System (abstract)
 |
 +--AdminDomain (abstract)
 |
 +---PolicyRepository

 Figure 2. Inheritance Hierarchy for the Core Policy Classes

Moore, et al. Standards Track [Page 13]

RFC 3060 Policy Core Information Model February 2001

 ManagedElement, ManagedSystemElement, LogicalElement, System, and
 AdminDomain are defined in the CIM schema [1]. These classes are not
 discussed in detail in this document.

 In CIM, associations are also modeled as classes. For the Policy
 Core Information Model, the inheritance hierarchy for the
 associations is as follows:

 [unrooted]
 |
 +---PolicyComponent (abstract)
 | |
 | +---PolicyGroupInPolicyGroup
 | |
 | +---PolicyRuleInPolicyGroup
 | |
 | +---PolicyConditionInPolicyRule
 | |
 | +---PolicyRuleValidityPeriod
 | |
 | +---PolicyActionInPolicyRule
 |
 +---Dependency (abstract)
 | |
 | +---PolicyInSystem (abstract)
 | |
 | +---PolicyGroupInSystem
 | |
 | +---PolicyRuleInSystem
 | |
 | +---PolicyConditionInPolicyRepository
 | |
 | +---PolicyActionInPolicyRepository
 |
 +---Component (abstract)
 |
 +---SystemComponent
 |
 +---PolicyRepositoryInPolicyRepository

 Figure 3. Inheritance Hierarchy for the Core Policy Associations

 The Dependency, Component, and SystemComponent associations are
 defined in the CIM schema [1], and are not discussed further in this
 document.

Moore, et al. Standards Track [Page 14]

RFC 3060 Policy Core Information Model February 2001

4.1. Implications of CIM Inheritance

 From the CIM schema, both properties and associations are inherited
 to the Policy classes. For example, the class ManagedElement is
 referenced in the associations Dependency, Statistics and
 MemberOfCollection. And, the Dependency association is in turn
 referenced in the DependencyContext association. At this very
 abstract and high level in the inheritance hierarchy, the number of
 these associations is very small and their semantics are quite
 general.

 Many of these inherited associations convey additional semantics that
 are not needed in understanding the Policy Core Information Model.
 In fact, they are defined as OPTIONAL in the CIM Schema - since their
 cardinality is "0..n" on all references. The PCIM document
 specifically discusses what is necessary to support and instantiate.
 For example, through subclassing of the Dependency association, the
 exact Dependency semantics in PCIM are described.

 So, one may wonder what to do with these other inherited
 associations. The answer is "ignore them unless you need them". You
 would need them to describe additional information and semantics for
 policy data. For example, it may be necessary to capture statistical
 data for a PolicyRule (either for the rule in a repository or for
 when it is executing in a policy system). Some examples of
 statistical data for a rule are the number of times it was
 downloaded, the number of times its conditions were evaluated, and
 the number of times its actions were executed. (These types of data
 would be described in a subclass of CIM_StatisticalInformation.) In
 these cases, the Statistics association inherited from ManagedElement
 to PolicyRule may be used to describe the tie between an instance of
 a PolicyRule and the set of statistics for it.

5. Details of the Model

 The following subsections discuss several specific issues related to
 the Policy Core Information Model.

5.1. Reusable versus Rule-Specific Conditions and Actions

 Policy conditions and policy actions can be partitioned into two
 groups: ones associated with a single policy rule, and ones that are
 reusable, in the sense that they may be associated with more than one
 policy rule. Conditions and actions in the first group are termed
 "rule-specific" conditions and actions; those in the second group are
 characterized as "reusable".

Moore, et al. Standards Track [Page 15]

RFC 3060 Policy Core Information Model February 2001

 It is important to understand that the difference between a rule-
 specific condition or action and a reusable one is based on the
 intent of the policy administrator for the condition or action,
 rather than on the current associations in which the condition or
 action participates. Thus a reusable condition or action (that is,
 one that a policy administrator has created to be reusable) may at
 some point in time be associated with exactly one policy rule,
 without thereby becoming rule-specific.

 There is no inherent difference between a rule-specific condition or
 action and a reusable one. There are, however, differences in how
 they are treated in a policy repository. For example, it’s natural
 to make the access permissions for a rule-specific condition or
 action identical to those for the rule itself. It’s also natural for
 a rule-specific condition or action to be removed from the policy
 repository at the same time the rule is. With reusable conditions
 and actions, on the other hand, access permissions and existence
 criteria must be expressible without reference to a policy rule.

 The preceding paragraph does not contain an exhaustive list of the
 ways in which reusable and rule-specific conditions should be treated
 differently. Its purpose is merely to justify making a semantic
 distinction between rule-specific and reusable, and then reflecting
 this distinction in the policy model itself.

 An issue is highlighted by reusable and rule-specific policy
 conditions and policy actions: the lack of a programmatic capability
 for expressing complex constraints involving multiple associations.
 Taking PolicyCondition as an example, there are two aggregations to
 look at. PolicyConditionInPolicyRule has the cardinality * at both
 ends, and PolicyConditionInPolicyRepository has the cardinality * at
 the PolicyCondition end, and [0..1] at the PolicyRepository end.

 Globally, these cardinalities are correct. However, there’s more to
 the story, which only becomes clear if we examine the cardinalities
 separately for the two cases of a rule-specific PolicyCondition and a
 reusable one.

 For a rule-specific PolicyCondition, the cardinality of
 PolicyConditionInPolicyRule at the PolicyRule end is [1..1], rather
 than [0..n] (recall that * is an abbreviation for [0..n]), since the
 condition is unique to one policy rule. And the cardinality of
 PolicyConditionInPolicyRepository at the PolicyRepository end is
 [0..0], since the condition is not in the "re-usable" repository.
 This is OK, since these are both subsets of the specified
 cardinalities.

Moore, et al. Standards Track [Page 16]

RFC 3060 Policy Core Information Model February 2001

 For a reusable PolicyCondition, however, the cardinality of
 PolicyConditionInPolicyRepository at the PolicyRepository end is
 [1..1], since the condition must be in the repository. And, the
 cardinality of PolicyConditionInPolicyRule at the PolicyRule end is
 [0..n]. This last point is important: a reusable PolicyCondition
 may be associated with 0, 1, or more than 1 PolicyRules, via exactly
 the same association PolicyConditionInPolicyRule that binds a rule-
 specific condition to its PolicyRule.

 Currently the only way to document constraints of this type is
 textually. More formal methods for documenting complex constraints
 are needed.

5.2. Roles

5.2.1. Roles and Role Combinations

 The concept of role is central to the design of the entire Policy
 Framework. The idea behind roles is a simple one. Rather than
 configuring, and then later having to update the configuration of,
 hundreds or thousands (or more) of resources in a network, a policy
 administrator assigns each resource to one or more roles, and then
 specifies the policies for each of these roles. The Policy Framework
 is then responsible for configuring each of the resources associated
 with a role in such a way that it behaves according to the policies
 specified for that role. When network behavior must be changed, the
 policy administrator can perform a single update to the policy for a
 role, and the Policy Framework will ensure that the necessary
 configuration updates are performed on all the resources playing that
 role.

 A more formal definition of a role is as follows:

 A role is a type of attribute that is used to select one or more
 policies for a set of entities and/or components from among a much
 larger set of available policies.

 Roles can be combined together. Here is a formal definition of a
 "role- combination":

 A role-combination is a set of attributes that are used to select
 one or more policies for a set of entities and/or components from
 among a much larger set of available policies. As the examples
 below illustrate, the selection process for a role combination
 chooses policies associated with the combination itself, policies
 associated with each of its sub-combinations, and policies
 associated with each of the individual roles in the role-
 combination.

Moore, et al. Standards Track [Page 17]

RFC 3060 Policy Core Information Model February 2001

 It is important to note that a role is more than an attribute. A
 role defines a particular function of an entity or component that can
 be used to identify particular behavior associated with that entity
 or component. This difference is critical, and is most easily
 understood by thinking of a role as a selector. When used in this
 manner, one role (or role-combination) selects a different set of
 policies than a different role (or role-combination) does.

 Roles and role-combinations are especially useful in selecting which
 policies are applicable to a particular set of entities or components
 when the policy repository can store thousands or hundreds of
 thousands of policies. This use emphasizes the ability of the role
 (or role- combination) to select the small subset of policies that
 are applicable from a huge set of policies that are available.

 An example will illustrate how role-combinations actually work.
 Suppose an installation has three roles defined for interfaces:
 "Ethernet", "Campus", and "WAN". In the Policy Repository, some
 policy rules could be associated with the role "Ethernet"; these
 rules would apply to all Ethernet interfaces, regardless of whether
 they were on the campus side or the WAN side. Other rules could be
 associated with the role-combination "Campus"+"Ethernet"; these rules
 would apply to the campus-side Ethernet interfaces, but not to those
 on the WAN side. Finally, a third set of rules could be associated
 with the role-combination "Ethernet"+"WAN"; these rules would apply
 to the WAN-side Ethernet interfaces, but not to those on the campus
 side. (The roles in a role-combination appear in alphabetical order
 in these examples, because that is how they appear in the information
 model.)

 If we have a specific interface A that’s associated with the role-
 combination "Ethernet"+"WAN", we see that it should have three
 categories of policy rules applied to it: those for the "Ethernet"
 role, those for the "WAN" role, and those for the role-combination
 "Ethernet"+"WAN". Going one step further, if interface B is
 associated with the role- combination "branch-
 office"+"Ethernet"+"WAN", then B should have seven categories of
 policy rules applied to it - those associated with the following
 role-combinations:

 o "branch-office"
 o "Ethernet"
 o "WAN"
 o "branch-office"+"Ethernet"
 o "branch-office"+"WAN"
 o "Ethernet"+"WAN"
 o "branch-office"+"Ethernet"+"WAN".

Moore, et al. Standards Track [Page 18]

RFC 3060 Policy Core Information Model February 2001

 In order to get all of the right policy rules for a resource like
 interface B, a PDP must expand the single role-combination it
 receives for B into this list of seven role-combinations, and then
 retrieve from the Policy Repository the corresponding seven sets of
 policy rules. Of course this example is unusually complicated: the
 normal case will involve expanding a two-role combination into three
 values identifying three sets of policy rules.

 Role-combinations also help to simplify somewhat the problem of
 identifying conflicts between policy rules. With role-combinations,
 it is possible for a policy administrator to specify one set of
 policy rules for campus-side Ethernet interfaces, and a second set of
 policy rules for WAN-side Ethernet interfaces, without having to
 worry about conflicts between the two sets of rules. The policy
 administrator simply "turns off" conflict detection for these two
 sets of rules, by telling the policy management system that the roles
 "Campus" and "WAN" are incompatible with each other. This indicates
 that the role combination will never occur, and therefore conflicts
 will never occur. In some cases the technology itself might identify
 incompatible roles: "Ethernet" and "FrameRelay", for example. But
 for less precise terms like "Campus" and "WAN", the policy
 administrator must say whether they identify incompatible roles.

 When the policy administrator does this, there are three effects:

 1. If an interface has assigned to it a role-combination involving
 both "Campus" and "WAN", then the policy management system can
 flag it as an error.

 2. If a policy rule is associated with a role-combination involving
 both "Campus" and "WAN", then the policy management system can
 flag it as an error.

 3. If the policy management system sees two policy rules, where one
 is tied to the role "Campus" (or to a role-combination that
 includes the role "Campus") and the other is tied to the role
 "WAN" (or to a role- combination that includes the role "WAN"),
 then the system does not need to look for conflicts between the
 two policy rules: because of the incompatible roles, the two
 rules cannot possibly conflict.

Moore, et al. Standards Track [Page 19]

RFC 3060 Policy Core Information Model February 2001

 +-------------------+
 | Policy Repository |
 +-------------------+
 V
 V retrieval of policy
 V
 +---------+
 | PDP/PEP |
 +---------+
 v
 v application of policy
 v
 +----------------+
 | Network Entity |
 +----------------+

 Figure 4. Retrieval and Application of a Policy

 Figure 4, which is introduced only as an example of how the Policy
 Framework might be implemented by a collection of network
 components, illustrates how roles operate within the Policy
 Framework. Because the distinction between them is not important
 to this discussion, the PDP and the PEP are combined in one box.
 The points illustrated here apply equally well, though, to an
 environment where the PDP and the PEP are implemented separately.

 A role represents a functional characteristic or capability of a
 resource to which policies are applied. Examples of roles include
 Backbone interface, Frame Relay interface, BGP-capable router, web
 server, firewall, etc. The multiple roles assigned to a single
 resource are combined to form that resource’s role combination.
 Role combinations are represented in the PCIM by values of the
 PolicyRoles property in the PolicyRule class. A PDP uses policy
 roles as follows to identify the policies it needs to be aware of:

 1. The PDP learns in some way the list of roles that its PEPs
 play. This information might be configured at the PDP, the
 PEPs might supply it to the PDP, or the PDP might retrieve it
 from a repository.

 2. Using repository-specific means, the PDP determines where to
 look for policy rules that might apply to it.

 3. Using the roles and role-combinations it received from its PEPs
 as indicated in the examples above, the PDP is able to locate
 and retrieve the policy rules that are relevant to it.

Moore, et al. Standards Track [Page 20]

RFC 3060 Policy Core Information Model February 2001

5.2.2. The PolicyRoles Property

 As indicated earlier, PolicyRoles is a property associated with a
 policy rule. It is an array holding "role combinations" for the
 policy rule, and correlates with the roles defined for a network
 resource. Using the PolicyRoles property, it is possible to mark a
 policy rule as applying, for example, to a Frame Relay interface or
 to a backbone ATM interface. The PolicyRoles property take strings
 of the form:

 <RoleName>[&&<RoleName>]*

 Each value of this property represents a role combination, including
 the special case of a "combination" containing only one role. As the
 format indicates, the role names in a role combination are ANDed
 together to form a single selector. The multiple values of the
 PolicyRoles property are logically ORed, to make it possible for a
 policy rule to have multiple selectors.

 The individual role names in a role combination must appear in
 alphabetical order (according to the collating sequence for UCS-2
 characters), to make the string matches work correctly. The role
 names used in an environment are specified by the policy
 administrator.

5.3. Local Time and UTC Time in PolicyTimePeriodConditions

 An instance of PolicyTimePeriodCondition has up to five properties
 that represent times: TimePeriod, MonthOfYearMask, DayOfMonthMask,
 DayOfWeekMask, and TimeOfDayMask. All of the time-related properties
 in an instance of PolicyTimePeriodCondition represent one of two
 types of times: local time at the place where a policy rule is
 applied, or UTC time. The property LocalOrUtcTime indicates which
 time representation applies to an instance of
 PolicyTimePeriodCondition.

 Since the PCIM provides only for local time and UTC time, a Policy
 Management Tool that provides for other time representations (for
 example, a fixed time at a particular location) will need to map from
 these other representations to either local time or UTC time. An
 example will illustrate the nature of this mapping.

 Suppose a policy rule is tied to the hours of operation for a Help
 Desk: 0800 to 2000 Monday through Friday [US] Eastern Time. In
 order to express these times in PolicyTimePeriodCondition, a
 management tool must convert them to UTC times. (They are not local
 times, because they refer to a single time interval worldwide, not to
 intervals tied to the local clocks at the locations where the

Moore, et al. Standards Track [Page 21]

RFC 3060 Policy Core Information Model February 2001

 PolicyRule is being applied.) As reference [10] points out, mapping
 from [US] Eastern Time to UTC time is not simply a matter of applying
 an offset: the offset between [US] Eastern Time and UTC time
 switches between -0500 and -0400 depending on whether Daylight
 Savings Time is in effect in the US.

 Suppose the policy administrator’s goal is to have a policy rule be
 valid from 0800 until 1200 [US] Eastern Time on every Monday, within
 the overall time period from the beginning of 2000 until the end of
 2001. The Policy Management Tool could either be configured with the
 definition of what [US] Eastern Time means, or it could be configured
 with knowledge of where to go to get this information. Reference
 [10] contains further discussion of time zone definitions and where
 they might reside.

 Armed with knowledge about [US] Eastern Time, the Policy Management
 Tool would create however many instances of PolicyTimePeriodCondition
 it needed to represent the desired intervals. Note that while there
 is an increased number of PolicyTimePeriodCondition instances, there
 is still just one PolicyRule, which is tied to all the
 PolicyTimePeriodCondition instances via the aggregation
 PolicyRuleValidityPeriod. Here are the first two of these instances:

 1. TimePeriod: 20000101T050000/20000402T070000
 DayOfWeekMask: { Monday }
 TimeOfDayMask: T130000/T170000
 LocalOrUtcTime: UTC

 2. TimePeriod: 20000402T070000/20001029T070000
 DayOfWeekMask: { Monday }
 TimeOfDayMask: T120000/T160000
 LocalOrUtcTime: UTC

 There would be three more similar instances, for winter 2000-2001,
 summer 2001, and winter 2001 up through December 31.

 Had the example been chosen differently, there could have been even
 more instances of PolicyTimePeriodCondition. If, for example, the

 time interval had been from 0800 - 2200 [US] Eastern Time on Mondays,
 instance 1 above would have split into two instances: one with a UTC
 time interval of T130000/T240000 on Mondays, and another with a UTC
 time interval of T000000/T030000 on Tuesdays. So the end result
 would have been ten instances of PolicyTimePeriodCondition, not five.

 By restricting PolicyTimePeriodCondition to local time and UTC time,
 the PCIM places the difficult and expensive task of mapping from
 "human" time representations to machine-friendly ones in the Policy

Moore, et al. Standards Track [Page 22]

RFC 3060 Policy Core Information Model February 2001

 Management Tool. Another approach would have been to place in
 PolicyTimePeriodCondition a means of representing a named time zone,
 such as [US] Eastern Time. This, however, would have passed the
 difficult mapping responsibility down to the PDPs and PEPs. It is
 better to have a mapping such as the one described above done once in
 a Policy Management Tool, rather than having it done over and over in
 each of the PDPs (and possibly PEPs) that need to apply a PolicyRule.

5.4. CIM Data Types

 Since PCIM extends the CIM Schema, a correspondence between data
 types used in both CIM and PCIM is needed. The following CIM data
 types are used in the class definitions that follow in Sections 6 and
 7:

 o uint8 unsigned 8-bit integer

 o uint16 unsigned 16-bit integer

 o boolean Boolean

 o string UCS-2 string.

 Strings in CIM are stored as UCS-2 characters, where each character
 is encoded in two octets. Thus string values may need to be
 converted when moving between a CIM environment and one that uses a
 different string encoding. For example, in an LDAP-accessible
 directory, attributes of type DirectoryString are stored in UTF-8
 format. RFC 2279 [7] explains how to convert between these two
 formats.

 When it is applied to a CIM string, a MaxLen value refers to the
 maximum number of characters in the string, rather than to the
 maximum number of octets.

 In addition to the CIM data types listed above, the association
 classes in Section 7 use the following type:

 o <classname> ref strongly typed reference.

 There is one obvious omission from this list of CIM data types:
 octet strings. This is because CIM treats octet strings as a derived
 data type. There are two forms of octet strings in CIM - an ordered
 uint8 array for single-valued strings, and a string array for multi-
 valued properties. Both are described by adding an "OctetString"
 qualifier (meta-data) to the property. This qualifier functions
 exactly like an SMIv2 (SNMP) Textual Convention, refining the syntax
 and semantics of the existing CIM data type.

Moore, et al. Standards Track [Page 23]

RFC 3060 Policy Core Information Model February 2001

 The first four numeric elements of both of the "OctetString"
 representations are a length field. (The reason that the "numeric"
 adjective is added to the previous sentence is that the string
 property also includes ’0’ and ’x’, as its first characters.) In
 both cases, these 4 numeric elements (octets) are included in
 calculating the length. For example, a single-valued octet string
 property having the value X’7C’ would be represented by the uint8
 array, X’00 00 00 05 7C’.

 The strings representing the individual values of a multi-valued
 property qualified with the "OctetString" qualifier are constructed
 similarly:

 1. Take a value to be encoded as an octet string (we’ll use X’7C’ as
 above), and prepend to it a four-octet length. The result is the
 same, X’00 00 00 05 7C’.

 2. Convert this to a character string by introducing ’0’ and ’x’ at
 the front, and removing all white space. Thus we have the 12-
 character string "0x000000057C". This string is the value of one
 of the array elements in the CIM string array. Since CIM uses the
 UCS-2 character set, it will require 24 octets to encode this 12-
 character string.

 Mappings of the PCIM to particular data models are not required to
 follow this CIM technique of representing multi-valued octet strings
 as length- prefixed character strings. In an LDAP mapping, for
 example, it would be much more natural to simply use the Octet String
 syntax, and omit the prepended length octets.

5.5. Comparison between CIM and LDAP Class Specifications

 There are a number of differences between CIM and LDAP class
 specifications. The ones that are relevant to the abbreviated class
 specifications in this document are listed below. These items are
 included here to help introduce the IETF community, which is already
 familiar with LDAP, to CIM modeling, and by extension, to information
 modeling in general.

 o Instead of LDAP’s three class types (abstract, auxiliary,
 structural), CIM has only two: abstract and instantiable. The
 type of a CIM class is indicated by the Boolean qualifier
 ABSTRACT.

 o CIM uses the term "property" for what LDAP terms an "attribute".

Moore, et al. Standards Track [Page 24]

RFC 3060 Policy Core Information Model February 2001

 o CIM uses the array notation "[]" to indicate that a property is
 multi-valued. CIM defines three types of arrays: bags (contents
 are unordered, duplicates allowed), ordered bags (contents are
 ordered but duplicates are allowed) and indexed arrays (contents
 are ordered and no duplicates are allowed).

 o CIM classes and properties are identified by name, not by OID.

 o CIM classes use a different naming scheme for native
 implementations, than LDAP. The CIM naming scheme is documented
 in Appendix A since it is not critical to understanding the
 information model, and only applies when communicating with a
 native CIM implementation.

 o In LDAP, attribute definitions are global, and the same attribute
 may appear in multiple classes. In CIM, a property is defined
 within the scope of a single class definition. The property may
 be inherited into subclasses of the class in which it is defined,
 but otherwise it cannot appear in other classes. One side effect
 of this difference is that CIM property names tend to be much
 shorter than LDAP attribute names, since they are implicitly
 scoped by the name of the class in which they are defined.

 There is also a notational convention that this document follows, to
 improve readability. In CIM, all class and property names are
 prefixed with the characters "CIM_". These prefixes have been
 omitted throughout this document, with one exception regarding
 naming, documented in Appendix A.

 For the complete definition of the CIM specification language, see
 reference [2].

6. Class Definitions

 The following sections contain the definitions of the PCIM classes.

6.1. The Abstract Class "Policy"

 The abstract class Policy collects several properties that may be
 included in instances of any of the Core Policy classes (or their
 subclasses). For convenience, the two properties that Policy
 inherits from ManagedElement in the CIM schema are shown here as
 well.

Moore, et al. Standards Track [Page 25]

RFC 3060 Policy Core Information Model February 2001

 The class definition is as follows:

 NAME Policy
 DESCRIPTION An abstract class with four properties for
 describing a policy-related instance.
 DERIVED FROM ManagedElement
 ABSTRACT TRUE
 PROPERTIES CommonName (CN)
 PolicyKeywords[]
 // Caption (inherited)
 // Description (inherited)

6.1.1. The Property "CommonName (CN)"

 The CN, or CommonName, property corresponds to the X.500 attribute
 commonName (cn). In X.500 this property specifies one or more user-
 friendly names (typically only one name) by which an object is
 commonly known, names that conform to the naming conventions of the
 country or culture with which the object is associated. In the CIM
 model, however, the CommonName property is single-valued.

 NAME CN
 DESCRIPTION A user-friendly name of a policy-related object.
 SYNTAX string

6.1.2. The Multi-valued Property "PolicyKeywords"

 This property provides a set of one or more keywords that a policy
 administrator may use to assist in characterizing or categorizing a
 policy object. Keywords are of one of two types:

 o Keywords defined in this document, or in documents that define
 subclasses of the classes defined in this document. These
 keywords provide a vendor-independent, installation-independent
 way of characterizing policy objects.

 o Installation-dependent keywords for characterizing policy objects.
 Examples include "Engineering", "Billing", and "Review in December
 2000".

 This document defines the following keywords: "UNKNOWN",
 "CONFIGURATION", "USAGE", "SECURITY", "SERVICE", "MOTIVATIONAL",
 "INSTALLATION", and "EVENT". These concepts were defined earlier in
 Section 2.

Moore, et al. Standards Track [Page 26]

RFC 3060 Policy Core Information Model February 2001

 One additional keyword is defined: "POLICY". The role of this
 keyword is to identify policy-related instances that would not
 otherwise be identifiable as being related to policy. It may be
 needed in some repository implementations.

 Documents that define subclasses of the Policy Core Information Model
 classes SHOULD define additional keywords to characterize instances
 of these subclasses. By convention, keywords defined in conjunction
 with class definitions are in uppercase. Installation-defined
 keywords can be in any case.

 The property definition is as follows:

 NAME PolicyKeywords
 DESCRIPTION A set of keywords for characterizing /categorizing
 policy objects.
 SYNTAX string

6.1.3. The Property "Caption" (Inherited from ManagedElement)

 This property provides a one-line description of a policy-related
 object.

 NAME Caption
 DESCRIPTION A one-line description of this policy-related object.
 SYNTAX string

6.1.4. The Property "Description" (Inherited from ManagedElement)

 This property provides a longer description than that provided by the
 caption property.

 NAME Description
 DESCRIPTION A long description of this policy-related object.
 SYNTAX string

6.2. The Class "PolicyGroup"

 This class is a generalized aggregation container. It enables either
 PolicyRules or PolicyGroups to be aggregated in a single container.
 Loops, including the degenerate case of a PolicyGroup that contains
 itself, are not allowed when PolicyGroups contain other PolicyGroups.

 PolicyGroups and their nesting capabilities are shown in Figure 5
 below. Note that a PolicyGroup can nest other PolicyGroups, and
 there is no restriction on the depth of the nesting in sibling
 PolicyGroups.

Moore, et al. Standards Track [Page 27]

RFC 3060 Policy Core Information Model February 2001

 +---+
 | PolicyGroup |
 | |
 | +--------------------+ +-----------------+ |
 | | PolicyGroup A | | PolicyGroup X | | | |
 | | | | | |
 | | +----------------+ | ooo | | |
 | | | PolicyGroup A1 | | | | |
 | | +----------------+ | | | |
 | +--------------------+ +-----------------+ |
 +---+

 Figure 5. Overview of the PolicyGroup class

 As a simple example, think of the highest level PolicyGroup shown in
 Figure 5 above as a logon policy for US employees of a company. This
 PolicyGroup may be called USEmployeeLogonPolicy, and may aggregate
 several PolicyGroups that provide specialized rules per location.
 Hence, PolicyGroup A in Figure 5 above may define logon rules for
 employees on the West Coast, while another PolicyGroup might define
 logon rules for the Midwest (e.g., PolicyGroup X), and so forth.

 Note also that the depth of each PolicyGroup does not need to be the
 same. Thus, the WestCoast PolicyGroup might have several additional
 layers of PolicyGroups defined for any of several reasons (different
 locales, number of subnets, etc..). The PolicyRules are therefore
 contained at n levels from the USEmployeeLogonPolicyGroup. Compare
 this to the Midwest PolicyGroup (PolicyGroup X), which might directly
 contain PolicyRules.

 The class definition for PolicyGroup is as follows:

 NAME PolicyGroup
 DESCRIPTION A container for either a set of related
 PolicyRules or a set of related PolicyGroups.
 DERIVED FROM Policy
 ABSTRACT FALSE
 PROPERTIES NONE

 No properties are defined for this class since it inherits all its
 properties from Policy. The class exists to aggregate PolicyRules or
 other PolicyGroups. It is directly instantiable. In an
 implementation, various key/identification properties MUST be
 defined. The keys for a native CIM implementation are defined in
 Appendix A, Section 13.1.1. Keys for an LDAP implementation will be
 defined in the LDAP mapping of this information model [11].

Moore, et al. Standards Track [Page 28]

RFC 3060 Policy Core Information Model February 2001

6.3. The Class "PolicyRule"

 This class represents the "If Condition then Action" semantics
 associated with a policy. A PolicyRule condition, in the most
 general sense, is represented as either an ORed set of ANDed
 conditions (Disjunctive Normal Form, or DNF) or an ANDed set of ORed
 conditions (Conjunctive Normal Form, or CNF). Individual conditions
 may either be negated (NOT C) or unnegated (C). The actions
 specified by a PolicyRule are to be performed if and only if the
 PolicyRule condition (whether it is represented in DNF or CNF)
 evaluates to TRUE.

 The conditions and actions associated with a policy rule are modeled,
 respectively, with subclasses of the classes PolicyCondition and
 PolicyAction. These condition and action objects are tied to
 instances of PolicyRule by the PolicyConditionInPolicyRule and
 PolicyActionInPolicyRule aggregations.

 As illustrated above in Section 3, a policy rule may also be
 associated with one or more policy time periods, indicating the
 schedule according to which the policy rule is active and inactive.
 In this case it is the PolicyRuleValidityPeriod aggregation that
 provides the linkage.

 A policy rule is illustrated conceptually in Figure 6. below.

 +--+
 | PolicyRule |
 | |
 | +--------------------+ +-----------------+ |
 | | PolicyCondition(s) | | PolicyAction(s) | |
 | +--------------------+ +-----------------+ |
 | |
 | +------------------------------+ |
 | | PolicyTimePeriodCondition(s) | |
 | +------------------------------+ |
 +--+

 Figure 6. Overview of the PolicyRule Class

 The PolicyRule class uses the property ConditionListType, to indicate
 whether the conditions for the rule are in DNF or CNF. The
 PolicyConditionInPolicyRule aggregation contains two additional
 properties to complete the representation of the rule’s conditional
 expression. The first of these properties is an integer to partition
 the referenced conditions into one or more groups, and the second is
 a Boolean to indicate whether a referenced condition is negated. An

Moore, et al. Standards Track [Page 29]

RFC 3060 Policy Core Information Model February 2001

 example shows how ConditionListType and these two additional
 properties provide a unique representation of a set of conditions in
 either DNF or CNF.

 Suppose we have a PolicyRule that aggregates five PolicyConditions C1
 through C5, with the following values in the properties of the five
 PolicyConditionInPolicyRule associations:

 C1: GroupNumber = 1, ConditionNegated = FALSE
 C2: GroupNumber = 1, ConditionNegated = TRUE
 C3: GroupNumber = 1, ConditionNegated = FALSE
 C4: GroupNumber = 2, ConditionNegated = FALSE
 C5: GroupNumber = 2, ConditionNegated = FALSE

 If ConditionListType = DNF, then the overall condition for the
 PolicyRule is:

 (C1 AND (NOT C2) AND C3) OR (C4 AND C5)

 On the other hand, if ConditionListType = CNF, then the overall
 condition for the PolicyRule is:

 (C1 OR (NOT C2) OR C3) AND (C4 OR C5)

 In both cases, there is an unambiguous specification of the overall
 condition that is tested to determine whether to perform the actions
 associated with the PolicyRule.

 The class definition is as follows:

 NAME PolicyRule
 DESCRIPTION The central class for representing the "If Condition
 then Action" semantics associated with a policy rule.
 DERIVED FROM Policy
 ABSTRACT FALSE
 PROPERTIES Enabled
 ConditionListType
 RuleUsage
 Priority
 Mandatory
 SequencedActions
 PolicyRoles

 The PolicyRule class is directly instantiable. In an implementation,
 various key/identification properties MUST be defined. The keys for
 a native CIM implementation are defined in Appendix A, Section
 13.1.2. Keys for an LDAP implementation will be defined in the LDAP
 mapping of this information model [11].

Moore, et al. Standards Track [Page 30]

RFC 3060 Policy Core Information Model February 2001

6.3.1. The Property "Enabled"

 This property indicates whether a policy rule is currently enabled,
 from an administrative point of view. Its purpose is to allow a
 policy administrator to enable or disable a policy rule without
 having to add it to, or remove it from, the policy repository.

 The property also supports the value ’enabledForDebug’. When the
 property has this value, the entity evaluating the policy
 condition(s) is being told to evaluate the conditions for the policy
 rule, but not to perform the actions if the conditions evaluate to
 TRUE. This value serves as a debug vehicle when attempting to
 determine what policies would execute in a particular scenario,
 without taking any actions to change state during the debugging.

 The property definition is as follows:

 NAME Enabled
 DESCRIPTION An enumeration indicating whether a policy rule is
 administratively enabled, administratively disabled,
 or enabled for debug mode.
 SYNTAX uint16
 VALUES enabled(1), disabled(2), enabledForDebug(3)
 DEFAULT VALUE enabled(1)

6.3.2. The Property "ConditionListType"

 This property is used to specify whether the list of policy
 conditions associated with this policy rule is in disjunctive normal
 form (DNF) or conjunctive normal form (CNF). If this property is not
 present, the list type defaults to DNF. The property definition is
 as follows:

 NAME ConditionListType
 DESCRIPTION Indicates whether the list of policy conditions
 associated with this policy rule is in disjunctive
 normal form (DNF) or conjunctive normal form (CNF).
 SYNTAX uint16
 VALUES DNF(1), CNF(2)
 DEFAULT VALUE DNF(1)

6.3.3. The Property "RuleUsage"

 This property is a free-form string that recommends how this policy
 should be used. The property definition is as follows:

Moore, et al. Standards Track [Page 31]

RFC 3060 Policy Core Information Model February 2001

 NAME RuleUsage
 DESCRIPTION This property is used to provide guidelines on
 how this policy should be used.
 SYNTAX string

6.3.4. The Property "Priority"

 This property provides a non-negative integer for prioritizing policy
 rules relative to each other. Larger integer values indicate higher
 priority. Since one purpose of this property is to allow specific,
 ad hoc policy rules to temporarily override established policy rules,
 an instance that has this property set has a higher priority than all
 instances that use or set the default value of zero.

 Prioritization among policy rules provides a basic mechanism for
 resolving policy conflicts.

 The property definition is as follows:

 NAME Priority
 DESCRIPTION A non-negative integer for prioritizing this
 PolicyRule relative to other PolicyRules. A larger
 value indicates a higher priority.
 SYNTAX uint16
 DEFAULT VALUE 0

6.3.5. The Property "Mandatory"

 This property indicates whether evaluation (and possibly action
 execution) of a PolicyRule is mandatory or not. Its concept is
 similar to the ability to mark packets for delivery or possible
 discard, based on network traffic and device load.

 The evaluation of a PolicyRule MUST be attempted if the Mandatory
 property value is TRUE. If the Mandatory property value of a
 PolicyRule is FALSE, then the evaluation of the rule is "best effort"
 and MAY be ignored.

 The property definition is as follows:

 NAME Mandatory
 DESCRIPTION A flag indicating that the evaluation of the
 PolicyConditions and execution of PolicyActions
 (if the condition list evaluates to TRUE) is
 required.
 SYNTAX boolean
 DEFAULT VALUE TRUE

Moore, et al. Standards Track [Page 32]

RFC 3060 Policy Core Information Model February 2001

6.3.6. The Property "SequencedActions"

 This property gives a policy administrator a way of specifying how
 the ordering of the policy actions associated with this PolicyRule is
 to be interpreted. Three values are supported:

 o mandatory(1): Do the actions in the indicated order, or don’t do
 them at all.

 o recommended(2): Do the actions in the indicated order if you can,
 but if you can’t do them in this order, do them in another order
 if you can.

 o dontCare(3): Do them -- I don’t care about the order.

 When error / event reporting is addressed for the Policy Framework,
 suitable codes will be defined for reporting that a set of actions
 could not be performed in an order specified as mandatory (and thus
 were not performed at all), that a set of actions could not be
 performed in a recommended order (and moreover could not be performed
 in any order), or that a set of actions could not be performed in a
 recommended order (but were performed in a different order). The
 property definition is as follows:

 NAME SequencedActions
 DESCRIPTION An enumeration indicating how to interpret the
 action ordering indicated via the
 PolicyActionInPolicyRule aggregation.
 SYNTAX uint16
 VALUES mandatory(1), recommended(2), dontCare(3)
 DEFAULT VALUE dontCare(3)

6.3.7. The Multi-valued Property "PolicyRoles"

 This property represents the roles and role combinations associated
 with a policy rule. Each value represents one role combination.
 Since this is a multi-valued property, more than one role combination
 can be associated with a single policy rule. Each value is a string
 of the form

 <RoleName>[&&<RoleName>]*

 where the individual role names appear in alphabetical order
 (according to the collating sequence for UCS-2). The property
 definition is as follows:

Moore, et al. Standards Track [Page 33]

RFC 3060 Policy Core Information Model February 2001

 NAME PolicyRoles
 DESCRIPTION A set of strings representing the roles and role
 combinations associated with a policy rule. Each
 value represents one role combination.
 SYNTAX string

6.4. The Abstract Class "PolicyCondition"

 The purpose of a policy condition is to determine whether or not the
 set of actions (aggregated in the PolicyRule that the condition
 applies to) should be executed or not. For the purposes of the
 Policy Core Information Model, all that matters about an individual
 PolicyCondition is that it evaluates to TRUE or FALSE. (The
 individual PolicyConditions associated with a PolicyRule are combined
 to form a compound expression in either DNF or CNF, but this is
 accomplished via the ConditionListType property, discussed above, and
 by the properties of the PolicyConditionInPolicyRule aggregation,
 introduced above and discussed further in Section 7.6 below.) A
 logical structure within an individual PolicyCondition may also be
 introduced, but this would have to be done in a subclass of
 PolicyCondition.

 Because it is general, the PolicyCondition class does not itself
 contain any "real" conditions. These will be represented by
 properties of the domain-specific subclasses of PolicyCondition.

 +---+
 | Policy Conditions in DNF |
 | +-------------------------+ +-----------------------+ |
 | | AND list | | AND list | | | | | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | ... | | PolicyCondition | | |
 | | +-------------------+ | ORed | +-----------------+ | |
 | | ... | | ... | |
 | | ANDed | | ANDed | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | +-------------------------+ +-----------------------+ |
 +---+

 Figure 7. Overview of Policy Conditions in DNF

Moore, et al. Standards Track [Page 34]

RFC 3060 Policy Core Information Model February 2001

 This figure illustrates that when policy conditions are in DNF, there
 are one or more sets of conditions that are ANDed together to form
 AND lists. An AND list evaluates to TRUE if and only if all of its
 constituent conditions evaluate to TRUE. The overall condition then
 evaluates to TRUE if and only if at least one of its constituent AND
 lists evaluates to TRUE.

 +---+
 | Policy Conditions in CNF |
 | +-------------------------+ +-----------------------+ |
 | | OR list | | OR list | | | | | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | ... | | PolicyCondition | | |
 | | +-------------------+ | ANDed | +-----------------+ | |
 | | ... | | ... | |
 | | ORed | | ORed | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | +-------------------------+ +-----------------------+ |
 +---+

 Figure 8. Overview of Policy Conditions in CNF

 In this figure, the policy conditions are in CNF. Consequently,
 there are one or more OR lists, each of which evaluates to TRUE if
 and only if at least one of its constituent conditions evaluates to
 TRUE. The overall condition then evaluates to TRUE if and only if
 ALL of its constituent OR lists evaluate to TRUE.

 The class definition of PolicyCondition is as follows:

 NAME PolicyCondition
 DESCRIPTION A class representing a rule-specific or reusable
 policy condition to be evaluated in conjunction
 with a policy rule.
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES NONE

 No properties are defined for this class since it inherits all its
 properties from Policy. The class exists as an abstract superclass
 for domain-specific policy conditions, defined in subclasses. In an
 implementation, various key/identification properties MUST be defined
 for the class or its instantiable subclasses. The keys for a native

Moore, et al. Standards Track [Page 35]

RFC 3060 Policy Core Information Model February 2001

 CIM implementation are defined in Appendix A, Section 13.2. Keys for
 an LDAP implementation will be defined in the LDAP mapping of this
 information model [11].

 When identifying and using the PolicyCondition class, it is necessary
 to remember that a condition can be rule-specific or reusable. This
 was discussed above in Section 5.1. The distinction between the two
 types of policy conditions lies in the associations in which an
 instance can participate, and in how the different instances are
 named. Conceptually, a reusable policy condition resides in a policy
 repository, and is named within the scope of that repository. On the
 other hand, a rule-specific policy condition is, as the name
 suggests, named within the scope of the single policy rule to which
 it is related.

 The distinction between rule-specific and reusable PolicyConditions
 affects the CIM naming, defined in Appendix A, and the LDAP mapping
 [11].

6.5. The Class "PolicyTimePeriodCondition"

 This class provides a means of representing the time periods during
 which a policy rule is valid, i.e., active. At all times that fall
 outside these time periods, the policy rule has no effect. A policy
 rule is treated as valid at all times if it does not specify a
 PolicyTimePeriodCondition.

 In some cases a PDP may need to perform certain setup / cleanup
 actions when a policy rule becomes active / inactive. For example,
 sessions that were established while a policy rule was active might
 need to be taken down when the rule becomes inactive. In other
 cases, however, such sessions might be left up: in this case, the
 effect of deactivating the policy rule would just be to prevent the
 establishment of new sessions. Setup / cleanup behaviors on validity
 period transitions are not currently addressed by the PCIM, and must
 be specified in ’guideline’ documents, or via subclasses of
 PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of
 Policy. If such behaviors need to be under the control of the policy
 administrator, then a mechanism to allow this control must also be
 specified in the subclass.

 PolicyTimePeriodCondition is defined as a subclass of
 PolicyCondition. This is to allow the inclusion of time-based
 criteria in the AND/OR condition definitions for a PolicyRule.

 Instances of this class may have up to five properties identifying
 time periods at different levels. The values of all the properties
 present in an instance are ANDed together to determine the validity

Moore, et al. Standards Track [Page 36]

RFC 3060 Policy Core Information Model February 2001

 period(s) for the instance. For example, an instance with an overall
 validity range of January 1, 2000 through December 31, 2000; a month
 mask that selects March and April; a day-of-the-week mask that
 selects Fridays; and a time of day range of 0800 through 1600 would
 represent the following time periods:

 Friday, March 5, 2000, from 0800 through 1600;
 Friday, March 12, 2000, from 0800 through 1600;
 Friday, March 19, 2000, from 0800 through 1600;
 Friday, March 26, 2000, from 0800 through 1600;
 Friday, April 2, 2000, from 0800 through 1600;
 Friday, April 9, 2000, from 0800 through 1600;
 Friday, April 16, 2000, from 0800 through 1600;
 Friday, April 23, 2000, from 0800 through 1600;
 Friday, April 30, 2000, from 0800 through 1600.

 Properties not present in an instance of PolicyTimePeriodCondition
 are implicitly treated as having their value "always enabled". Thus,
 in the example above, the day-of-the-month mask is not present, and
 so the validity period for the instance implicitly includes a day-
 of-the-month mask that selects all days of the month. If we apply
 this "missing property" rule to its fullest, we see that there is a
 second way to indicate that a policy rule is always enabled: have it
 point to an instance of PolicyTimePeriodCondition whose only
 properties are its naming properties.

 The property LocalOrUtcTime indicates whether the times represented
 in the other five time-related properties of an instance of
 PolicyTimePeriodCondition are to be interpreted as local times for
 the location where a policy rule is being applied, or as UTC times.

 The class definition is as follows.

 NAME PolicyTimePeriodCondition
 DESCRIPTION A class that provides the capability of enabling /
 disabling a policy rule according to a
 pre-determined schedule.
 DERIVED FROM PolicyCondition
 ABSTRACT FALSE
 PROPERTIES TimePeriod
 MonthOfYearMask
 DayOfMonthMask
 DayOfWeekMask
 TimeOfDayMask
 LocalOrUtcTime

Moore, et al. Standards Track [Page 37]

RFC 3060 Policy Core Information Model February 2001

6.5.1. The Property "TimePeriod"

 This property identifies an overall range of calendar dates and times
 over which a policy rule is valid. It reuses the format for an
 explicit time period defined in RFC 2445 (reference [10]): a string
 representing a starting date and time, in which the character ’T’
 indicates the beginning of the time portion, followed by the solidus
 character ’/’, followed by a similar string representing an end date
 and time. The first date indicates the beginning of the range, while
 the second date indicates the end. Thus, the second date and time
 must be later than the first. Date/times are expressed as substrings
 of the form "yyyymmddThhmmss". For example:

 20000101T080000/20000131T120000

 January 1, 2000, 0800 through January 31, 2000, noon

 There are also two special cases in which one of the date/time
 strings is replaced with a special string defined in RFC 2445.

 o If the first date/time is replaced with the string "THISANDPRIOR",
 then the property indicates that a policy rule is valid [from now]
 until the date/time that appears after the ’/’.

 o If the second date/time is replaced with the string
 "THISANDFUTURE", then the property indicates that a policy rule
 becomes valid on the date/time that appears before the ’/’, and
 remains valid from that point on.

 Note that RFC 2445 does not use these two strings in connection with
 explicit time periods. Thus the PCIM is combining two elements from
 RFC 2445 that are not combined in the RFC itself.

 The property definition is as follows:

 NAME TimePeriod
 DESCRIPTION The range of calendar dates on which a policy
 rule is valid.
 SYNTAX string
 FORMAT yyyymmddThhmmss/yyyymmddThhmmss, where the first
 date/time may be replaced with the string
 "THISANDPRIOR" or the second date/time may be
 replaced with the string "THISANDFUTURE"

Moore, et al. Standards Track [Page 38]

RFC 3060 Policy Core Information Model February 2001

6.5.2. The Property "MonthOfYearMask"

 The purpose of this property is to refine the definition of the valid
 time period that is defined by the TimePeriod property, by explicitly
 specifying the months when the policy is valid. These properties
 work together, with the TimePeriod used to specify the overall time
 period during which the policy might be valid, and the
 MonthOfYearMask used to pick out the specific months within that time
 period when the policy is valid.

 This property is formatted as an octet string of size 2, consisting
 of 12 bits identifying the 12 months of the year, beginning with
 January and ending with December, followed by 4 bits that are always
 set to ’0’. For each month, the value ’1’ indicates that the policy
 is valid for that month, and the value ’0’ indicates that it is not
 valid. The value X’08 30’, for example, indicates that a policy rule
 is valid only in the months May, November, and December.

 See section 5.4 for details of how CIM represents a single-valued
 octet string property such as this one. (Basically, CIM prepends a
 4-octet length to the octet string.)

 If this property is omitted, then the policy rule is treated as valid
 for all twelve months. The property definition is as follows:

 NAME MonthOfYearMask
 DESCRIPTION A mask identifying the months of the year in
 which a policy rule is valid.
 SYNTAX octet string
 FORMAT X’hh h0’

6.5.3. The Property "DayOfMonthMask"

 The purpose of this property is to refine the definition of the valid
 time period that is defined by the TimePeriod property, by explicitly
 specifying the days of the month when the policy is valid. These
 properties work together, with the TimePeriod used to specify the
 overall time period during which the policy might be valid, and the
 DayOfMonthMask used to pick out the specific days of the month within
 that time period when the policy is valid.

 This property is formatted as an octet string of size 8, consisting
 of 31 bits identifying the days of the month counting from the
 beginning, followed by 31 more bits identifying the days of the month
 counting from the end, followed by 2 bits that are always set to ’0’.
 For each day, the value ’1’ indicates that the policy is valid for
 that day, and the value ’0’ indicates that it is not valid.

Moore, et al. Standards Track [Page 39]

RFC 3060 Policy Core Information Model February 2001

 The value X’80 00 00 01 00 00 00 00’, for example, indicates that a
 policy rule is valid on the first and last days of the month.

 For months with fewer than 31 days, the digits corresponding to days
 that the months do not have (counting in both directions) are
 ignored.

 The encoding of the 62 significant bits in the octet string matches
 that used for the schedDay object in the DISMAN-SCHEDULE-MIB. See
 reference [8] for more details on this object.

 See section 5.4 for details of how CIM represents a single-valued
 octet string property such as this one. (Basically, CIM prepends a
 4-octet length to the octet string.)

 The property definition is as follows:

 NAME DayOfMonthMask
 DESCRIPTION A mask identifying the days of the month on
 which a policy rule is valid.
 SYNTAX octet string
 FORMAT X’hh hh hh hh hh hh hh hh’

6.5.4. The Property "DayOfWeekMask"

 The purpose of this property is to refine the definition of the valid
 time period that is defined by the TimePeriod property by explicitly
 specifying the days of the week when the policy is valid. These
 properties work together, with the TimePeriod used to specify the
 overall time period when the policy might be valid, and the
 DayOfWeekMask used to pick out the specific days of the week in that
 time period when the policy is valid.

 This property is formatted as an octet string of size 1, consisting
 of 7 bits identifying the 7 days of the week, beginning with Sunday
 and ending with Saturday, followed by 1 bit that is always set to
 ’0’. For each day of the week, the value ’1’ indicates that the
 policy is valid for that day, and the value ’0’ indicates that it is
 not valid.

 The value X’7C’, for example, indicates that a policy rule is valid
 Monday through Friday.

 See section 5.4 for details of how CIM represents a single-valued
 octet string property such as this one. (Basically, CIM prepends a
 4-octet length to the octet string.)

Moore, et al. Standards Track [Page 40]

RFC 3060 Policy Core Information Model February 2001

 The property definition is as follows:

 NAME DayOfWeekMask
 DESCRIPTION A mask identifying the days of the week on which
 a policy rule is valid.
 SYNTAX octet string
 FORMAT B’bbbb bbb0’

6.5.5. The Property "TimeOfDayMask"

 The purpose of this property is to refine the definition of the valid
 time period that is defined by the TimePeriod property by explicitly
 specifying a range of times in a day the policy is valid for. These
 properties work together, with the TimePeriod used to specify the
 overall time period that the policy is valid for, and the
 TimeOfDayMask used to pick out which range of time periods in a given
 day of that time period the policy is valid for.

 This property is formatted in the style of RFC 2445 [10]: a time
 string beginning with the character ’T’, followed by the solidus
 character ’/’, followed by a second time string. The first time
 indicates the beginning of the range, while the second time indicates
 the end. Times are expressed as substrings of the form "Thhmmss".

 The second substring always identifies a later time than the first
 substring. To allow for ranges that span midnight, however, the
 value of the second string may be smaller than the value of the first
 substring. Thus, "T080000/T210000" identifies the range from 0800
 until 2100, while "T210000/T080000" identifies the range from 2100
 until 0800 of the following day.

 When a range spans midnight, it by definition includes parts of two
 successive days. When one of these days is also selected by either
 the MonthOfYearMask, DayOfMonthMask, and/or DayOfWeekMask, but the
 other day is not, then the policy is active only during the portion
 of the range that falls on the selected day. For example, if the
 range extends from 2100 until 0800, and the day of week mask selects
 Monday and Tuesday, then the policy is active during the following
 three intervals:

 From midnight Sunday until 0800 Monday;
 From 2100 Monday until 0800 Tuesday;
 From 2100 Tuesday until 23:59:59 Tuesday.

Moore, et al. Standards Track [Page 41]

RFC 3060 Policy Core Information Model February 2001

 The property definition is as follows:

 NAME TimeOfDayMask
 DESCRIPTION The range of times at which a policy rule is
 valid. If the second time is earlier than the
 first, then the interval spans midnight.
 SYNTAX string
 FORMAT Thhmmss/Thhmmss

6.5.6. The Property "LocalOrUtcTime"

 This property indicates whether the times represented in the
 TimePeriod property and in the various Mask properties represent
 local times or UTC times. There is no provision for mixing of local
 times and UTC times: the value of this property applies to all of
 the other time-related properties.

 The property definition is as follows:

 NAME LocalOrUtcTime
 DESCRIPTION An indication of whether the other times in this
 instance represent local times or UTC times.
 SYNTAX uint16
 VALUES localTime(1), utcTime(2)
 DEFAULT VALUE utcTime(2)

6.6. The Class "VendorPolicyCondition"

 The purpose of this class is to provide a general extension mechanism
 for representing policy conditions that have not been modeled with
 specific properties. Instead, the two properties Constraint and
 ConstraintEncoding are used to define the content and format of the
 condition, as explained below.

 As its name suggests, this class is intended for vendor-specific
 extensions to the Policy Core Information Model. Standardized
 extensions are not expected to use this class.

 The class definition is as follows:

 NAME VendorPolicyCondition
 DESCRIPTION A class that defines a registered means to
 describe a policy condition.
 DERIVED FROM PolicyCondition
 ABSTRACT FALSE
 PROPERTIES Constraint[]
 ConstraintEncoding

Moore, et al. Standards Track [Page 42]

RFC 3060 Policy Core Information Model February 2001

6.6.1. The Multi-valued Property "Constraint"

 This property provides a general extension mechanism for representing
 policy conditions that have not been modeled with specific
 properties. The format of the octet strings in the array is left
 unspecified in this definition. It is determined by the OID value
 stored in the property ConstraintEncoding. Since ConstraintEncoding
 is single-valued, all the values of Constraint share the same format
 and semantics.

 See Section 5.4 for a description of how CIM encodes an array of
 octet strings like this one.

 A policy decision point can readily determine whether it supports the
 values stored in an instance of Constraint by checking the OID value
 from ConstraintEncoding against the set of OIDs it recognizes. The
 action for the policy decision point to take in case it does not
 recognize the format of this data could itself be modeled as a policy
 rule, governing the behavior of the policy decision point.

 The property is defined as follows:

 NAME Constraint
 DESCRIPTION Extension mechanism for representing constraints
 that have not been modeled as specific
 properties. The format of the values is
 identified by the OID stored in the property
 ConstraintEncoding.
 SYNTAX octet string

6.6.2. The Property "ConstraintEncoding"

 This property identifies the encoding and semantics of the Constraint
 property values in this instance. The value of this property is a
 single string, representing a single OID.

 The property is defined as follows:

 NAME ConstraintEncoding
 DESCRIPTION An OID encoded as a string, identifying the format
 and semantics for this instance’s Constraint
 property. The value is a dotted sequence of
 decimal digits (for example, "1.2.100.200")
 representing the arcs of the OID. The characters
 in the string are the UCS-2 characters
 corresponding to the US ASCII encodings of the
 numeric characters and the period.
 SYNTAX string

Moore, et al. Standards Track [Page 43]

RFC 3060 Policy Core Information Model February 2001

6.7. The Abstract Class "PolicyAction"

 The purpose of a policy action is to execute one or more operations
 that will affect network traffic and/or systems, devices, etc., in
 order to achieve a desired state. This (new) state provides one or
 more (new) behaviors. A policy action ordinarily changes the
 configuration of one or more elements.

 A PolicyRule contains one or more policy actions. A policy
 administrator can assign an order to the actions associated with a
 PolicyRule, complete with an indication of whether the indicated
 order is mandatory, recommended, or of no significance. Ordering of
 the actions associated with a PolicyRule is accomplished via a
 property in the PolicyActionInPolicyRule aggregation.

 The actions associated with a PolicyRule are executed if and only if
 the overall condition(s) of the PolicyRule evaluates to TRUE.

 The class definition of PolicyAction is as follows:

 NAME PolicyAction
 DESCRIPTION A class representing a rule-specific or reusable
 policy action to be performed if the condition for
 a policy rule evaluates to TRUE.
 DERIVED FROM Policy
 ABSTRACT TRUE
 PROPERTIES NONE

 No properties are defined for this class since it inherits all its
 properties from Policy. The class exists as an abstract superclass
 for domain-specific policy actions, defined in subclasses. In an
 implementation, various key/identification properties MUST be defined
 for the class or its instantiable subclasses. The keys for a native
 CIM implementation are defined in Appendix A, Section 13.3. Keys for
 an LDAP implementation will be defined in the LDAP mapping of this
 information model [11].

 When identifying and using the PolicyAction class, it is necessary to
 remember that an action can be rule-specific or reusable. This was
 discussed above in Section 5.1. The distinction between the two
 types of policy actions lies in the associations in which an instance
 can participate, and in how the different instances are named.
 Conceptually, a reusable policy action resides in a policy
 repository, and is named within the scope of that repository. On the
 other hand, a rule-specific policy action is named within the scope
 of the single policy rule to which it is related.

Moore, et al. Standards Track [Page 44]

RFC 3060 Policy Core Information Model February 2001

 The distinction between rule-specific and reusable PolicyActions
 affects the CIM naming, defined in Appendix A, and the LDAP mapping
 [11].

6.8. The Class "VendorPolicyAction"

 The purpose of this class is to provide a general extension mechanism
 for representing policy actions that have not been modeled with
 specific properties. Instead, the two properties ActionData and
 ActionEncoding are used to define the content and format of the
 action, as explained below.

 As its name suggests, this class is intended for vendor-specific
 extensions to the Policy Core Information Model. Standardized
 extensions are not expected to use this class.

 The class definition is as follows:

 NAME VendorPolicyAction
 DESCRIPTION A class that defines a registered means to
 describe a policy action.
 DERIVED FROM PolicyAction
 ABSTRACT FALSE
 PROPERTIES ActionData[]
 ActionEncoding

6.8.1. The Multi-valued Property "ActionData"

 This property provides a general extension mechanism for representing
 policy actions that have not been modeled with specific properties.
 The format of the octet strings in the array is left unspecified in
 this definition. It is determined by the OID value stored in the
 property ActionEncoding. Since ActionEncoding is single-valued, all
 the values of ActionData share the same format and semantics. See
 Section 5.4 for a discussion of how CIM encodes an array of octet
 strings like this one.

 A policy decision point can readily determine whether it supports the
 values stored in an instance of ActionData by checking the OID value
 from ActionEncoding against the set of OIDs it recognizes. The
 action for the policy decision point to take in case it does not
 recognize the format of this data could itself be modeled as a policy
 rule, governing the behavior of the policy decision point.

Moore, et al. Standards Track [Page 45]

RFC 3060 Policy Core Information Model February 2001

 The property is defined as follows:

 NAME ActionData
 DESCRIPTION Extension mechanism for representing actions that
 have not been modeled as specific properties. The
 format of the values is identified by the OID
 stored in the property ActionEncoding.
 SYNTAX octet string

6.8.2. The Property "ActionEncoding"

 This property identifies the encoding and semantics of the ActionData
 property values in this instance. The value of this property is a
 single string, representing a single OID.

 The property is defined as follows:

 NAME ActionEncoding
 DESCRIPTION An OID encoded as a string, identifying the format
 and semantics for this instance’s ActionData
 property. The value is a dotted sequence of
 decimal digits (for example, "1.2.100.200")
 representing the arcs of the OID. The characters
 in the string are the UCS-2 characters
 corresponding to the US ASCII encodings of the
 numeric characters and the period.
 SYNTAX string

6.9. The Class "PolicyRepository"

 The class definition of PolicyRepository is as follows:

 NAME PolicyRepository
 DESCRIPTION A class representing an administratively defined
 container for reusable policy-related
 information. This class does not introduce any
 additional properties beyond those in its
 superclass AdminDomain. It does, however,
 participate in a number of unique associations.
 DERIVED FROM AdminDomain
 ABSTRACT FALSE

7. Association and Aggregation Definitions

 The first two subsections of this section introduce associations and
 aggregations as they are used in CIM. The remaining subsections
 present the class definitions for the associations and aggregations
 that are part of the Policy Core Information Model.

Moore, et al. Standards Track [Page 46]

RFC 3060 Policy Core Information Model February 2001

7.1. Associations

 An association is a CIM construct representing a relationship between
 two (or theoretically more) objects. It is modeled as a class
 containing typically two object references. Associations can be
 defined between classes without affecting any of the related classes.
 That is, addition of an association does not affect the interface of
 the related classes.

7.2. Aggregations

 An aggregation is a strong form of an association, which usually
 represents a "whole-part" or a "collection" relationship. For
 example, CIM uses an aggregation to represent the containment
 relationship between a system and the components that make up the
 system. Aggregation as a "whole-part" relationship often implies,
 but does not require, that the aggregated objects have mutual
 dependencies.

7.3. The Abstract Aggregation "PolicyComponent

 This abstract aggregation defines two object references that will be
 overridden in each of five subclasses, to become references to the
 concrete policy classes PolicyGroup, PolicyRule, PolicyCondition,
 PolicyAction, and PolicyTimePeriodCondition. The value of the
 abstract superclass is to convey that all five subclasses have the
 same "whole- part" semantics, and for ease of query to locate all
 "components" of a PolicyGroup or PolicyRule.

 The class definition for the aggregation is as follows:

 NAME PolicyComponent
 DESCRIPTION A generic aggregation used to establish ’part of’
 relationships between the subclasses of
 Policy. For example, the
 PolicyConditionInPolicyRule aggregation defines
 that PolicyConditions are part of a PolicyRule.
 ABSTRACT TRUE
 PROPERTIES GroupComponent[ref Policy[0..n]]
 PartComponent[ref Policy[0..n]]

7.4. The Aggregation "PolicyGroupInPolicyGroup"

 The PolicyGroupInPolicyGroup aggregation enables policy groups to be
 nested. This is critical for scalability and manageability, as it
 enables complex policies to be constructed from multiple simpler

Moore, et al. Standards Track [Page 47]

RFC 3060 Policy Core Information Model February 2001

 policies for administrative convenience. For example, a policy group
 representing policies for the US might have nested within it policy
 groups for the Eastern and Western US.

 A PolicyGroup may aggregate other PolicyGroups via this aggregation,
 or it may aggregate PolicyRules via the PolicyRuleInPolicyGroup
 aggregation. Note that it is assumed that this aggregation is used
 to form directed acyclic graphs and NOT ring structures.The class
 definition for the aggregation is as follows:

 NAME PolicyGroupInPolicyGroup
 DESCRIPTION A class representing the aggregation of
 PolicyGroups by a higher-level PolicyGroup.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyGroup[0..n]]

7.4.1. The Reference "GroupComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyGroup that contains one or more
 other PolicyGroups. Note that for any single instance of the
 aggregation class PolicyGroupInPolicyGroup, this property (like all
 Reference properties) is single-valued. The [0..n] cardinality
 indicates that there may be 0, 1, or more than one PolicyGroups that
 contain any given PolicyGroup.

7.4.2. The Reference "PartComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyGroup contained by one or more
 other PolicyGroups. Note that for any single instance of the
 aggregation class PolicyGroupInPolicyGroup, this property (like all
 Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given PolicyGroup may contain 0, 1, or more than one
 other PolicyGroups.

7.5. The Aggregation "PolicyRuleInPolicyGroup"

 A policy group may aggregate one or more policy rules, via the
 PolicyRuleInPolicyGroup aggregation. Grouping of policy rules into a
 policy group is again for administrative convenience; a policy rule
 may also be used by itself, without belonging to a policy group.

 A PolicyGroup may aggregate PolicyRules via this aggregation, or it
 may aggregate other PolicyGroups via the PolicyGroupInPolicyGroup
 aggregation.

Moore, et al. Standards Track [Page 48]

RFC 3060 Policy Core Information Model February 2001

 The class definition for the aggregation is as follows:

 NAME PolicyRuleInPolicyGroup
 DESCRIPTION A class representing the aggregation of
 PolicyRules by a PolicyGroup.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyGroup[0..n]]
 PartComponent[ref PolicyRule[0..n]]

7.5.1. The Reference "GroupComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyGroup that contains one or more
 PolicyRules. Note that for any single instance of the aggregation
 class PolicyRuleInPolicyGroup, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 there may be 0, 1, or more than one PolicyGroups that contain any
 given PolicyRule.

7.5.2. The Reference "PartComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyRule contained by one or more
 PolicyGroups. Note that for any single instance of the aggregation
 class PolicyRuleInPolicyGroup, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 a given PolicyGroup may contain 0, 1, or more than one PolicyRules.

7.6. The Aggregation "PolicyConditionInPolicyRule"

 A policy rule aggregates zero or more instances of the
 PolicyCondition class, via the PolicyConditionInPolicyRule
 association. A policy rule that aggregates zero policy conditions
 must indicate in its class definition what "triggers" the performance
 of its actions. In short, it must describe its implicit
 PolicyConditions, since none are explicitly associated. For example,
 there might be a subclass of PolicyRule named "HttpPolicyRule", where
 the class definition assumes that the condition, "If HTTP traffic,"
 is true before the rule’s actions would be performed. There is no
 need to formalize and instantiate this condition, since it is obvious
 in the semantics of the PolicyRule.

 The conditions aggregated by a policy rule are grouped into two
 levels of lists: either an ORed set of ANDed sets of conditions (DNF,
 the default) or an ANDed set of ORed sets of conditions (CNF).
 Individual conditions in these lists may be negated. The property
 ConditionListType (in PolicyRule) specifies which of these two

Moore, et al. Standards Track [Page 49]

RFC 3060 Policy Core Information Model February 2001

 grouping schemes applies to a particular PolicyRule. The conditions
 are used to determine whether to perform the actions associated with
 the PolicyRule.

 One or more policy time periods may be among the conditions
 associated with a policy rule via the PolicyConditionInPolicyRule
 association. In this case, the time periods are simply additional
 conditions to be evaluated along with any other conditions specified
 for the rule.

 The class definition for the aggregation is as follows:

 NAME PolicyConditionInPolicyRule
 DESCRIPTION A class representing the aggregation of
 PolicyConditions by a PolicyRule.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]
 PartComponent[ref PolicyCondition[0..n]]
 GroupNumber
 ConditionNegated

7.6.1. The Reference "GroupComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyRule that contains one or more
 PolicyConditions. Note that for any single instance of the
 aggregation class PolicyConditionInPolicyRule, this property (like
 all Reference properties) is single-valued. The [0..n] cardinality
 indicates that there may be 0, 1, or more than one PolicyRules that
 contain any given PolicyCondition.

7.6.2. The Reference "PartComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyCondition contained by one or
 more PolicyRules. Note that for any single instance of the
 aggregation class PolicyConditionInPolicyRule, this property (like
 all Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given PolicyRule may contain 0, 1, or more than one
 PolicyConditions.

7.6.3. The Property "GroupNumber"

 This property contains an integer identifying the group to which the
 condition referenced by the PartComponent property is assigned in
 forming the overall conditional expression for the policy rule
 identified by the GroupComponent reference.

Moore, et al. Standards Track [Page 50]

RFC 3060 Policy Core Information Model February 2001

 The property is defined as follows:

 NAME GroupNumber
 DESCRIPTION Unsigned integer indicating the group to which
 the condition identified by the PartComponent
 property is to be assigned.
 SYNTAX uint16
 DEFAULT 0

7.6.4. The Property "ConditionNegated"

 This property is a boolean, indicating whether the condition
 referenced by the PartComponent property is negated in forming the
 overall conditional expression for the policy rule identified by the
 GroupComponent reference.

 The property is defined as follows:

 NAME ConditionNegated
 DESCRIPTION Indication of whether the condition identified by
 the PartComponent property is negated. (TRUE
 indicates that the condition is negated, FALSE
 indicates that it is not negated.)
 SYNTAX boolean
 DEFAULT FALSE

7.7. The Aggregation "PolicyRuleValidityPeriod"

 A different relationship between a policy rule and a policy time
 period (than PolicyConditionInPolicyRule) is represented by the
 PolicyRuleValidityPeriod aggregation. The latter describes scheduled
 activation and deactivation of the policy rule.

 If a policy rule is associated with multiple policy time periods via
 this association, then the rule is active if at least one of the time
 periods indicates that it is active. (In other words, the time
 periods are ORed to determine whether the rule is active.) A policy
 time period may be aggregated by multiple policy rules. A rule that
 does not point to a policy time period via this aggregation is, from
 the point of view of scheduling, always active. It may, however, be
 inactive for other reasons.

 Time periods are a general concept that can be used in other
 applications. However, they are mentioned explicitly here in this
 specification since they are frequently used in policy applications.

Moore, et al. Standards Track [Page 51]

RFC 3060 Policy Core Information Model February 2001

 The class definition for the aggregation is as follows:

 NAME PolicyRuleValidityPeriod
 DESCRIPTION A class representing the aggregation of
 PolicyTimePeriodConditions by a PolicyRule.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]
 PartComponent[ref PolicyTimePeriodCondition[0..n]]

7.7.1. The Reference "GroupComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyRule that contains one or more
 PolicyTimePeriodConditions. Note that for any single instance of the
 aggregation class PolicyRuleValidityPeriod, this property (like all
 Reference properties) is single-valued. The [0..n] cardinality
 indicates that there may be 0, 1, or more than one PolicyRules that
 contain any given PolicyTimePeriodCondition.

7.7.2. The Reference "PartComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyTimePeriodCondition contained
 by one or more PolicyRules. Note that for any single instance of the
 aggregation class PolicyRuleValidityPeriod, this property (like all
 Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given PolicyRule may contain 0, 1, or more than one
 PolicyTimePeriodConditions.

7.8. The Aggregation "PolicyActionInPolicyRule"

 A policy rule may aggregate zero or more policy actions. A policy
 rule that aggregates zero policy actions must indicate in its class
 definition what actions are taken when the rule’s conditions evaluate
 to TRUE. In short, it must describe its implicit PolicyActions,
 since none are explicitly associated. For example, there might be a
 subclass of PolicyRule representing a Diffserv absolute dropper,
 where the subclass itself indicates the action to be taken. There is
 no need to formalize and instantiate this action, since it is obvious
 in the semantics of the PolicyRule.

 The actions associated with a PolicyRule may be given a required
 order, a recommended order, or no order at all. For actions
 represented as separate objects, the PolicyActionInPolicyRule
 aggregation can be used to express an order.

Moore, et al. Standards Track [Page 52]

RFC 3060 Policy Core Information Model February 2001

 This aggregation does not indicate whether a specified action order
 is required, recommended, or of no significance; the property
 SequencedActions in the aggregating instance of PolicyRule provides
 this indication.

 The class definition for the aggregation is as follows:

 NAME PolicyActionInPolicyRule
 DESCRIPTION A class representing the aggregation of
 PolicyActions by a PolicyCondition.
 DERIVED FROM PolicyComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRule[0..n]]
 PartComponent[ref PolicyAction[0..n]]
 ActionOrder

7.8.1. The Reference "GroupComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyRule that contains one or more
 PolicyActions. Note that for any single instance of the aggregation
 class PolicyActionInPolicyRule, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 there may be 0, 1, or more than one PolicyRules that contain any
 given PolicyAction.

7.8.2. The Reference "PartComponent"

 This property is inherited from PolicyComponent, and overridden to
 become an object reference to a PolicyAction contained by one or more
 PolicyRules. Note that for any single instance of the aggregation
 class PolicyActionInPolicyRule, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 a given PolicyRule may contain 0, 1, or more than one PolicyActions.

7.8.3. The Property "ActionOrder"

 This property provides an unsigned integer ’n’ that indicates the
 relative position of an action in the sequence of actions associated
 with a policy rule. When ’n’ is a positive integer, it indicates a
 place in the sequence of actions to be performed, with smaller
 integers indicating earlier positions in the sequence. The special
 value ’0’ indicates "don’t care". If two or more actions have the
 same non-zero sequence number, they may be performed in any order,
 but they must all be performed at the appropriate place in the
 overall action sequence.

Moore, et al. Standards Track [Page 53]

RFC 3060 Policy Core Information Model February 2001

 A series of examples will make ordering of actions clearer:

 o If all actions have the same sequence number, regardless of
 whether it is ’0’ or non-zero, any order is acceptable.

 o The values

 1:ACTION A
 2:ACTION B
 1:ACTION C
 3:ACTION D

 indicate two acceptable orders: A,C,B,D or C,A,B,D, since A and C
 can be performed in either order, but only at the ’1’ position.

 o The values

 0:ACTION A
 2:ACTION B
 3:ACTION C
 3:ACTION D

 require that B,C, and D occur either as B,C,D or as B,D,C. Action
 A may appear at any point relative to B,C, and D. Thus the
 complete set of acceptable orders is: A,B,C,D; B,A,C,D; B,C,A,D;
 B,C,D,A; A,B,D,C; B,A,D,C; B,D,A,C; B,D,C,A.

 Note that the non-zero sequence numbers need not start with ’1’,
 and they need not be consecutive. All that matters is their
 relative magnitude.

 The property is defined as follows:

 NAME ActionOrder
 DESCRIPTION Unsigned integer indicating the relative position
 of an action in the sequence of actions aggregated
 by a policy rule.
 SYNTAX uint16

7.9. The Abstract Association "PolicyInSystem"

 This abstract association inherits two object references from a
 higher- level CIM association class, Dependency. It overrides these
 object references to make them references to instances of the classes
 System and Policy. Subclasses of PolicyInSystem then override these
 object references again, to make them references to concrete policy
 classes.

Moore, et al. Standards Track [Page 54]

RFC 3060 Policy Core Information Model February 2001

 The value of the abstract superclass is to convey that all subclasses
 have the same "dependency" semantics, and for ease of query to locate
 all policy "dependencies" on a System. These dependencies are
 related to scoping or hosting of the Policy.

 The class definition for the association is as follows:

 NAME PolicyInSystem
 DESCRIPTION A generic association used to establish
 dependency relationships between Policies and the
 Systems that host them.
 DERIVED FROM Dependency
 ABSTRACT TRUE
 PROPERTIES Antecedent[ref System[0..1]]
 Dependent[ref Policy[0..n]]

7.10. The Weak Association "PolicyGroupInSystem"

 This association links a PolicyGroup to the System in whose scope the
 PolicyGroup is defined.

 The class definition for the association is as follows:

 NAME PolicyGroupInSystem
 DESCRIPTION A class representing the fact that a PolicyGroup
 is defined within the scope of a System.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent[ref PolicyGroup[weak]]

7.10.1. The Reference "Antecedent"

 This property is inherited from PolicyInSystem, and overridden to
 restrict its cardinality to [1..1]. It serves as an object reference
 to a System that provides a scope for one or more PolicyGroups.
 Since this is a weak association, the cardinality for this object
 reference is always 1, that is, a PolicyGroup is always defined
 within the scope of exactly one System.

7.10.2. The Reference "Dependent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyGroup defined within the scope
 of a System. Note that for any single instance of the association
 class PolicyGroupInSystem, this property (like all Reference

Moore, et al. Standards Track [Page 55]

RFC 3060 Policy Core Information Model February 2001

 properties) is single-valued. The [0..n] cardinality indicates that
 a given System may have 0, 1, or more than one PolicyGroups defined
 within its scope.

7.11. The Weak Association "PolicyRuleInSystem"

 Regardless of whether it belongs to a PolicyGroup (or to multiple
 PolicyGroups), a PolicyRule is itself defined within the scope of a
 System. This association links a PolicyRule to the System in whose
 scope the PolicyRule is defined.

 The class definition for the association is as follows:

 NAME PolicyRuleInSystem
 DESCRIPTION A class representing the fact that a PolicyRule
 is defined within the scope of a System.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref System[1..1]]
 Dependent[ref PolicyRule[weak]]

7.11.1. The Reference "Antecedent"

 This property is inherited from PolicyInSystem, and overridden to
 restrict its cardinality to [1..1]. It serves as an object reference
 to a System that provides a scope for one or more PolicyRules. Since
 this is a weak association, the cardinality for this object reference
 is always 1, that is, a PolicyRule is always defined within the scope
 of exactly one System.

7.11.2. The Reference "Dependent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyRule defined within the scope
 of a System. Note that for any single instance of the association
 class PolicyRuleInSystem, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 a given System may have 0, 1, or more than one PolicyRules defined
 within its scope.

7.12. The Association "PolicyConditionInPolicyRepository"

 A reusable policy condition is always related to a single
 PolicyRepository, via the PolicyConditionInPolicyRepository
 association. This is not true for all PolicyConditions, however. An
 instance of PolicyCondition that represents a rule-specific condition
 is not related to any policy repository via this association.

Moore, et al. Standards Track [Page 56]

RFC 3060 Policy Core Information Model February 2001

 The class definition for the association is as follows:

 NAME PolicyConditionInPolicyRepository
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyCondition in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyCondition[0..n]]

7.12.1. The Reference "Antecedent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyRepository containing one or
 more PolicyConditions. A reusable PolicyCondition is always related
 to exactly one PolicyRepository via the
 PolicyConditionInPolicyRepository association. The [0..1]
 cardinality for this property covers the two types of
 PolicyConditions: 0 for a rule-specific PolicyCondition, 1 for a
 reusable one.

7.12.2. The Reference "Dependent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyCondition included in a
 PolicyRepository. Note that for any single instance of the
 association class PolicyConditionInPolicyRepository, this property
 (like all Reference properties) is single-valued. The [0..n]
 cardinality indicates that a given PolicyRepository may contain 0, 1,
 or more than one PolicyConditions.

7.13. The Association "PolicyActionInPolicyRepository"

 A reusable policy action is always related to a single
 PolicyRepository, via the PolicyActionInPolicyRepository association.
 This is not true for all PolicyActions, however. An instance of
 PolicyAction that represents a rule-specific action is not related to
 any policy repository via this association.

 The class definition for the association is as follows:

 NAME PolicyActionInPolicyRepository
 DESCRIPTION A class representing the inclusion of a reusable
 PolicyAction in a PolicyRepository.
 DERIVED FROM PolicyInSystem
 ABSTRACT FALSE
 PROPERTIES Antecedent[ref PolicyRepository[0..1]]
 Dependent[ref PolicyAction[0..n]]

Moore, et al. Standards Track [Page 57]

RFC 3060 Policy Core Information Model February 2001

7.13.1. The Reference "Antecedent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyRepository containing one or
 more PolicyActions. A reusable PolicyAction is always related to
 exactly one PolicyRepository via the PolicyActionInPolicyRepository
 association. The [0..1] cardinality for this property covers the two
 types of PolicyActions: 0 for a rule-specific PolicyAction, 1 for a
 reusable one.

7.13.2. The Reference "Dependent"

 This property is inherited from PolicyInSystem, and overridden to
 become an object reference to a PolicyAction included in a
 PolicyRepository. Note that for any single instance of the
 association class PolicyActionInPolicyRepository, this property (like
 all Reference properties) is single-valued. The [0..n] cardinality
 indicates that a given PolicyRepository may contain 0, 1, or more
 than one PolicyActions.

7.14. The Aggregation "PolicyRepositoryInPolicyRepository"

 The PolicyRepositoryInPolicyRepository aggregation enables policy
 repositories to be nested. This derives from the higher level CIM
 association, CIM_SystemComponent, describing that Systems contain
 other ManagedSystemElements. This superclass could not be used for
 the other Policy aggregations, since Policies are not
 ManagedSystemElements, but ManagedElements. Note that it is assumed
 that this aggregation is used to form directed acyclic graphs and NOT
 ring structures.

 The class definition for the aggregation is as follows:

 NAME PolicyRepositoryInPolicyRepository
 DESCRIPTION A class representing the aggregation of
 PolicyRepositories by a higher-level
 PolicyRepository.
 DERIVED FROM SystemComponent
 ABSTRACT FALSE
 PROPERTIES GroupComponent[ref PolicyRepository[0..n]]
 PartComponent[ref PolicyRepository[0..n]]
7.14.1. The Reference "GroupComponent"

 This property is inherited from the CIM class SystemComponent, and
 overridden to become an object reference to a PolicyRepository that
 contains one or more other PolicyRepositories. Note that for any
 single instance of the aggregation class
 PolicyRepositoryInPolicyRepository, this property (like all Reference

Moore, et al. Standards Track [Page 58]

RFC 3060 Policy Core Information Model February 2001

 properties) is single-valued. The [0..n] cardinality indicates that
 there may be 0, 1, or more than one PolicyRepositories that contain
 any given PolicyRepository.

7.14.2. The Reference "PartComponent"

 This property is inherited from the CIM class SystemComponent, and
 overridden to become an object reference to a PolicyRepository
 contained by one or more other PolicyRepositories. Note that for any
 single instance of the aggregation class
 PolicyRepositoryInPolicyRepository, this property (like all Reference
 properties) is single-valued. The [0..n] cardinality indicates that
 a given PolicyRepository may contain 0, 1, or more than one other
 PolicyRepositories.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11.

 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

9. Acknowledgements

 The Policy Core Information Model in this document is closely based
 on the work of the DMTF’s Service Level Agreements working group, so
 thanks are due to the members of that working group. Several of the
 policy classes in this model first appeared in early drafts on IPSec
 policy and QoS policy. The authors of these drafts were Partha
 Bhattacharya, Rob Adams, William Dixon, Roy Pereira, Raju Rajan,
 Jean-Christophe Martin, Sanjay Kamat, Michael See, Rajiv Chaudhury,
 Dinesh Verma, George Powers, and Raj Yavatkar. Some other elements

Moore, et al. Standards Track [Page 59]

RFC 3060 Policy Core Information Model February 2001

 of the model originated in work done by Yoram Snir, Yoram Ramberg,
 and Ron Cohen. In addition, we would like to thank Harald Alvestrand
 for conducting a thorough review of this document and providing many
 helpful suggestions, and Luis Sanchez and Russ Mundy for their help
 with the document’s Security Considerations.

10. Security Considerations

 The Policy Core Information Model (PCIM) presented in this document
 provides an object-oriented model for describing policy information.
 It provides a basic framework for describing the structure of policy
 information, in a form independent of any specific repository or
 access protocol, for use by an operational system. PCIM is not
 intended to represent any particular system design or implementation,
 nor does it define a protocol, and as such it does not have any
 specific security requirements.

 However, it should also be noted that certain derivative documents,
 which use PCIM as a base, will need to convey more specific security
 considerations. In order to communicate the nature of what will be
 expected in these follow-on derivative documents, it is necessary to
 review the reasons that PCIM, as defined in this document, is neither
 implementable, nor representative of any real-world system, as well
 as the nature of the expected follow-on extensions and mappings.

 There are three independent reasons that PCIM, as defined here, is
 neither implementable nor representative of any real-world system:

 1. Its classes are independent of any specific repository that
 uses any specific access protocol. Therefore, its classes are
 designed not to be implemented directly. PCIM should instead
 be viewed as a schematic that directs how information should be
 represented, independent of any specific model implementation
 constraints.

 2. Its classes were designed to be independent of any specific
 policy domain. For example, DiffServ and IPSec represent two
 different policy domains. Each document which extends PCIM to
 one of these domains will derive subclasses from the classes
 and relationships defined in PCIM, in order to represent
 extensions of a generic model to cover specific technical
 domains.

 3. It’s an information model, which must be mapped to a specific
 data model (native CIM schema, LDAP schema, MIB, whatever)
 before it can be implemented. Derivative documents will map
 the extended information models noted in item 2, above, to
 specific types of data model implementations.

Moore, et al. Standards Track [Page 60]

RFC 3060 Policy Core Information Model February 2001

 Even though specific security requirements are not appropriate for
 PCIM, specific security requirements MUST be defined for each
 operational real- world application of PCIM. Just as there will be a
 wide range of operational, real-world systems using PCIM, there will
 also be a wide range of security requirements for these systems.
 Some operational, real-world systems that are deployed using PCIM may
 have extensive security requirements that impact nearly all classes
 and subclasses utilized by such a system, while other systems’
 security requirements might have very little impact.

 The derivative documents, discussed above, will create the context
 for applying operational, real-world, system-level security
 requirements against the various models which derive from PCIM.

 For example, in some real-world scenarios, the values associated with
 certain properties, within certain instantiated classes, may
 represent information associated with scarce, and/or costly (and
 therefore valuable) resources. It may be the case that these values
 must not be disclosed to, or manipulated by, unauthorized parties.
 As long as the derived model remains an information model (as opposed
 to a data model), it is not possible to discuss the data model-
 specific tools and mechanisms that are available for achieving the
 authentication and authorization implicit in a requirement that
 restricts read and/or read- write access to these values. Therefore,
 these mechanisms will need to be discussed in each of the data models
 to which the derived information models are mapped. If there are any
 general security requirements that can be identified and can be
 applied across multiple types of data models, it would be appropriate
 to discuss those at the information model level, rather than the data
 model level. In any case, any identified security requirements that
 are not dealt with in the information model document, MUST be dealt
 with in the derivative data model documents.

 We can illustrate these points by extending the example from Section
 2. A real-world system that provides QoS Gold Service to John would
 likely need to provide at least the following security-related
 capabilities and mechanisms (see [12] for definitions of security
 related terms):

 o Data integrity for the information (e.g., property values and
 instantiated relationships) that specify that John gets QoS Gold
 Service, from the point(s) that the information is entered into
 the system to the point(s) where network components actually
 provide that Service.

 o Authentication and Authorization methods to ensure that only
 system administrators (and not John or other engineers) can
 remotely administer components of the system.

Moore, et al. Standards Track [Page 61]

RFC 3060 Policy Core Information Model February 2001

 o An Authentication method to insure that John receives Gold
 Service, and the other members of the engineering group receive
 Bronze Service.

 These are one possible set of requirements associated with an example
 real-world system which delivers Gold Service, and the appropriate
 place to document these would be in some combination of the
 information model and the derivative data models for QoS Policy.
 Each of the data models would also need to discuss how these
 requirements are satisfied, using the mechanisms typically available
 to such a data model, given the particular technology or set of
 technologies which it may employ.

11. References

 [1] Distributed Management Task Force, Inc., "DMTF Technologies: CIM
 Standards << CIM Schema: Version 2.4", available via links on
 the following DMTF web page:
 http://www.dmtf.org/spec/cim_schema_v24.html.

 [2] Distributed Management Task Force, Inc., "Common Information
 Model (CIM) Specification, version 2.2, June 1999. This
 document is available on the following DMTF web page:
 http://www.dmtf.org/spec/cims.html.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Hovey, R. and S. Bradner, "The Organizations Involved in the
 IETF Standards Process", BCP 11, RFC 2028, October 1996.

 [5] J. Strassner and S. Judd, "Directory-Enabled Networks", version
 3.0c5 (August 1998). A PDF file is available at
 http://www.murchiso.com/den/#denspec.

 [6] J. Strassner, policy architecture BOF presentation, 42nd IETF
 Meeting, Chicago, Illinois, October, 1998. Minutes of this BOF
 are available at the following location:
 http://www.ietf.org/proceedings/98aug/index.html.

 [7] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
 2279, January 1998.

 [8] Levi, D. and J. Schoenwaelder, "Definitions of Managed Objects
 for Scheduling Management Operations", RFC 2591, May 1999.

 [9] Yavatkar, R., Pendarakis, D. and R. Guerin, "A Framework for
 Policy-based Admission Control", RFC 2753, January 2000.

Moore, et al. Standards Track [Page 62]

RFC 3060 Policy Core Information Model February 2001

 [10] Dawson, F. and D. Stenerson, "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC 2445,
 November 1998.

 [11] Strassner, J., and E. Ellesson, B. Moore, R. Moats, "Policy Core
 LDAP Schema", Work in Progress.

 [12] Shirey, R., "Internet Security Glossary", FYI 36, RFC 2828, May
 2000.

 Note: the CIM 2.4 Schema specification is defined by the following
 set of MOF files, available from the following URL:

 http://www.dmtf.org/spec/CIM_Schema24/CIM_Schema24.zip

Moore, et al. Standards Track [Page 63]

RFC 3060 Policy Core Information Model February 2001

12. Authors’ Addresses

 Ed Ellesson
 LongBoard, Inc.
 2505 Meridian Pkwy, #100
 Durham, NC 27713

 Phone: +1 919-361-3230
 Fax: +1 919-361-3299
 EMail: eellesson@lboard.com

 Bob Moore
 IBM Corporation, BRQA/502
 4205 S. Miami Blvd.
 Research Triangle Park, NC 27709

 Phone: +1 919-254-4436
 Fax: +1 919-254-6243
 EMail: remoore@us.ibm.com

 John Strassner
 Cisco Systems, Bldg 15
 170 West Tasman Drive
 San Jose, CA 95134

 Phone: +1 408-527-1069
 Fax: +1 408-527-6351
 EMail: johns@cisco.com

 Andrea Westerinen
 Cisco Systems
 170 West Tasman Drive
 San Jose, CA 95134

 Phone: +1 408-853-8294
 Fax: +1 408-527-6351
 EMail: andreaw@cisco.com

Moore, et al. Standards Track [Page 64]

RFC 3060 Policy Core Information Model February 2001

13. Appendix A: Class Identification in a Native CIM Implementation

 While the CommonName property is present in the abstract superclass
 Policy, and is thus available in all of its instantiable subclasses,
 CIM does not use this property for naming instances. The following
 subsections discuss how naming is handled in a native CIM
 implementation for each of the instantiable classes in the Policy
 Core Information Model.

 Two things should be noted regarding CIM naming:

 o When a CIM association is specified as "weak", this is a statement
 about naming scopes: an instance of the class at the weak end of
 the association is named within the scope of an instance of the
 class at the other end of the association. This is accomplished
 by propagation of keys from the instance of the scoping class to
 the instance of the weak class. Thus the weak class has, via key
 propagation, all the keys from the scoping class, and it also has
 one or more additional keys for distinguishing instances of the
 weak class, within the context of the scoping class.

 o All class names in CIM are limited to alphabetic and numeric
 characters plus the underscore, with the restriction that the
 first character cannot be numeric. Refer to Appendix F "Unicode
 Usage" in reference [2] for an exact specification of how CIM
 class names are encoded in CIM strings.

13.1. Naming Instances of PolicyGroup and PolicyRule

 A policy group always exists in the context of a system. In the
 Policy Core Information Model, this is captured by the weak
 aggregation PolicyGroupInSystem between a PolicyGroup and a System.
 Note that System serves as the base class for describing network
 devices and administrative domains.

 A policy rule also exists in the context of a system. In the Policy
 Core Information Model, this is captured by the weak association
 PolicyRuleInSystem between a PolicyRule and a System.

 The following sections define the CIM keys for PolicyGroup and
 PolicyRule.

13.1.1. PolicyGroup’s CIM Keys

 The CIM keys of the PolicyGroup class are:

 o SystemCreationClassName (A CIM_System key, propagated due to the
 weak association, PolicyGroupInSystem)

Moore, et al. Standards Track [Page 65]

RFC 3060 Policy Core Information Model February 2001

 o SystemName (A CIM_System key, propagated due to the weak
 association, PolicyGroupInSystem)
 o CreationClassName
 o PolicyGroupName

 They are defined in Reference [1] as follows:

 NAME SystemCreationClassName
 DESCRIPTION SystemCreationClassName represents the class name of
 the CIM System object providing the naming scope for
 the instance of PolicyGroup.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME SystemName
 DESCRIPTION SystemName represent the individual name of the
 particular System object, providing the naming scope
 for the instance of PolicyGroup.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME CreationClassName
 DESCRIPTION This property is set to "CIM_PolicyGroup", if the
 PolicyGroup object is directly instantiated. Or, it
 is equal to the class name of the PolicyGroup
 subclass that is instantiated.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyGroupName
 DESCRIPTION The identifying name of this policy group.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

13.1.2. PolicyRule’s CIM Keys

 The CIM keys of the PolicyRule class are:

 o SystemCreationClassName (A CIM_System key, propagated due to the
 weak association PolicyRuleInSystem)
 o SystemName (A CIM_System key, propagated due to the weak
 association PolicyRuleInSystem)
 o CreationClassName
 o PolicyRuleName

 SystemCreationClassName and SystemName work the same as defined for
 the class PolicyGroup. See Section 13.1.1 for details.

Moore, et al. Standards Track [Page 66]

RFC 3060 Policy Core Information Model February 2001

 The other two properties are defined in Reference [1] as follows:

 NAME CreationClassName
 DESCRIPTION This property is set to "CIM_PolicyRule", if the
 PolicyRule object is directly instantiated. Or,
 it is equal to the class name of the PolicyRule
 subclass that is instantiated.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyRuleName
 DESCRIPTION The identifying name of this policy rule.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

13.2. Naming Instances of PolicyCondition and Its Subclasses

 The CIM keys of the PolicyCondition class are:

 o SystemCreationClassName
 o SystemName
 o PolicyRuleCreationClassName
 o PolicyRuleName
 o CreationClassName
 o PolicyConditionName

 Note that none of the keys are defined as propagated, although they
 appear to fit this convention. The reason for this difference is
 because (as indicated in Sections 5.1 and 6.4) the PolicyCondition
 class is used to represent both reusable and rule-specific
 conditions. This, in turn, affects what associations are valid for
 an instance of PolicyCondition, and how that instance is named.

 In an ideal world, an instance of the PolicyCondition class would be
 scoped either by its PolicyRepository (for a reusable condition) or
 by its PolicyRule (for a rule-specific condition). However, CIM has
 the restriction that a given class can only be "weak" to one other
 class (i.e., defined by one weak association).

 To work within the restrictions of CIM naming, it is necessary to
 "simulate" weak associations between PolicyCondition and PolicyRule,
 and between PolicyCondition and PolicyRepository, through a technique
 we’ll call manual key propagation. Strictly speaking, manual key
 propagation isn’t key propagation at all. But it has the same effect
 as (true) key propagation, so the name fits.

Moore, et al. Standards Track [Page 67]

RFC 3060 Policy Core Information Model February 2001

 Figure 9 illustrates how manual propagation works in the case of
 PolicyCondition. (Note that only the key properties are shown for
 each of the classes.) In the figure, the line composed of ’I’s
 indicates class inheritance, the one composed of ’P’s indicates
 (true) key propagation via the weak aggregation PolicyRuleInSystem,
 and the ones composed of ’M’s indicate manual key propagation.

 +------------------+
 | System |
 +------------------+
 |CreationClassName |
 |Name |
 +------------------+
 ^ P
 I PPPPPPPPPPPPPPPPPPPPPPPPPPPP
 I P
 +------------------+ +---------------v--------------+
 | AdminDomain | | PolicyRule |
 +------------------+ +------------------------------+
 |CreationClassName | | System.CreationClassName |
 |Name | | System.Name |
 +------------------+ | CreationClassName |
 ^ | PolicyRuleName |
 I +------------------------------+
 I M
 I M
 +------------------+ M
 | PolicyRepository | M
 +------------------+ M
 |CreationClassName | M
 |Name | M
 +------------------+ M
 M M
 M M
 M M
 +----v-------------------v----+
 | PolicyCondition |
 +-----------------------------+
 | SystemCreationClassName |
 | SystemName |
 | PolicyRuleCreationClassName |
 | PolicyRuleName |
 | CreationClassName |
 | PolicyConditionName |
 +-----------------------------+

 Figure 9. Manual Key Propagation for Naming PolicyConditions

Moore, et al. Standards Track [Page 68]

RFC 3060 Policy Core Information Model February 2001

 Looking at Figure 9, we see that two key properties,
 CreationClassName and Name, are defined in the System class, and
 inherited by its subclasses AdminDomain and PolicyRepository. Since
 PolicyRule is weak to System, these two keys are propagated to it; it
 also has its own keys CreationClassName and PolicyRuleName.

 A similar approach, though not automatic, is used in "manual key
 propagation". Here is the approach for rule-specific and reusable
 PolicyConditions:

 o The manual propagation of keys from PolicyRule to PolicyCondition
 involves copying the values of PolicyRule’s four key properties
 into four similarly named key properties in PolicyCondition. From
 the point of view of the CIM specification language, the property
 SystemName in PolicyCondition is a completely new key property.
 However, the relationship to the Name property in System is
 defined in the description of SystemName.

 o The manual propagation of keys from PolicyRepository to
 PolicyCondition works in exactly the same way for the first two
 key properties. However, since PolicyRepository doesn’t include
 PolicyRule properties, the PolicyRuleCreationClassName and
 PolicyRuleName have no values. A special value, "No Rule", is
 assigned to both of these properties in this case, indicating that
 this instance of PolicyCondition is not named within the scope of
 any particular policy rule.

 The following section defines the specific CIM keys for
 PolicyCondition.

13.2.1. PolicyCondition’s CIM Keys

 PolicyCondition’s key properties are defined in Reference [1] as
 follows:

 NAME SystemCreationClassName
 DESCRIPTION SystemCreationClassName represents the class
 name of the CIM System object providing the
 naming scope for the instance of PolicyCondition.
 For a rule-specific policy condition, this is the
 type of system (e.g., the name of the class that
 created this instance) in whose context the policy
 rule is defined. For a reusable policy condition,
 this is set to "CIM_PolicyRepository", if the
 PolicyRepository object is directly instantiated.
 Or, it is equal to the class name of the
 PolicyRepository subclass that is instantiated.
 SYNTAX string [MaxLen 256]

Moore, et al. Standards Track [Page 69]

RFC 3060 Policy Core Information Model February 2001

 QUALIFIER key

 NAME SystemName
 DESCRIPTION The name of the System object in whose scope this
 policy condition is defined. This property
 completes the identification of the System object.
 For a rule-specific policy condition, this is the
 name of the instance of the system in whose
 context the policy rule is defined. For a
 reusable policy condition, this is name of the
 instance of PolicyRepository that holds the policy
 condition.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyRuleCreationClassName
 DESCRIPTION For a rule-specific policy condition, this
 property identifies the class name of the policy
 rule instance, in whose scope this instance of
 PolicyCondition exists. For a reusable policy
 condition, this property is set to a special
 value, "No Rule", indicating that this instance
 of PolicyCondition is not unique to one policy
 rule.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyRuleName
 DESCRIPTION For a rule-specific policy condition,
 PolicyRuleName completes the identification of
 the PolicyRule object with which this condition
 is associated. For a reusable policy condition,
 a special value, "No Rule", is used to indicate
 that this condition is reusable.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME CreationClassName
 DESCRIPTION The class name of the PolicyCondition subclass
 that is instantiated.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyConditionName
 DESCRIPTION The identifying name of this policy condition.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

Moore, et al. Standards Track [Page 70]

RFC 3060 Policy Core Information Model February 2001

13.3. Naming Instances of PolicyAction and Its Subclasses

 From the point of view of naming, the PolicyAction class and its
 subclasses work exactly like the PolicyCondition class and its
 subclasses. See Section 13.2 and 13.2.1 for details.

 Specifically, the CIM keys of PolicyAction are:

 o SystemCreationClassName
 o SystemName
 o PolicyRuleCreationClassName
 o PolicyRuleName
 o CreationClassName
 o PolicyActionName

 They are defined in Reference [1] as follows:

 NAME SystemCreationClassName
 DESCRIPTION SystemCreationClassName represents the class name
 of the CIM System object providing the naming
 scope for the instance of PolicyAction. For a
 rule-specific policy action, this is the type of
 system (e.g., the name of the class that created
 this instance) in whose context the policy rule
 is defined. For a reusable policy action, this
 is set to "CIM_PolicyRepository", if the
 PolicyRepository object is directly instantiated.
 Or, it is equal to the class name of the
 PolicyRepository subclass that is instantiated.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME SystemName
 DESCRIPTION The name of the System object in whose scope this
 policy action is defined. This property completes
 the identification of the System object. For a
 rule-specific policy action, this is the name of
 the instance of the system in whose context the
 policy rule is defined. For a reusable policy
 action, this is name of the instance of
 PolicyRepository that holds the policy action.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyRuleCreationClassName
 DESCRIPTION For a rule-specific policy action, this property
 identifies the class name of the policy rule
 instance, in whose scope this instance of

Moore, et al. Standards Track [Page 71]

RFC 3060 Policy Core Information Model February 2001

 PolicyAction exists. For a reusable policy
 action, this property is set to a special value,
 "No Rule", indicating that this instance of
 PolicyAction is not unique to one policy rule.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyRuleName
 DESCRIPTION For a rule-specific policy action, PolicyRuleName
 completes the identification of the PolicyRule
 object with which this action is associated. For
 a reusable policy action, a special value, "No
 Rule", is used to indicate that this action is
 reusable.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME CreationClassName
 DESCRIPTION The class name of the PolicyAction subclass that is
 instantiated.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

 NAME PolicyActionName
 DESCRIPTION The identifying name of this policy action.
 SYNTAX string [MaxLen 256]
 QUALIFIER key

13.4. Naming Instances of PolicyRepository

 An instance of PolicyRepository is named by the two key properties
 CreationClassName and Name that it inherits from its superclass
 AdminDomain. These properties are actually defined in AdminDomain’s
 superclass, System, and then inherited by AdminDomain.

 For instances of PolicyRepository itself, the value of
 CreationClassName must be "CIM_PolicyRepository". (Recall that for
 readability the prefix "CIM_" has been omitted from all class names
 in this document). If a subclass of PolicyRepository (perhaps
 QosPolicyRepository) is defined and instantiated, then the class name
 "CIM_QosPolicyRepository" is used in CreationClassName.

 The Name property simply completes the identification of the instance
 of PolicyRepository.

Moore, et al. Standards Track [Page 72]

RFC 3060 Policy Core Information Model February 2001

13.5. Role of the CreationClassName Property in Naming

 To provide for more flexibility in instance naming, CIM makes use of
 a property called CreationClassName. The idea of CreationClassName
 is to provide another dimension that can be used to avoid naming
 collisions, in the specific case of instances belonging to two
 different subclasses of a common superclass. An example will
 illustrate how CreationClassName works.

 Suppose we have instances of two different subclasses of
 PolicyCondition, FrameRelayPolicyCondition and BgpPolicyCondition,
 and that these instances apply to the same context. If we had only
 the single key property PolicyConditionName available for
 distinguishing the two instances, then a collision would result from
 naming both of the instances with the key value PCName = "PC-1".
 Thus policy administrators from widely different disciplines would
 have to coordinate their naming of PolicyConditions for this context.

 With CreationClassName, collisions of this type can be eliminated,
 without requiring coordination among the policy administrators. The
 two instances can be distinguished by giving their CreationClassNames
 different values. One instance is now identified with the two keys

 CreationClassName = "FrameRelayPolicyCondition" + PCName = "PC-1",

 while the other is identified with

 CreationClassName = "BgpPolicyCondition" + PCName = "PC-1".

 Each of the instantiable classes in the Core Model includes the
 CreationClassName property as a key in addition to its own class-
 specific key property.

13.6. Object References

 Today, all CIM associations involve two object references. CIM
 decomposes an object reference into two parts: a high-order part
 that identifies an object manager and namespace, and a model path
 that identifies an object instance within a namespace. The model
 path, in turn, can be decomposed into an object class identifier and
 a set of key values needed to identify an instance of that class.

 Because the object class identifier is part of the model path, a CIM
 object reference is strongly typed. The GroupComponent object
 reference in the PolicyGroupInPolicyGroup association, for example,
 can only point to an instance of PolicyGroup, or to an instance of a

Moore, et al. Standards Track [Page 73]

RFC 3060 Policy Core Information Model February 2001

 subclass of PolicyGroup. Contrast this with LDAP, where a DN pointer
 is completely untyped: it identifies (by DN) an entry, but places no
 restriction on that entry’s object class(es).

 An important difference between CIM property definitions and LDAP
 attribute type definitions was identified earlier in Section 6:
 while an LDAP attribute type definition has global scope, a CIM
 property definition applies only to the class in which it is defined.
 Thus properties having the same name in two different classes are
 free to have different data types. CIM takes advantage of this
 flexibility by allowing the data type of an object reference to be
 overridden in a subclass of the association class in which it was
 initially defined.

 For example, the object reference GroupComponent is defined in the
 abstract aggregation class PolicyComponent to be a reference to an
 instance of the class Policy. This data type for GroupComponent is
 then overridden in subclasses of PolicyComponent. In
 PolicyGroupInPolicyGroup, for example, GroupComponent becomes a
 reference to an instance of PolicyGroup. But in
 PolicyConditionInPolicyRule it becomes a reference to an instance of
 PolicyRule. Of course there is not total freedom in this overriding
 of object references. In order to remain consistent with its
 abstract superclass, a subclass of PolicyComponent can only override
 GroupComponent to be a reference to a subclass of Policy. A Policy
 class is the generic context for the GroupComponent reference in
 PolicyComponent.

Moore, et al. Standards Track [Page 74]

RFC 3060 Policy Core Information Model February 2001

14. Appendix B: The Core Policy MOF

// ==
// Title: Core Policy MOF Specification 2.4
// Filename: CIM_Policy24.MOF
// Version: 2.4
// Release: 0
// Description: The object classes below are listed in an order that
// avoids forward references. Required objects, defined
// by other working groups, are omitted.
// Date: 06/27/2000
// CIMCR516a - Rooted the model associations under Policy
// Component or PolicyInSystem. Corrected PolicyCondition/
// PolicyActionInPolicyRepository to subclass from
// PolicyInSystem (similar to Groups and Roles ’InSystem’)
// ==
// Author: DMTF SLA (Service Level Agreement) Working Group
// ==
// Pragmas
// ==
#pragma Locale ("en-US")

// ==
// Policy
// ==
 [Abstract, Description (
 "An abstract class describing common properties of all "
 "policy rule-related subclasses, such as PolicyGroup, Policy"
 "Rule and PolicyCondition. All instances of policy rule-"
 "related entities will be created from subclasses of CIM_"
 "Policy. The exception to this statement is PolicyRepository "
 "which is a type of CIM_System.")
]
class CIM_Policy : CIM_ManagedElement
{
 [Description (
 "A user-friendly name of this policy-related object.")
]
 string CommonName;
 [Description (
 "An array of keywords for characterizing / categorizing "
 "policy objects. Keywords are of one of two types: \n"
 " o Keywords defined in this and other MOFs, or in DMTF "
 " white papers. These keywords provide a vendor-"
 " independent, installation-independent way of "
 " characterizing policy objects. \n"
 " o Installation-dependent keywords for characterizing "

Moore, et al. Standards Track [Page 75]

RFC 3060 Policy Core Information Model February 2001

 " policy objects. Examples include ’Engineering’, "
 " ’Billing’, and ’Review in December 2000’. \n"
 "This MOF defines the following keywords: ’UNKNOWN’, "
 "’CONFIGURATION’, ’USAGE’, ’SECURITY’, ’SERVICE’, "
 "’MOTIVATIONAL’, ’INSTALLATION’, and ’EVENT’. These "
 "concepts are self-explanatory and are further discussed "
 "in the SLA/Policy White Paper. One additional keyword "
 "is defined: ’POLICY’. The role of this keyword is to "
 "identify policy-related instances that may not be otherwise "
 "identifiable, in some implementations. The keyword ’POLICY’ "
 "is NOT mutually exclusive of the other keywords "
 "specified above.")
]
 string PolicyKeywords [];
};

// ==
// PolicyComponent
// ==
 [Association, Abstract, Aggregation, Description (
 "CIM_PolicyComponent is a generic association used to "
 "establish ’part of’ relationships between the subclasses of "
 "CIM_Policy. For example, the PolicyConditionInPolicyRule "
 "association defines that PolicyConditions are part of a "
 "PolicyRule.")
]
class CIM_PolicyComponent
{
 [Aggregate, Key, Description (
 "The parent Policy in the association.")
]
 CIM_Policy REF GroupComponent;
 [Key, Description (
 "The child/part Policy in the association.")
]
 CIM_Policy REF PartComponent;
};

// ==
// PolicyInSystem
// ==
 [Association, Abstract, Description (
 " CIM_PolicyInSystem is a generic association used to "
 "establish dependency relationships between Policies and the "
 "Systems that host them. These Systems may be ComputerSystems "
 "where Policies are ’running’ or they may be Policy"
 "Repositories where Policies are stored. This relationship "
 "is similar to the concept of CIM_Services being dependent "

Moore, et al. Standards Track [Page 76]

RFC 3060 Policy Core Information Model February 2001

 "on CIM_Systems as defined by the HostedService "
 "association. \n"
 " Cardinality is Max(1) for the Antecedent/System "
 "reference since Policies can only be hosted in at most one "
 "System context. Some subclasses of the association will "
 "further refine this definition to make the Policies Weak "
 "to Systems. Other subclasses of PolicyInSystem will "
 "define an optional hosting relationship. Examples of each "
 "of these are the PolicyRuleInSystem and PolicyConditionIn"
 "PolicyRepository associations, respectively.")
]
class CIM_PolicyInSystem : CIM_Dependency
{
 [Override ("Antecedent"), Max (1), Description (
 "The hosting System.")
]
 CIM_System REF Antecedent;
 [Override ("Dependent"), Description (
 "The hosted Policy.")
]
 CIM_Policy REF Dependent;
};

// ==
// PolicyGroup
// ==
 [Description (
 "A container for either a set of related PolicyGroups "
 "or a set of related PolicyRules, but not both. Policy"
 "Groups are defined and named relative to the CIM_System "
 "which provides their context.")
]
class CIM_PolicyGroup : CIM_Policy
{
 [Propagated("CIM_System.CreationClassName"),
 Key, MaxLen (256),
 Description ("The scoping System’s CreationClassName.")
]
 string SystemCreationClassName;
 [Propagated("CIM_System.Name"),
 Key, MaxLen (256),
 Description ("The scoping System’s Name.")
]
 string SystemName;
 [Key, MaxLen (256), Description (
 "CreationClassName indicates the name of the class or the "
 "subclass used in the creation of an instance. When used "
 "with the other key properties of this class, this property "

Moore, et al. Standards Track [Page 77]

RFC 3060 Policy Core Information Model February 2001

 "allows all instances of this class and its subclasses to "
 "be uniquely identified.")]
 string CreationClassName;
 [Key, MaxLen (256), Description (
 "A user-friendly name of this PolicyGroup.")
]
 string PolicyGroupName;
};

// ==
// PolicyGroupInPolicyGroup
// ==
 [Association, Aggregation, Description (
 "A relationship that aggregates one or more lower-level "
 "PolicyGroups into a higher-level Group. A Policy"
 "Group may aggregate either PolicyRules or other Policy"
 "Groups, but not both.")
]
class CIM_PolicyGroupInPolicyGroup : CIM_PolicyComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "A PolicyGroup that aggregates other Groups.")
]
 CIM_PolicyGroup REF GroupComponent;
 [Override ("PartComponent"), Description (
 "A PolicyGroup aggregated by another Group.")
]
 CIM_PolicyGroup REF PartComponent;
};

// ==
// PolicyGroupInSystem
// ==
 [Association, Description (
 "An association that links a PolicyGroup to the System "
 "in whose scope the Group is defined.")
]
class CIM_PolicyGroupInSystem : CIM_PolicyInSystem
{
 [Override ("Antecedent"), Min(1), Max(1), Description (
 "The System in whose scope a PolicyGroup is defined.")
]
 CIM_System REF Antecedent;
 [Override ("Dependent"), Weak, Description (
 "A PolicyGroup named within the scope of a System.")
]
 CIM_PolicyGroup REF Dependent;
};

Moore, et al. Standards Track [Page 78]

RFC 3060 Policy Core Information Model February 2001

// ==
// PolicyRule
// ==
 [Description (
 " The central class for representing the ’If Condition then "
 "Action’ semantics associated with a policy rule. "
 "A PolicyRule condition, in the most general sense, is "
 "represented as either an ORed set of ANDed conditions "
 "(Disjunctive Normal Form, or DNF) or an ANDed set of ORed "
 "conditions (Conjunctive Normal Form, or CNF). Individual "
 "conditions may either be negated (NOT C) or unnegated (C). "
 "The actions specified by a PolicyRule are to be performed "
 "if and only if the PolicyRule condition (whether it is "
 "represented in DNF or CNF) evaluates to TRUE.\n\n"
 " "
 "The conditions and actions associated with a PolicyRule "
 "are modeled, respectively, with subclasses of Policy"
 "Condition and PolicyAction. These condition and action "
 "objects are tied to instances of PolicyRule by the Policy"
 "ConditionInPolicyRule and PolicyActionInPolicyRule "
 "aggregations.\n\n"
 " "
 "A PolicyRule may also be associated with one or more policy "
 "time periods, indicating the schedule according to which the "
 "policy rule is active and inactive. In this case it is the "
 "PolicyRuleValidityPeriod aggregation that provides this "
 "linkage.\n\n"
 " "
 "The PolicyRule class uses the property ConditionListType, to "
 "indicate whether the conditions for the rule are in DNF or "
 "CNF. The PolicyConditionInPolicyRule aggregation contains "
 "two additional properties to complete the representation of "
 "the Rule’s conditional expression. The first of these "
 "properties is an integer to partition the referenced "
 "PolicyConditions into one or more groups, and the second is a "
 "Boolean to indicate whether a referenced Condition is "
 "negated. An example shows how ConditionListType and these "
 "two additional properties provide a unique representation "
 "of a set of PolicyConditions in either DNF or CNF.\n\n"
 " "
 "Suppose we have a PolicyRule that aggregates five "
 "PolicyConditions C1 through C5, with the following values "
 "in the properties of the five PolicyConditionInPolicyRule "
 "associations:\n"
 " C1: GroupNumber = 1, ConditionNegated = FALSE\n "
 " C2: GroupNumber = 1, ConditionNegated = TRUE\n "
 " C3: GroupNumber = 1, ConditionNegated = FALSE\n "
 " C4: GroupNumber = 2, ConditionNegated = FALSE\n "

Moore, et al. Standards Track [Page 79]

RFC 3060 Policy Core Information Model February 2001

 " C5: GroupNumber = 2, ConditionNegated = FALSE\n\n "
 " "
 "If ConditionListType = DNF, then the overall condition for "
 "the PolicyRule is:\n"
 " (C1 AND (NOT C2) AND C3) OR (C4 AND C5)\n\n"
 " "
 "On the other hand, if ConditionListType = CNF, then the "
 "overall condition for the PolicyRule is:\n"
 " (C1 OR (NOT C2) OR C3) AND (C4 OR C5)\n\n"
 " "
 "In both cases, there is an unambiguous specification of "
 "the overall condition that is tested to determine whether "
 "to perform the PolicyActions associated with the PolicyRule.")
]
class CIM_PolicyRule : CIM_Policy
{
 [Propagated("CIM_System.CreationClassName"),
 Key, MaxLen (256),
 Description ("The scoping System’s CreationClassName.")
]
 string SystemCreationClassName;
 [Propagated("CIM_System.Name"),
 Key, MaxLen (256),
 Description ("The scoping System’s Name.")
]
 string SystemName;
 [Key, MaxLen (256), Description (
 "CreationClassName indicates the name of the class or the "
 "subclass used in the creation of an instance. When used "
 "with the other key properties of this class, this property "
 "allows all instances of this class and its subclasses to "
 "be uniquely identified.")]
 string CreationClassName;
 [Key, MaxLen (256), Description (
 "A user-friendly name of this PolicyRule.")
]
 string PolicyRuleName;
 [Description (
 "Indicates whether this PolicyRule is administratively "
 "enabled, administratively disabled, or enabled for "
 "debug. When the property has the value 3 (\"enabledFor"
 "Debug\"), the entity evaluating the PolicyConditions is "
 "instructed to evaluate the conditions for the Rule, but not "
 "to perform the actions if the PolicyConditions evaluate to "
 "TRUE. This serves as a debug vehicle when attempting to "
 "determine what policies would execute in a particular "
 "scenario, without taking any actions to change state "
 "during the debugging. The default value is 1

Moore, et al. Standards Track [Page 80]

RFC 3060 Policy Core Information Model February 2001

(\"enabled\")."),
 ValueMap { "1", "2", "3" },
 Values { "enabled", "disabled", "enabledForDebug" }
]
 uint16 Enabled;
 [Description (
 "Indicates whether the list of PolicyConditions "
 "associated with this PolicyRule is in disjunctive "
 "normal form (DNF) or conjunctive normal form (CNF)."
 "The default value is 1 (\"DNF\")."),
 ValueMap { "1", "2" },
 Values { "DNF", "CNF" }
]
 uint16 ConditionListType;
 [Description (
 "A free-form string that can be used to provide "
 "guidelines on how this PolicyRule should be used.")
]
 string RuleUsage;
 [Description (
 "A non-negative integer for prioritizing this Policy"
 "Rule relative to other Rules. A larger value "
 "indicates a higher priority. The default value is 0.")
]
 uint16 Priority;
 [Description (
 "A flag indicating that the evaluation of the Policy"
 "Conditions and execution of PolicyActions (if the "
 "Conditions evaluate to TRUE) is required. The "
 "evaluation of a PolicyRule MUST be attempted if the "
 "Mandatory property value is TRUE. If the Mandatory "
 "property is FALSE, then the evaluation of the Rule "
 "is ’best effort’ and MAY be ignored.")
]
 boolean Mandatory;
 [Description (
 "This property gives a policy administrator a way "
 "of specifying how the ordering of the PolicyActions "
 "associated with this PolicyRule is to be interpreted. "
 "Three values are supported:\n"
 " o mandatory(1): Do the actions in the indicated "
 " order, or don’t do them at all.\n"
 " o recommended(2): Do the actions in the indicated "
 " order if you can, but if you can’t do them in this "
 " order, do them in another order if you can.\n"
 " o dontCare(3): Do them -- I don’t care about the "
 " order.\n"
 "The default value is 3 (\"dontCare\")."),

Moore, et al. Standards Track [Page 81]

RFC 3060 Policy Core Information Model February 2001

 ValueMap { "1", "2", "3" },
 Values { "mandatory", "recommended", "dontCare" }
]
 uint16 SequencedActions;
 [Description (
 "This property represents the roles and role combinations "
 "associated with a PolicyRule. Each value represents one "
 "role or role combination. Since this is a multi-valued "
 "property, more than one role or combination can be associated "
 "with a single policy rule. Each value is a string of the "
 "form:\n"
 " <RoleName>[&&<RoleName>]*\n"
 "where the individual role names appear in alphabetical order "
 "(according to the collating sequence for UCS-2).")
]
 string PolicyRoles [];
};

// ==
// PolicyRuleInPolicyGroup
// ==
 [Association, Aggregation, Description (
 "A relationship that aggregates one or more PolicyRules "
 "into a PolicyGroup. A PolicyGroup may aggregate either "
 "PolicyRules or other PolicyGroups, but not both.")
]
class CIM_PolicyRuleInPolicyGroup : CIM_PolicyComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "A PolicyGroup that aggregates one or more PolicyRules.")
]
 CIM_PolicyGroup REF GroupComponent;
 [Override ("PartComponent"), Description (
 "A PolicyRule aggregated by a PolicyGroup.")
]
 CIM_PolicyRule REF PartComponent;
};

// ==
// PolicyRuleInSystem
// ==
 [Association, Description (
 "An association that links a PolicyRule to the System "
 "in whose scope the Rule is defined.")
]
class CIM_PolicyRuleInSystem : CIM_PolicyInSystem
{
 [Override ("Antecedent"), Min(1), Max(1), Description (

Moore, et al. Standards Track [Page 82]

RFC 3060 Policy Core Information Model February 2001

 "The System in whose scope a PolicyRule is defined.")
]
 CIM_System REF Antecedent;
 [Override ("Dependent"), Weak, Description (
 "A PolicyRule named within the scope of a System.")
]
 CIM_PolicyRule REF Dependent;
};

// ==
// PolicyRepository
// ==
 [Description (
 "A class representing an administratively defined "
 "container for reusable policy-related information. "
 "This class does not introduce any additional "
 "properties beyond those in its superclass "
 "AdminDomain. It does, however, participate in a "
 "number of unique associations."
 "\n\n"
 "An instance of this class uses the NameFormat value"
 "\"PolicyRepository\", which is defined in the AdminDomain"
 "class.")
]
class CIM_PolicyRepository : CIM_AdminDomain
{
};

// ==
// PolicyRepositoryInPolicyRepository
// ==
 [Association, Aggregation, Description (
 "A relationship that aggregates one or more lower-level "
 "PolicyRepositories into a higher-level Repository.")
]
class CIM_PolicyRepositoryInPolicyRepository : CIM_SystemComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "A PolicyRepository that aggregates other Repositories.")
]
 CIM_PolicyRepository REF GroupComponent;
 [Override ("PartComponent"), Description (
 "A PolicyRepository aggregated by another Repository.")
]
 CIM_PolicyRepository REF PartComponent;
};

// ==

Moore, et al. Standards Track [Page 83]

RFC 3060 Policy Core Information Model February 2001

// PolicyCondition
// ==
 [Abstract, Description (
 "A class representing a rule-specific or reusable policy "
 "condition to be evaluated in conjunction with a Policy"
 "Rule. Since all operational details of a PolicyCondition "
 "are provided in subclasses of this object, this class is "
 "abstract.")
]
class CIM_PolicyCondition : CIM_Policy
{
 [Key, MaxLen (256), Description (
 " The name of the class or the subclass used in the "
 "creation of the System object in whose scope this "
 "PolicyCondition is defined.\n\n"
 " "
 "This property helps to identify the System object in "
 "whose scope this instance of PolicyCondition exists. "
 "For a rule-specific PolicyCondition, this is the System "
 "in whose context the PolicyRule is defined. For a "
 "reusable PolicyCondition, this is the instance of "
 "PolicyRepository (which is a subclass of System) that "
 "holds the Condition.\n\n"
 " "
 "Note that this property, and the analogous property "
 "SystemName, do not represent propagated keys from an "
 "instance of the class System. Instead, they are "
 "properties defined in the context of this class, which "
 "repeat the values from the instance of System to which "
 "this PolicyCondition is related, either directly via the "
 "PolicyConditionInPolicyRepository aggregation or indirectly "
 "via the PolicyConditionInPolicyRule aggregation.")
]
 string SystemCreationClassName;
 [Key, MaxLen (256), Description (
 " The name of the System object in whose scope this "
 "PolicyCondition is defined.\n\n"
 " "
 "This property completes the identification of the System "
 "object in whose scope this instance of PolicyCondition "
 "exists. For a rule-specific PolicyCondition, this is the "
 "System in whose context the PolicyRule is defined. For a "
 "reusable PolicyCondition, this is the instance of "
 "PolicyRepository (which is a subclass of System) that "
 "holds the Condition.")
]
 string SystemName;
 [Key, MaxLen (256), Description (

Moore, et al. Standards Track [Page 84]

RFC 3060 Policy Core Information Model February 2001

 "For a rule-specific PolicyCondition, the "
 "CreationClassName of the PolicyRule object with which "
 "this Condition is associated. For a reusable Policy"
 "Condition, a special value, ’NO RULE’, should be used to "
 "indicate that this Condition is reusable and not "
 "associated with a single PolicyRule.")
]
 string PolicyRuleCreationClassName;
 [Key, MaxLen (256), Description (
 "For a rule-specific PolicyCondition, the name of "
 "the PolicyRule object with which this Condition is "
 "associated. For a reusable PolicyCondition, a "
 "special value, ’NO RULE’, should be used to indicate "
 "that this Condition is reusable and not associated "
 "with a single PolicyRule.")
]
 string PolicyRuleName;
 [Key, MaxLen (256), Description (
 "CreationClassName indicates the name of the class or the "
 "subclass used in the creation of an instance. When used "
 "with the other key properties of this class, this property "
 "allows all instances of this class and its subclasses to "
 "be uniquely identified.")]
 string CreationClassName;
 [Key, MaxLen (256), Description (
 "A user-friendly name of this PolicyCondition.")
]
 string PolicyConditionName;
};

// ==
// PolicyConditionInPolicyRule
// ==
 [Association, Aggregation, Description (
 " A PolicyRule aggregates zero or more instances of the "
 "PolicyCondition class, via the PolicyConditionInPolicyRule "
 "association. A Rule that aggregates zero Conditions is not "
 "valid -- it may, however, be in the process of being entered "
 "into a PolicyRepository or being defined for a System. Note "
 "that a PolicyRule should have no effect until it is valid.\n\n"
 " "
 "The Conditions aggregated by a PolicyRule are grouped into "
 "two levels of lists: either an ORed set of ANDed sets of "
 "conditions (DNF, the default) or an ANDed set of ORed sets "
 "of conditions (CNF). Individual PolicyConditions in these "
 "lists may be negated. The property ConditionListType "
 "specifies which of these two grouping schemes applies to a "
 "particular PolicyRule.\n\n"

Moore, et al. Standards Track [Page 85]

RFC 3060 Policy Core Information Model February 2001

 " "
 "In either case, PolicyConditions are used to determine whether "
 "to perform the PolicyActions associated with the
PolicyRule.\n\n"
 " "
 "One or more PolicyTimePeriodConditions may be among the "
 "conditions associated with a PolicyRule via the Policy"
 "ConditionInPolicyRule association. In this case, the time "
 "periods are simply additional Conditions to be evaluated "
 "along with any others that are specified for the Rule. ")
]
class CIM_PolicyConditionInPolicyRule : CIM_PolicyComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "This property represents the PolicyRule that "
 "contains one or more PolicyConditions.")
]
 CIM_PolicyRule REF GroupComponent;
 [Override ("PartComponent"), Description (
 "This property holds the name of a PolicyCondition "
 "contained by one or more PolicyRules.")
]
 CIM_PolicyCondition REF PartComponent;
 [Description (
 "Unsigned integer indicating the group to which the "
 "PolicyCondition identified by the ContainedCondition "
 "property belongs. This integer segments the Conditions "
 "into the ANDed sets (when the ConditionListType is "
 "\"DNF\") or similarly the ORed sets (when the Condition"
 "ListType is \"CNF\") that are then evaluated.")
]
 uint16 GroupNumber;
 [Description (
 "Indication of whether the Condition identified by "
 "the ContainedCondition property is negated. TRUE "
 "indicates that the PolicyCondition IS negated, FALSE "
 "indicates that it IS NOT negated.")
]
 boolean ConditionNegated;
};

// ==
// PolicyConditionInPolicyRepository
// ==
 [Association, Description (
 " A class representing the hosting of reusable "
 "PolicyConditions by a PolicyRepository. A reusable Policy"
 "Condition is always related to a single PolicyRepository, "

Moore, et al. Standards Track [Page 86]

RFC 3060 Policy Core Information Model February 2001

 "via this aggregation.\n\n"
 " "
 "Note, that an instance of PolicyCondition can be either "
 "reusable or rule-specific. When the Condition is rule-"
 "specific, it shall not be related to any "
 "PolicyRepository via the PolicyConditionInPolicyRepository "
 "aggregation.")
]
class CIM_PolicyConditionInPolicyRepository : CIM_PolicyInSystem
{
 [Override ("Antecedent"), Max(1), Description (
 "This property identifies a PolicyRepository "
 "hosting one or more PolicyConditions. A reusable "
 "PolicyCondition is always related to exactly one "
 "PolicyRepository via the PolicyConditionInPolicyRepository "
 "aggregation. The [0..1] cardinality for this property "
 "covers the two types of PolicyConditions: 0 for a "
 "rule-specific PolicyCondition, 1 for a reusable one.")
]
 CIM_PolicyRepository REF Antecedent;
 [Override ("Dependent"), Description (
 "This property holds the name of a PolicyCondition"
 "hosted in the PolicyRepository. ")
]
 CIM_PolicyCondition REF Dependent;
};

// ==
// PolicyTimePeriodCondition
// ==
 [Description (
 " This class provides a means of representing the time "
 "periods during which a PolicyRule is valid, i.e., active. "
 "At all times that fall outside these time periods, the "
 "PolicyRule has no effect. A Rule is treated as valid "
 "at ALL times, if it does not specify a "
 "PolicyTimePeriodCondition.\n\n"
 " "
 "In some cases a Policy Consumer may need to perform "
 "certain setup / cleanup actions when a PolicyRule becomes "
 "active / inactive. For example, sessions that were "
 "established while a Rule was active might need to "
 "be taken down when the Rule becomes inactive. In other "
 "cases, however, such sessions might be left up. In this "
 "case, the effect of deactivating the PolicyRule would "
 "just be to prevent the establishment of new sessions. \n\n"
 " "
 "Setup / cleanup behaviors on validity period "

Moore, et al. Standards Track [Page 87]

RFC 3060 Policy Core Information Model February 2001

 "transitions are not currently addressed by the Policy "
 "Model, and must be specified in ’guideline’ documents or "
 "via subclasses of CIM_PolicyRule, CIM_PolicyTimePeriod"
 "Condition or other concrete subclasses of CIM_Policy. If "
 "such behaviors need to be under the control of the policy "
 "administrator, then a mechanism to allow this control "
 "must also be specified in the subclasses.\n\n"
 " "
 "PolicyTimePeriodCondition is defined as a subclass of "
 "PolicyCondition. This is to allow the inclusion of "
 "time-based criteria in the AND/OR condition definitions "
 "for a PolicyRule.\n\n"
 " "
 "Instances of this class may have up to five properties "
 "identifying time periods at different levels. The values "
 "of all the properties present in an instance are ANDed "
 "together to determine the validity period(s) for the "
 "instance. For example, an instance with an overall "
 "validity range of January 1, 2000 through December 31, "
 "2000; a month mask that selects March and April; a "
 "day-of-the-week mask that selects Fridays; and a time "
 "of day range of 0800 through 1600 would be represented "
 "using the following time periods:\n"
 " Friday, March 5, 2000, from 0800 through 1600;\n "
 " Friday, March 12, 2000, from 0800 through 1600;\n "
 " Friday, March 19, 2000, from 0800 through 1600;\n "
 " Friday, March 26, 2000, from 0800 through 1600;\n "
 " Friday, April 2, 2000, from 0800 through 1600;\n "
 " Friday, April 9, 2000, from 0800 through 1600;\n "
 " Friday, April 16, 2000, from 0800 through 1600;\n "
 " Friday, April 23, 2000, from 0800 through 1600;\n "
 " Friday, April 30, 2000, from 0800 through 1600.\n\n"
 " "
 "Properties not present in an instance of "
 "PolicyTimePeriodCondition are implicitly treated as having "
 "their value ’always enabled’. Thus, in the example above, "
 "the day-of-the-month mask is not present, and so the "
 "validity period for the instance implicitly includes a "
 "day-of-the-month mask that selects all days of the month. "
 "If this ’missing property’ rule is applied to its fullest, we "
 "see that there is a second way to indicate that a Policy"
 "Rule is always enabled: associate with it an instance of "
 "PolicyTimePeriodCondition whose only properties with "
 "specific values are its key properties.")
]
class CIM_PolicyTimePeriodCondition : CIM_PolicyCondition
{
 [Description (

Moore, et al. Standards Track [Page 88]

RFC 3060 Policy Core Information Model February 2001

 " This property identifies an overall range of calendar "
 "dates and times over which a PolicyRule is valid. It is "
 "formatted as a string representing a start date and time, "
 "in which the character ’T’ indicates the beginning of the "
 "time portion, followed by the solidus character ’/’, "
 "followed by a similar string representing an end date and "
 "time. The first date indicates the beginning of the range, "
 "while the second date indicates the end. Thus, the second "
 "date and time must be later than the first. Date/times are "
 "expressed as substrings of the form yyyymmddThhmmss. For "
 "example: \n"
 " 20000101T080000/20000131T120000 defines \n"
 " January 1, 2000, 0800 through January 31, 2000, noon\n\n"
 " "
 "There are also two special cases in which one of the "
 "date/time strings is replaced with a special string defined "
 "in RFC 2445.\n "
 " o If the first date/time is replaced with the string "
 " ’THISANDPRIOR’, then the property indicates that a "
 " PolicyRule is valid [from now] until the date/time "
 " that appears after the ’/’.\n"
 " o If the second date/time is replaced with the string "
 " ’THISANDFUTURE’, then the property indicates that a "
 " PolicyRule becomes valid on the date/time that "
 " appears before the ’/’, and remains valid from that "
 " point on. "),
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.MonthOfYearMask",
 "CIM_PolicyTimePeriodCondition.DayOfMonthMask",
 "CIM_PolicyTimePeriodCondition.DayOfWeekMask",
 "CIM_PolicyTimePeriodCondition.TimeOfDayMask",
 "CIM_PolicyTimePeriodCondition.LocalOrUtcTime"}
]
 string TimePeriod;
 [Octetstring, Description (
 " The purpose of this property is to refine the valid time "
 "period that is defined by the TimePeriod property, by "
 "explicitly specifying in which months the PolicyRule is "
 "valid. These properties work together, with the "
 "TimePeriod used to specify the overall time period in "
 "which the PolicyRule is valid, and the MonthOfYearMask used "
 "to pick out the months during which the Rule is valid.\n\n"
 " "
 "This property is formatted as an octet string, structured "
 "as follows:\n"
 " o a 4-octet length field, indicating the length of the "
 " entire octet string; this field is always set to "
 " 0x00000006 for this property;\n"

Moore, et al. Standards Track [Page 89]

RFC 3060 Policy Core Information Model February 2001

 " o a 2-octet field consisting of 12 bits identifying the "
 " 12 months of the year, beginning with January and "
 " ending with December, followed by 4 bits that are "
 " always set to ’0’. For each month, the value ’1’ "
 " indicates that the policy is valid for that month, "
 " and the value ’0’ indicates that it is not valid.\n\n"
 " "
 "The value 0x000000060830, for example, indicates that a "
 "PolicyRule is valid only in the months May, November, "
 "and December.\n\n"
 " "
 "If a value for this property is not provided, then the "
 "PolicyRule is treated as valid for all twelve months, and "
 "only restricted by its TimePeriod property value and the "
 "other Mask properties."),
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.TimePeriod",
 "CIM_PolicyTimePeriodCondition.LocalOrUtcTime"}
]
 uint8 MonthOfYearMask[];
 [Octetstring, Description (
 " The purpose of this property is to refine the valid time "
 "period that is defined by the TimePeriod property, by "
 "explicitly specifying in which days of the month the Policy"
 "Rule is valid. These properties work together, "
 "with the TimePeriod used to specify the overall time period "
 "in which the PolicyRule is valid, and the DayOfMonthMask used "
 "to pick out the days of the month during which the Rule "
 "is valid.\n\n "
 " "
 "This property is formatted as an octet string, structured "
 "as follows:\n"
 " o a 4-octet length field, indicating the length of the "
 " entire octet string; this field is always set to "
 " 0x0000000C for this property; \n"
 " o an 8-octet field consisting of 31 bits identifying "
 " the days of the month counting from the beginning, "
 " followed by 31 more bits identifying the days of the "
 " month counting from the end, followed by 2 bits that "
 " are always set to ’0’. For each day, the value ’1’ "
 " indicates that the policy is valid for that day, and "
 " the value ’0’ indicates that it is not valid. \n\n"
 " "
 "The value 0x0000000C8000000100000000, for example, "
 "indicates that a PolicyRule is valid on the first and "
 "last days of the month.\n\n "
 " "
 "For months with fewer than 31 days, the digits corresponding "

Moore, et al. Standards Track [Page 90]

RFC 3060 Policy Core Information Model February 2001

 "to days that the months do not have (counting in both "
 "directions) are ignored.\n\n"
 " "
 "If a value for this property is not provided, then the "
 "PolicyRule is treated as valid for all days of the month, and "
 "only restricted by its TimePeriod property value and the "
 "other Mask properties."),
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.TimePeriod",
 "CIM_PolicyTimePeriodCondition.LocalOrUtcTime"}
]
 uint8 DayOfMonthMask[];
 [Octetstring, Description (
 " The purpose of this property is to refine the valid time "
 "period that is defined by the TimePeriod property, by "
 "explicitly specifying in which days of the month the Policy"
 "Rule is valid. These properties work together, "
 "with the TimePeriod used to specify the overall time period "
 "in which the PolicyRule is valid, and the DayOfWeekMask used "
 "to pick out the days of the week during which the Rule "
 "is valid.\n\n "
 " "
 "This property is formatted as an octet string, structured "
 "as follows:\n "
 " o a 4-octet length field, indicating the length of the "
 " entire octet string; this field is always set to "
 " 0x00000005 for this property;\n"
 " o a 1-octet field consisting of 7 bits identifying the 7 "
 " days of the week, beginning with Sunday and ending with "
 " Saturday, followed by 1 bit that is always set to ’0’. "
 " For each day of the week, the value ’1’ indicates that "
 " the policy is valid for that day, and the value ’0’ "
 " indicates that it is not valid. \n\n"
 " "
 "The value 0x000000057C, for example, indicates that a "
 "PolicyRule is valid Monday through Friday.\n\n"
 " "
 "If a value for this property is not provided, then the "
 "PolicyRule is treated as valid for all days of the week, "
 "and only restricted by its TimePeriod property value and "
 "the other Mask properties."),
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.TimePeriod",
 "CIM_PolicyTimePeriodCondition.LocalOrUtcTime"}
]
 uint8 DayOfWeekMask[];
 [Description (
 " The purpose of this property is to refine the valid time "

Moore, et al. Standards Track [Page 91]

RFC 3060 Policy Core Information Model February 2001

 "period that is defined by the TimePeriod property, by "
 "explicitly specifying a range of times in a day during which "
 "the PolicyRule is valid. These properties work "
 "together, with the TimePeriod used to specify the overall "
 "time period in which the PolicyRule is valid, and the "
 "TimeOfDayMask used to pick out the range of time periods "
 "in a given day of during which the Rule is valid. \n\n"
 " "
 "This property is formatted in the style of RFC 2445: a "
 "time string beginning with the character ’T’, followed by "
 "the solidus character ’/’, followed by a second time string. "
 "The first time indicates the beginning of the range, while "
 "the second time indicates the end. Times are expressed as "
 "substrings of the form ’Thhmmss’. \n\n"
 " "
 "The second substring always identifies a later time than "
 "the first substring. To allow for ranges that span "
 "midnight, however, the value of the second string may be "
 "smaller than the value of the first substring. Thus, "
 "’T080000/T210000’ identifies the range from 0800 until 2100, "
 "while ’T210000/T080000’ identifies the range from 2100 until "
 "0800 of the following day. \n\n"
 " "
 "When a range spans midnight, it by definition includes "
 "parts of two successive days. When one of these days is "
 "also selected by either the MonthOfYearMask, "
 "DayOfMonthMask, and/or DayOfWeekMask, but the other day is "
 "not, then the policy is active only during the portion of "
 "the range that falls on the selected day. For example, if "
 "the range extends from 2100 until 0800, and the day of "
 "week mask selects Monday and Tuesday, then the policy is "
 "active during the following three intervals:\n"
 " From midnight Sunday until 0800 Monday; \n"
 " From 2100 Monday until 0800 Tuesday; \n"
 " From 2100 Tuesday until 23:59:59 Tuesday. \n\n"
 " "
 "If a value for this property is not provided, then the "
 "PolicyRule is treated as valid for all hours of the day, "
 "and only restricted by its TimePeriod property value and "
 "the other Mask properties."),
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.TimePeriod",
 "CIM_PolicyTimePeriodCondition.LocalOrUtcTime"}
]
 string TimeOfDayMask;
 [Description (
 " This property indicates whether the times represented "
 "in the TimePeriod property and in the various Mask "

Moore, et al. Standards Track [Page 92]

RFC 3060 Policy Core Information Model February 2001

 "properties represent local times or UTC times. There is "
 "no provision for mixing of local times and UTC times: the "
 "value of this property applies to all of the other "
 "time-related properties."),
 ValueMap { "1", "2" },
 Values { "localTime", "utcTime" },
 ModelCorrespondence {
 "CIM_PolicyTimePeriodCondition.TimePeriod",
 "CIM_PolicyTimePeriodCondition.MonthOfYearMask",
 "CIM_PolicyTimePeriodCondition.DayOfMonthMask",
 "CIM_PolicyTimePeriodCondition.DayOfWeekMask",
 "CIM_PolicyTimePeriodCondition.TimeOfDayMask"}
]
 uint16 LocalOrUtcTime;
};

// ==
// PolicyRuleValidityPeriod
// ==
 [Association, Aggregation, Description (
 "The PolicyRuleValidityPeriod aggregation represents "
 "scheduled activation and deactivation of a PolicyRule. "
 "If a PolicyRule is associated with multiple policy time "
 "periods via this association, then the Rule is active if "
 "at least one of the time periods indicates that it is "
 "active. (In other words, the PolicyTimePeriodConditions "
 "are ORed to determine whether the Rule is active.) A Time"
 "Period may be aggregated by multiple PolicyRules. A Rule "
 "that does not point to a PolicyTimePeriodCondition via this "
 "association is, from the point of view of scheduling, "
 "always active. It may, however, be inactive for other "
 "reasons. For example, the Rule’s Enabled property may "
 "be set to \"disabled\" (value=2).")
]
class CIM_PolicyRuleValidityPeriod : CIM_PolicyComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "This property contains the name of a PolicyRule that "
 "contains one or more PolicyTimePeriodConditions.")
]
 CIM_PolicyRule REF GroupComponent;
 [Override ("PartComponent"), Description (
 "This property contains the name of a "
 "PolicyTimePeriodCondition defining the valid time periods "
 "for one or more PolicyRules.")
]
 CIM_PolicyTimePeriodCondition REF PartComponent;
};

Moore, et al. Standards Track [Page 93]

RFC 3060 Policy Core Information Model February 2001

// ==
// VendorPolicyCondition
// ==
 [Description (
 " A class that provides a general extension mechanism for "
 "representing PolicyConditions that have not been modeled "
 "with specific properties. Instead, the two properties "
 "Constraint and ConstraintEncoding are used to define the "
 "content and format of the Condition, as explained below.\n\n"
 " "
 "As its name suggests, VendorPolicyCondition is intended for "
 "vendor-specific extensions to the Policy Core Information "
 "Model. Standardized extensions are not expected to use "
 "this class.")
]
class CIM_VendorPolicyCondition : CIM_PolicyCondition
{
 [Octetstring, Description (
 "This property provides a general extension mechanism for "
 "representing PolicyConditions that have not been "
 "modeled with specific properties. The format of the "
 "octet strings in the array is left unspecified in "
 "this definition. It is determined by the OID value "
 "stored in the property ConstraintEncoding. Since "
 "ConstraintEncoding is single-valued, all the values of "
 "Constraint share the same format and semantics."),
 ModelCorrespondence {
 "CIM_VendorPolicyCondition.ConstraintEncoding"}
]
 string Constraint [];
 [Description (
 "An OID encoded as a string, identifying the format "
 "and semantics for this instance’s Constraint property."),
 ModelCorrespondence {
 "CIM_VendorPolicyCondition.Constraint"}
]
 string ConstraintEncoding;
};

// ==
// PolicyAction
// ==
 [Abstract, Description (
 "A class representing a rule-specific or reusable policy "
 "action to be performed if the PolicyConditions for a Policy"
 "Rule evaluate to TRUE. Since all operational details of a "
 "PolicyAction are provided in subclasses of this object, "
 "this class is abstract.")

Moore, et al. Standards Track [Page 94]

RFC 3060 Policy Core Information Model February 2001

]
class CIM_PolicyAction : CIM_Policy
{
 [Key, MaxLen (256), Description (
 " The name of the class or the subclass used in the "
 "creation of the System object in whose scope this "
 "PolicyAction is defined. \n\n"
 " "
 "This property helps to identify the System object in "
 "whose scope this instance of PolicyAction exists. "
 "For a rule-specific PolicyAction, this is the System "
 "in whose context the PolicyRule is defined. For a "
 "reusable PolicyAction, this is the instance of "
 "PolicyRepository (which is a subclass of System) that "
 "holds the Action. \n\n"
 " "
 "Note that this property, and the analogous property "
 "SystemName, do not represent propagated keys from an "
 "instance of the class System. Instead, they are "
 "properties defined in the context of this class, which "
 "repeat the values from the instance of System to which "
 "this PolicyAction is related, either directly via the "
 "PolicyActionInPolicyRepository aggregation or indirectly "
 "via the PolicyActionInPolicyRule aggregation.")
]
 string SystemCreationClassName;
 [Key, MaxLen (256), Description (
 " The name of the System object in whose scope this "
 "PolicyAction is defined. \n\n"
 " "
 "This property completes the identification of the System "
 "object in whose scope this instance of PolicyAction "
 "exists. For a rule-specific PolicyAction, this is the "
 "System in whose context the PolicyRule is defined. For "
 "a reusable PolicyAction, this is the instance of "
 "PolicyRepository (which is a subclass of System) that "
 "holds the Action.")
]
 string SystemName;
 [Key, MaxLen (256), Description (
 "For a rule-specific PolicyAction, the CreationClassName "
 "of the PolicyRule object with which this Action is "
 "associated. For a reusable PolicyAction, a "
 "special value, ’NO RULE’, should be used to "
 "indicate that this Action is reusable and not "
 "associated with a single PolicyRule.")
]
 string PolicyRuleCreationClassName;

Moore, et al. Standards Track [Page 95]

RFC 3060 Policy Core Information Model February 2001

 [Key, MaxLen (256), Description (
 "For a rule-specific PolicyAction, the name of "
 "the PolicyRule object with which this Action is "
 "associated. For a reusable PolicyAction, a "
 "special value, ’NO RULE’, should be used to "
 "indicate that this Action is reusable and not "
 "associated with a single PolicyRule.")
]
 string PolicyRuleName;
 [Key, MaxLen (256), Description (
 "CreationClassName indicates the name of the class or the "
 "subclass used in the creation of an instance. When used "
 "with the other key properties of this class, this property "
 "allows all instances of this class and its subclasses to "
 "be uniquely identified.")]
 string CreationClassName;
 [Key, MaxLen (256), Description (
 "A user-friendly name of this PolicyAction.")
]
 string PolicyActionName;
};

// ==
// PolicyActionInPolicyRepository
// ==
 [Association, Description (
 " A class representing the hosting of reusable "
 "PolicyActions by a PolicyRepository. A reusable Policy"
 "Action is always related to a single PolicyRepository, "
 "via this aggregation.\n\n"
 " "
 "Note, that an instance of PolicyAction can be either "
 "reusable or rule-specific. When the Action is rule-"
 "specific, it shall not be related to any "
 "PolicyRepository via the PolicyActionInPolicyRepository "
 "aggregation.")
]
class CIM_PolicyActionInPolicyRepository : CIM_PolicyInSystem
{
 [Override ("Antecedent"), Max(1), Description (
 "This property represents a PolicyRepository "
 "hosting one or more PolicyActions. A reusable "
 "PolicyAction is always related to exactly one "
 "PolicyRepository via the PolicyActionInPolicyRepository "
 "aggregation. The [0..1] cardinality for this property "
 "covers the two types of PolicyActions: 0 for a "
 "rule-specific PolicyAction, 1 for a reusable one.")
]

Moore, et al. Standards Track [Page 96]

RFC 3060 Policy Core Information Model February 2001

 CIM_PolicyRepository REF Antecedent;
 [Override ("Dependent"), Description (
 "This property holds the name of a PolicyAction"
 "hosted in the PolicyRepository. ")
]
 CIM_PolicyAction REF Dependent;
};

// ==
// PolicyActionInPolicyRule
// ==
 [Association, Aggregation, Description (
 " A PolicyRule aggregates zero or more instances of the "
 "PolicyAction class, via the PolicyActionInPolicyRule "
 "association. A Rule that aggregates zero Actions is not "
 "valid -- it may, however, be in the process of being entered "
 "into a PolicyRepository or being defined for a System. "
 "Alternately, the actions of the policy may be explicit in "
 "the definition of the PolicyRule. Note that a PolicyRule "
 "should have no effect until it is valid.\n\n"
 " "
 "The Actions associated with a PolicyRule may be given a "
 "required order, a recommended order, or no order at all. For "
 "Actions represented as separate objects, the PolicyActionIn"
 "PolicyRule aggregation can be used to express an order. \n\n"
 " "
 "This aggregation does not indicate whether a specified "
 "action order is required, recommended, or of no significance; "
 "the property SequencedActions in the aggregating instance of "
 "PolicyRule provides this indication.")
]
class CIM_PolicyActionInPolicyRule : CIM_PolicyComponent
{
 [Override ("GroupComponent"), Aggregate, Description (
 "This property represents the PolicyRule that "
 "contains one or more PolicyActions.")
]
 CIM_PolicyRule REF GroupComponent;
 [Override ("PartComponent"), Description (
 "This property holds the name of a PolicyAction "
 "contained by one or more PolicyRules.")
]
 CIM_PolicyAction REF PartComponent;
 [Description (
 " This property provides an unsigned integer ’n’ that"
 "indicates the relative position of a PolicyAction in the "
 "sequence of actions associated with a PolicyRule. "
 "When ’n’ is a positive integer, it indicates a place "

Moore, et al. Standards Track [Page 97]

RFC 3060 Policy Core Information Model February 2001

 "in the sequence of actions to be performed, with "
 "smaller integers indicating earlier positions in the "
 "sequence. The special value ’0’ indicates ’don’t care’. "
 "If two or more PolicyActions have the same non-zero "
 "sequence number, they may be performed in any order, but "
 "they must all be performed at the appropriate place in the "
 "overall action sequence. \n\n"
 " "
 "A series of examples will make ordering of PolicyActions "
 "clearer: \n"
 " o If all actions have the same sequence number, "
 " regardless of whether it is ’0’ or non-zero, any "
 " order is acceptable.\n "
 " o The values: \n"
 " 1:ACTION A \n"
 " 2:ACTION B \n"
 " 1:ACTION C \n"
 " 3:ACTION D \n"
 " indicate two acceptable orders: A,C,B,D or C,A,B,D, "
 " since A and C can be performed in either order, but "
 " only at the ’1’ position. \n"
 " o The values: \n"
 " 0:ACTION A \n"
 " 2:ACTION B \n"
 " 3:ACTION C \n"
 " 3:ACTION D \n"
 " require that B,C, and D occur either as B,C,D or as "
 " B,D,C. Action A may appear at any point relative to "
 " B, C, and D. Thus the complete set of acceptable "
 " orders is: A,B,C,D; B,A,C,D; B,C,A,D; B,C,D,A; "
 " A,B,D,C; B,A,D,C; B,D,A,C; B,D,C,A. \n\n"
 " "
 "Note that the non-zero sequence numbers need not start "
 "with ’1’, and they need not be consecutive. All that "
 "matters is their relative magnitude.")
]
 uint16 ActionOrder;
};

// ==
// VendorPolicyAction
// ==
 [Description (
 " A class that provides a general extension mechanism for "
 "representing PolicyActions that have not been modeled "
 "with specific properties. Instead, the two properties "
 "ActionData and ActionEncoding are used to define the "
 "content and format of the Action, as explained below.\n\n"

Moore, et al. Standards Track [Page 98]

RFC 3060 Policy Core Information Model February 2001

 " "
 "As its name suggests, VendorPolicyAction is intended for "
 "vendor-specific extensions to the Policy Core Information "
 "Model. Standardized extensions are not expected to use "
 "this class.")]
class CIM_VendorPolicyAction : CIM_PolicyAction
{
 [Octetstring, Description (
 "This property provides a general extension mechanism for "
 "representing PolicyActions that have not been "
 "modeled with specific properties. The format of the "
 "octet strings in the array is left unspecified in "
 "this definition. It is determined by the OID value "
 "stored in the property ActionEncoding. Since "
 "ActionEncoding is single-valued, all the values of "
 "ActionData share the same format and semantics."),
 ModelCorrespondence {
 "CIM_VendorPolicyAction.ActionEncoding"}
]
 string ActionData [];
 [Description (
 "An OID encoded as a string, identifying the format "
 "and semantics for this instance’s ActionData property."),
 ModelCorrespondence {
 "CIM_VendorPolicyAction.ActionData"}
]
 string ActionEncoding;
};

// ===
// end of file
// ===

Moore, et al. Standards Track [Page 99]

RFC 3060 Policy Core Information Model February 2001

15. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Moore, et al. Standards Track [Page 100]

