
Network Working Group M. Rose
Request For Comments: 3080 Invisible Worlds, Inc.
Category: Standards Track March 2001

 The Blocks Extensible Exchange Protocol Core

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo describes a generic application protocol kernel for
 connection-oriented, asynchronous interactions called the BEEP
 (Blocks Extensible Exchange Protocol) core. BEEP permits
 simultaneous and independent exchanges within the context of a single
 application user-identity, supporting both textual and binary
 messages.

Rose Standards Track [Page 1]

RFC 3080 The BEEP Core March 2001

Table of Contents

 1. Introduction . 4
 2. The BEEP Core . 5
 2.1 Roles . 6
 2.1.1 Exchange Styles . 6
 2.2 Messages and Frames 7
 2.2.1 Frame Syntax . 8
 2.2.1.1 Frame Header . 9
 2.2.1.2 Frame Payload . 12
 2.2.1.3 Frame Trailer . 13
 2.2.2 Frame Semantics . 14
 2.2.2.1 Poorly-formed Messages 14
 2.3 Channel Management . 15
 2.3.1 Message Semantics . 16
 2.3.1.1 The Greeting Message 16
 2.3.1.2 The Start Message . 17
 2.3.1.3 The Close Message . 20
 2.3.1.4 The OK Message . 23
 2.3.1.5 The Error Message . 23
 2.4 Session Establishment and Release 25
 2.5 Transport Mappings . 27
 2.5.1 Session Management . 27
 2.5.2 Message Exchange . 27
 2.6 Asynchrony . 28
 2.6.1 Within a Single Channel 28
 2.6.2 Between Different Channels 28
 2.6.3 Pre-emptive Replies 29
 2.6.4 Interference . 29
 2.7 Peer-to-Peer Behavior 30
 3. Transport Security . 31
 3.1 The TLS Transport Security Profile 34
 3.1.1 Profile Identification and Initialization 34
 3.1.2 Message Syntax . 35
 3.1.3 Message Semantics . 36
 3.1.3.1 The Ready Message . 36
 3.1.3.2 The Proceed Message 36
 4. User Authentication 37
 4.1 The SASL Family of Profiles 38
 4.1.1 Profile Identification and Initialization 39
 4.1.2 Message Syntax . 42
 4.1.3 Message Semantics . 43
 5. Registration Templates 44
 5.1 Profile Registration Template 44
 5.2 Feature Registration Template 44
 6. Initial Registrations 45
 6.1 Registration: BEEP Channel Management 45
 6.2 Registration: TLS Transport Security Profile 45

Rose Standards Track [Page 2]

RFC 3080 The BEEP Core March 2001

 6.3 Registration: SASL Family of Profiles 46
 6.4 Registration: application/beep+xml 47
 7. DTDs . 48
 7.1 BEEP Channel Management DTD 48
 7.2 TLS Transport Security Profile DTD 50
 7.3 SASL Family of Profiles DTD 51
 8. Reply Codes . 52
 9. Security Considerations 53
 References . 54
 Author’s Address . 55
 A. Acknowledgements . 56
 B. IANA Considerations 57
 Full Copyright Statement 58

Rose Standards Track [Page 3]

RFC 3080 The BEEP Core March 2001

1. Introduction

 This memo describes a generic application protocol kernel for
 connection-oriented, asynchronous interactions called BEEP.

 At BEEP’s core is a framing mechanism that permits simultaneous and
 independent exchanges of messages between peers. Messages are
 arbitrary MIME [1] content, but are usually textual (structured using
 XML [2]).

 All exchanges occur in the context of a channel -- a binding to a
 well-defined aspect of the application, such as transport security,
 user authentication, or data exchange.

 Each channel has an associated "profile" that defines the syntax and
 semantics of the messages exchanged. Implicit in the operation of
 BEEP is the notion of channel management. In addition to defining
 BEEP’s channel management profile, this document defines:

 o the TLS [3] transport security profile; and,

 o the SASL [4] family of profiles.

 Other profiles, such as those used for data exchange, are defined by
 an application protocol designer.

Rose Standards Track [Page 4]

RFC 3080 The BEEP Core March 2001

2. The BEEP Core

 A BEEP session is mapped onto an underlying transport service. A
 separate series of documents describe how a particular transport
 service realizes a BEEP session. For example, [5] describes how a
 BEEP session is mapped onto a single TCP [6] connection.

 When a session is established, each BEEP peer advertises the profiles
 it supports. Later on, during the creation of a channel, the client
 supplies one or more proposed profiles for that channel. If the
 server creates the channel, it selects one of the profiles and sends
 it in a reply; otherwise, it may indicate that none of the profiles
 are acceptable, and decline creation of the channel.

 Channel usage falls into one of two categories:

 initial tuning: these are used by profiles that perform
 initialization once the BEEP session is established (e.g.,
 negotiating the use of transport security); although several
 exchanges may be required to perform the initialization, these
 channels become inactive early in the BEEP session and remain so
 for the duration.

 continuous: these are used by profiles that support data exchange;
 typically, these channels are created after the initial tuning
 channels have gone quiet.

 Note that because of their special nature, only one tuning channel
 may be established at any given time; in contrast, BEEP allows
 multiple data exchange channels to be simultaneously in use.

Rose Standards Track [Page 5]

RFC 3080 The BEEP Core March 2001

2.1 Roles

 Although BEEP is peer-to-peer, it is convenient to label each peer in
 the context of the role it is performing at a given time:

 o When a BEEP session is established, the peer that awaits new
 connections is acting in the listening role, and the other peer,
 which establishes a connection to the listener, is acting in the
 initiating role. In the examples which follow, these are referred
 to as "L:" and "I:", respectively.

 o A BEEP peer starting an exchange is termed the client; similarly,
 the other BEEP peer is termed the server. In the examples which
 follow, these are referred to as "C:" and "S:", respectively.

 Typically, a BEEP peer acting in the server role is also acting in a
 listening role. However, because BEEP is peer-to-peer in nature, no
 such requirement exists.

2.1.1 Exchange Styles

 BEEP allows three styles of exchange:

 MSG/RPY: the client sends a "MSG" message asking the server to
 perform some task, the server performs the task and replies with a
 "RPY" message (termed a positive reply).

 MSG/ERR: the client sends a "MSG" message, the server does not
 perform any task and replies with an "ERR" message (termed a
 negative reply).

 MSG/ANS: the client sends a "MSG" message, the server, during the
 course of performing some task, replies with zero or more "ANS"
 messages, and, upon completion of the task, sends a "NUL" message,
 which signifies the end of the reply.

 The first two styles are termed one-to-one exchanges, whilst the
 third style is termed a one-to-many exchange.

Rose Standards Track [Page 6]

RFC 3080 The BEEP Core March 2001

2.2 Messages and Frames

 A message is structured according to the rules of MIME. Accordingly,
 each message may begin with "entity-headers" (c.f., MIME’s Section 3
 [1]). If none, or only some, of the "entity-headers" are present:

 o the default "Content-Type" is "application/octet-stream"; and,

 o the default "Content-Transfer-Encoding" is "binary".

 Normally, a message is sent in a single frame. However, it may be
 convenient or necessary to segment a message into multiple frames
 (e.g., if only part of a message is ready to be sent).

 Each frame consists of a header, the payload, and a trailer. The
 header and trailer are each represented using printable ASCII
 characters and are terminated with a CRLF pair. Between the header
 and the trailer is the payload, consisting of zero or more octets.

 For example, here is a message contained in a single frame that
 contains a payload of 120 octets spread over 5 lines (each line is
 terminated with a CRLF pair):

 C: MSG 0 1 . 52 120
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 C: </start>
 C: END

 In this example, note that the entire message is represented in a
 single frame.

Rose Standards Track [Page 7]

RFC 3080 The BEEP Core March 2001

2.2.1 Frame Syntax

 The ABNF [7] for a frame is:

 frame = data / mapping

 data = header payload trailer

 header = msg / rpy / err / ans / nul

 msg = "MSG" SP common CR LF
 rpy = "RPY" SP common CR LF
 ans = "ANS" SP common SP ansno CR LF
 err = "ERR" SP common CR LF
 nul = "NUL" SP common CR LF

 common = channel SP msgno SP more SP seqno SP size
 channel = 0..2147483647
 msgno = 0..2147483647
 more = "." / "*"
 seqno = 0..4294967295
 size = 0..2147483647
 ansno = 0..2147483647

 payload = *OCTET

 trailer = "END" CR LF

 mapping = ;; each transport mapping may define additional frames

Rose Standards Track [Page 8]

RFC 3080 The BEEP Core March 2001

2.2.1.1 Frame Header

 The frame header consists of a three-character keyword (one of:
 "MSG", "RPY", "ERR", "ANS", or "NUL"), followed by zero or more
 parameters. A single space character (decimal code 32, " ")
 separates each component. The header is terminated with a CRLF pair.

 The channel number ("channel") must be a non-negative integer (in the
 range 0..2147483647).

 The message number ("msgno") must be a non-negative integer (in the
 range 0..2147483647) and have a different value than all other "MSG"
 messages on the same channel for which a reply has not been
 completely received.

 The continuation indicator ("more", one of: decimal code 42, "*", or
 decimal code 46, ".") specifies whether this is the final frame of
 the message:

 intermediate ("*"): at least one other frame follows for the
 message; or,

 complete ("."): this frame completes the message.

 The sequence number ("seqno") must be a non-negative integer (in the
 range 0..4294967295) and specifies the sequence number of the first
 octet in the payload, for the associated channel (c.f., Section
 2.2.1.2).

 The payload size ("size") must be a non-negative integer (in the
 range 0..2147483647) and specifies the exact number of octets in the
 payload. (This does not include either the header or trailer.)

 Note that a frame may have an empty payload, e.g.,

 S: RPY 0 1 * 287 20
 S: ...
 S: ...
 S: END
 S: RPY 0 1 . 307 0
 S: END

 The answer number ("ansno") must be a non-negative integer (in the
 range 0..4294967295) and must have a different value than all other
 answers in progress for the message being replied to.

Rose Standards Track [Page 9]

RFC 3080 The BEEP Core March 2001

 There are two kinds of frames: data and mapping. Each transport
 mapping (c.f., Section 2.5) may define its own frames. For example,
 [5] defines the SEQ frame. The remainder of this section discusses
 data frames.

 When a message is segmented and sent as several frames, those frames
 must be sent sequentially, without any intervening frames from other
 messages on the same channel. However, there are two exceptions:
 first, no restriction is made with respect to the interleaving of
 frames for other channels; and, second, in a one-to-many exchange,
 multiple answers may be simultaneously in progress. Accordingly,
 frames for "ANS" messages may be interleaved on the same channel --
 the answer number is used for collation, e.g.,

 S: ANS 1 0 * 0 20 0
 S: ...
 S: ...
 S: END
 S: ANS 1 0 * 20 20 1
 S: ...
 S: ...
 S: END
 S: ANS 1 0 . 40 10 0
 S: ...
 S: END

 which shows two "ANS" messages interleaved on channel 1 as part of a
 reply to message number 0. Note that the sequence number is advanced
 for each frame sent on the channel, and is independent of the
 messages sent in those frames.

Rose Standards Track [Page 10]

RFC 3080 The BEEP Core March 2001

 There are several rules for identifying poorly-formed frames:

 o if the header doesn’t start with "MSG", "RPY", "ERR", "ANS", or
 "NUL";

 o if any of the parameters in the header cannot be determined or are
 invalid (i.e., syntactically incorrect);

 o if the value of the channel number doesn’t refer to an existing
 channel;

 o if the header starts with "MSG", and the message number refers to
 a "MSG" message that has been completely received but for which a
 reply has not been completely sent;

 o if the header doesn’t start with "MSG", and refers to a message
 number for which a reply has already been completely received;

 o if the header doesn’t start with "MSG", and refers to a message
 number that has never been sent (except during session
 establishment, c.f., Section 2.3.1.1);

 o if the header starts with "MSG", "RPY", "ERR", or "ANS", and
 refers to a message number for which at least one other frame has
 been received, and the three-character keyword starting this frame
 and the immediately-previous received frame for this message
 number are not identical;

 o if the header starts with "NUL", and refers to a message number
 for which at least one other frame has been received, and the
 keyword of of the immediately-previous received frame for this
 reply isn’t "ANS";

 o if the continuation indicator of the previous frame received on
 the same channel was intermediate ("*"), and its message number
 isn’t identical to this frame’s message number;

 o if the value of the sequence number doesn’t correspond to the
 expected value for the associated channel (c.f., Section 2.2.1.2);
 or,

 o if the header starts with "NUL", and the continuation indicator is
 intermediate ("*") or the payload size is non-zero.

 If a frame is poorly-formed, then the session is terminated without
 generating a response, and it is recommended that a diagnostic entry
 be logged.

Rose Standards Track [Page 11]

RFC 3080 The BEEP Core March 2001

2.2.1.2 Frame Payload

 The frame payload consists of zero or more octets.

 Every payload octet sent in each direction on a channel has an
 associated sequence number. Numbering of payload octets within a
 frame is such that the first payload octet is the lowest numbered,
 and the following payload octets are numbered consecutively. (When a
 channel is created, the sequence number associated with the first
 payload octet of the first frame is 0.)

 The actual sequence number space is finite, though very large,
 ranging from 0..4294967295 (2**32 - 1). Since the space is finite,
 all arithmetic dealing with sequence numbers is performed modulo
 2**32. This unsigned arithmetic preserves the relationship of
 sequence numbers as they cycle from 2**32 - 1 to 0 again. Consult
 Sections 2 through 5 of [8] for a discussion of the arithmetic
 properties of sequence numbers.

 When receiving a frame, the sum of its sequence number and payload
 size, modulo 4294967296 (2**32), gives the expected sequence number
 associated with the first payload octet of the next frame received.
 Accordingly, when receiving a frame if the sequence number isn’t the
 expected value for this channel, then the BEEP peers have lost
 synchronization, then the session is terminated without generating a
 response, and it is recommended that a diagnostic entry be logged.

Rose Standards Track [Page 12]

RFC 3080 The BEEP Core March 2001

2.2.1.3 Frame Trailer

 The frame trailer consists of "END" followed by a CRLF pair.

 When receiving a frame, if the characters immediately following the
 payload don’t correspond to a trailer, then the session is terminated
 without generating a response, and it is recommended that a
 diagnostic entry be logged.

Rose Standards Track [Page 13]

RFC 3080 The BEEP Core March 2001

2.2.2 Frame Semantics

 The semantics of each message is channel-specific. Accordingly, the
 profile associated with a channel must define:

 o the initialization messages, if any, exchanged during channel
 creation;

 o the messages that may be exchanged in the payload of the channel;
 and,

 o the semantics of these messages.

 A profile registration template (Section 5.1) organizes this
 information.

2.2.2.1 Poorly-formed Messages

 When defining the behavior of the profile, the template must specify
 how poorly-formed "MSG" messages are replied to. For example, the
 channel management profile sends a negative reply containing an error
 message (c.f., Section 2.3.1.5).

 If a poorly-formed reply is received on channel zero, the session is
 terminated without generating a response, and it is recommended that
 a diagnostic entry be logged.

 If a poorly-formed reply is received on another channel, then the
 channel must be closed using the procedure in Section 2.3.1.3.

Rose Standards Track [Page 14]

RFC 3080 The BEEP Core March 2001

2.3 Channel Management

 When a BEEP session starts, only channel number zero is defined,
 which is used for channel management. Section 6.1 contains the
 profile registration for BEEP channel management.

 Channel management allows each BEEP peer to advertise the profiles
 that it supports (c.f., Section 2.3.1.1), bind an instance of one of
 those profiles to a channel (c.f., Section 2.3.1.2), and then later
 close any channels or release the BEEP session (c.f., Section
 2.3.1.3).

 A BEEP peer should support at least 257 concurrent channels.

Rose Standards Track [Page 15]

RFC 3080 The BEEP Core March 2001

2.3.1 Message Semantics

2.3.1.1 The Greeting Message

 When a BEEP session is established, each BEEP peer signifies its
 availability by immediately sending a positive reply with a message
 number of zero that contains a "greeting" element, e.g.,

 L: <wait for incoming connection>
 I: <open connection>
 L: RPY 0 0 . 0 110
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/TLS’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END

 Note that this example implies that the BEEP peer in the initiating
 role waits until the BEEP peer in the listening role sends its
 greeting -- this is an artifact of the presentation; in fact, both
 BEEP peers send their replies independently.

 The "greeting" element has two optional attributes ("features" and
 "localize") and zero or more "profile" elements, one for each profile
 supported by the BEEP peer acting in a server role:

 o the "features" attribute, if present, contains one or more feature
 tokens, each indicating an optional feature of the channel
 management profile supported by the BEEP peer;

 o the "localize" attribute, if present, contains one or more
 language tokens (defined in [9]), each identifying a desirable
 language tag to be used by the remote BEEP peer when generating
 textual diagnostics for the "close" and "error" elements (the
 tokens are ordered from most to least desirable); and,

 o each "profile" element contained within the "greeting" element
 identifies a profile, and unlike the "profile" elements that occur
 within the "start" element, the content of each "profile" element
 may not contain an optional initialization message.

 Section 5.2 defines a registration template for optional features.

Rose Standards Track [Page 16]

RFC 3080 The BEEP Core March 2001

2.3.1.2 The Start Message

 When a BEEP peer wants to create a channel, it sends a "start"
 element on channel zero, e.g.,

 C: MSG 0 1 . 52 120
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 C: </start>
 C: END

 The "start" element has a "number" attribute, an optional
 "serverName" attribute, and one or more "profile" elements:

 o the "number" attribute indicates the channel number (in the range
 1..2147483647) used to identify the channel in future messages;

 o the "serverName" attribute, an arbitrary string, indicates the
 desired server name for this BEEP session; and,

 o each "profile" element contained with the "start" element has a
 "uri" attribute, an optional "encoding" attribute, and arbitrary
 character data as content:

 * the "uri" attribute authoritatively identifies the profile;

 * the "encoding" attribute, if present, specifies whether the
 content of the "profile" element is represented as a base64-
 encoded string; and,

 * the content of the "profile" element, if present, must be no
 longer than 4K octets in length and specifies an initialization
 message given to the channel as soon as it is created.

 To avoid conflict in assigning channel numbers when requesting the
 creation of a channel, BEEP peers acting in the initiating role use
 only positive integers that are odd-numbered; similarly, BEEP peers
 acting in the listening role use only positive integers that are
 even-numbered.

 The "serverName" attribute for the first successful "start" element
 received by a BEEP peer is meaningful for the duration of the BEEP
 session. If present, the BEEP peer decides whether to operate as the
 indicated "serverName"; if not, an "error" element is sent in a
 negative reply.

Rose Standards Track [Page 17]

RFC 3080 The BEEP Core March 2001

 When a BEEP peer receives a "start" element on channel zero, it
 examines each of the proposed profiles, and decides whether to use
 one of them to create the channel. If so, the appropriate "profile"
 element is sent in a positive reply; otherwise, an "error" element is
 sent in a negative reply.

 When creating the channel, the value of the "serverName" attribute
 from the first successful "start" element is consulted to provide
 configuration information, e.g., the desired server-side certificate
 when starting the TLS transport security profile (Section 3.1).

 For example, a successful channel creation might look like this:

 C: MSG 0 1 . 52 178
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 C: <profile uri=’http://iana.org/beep/SASL/ANONYMOUS’ />
 C: </start>
 C: END
 S: RPY 0 1 . 221 87
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 S: END

 Similarly, an unsuccessful channel creation might look like this:

 C: MSG 0 1 . 52 120
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’2’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 C: </start>
 C: END
 S: ERR 0 1 . 221 127
 S: Content-Type: application/beep+xml
 S:
 S: <error code=’501’>number attribute
 S: in <start> element must be odd-valued</error>
 S: END

Rose Standards Track [Page 18]

RFC 3080 The BEEP Core March 2001

 Finally, here’s an example in which an initialization element is
 exchanged during channel creation:

 C: MSG 0 1 . 52 158
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/TLS’>
 C: <![CDATA[<ready />]]>
 C: </profile>
 C: </start>
 C: END
 S: RPY 0 1 . 110 121
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/TLS’>
 S: <![CDATA[<proceed />]]>
 S: </profile>
 S: END

Rose Standards Track [Page 19]

RFC 3080 The BEEP Core March 2001

2.3.1.3 The Close Message

 When a BEEP peer wants to close a channel, it sends a "close" element
 on channel zero, e.g.,

 C: MSG 0 2 . 235 71
 C: Content-Type: application/beep+xml
 C:
 C: <close number=’1’ code=’200’ />
 C: END

 The "close" element has a "number" attribute, a "code" attribute, an
 optional "xml:lang" attribute, and an optional textual diagnostic as
 its content:

 o the "number" attribute indicates the channel number;

 o the "code" attribute is a three-digit reply code meaningful to
 programs (c.f., Section 8);

 o the "xml:lang" attribute identifies the language that the
 element’s content is written in (the value is suggested, but not
 mandated, by the "localize" attribute of the "greeting" element
 sent by the remote BEEP peer); and,

 o the textual diagnostic (which may be multiline) is meaningful to
 implementers, perhaps administrators, and possibly even users, but
 never programs.

 Note that if the textual diagnostic is present, then the "xml:lang"
 attribute is absent only if the language indicated as the remote BEEP
 peer’s first choice is used.

 If the value of the "number" attribute is zero, then the BEEP peer
 wants to release the BEEP session (c.f., Section 2.4) -- otherwise
 the value of the "number" attribute refers to an existing channel,
 and the remainder of this section applies.

 A BEEP peer may send a "close" message for a channel whenever all
 "MSG" messages it has sent on that channel have been acknowledged.
 (Acknowledgement consists of the first frame of a reply being
 received by the BEEP peer that sent the MSG "message".)

 After sending the "close" message, that BEEP peer must not send any
 more "MSG" messages on that channel being closed until the reply to
 the "close" message has been received (either by an "error" message
 rejecting the request to close the channel, or by an "ok" message
 subsequently followed by the channel being successfully started).

Rose Standards Track [Page 20]

RFC 3080 The BEEP Core March 2001

 NOTE WELL: until a positive reply to the request to close the channel
 is received, the BEEP peer must be prepared to process any "MSG"
 messages that it receives on that channel.

 When a BEEP peer receives a "close" message for a channel, it may, at
 any time, reject the request to close the channel by sending an
 "error" message in a negative reply.

 Otherwise, before accepting the request to close the channel, and
 sending an "ok" message in a positive reply, it must:

 o finish sending any queued "MSG" messages on that channel of its
 own;

 o await complete replies to any outstanding "MSG" messages it has
 sent on that channel; and,

 o finish sending complete replies to any outstanding "MSG" messages
 it has received on that channel, and ensure that the final frames
 of those replies have been successfully delivered, i.e.,

 * for transport mappings that guarantee inter-channel ordering of
 messages, the replies must be sent prior to sending the "ok"
 message in a positive reply; otherwise,

 * the replies must be sent and subsequently acknowledged by the
 underlying transport service prior to sending the "ok" message
 in a positive reply.

Rose Standards Track [Page 21]

RFC 3080 The BEEP Core March 2001

 Briefly, a successful channel close might look like this:

 C: MSG 0 2 . 235 71
 C: Content-Type: application/beep+xml
 C:
 C: <close number=’1’ code=’200’ />
 C: END
 S: RPY 0 2 . 392 46
 S: Content-Type: application/beep+xml
 S:
 S: <ok />
 S: END

 Similarly, an unsuccessful channel close might look like this:

 C: MSG 0 2 . 235 71
 C: Content-Type: application/beep+xml
 C:
 C: <close number=’1’ code=’200’ />
 C: END
 S: ERR 0 2 . 392 79
 S: Content-Type: application/beep+xml
 S:
 S: <error code=’550’>still working</error>
 S: END

Rose Standards Track [Page 22]

RFC 3080 The BEEP Core March 2001

2.3.1.4 The OK Message

 When a BEEP peer agrees to close a channel (or release the BEEP
 session), it sends an "ok" element in a positive reply.

 The "ok" element has no attributes and no content.

2.3.1.5 The Error Message

 When a BEEP peer declines the creation of a channel, it sends an
 "error" element in a negative reply, e.g.,

 I: MSG 0 1 . 52 115
 I: Content-Type: application/beep+xml
 I:
 I: <start number=’2’>
 I: <profile uri=’http://iana.org/beep/FOO’ />
 I: </start>
 I: END
 L: ERR 0 1 . 221 105
 L: Content-Type: application/beep+xml
 L:
 L: <error code=’550’>all requested profiles are
 L: unsupported</error>
 L: END

 The "error" element has a "code" attribute, an optional "xml:lang"
 attribute, and an optional textual diagnostic as its content:

 o the "code" attribute is a three-digit reply code meaningful to
 programs (c.f., Section 8);

 o the "xml:lang" attribute identifies the language that the
 element’s content is written in (the value is suggested, but not
 mandated, by the "localize" attribute of the "greeting" element
 sent by the remote BEEP peer); and,

 o the textual diagnostic (which may be multiline) is meaningful to
 implementers, perhaps administrators, and possibly even users, but
 never programs.

 Note that if the textual diagnostic is present, then the "xml:lang"
 attribute is absent only if the language indicated as the remote BEEP
 peer’s first choice is used.

Rose Standards Track [Page 23]

RFC 3080 The BEEP Core March 2001

 In addition, a BEEP peer sends an "error" element whenever:

 o it receives a "MSG" message containing a poorly-formed or
 unexpected element;

 o it receives a "MSG" message asking to close a channel (or release
 the BEEP session) and it declines to do so; or

 o a BEEP session is established, the BEEP peer is acting in the
 listening role, and that BEEP peer is unavailable (in this case,
 the BEEP acting in the listening role does not send a "greeting"
 element).

 In the final case, both BEEP peers terminate the session, and it is
 recommended that a diagnostic entry be logged by both BEEP peers.

Rose Standards Track [Page 24]

RFC 3080 The BEEP Core March 2001

2.4 Session Establishment and Release

 When a BEEP session is established, each BEEP peer signifies its
 availability by immediately sending a positive reply with a message
 number of zero on channel zero that contains a "greeting" element,
 e.g.,

 L: <wait for incoming connection>
 I: <open connection>
 L: RPY 0 0 . 0 110
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/TLS’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END

 Alternatively, if the BEEP peer acting in the listening role is
 unavailable, it sends a negative reply, e.g.,

 L: <wait for incoming connection>
 I: <open connection>
 L: ERR 0 0 . 0 60
 L: Content-Type: application/beep+xml
 L:
 L: <error code=’421’ />
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END
 I: <close connection>
 L: <close connection>
 L: <wait for next connection>

 and the "greeting" element sent by the BEEP peer acting in the
 initiating role is ignored. It is recommended that a diagnostic
 entry be logged by both BEEP peers.

Rose Standards Track [Page 25]

RFC 3080 The BEEP Core March 2001

 Note that both of these examples imply that the BEEP peer in the
 initiating role waits until the BEEP peer in the listening role sends
 its greeting -- this is an artifact of the presentation; in fact,
 both BEEP peers send their replies independently.

 When a BEEP peer wants to release the BEEP session, it sends a
 "close" element with a zero-valued "number" attribute on channel
 zero. The other BEEP peer indicates its willingness by sending an
 "ok" element in a positive reply, e.g.,

 C: MSG 0 1 . 52 60
 C: Content-Type: application/beep+xml
 C:
 C: <close code=’200’ />
 C: END
 S: RPY 0 1 . 264 46
 S: Content-Type: application/beep+xml
 S:
 S: <ok />
 S: END
 I: <close connection>
 L: <close connection>
 L: <wait for next connection>

 Alternatively, if the other BEEP doesn’t want to release the BEEP
 session, the exchange might look like this:

 C: MSG 0 1 . 52 60
 C: Content-Type: application/beep+xml
 C:
 C: <close code=’200’ />
 C: END
 S: ERR 0 1 . 264 79
 S: Content-Type: application/beep+xml
 S:
 S: <error code=’550’>still working</error>
 S: END

 If session release is declined, the BEEP session should not be
 terminated, if possible.

Rose Standards Track [Page 26]

RFC 3080 The BEEP Core March 2001

2.5 Transport Mappings

 All transport interactions occur in the context of a session -- a
 mapping onto a particular transport service. Accordingly, this memo
 defines the requirements that must be satisfied by any document
 describing how a particular transport service realizes a BEEP
 session.

2.5.1 Session Management

 A BEEP session is connection-oriented. A mapping document must
 define:

 o how a BEEP session is established;

 o how a BEEP peer is identified as acting in the listening role;

 o how a BEEP peer is identified as acting in the initiating role;

 o how a BEEP session is released; and,

 o how a BEEP session is terminated.

2.5.2 Message Exchange

 A BEEP session is message-oriented. A mapping document must define:

 o how messages are reliably sent and received;

 o how messages on the same channel are received in the same order as
 they were sent; and,

 o how messages on different channels are sent without ordering
 constraint.

Rose Standards Track [Page 27]

RFC 3080 The BEEP Core March 2001

2.6 Asynchrony

 BEEP accommodates asynchronous interactions, both within a single
 channel and between separate channels. This feature allows
 pipelining (intra-channel) and parallelism (inter-channel).

2.6.1 Within a Single Channel

 A BEEP peer acting in the client role may send multiple "MSG"
 messages on the same channel without waiting to receive the
 corresponding replies. This provides pipelining within a single
 channel.

 A BEEP peer acting in the server role must process all "MSG" messages
 for a given channel in the same order as they are received. As a
 consequence, the BEEP peer must generate replies in the same order as
 the corresponding "MSG" messages are received on a given channel.

 Note that in one-to-many exchanges (c.f., Section 2.1.1), the reply
 to the "MSG" message consists of zero or more "ANS" messages followed
 by a "NUL" message. In this style of exchange, the "ANS" messages
 comprising the reply may be interleaved. When the BEEP peer acting
 in the server role signifies the end of the reply by generating the
 "NUL" message, it may then process the next "MSG" message received
 for that channel.

2.6.2 Between Different Channels

 A BEEP peer acting in the client role may send multiple "MSG"
 messages on different channels without waiting to receive the
 corresponding replies. The channels operate independently, in
 parallel.

 A BEEP peer acting in the server role may process "MSG" messages
 received on different channels in any order it chooses. As a
 consequence, although the replies for a given channel appear to be
 generated in the same order in which the corresponding "MSG" messages
 are received, there is no ordering constraint for replies on
 different channels.

Rose Standards Track [Page 28]

RFC 3080 The BEEP Core March 2001

2.6.3 Pre-emptive Replies

 A BEEP peer acting in the server role may send a negative reply
 before it receives the final "MSG" frame of a message. If it does
 so, that BEEP peer is obliged to ignore any subsequent "MSG" frames
 for that message, up to and including the final "MSG" frame.

 If a BEEP peer acting in the client role receives a negative reply
 before it sends the final "MSG" frame for a message, then it is
 required to send a "MSG" frame with a continuation status of complete
 (".") and having a zero-length payload.

2.6.4 Interference

 If the processing of a particular message has sequencing impacts on
 other messages (either intra-channel or inter-channel), then the
 corresponding profile should define this behavior, e.g., a profile
 whose messages alter the underlying transport mapping.

Rose Standards Track [Page 29]

RFC 3080 The BEEP Core March 2001

2.7 Peer-to-Peer Behavior

 BEEP is peer-to-peer -- as such both peers must be prepared to
 receive all messages defined in this memo. Accordingly, an
 initiating BEEP peer capable of acting only in the client role must
 behave gracefully if it receives a "MSG" message. Accordingly, all
 profiles must provide an appropriate error message for replying to
 unexpected "MSG" messages.

 As a consequence of the peer-to-peer nature of BEEP, message numbers
 are unidirectionally-significant. That is, the message numbers in
 "MSG" messages sent by a BEEP peer acting in the initiating role are
 unrelated to the message numbers in "MSG" messages sent by a BEEP
 peer acting in the listening role.

 For example, these two messages

 I: MSG 0 1 . 52 120
 I: Content-Type: application/beep+xml
 I:
 I: <start number=’1’>
 I: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 I: </start>
 I: END
 L: MSG 0 1 . 221 116
 L: Content-Type: application/beep+xml
 L:
 L: <start number=’2’>
 L: <profile uri=’http://iana.org/beep/APEX’ />
 L: </start>
 L: END

 refer to different messages sent on channel zero.

Rose Standards Track [Page 30]

RFC 3080 The BEEP Core March 2001

3. Transport Security

 When a BEEP session is established, plaintext transfer, without
 privacy, is provided. Accordingly, transport security in BEEP is
 achieved using an initial tuning profile.

 This document defines one profile:

 o the TLS transport security profile, based on TLS version one [3].

 Other profiles may be defined and deployed on a bilateral basis.
 Note that because of their intimate relationship with the transport
 service, a given transport security profile tends to be relevant to a
 single transport mapping (c.f., Section 2.5).

 When a channel associated with transport security begins the
 underlying negotiation process, all channels (including channel zero)
 are closed on the BEEP session. Accordingly, upon completion of the
 negotiation process, regardless of its outcome, a new greeting is
 issued by both BEEP peers. (If the negotiation process fails, then
 either BEEP peer may instead terminate the session, and it is
 recommended that a diagnostic entry be logged.)

 A BEEP peer may choose to issue different greetings based on whether
 privacy is in use, e.g.,

 L: <wait for incoming connection>
 I: <open connection>
 L: RPY 0 0 . 0 110
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/TLS’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END
 I: MSG 0 1 . 52 158
 I: Content-Type: application/beep+xml
 I:

Rose Standards Track [Page 31]

RFC 3080 The BEEP Core March 2001

 I: <start number=’1’>
 I: <profile uri=’http://iana.org/beep/TLS’>
 I: <![CDATA[<ready />]]>
 I: </profile>
 I: </start>
 I: END
 L: RPY 0 1 . 110 121
 L: Content-Type: application/beep+xml
 L:
 L: <profile uri=’http://iana.org/beep/TLS’>
 L: <![CDATA[<proceed />]]>
 L: </profile>
 L: END

 ... successful transport security negotiation ...

 L: RPY 0 0 . 0 221
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/SASL/ANONYMOUS’ />
 L: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 L: <profile uri=’http://iana.org/beep/APEX’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END

 Of course, not all BEEP peers need be as single-minded:

 L: <wait for incoming connection>
 I: <open connection>
 L: RPY 0 0 . 0 268
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/SASL/ANONYMOUS’ />
 L: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 L: <profile uri=’http://iana.org/beep/APEX’ />
 L: <profile uri=’http://iana.org/beep/TLS’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:

Rose Standards Track [Page 32]

RFC 3080 The BEEP Core March 2001

 I: <greeting />
 I: END
 I: MSG 0 1 . 52 158
 I: Content-Type: application/beep+xml
 I:
 I: <start number=’1’>
 I: <profile uri=’http://iana.org/beep/TLS’>
 I: <![CDATA[<ready />]]>
 I: </profile>
 I: </start>
 I: END
 L: RPY 0 1 . 268 121
 L: Content-Type: application/beep+xml
 L:
 L: <profile uri=’http://iana.org/beep/TLS’>
 L: <![CDATA[<proceed />]]>
 L: </profile>
 L: END

 ... failed transport security negotiation ...

 L: RPY 0 0 . 0 268
 L: Content-Type: application/beep+xml
 L:
 L: <greeting>
 L: <profile uri=’http://iana.org/beep/SASL/ANONYMOUS’ />
 L: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 L: <profile uri=’http://iana.org/beep/APEX’ />
 L: <profile uri=’http://iana.org/beep/TLS’ />
 L: </greeting>
 L: END
 I: RPY 0 0 . 0 52
 I: Content-Type: application/beep+xml
 I:
 I: <greeting />
 I: END

Rose Standards Track [Page 33]

RFC 3080 The BEEP Core March 2001

3.1 The TLS Transport Security Profile

 Section 6.2 contains the registration for this profile.

3.1.1 Profile Identification and Initialization

 The TLS transport security profile is identified as:

 http://iana.org/beep/TLS

 in the BEEP "profile" element during channel creation.

 During channel creation, the corresponding "profile" element in the
 BEEP "start" element may contain a "ready" element. If channel
 creation is successful, then before sending the corresponding reply,
 the BEEP peer processes the "ready" element and includes the
 resulting response in the reply, e.g.,

 C: MSG 0 1 . 52 158
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/TLS’>
 C: <![CDATA[<ready />]]>
 C: </profile>
 C: </start>
 C: END
 S: RPY 0 1 . 110 121
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/TLS’>
 S: <![CDATA[<proceed />]]>
 S: </profile>
 S: END

Rose Standards Track [Page 34]

RFC 3080 The BEEP Core March 2001

 Note that it is possible for the channel to be created, but for the
 encapsulated operation to fail, e.g.,

 C: MSG 0 1 . 52 173
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/TLS’>
 C: <![CDATA[<ready version="oops" />]]>
 C: </profile>
 C: </start>
 C: END
 S: RPY 0 1 . 110 193
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/TLS’>
 S: <![CDATA[<error code=’501’>version attribute
 S: poorly formed in <ready> element</error>]]>
 S: </profile>
 S: END

 In this case, a positive reply is sent (as channel creation
 succeeded), but the encapsulated response contains an indication as
 to why the operation failed.

3.1.2 Message Syntax

 Section 7.2 defines the messages that are used in the TLS transport
 security profile.

Rose Standards Track [Page 35]

RFC 3080 The BEEP Core March 2001

3.1.3 Message Semantics

3.1.3.1 The Ready Message

 The "ready" element has an optional "version" attribute and no
 content:

 o the "version" element defines the earliest version of TLS
 acceptable for use.

 When a BEEP peer sends the "ready" element, it must not send any
 further traffic on the underlying transport service until a
 corresponding reply ("proceed" or "error") is received; similarly,
 the receiving BEEP peer must wait until any pending replies have been
 generated and sent before it processes a "ready" element.

3.1.3.2 The Proceed Message

 The "proceed" element has no attributes and no content. It is sent
 as a reply to the "ready" element.

 When a BEEP peer receives the "ready" element, it must not send any
 further traffic on the underlying transport service until it
 generates a corresponding reply. If the BEEP peer decides to allow
 transport security negotiation, it implicitly closes all channels
 (including channel zero), and sends the "proceed" element, and awaits
 the underlying negotiation process for transport security.

 When a BEEP peer receives a "proceed" element in reply to its "ready"
 message, it implicitly closes all channels (including channel zero),
 and immediately begins the underlying negotiation process for
 transport security.

Rose Standards Track [Page 36]

RFC 3080 The BEEP Core March 2001

4. User Authentication

 When a BEEP session is established, anonymous access, without trace
 information, is provided. Accordingly, user authentication in BEEP
 is achieved using an initial tuning profile.

 This document defines a family of profiles based on SASL mechanisms:

 o each mechanism in the IANA SASL registry [15] has an associated
 profile.

 Other profiles may be defined and deployed on a bilateral basis.

 Whenever a successful authentication occurs, on any channel, the
 authenticated identity is updated for all existing and future
 channels on the BEEP session; further, no additional attempts at
 authentication are allowed.

 Note that regardless of transport security and user authentication,
 authorization is an internal matter for each BEEP peer. As such,
 each peer may choose to restrict the operations it allows based on
 the authentication credentials provided (i.e., unauthorized
 operations might be rejected with error code 530).

Rose Standards Track [Page 37]

RFC 3080 The BEEP Core March 2001

4.1 The SASL Family of Profiles

 Section 6.3 contains the registration for this profile.

 Note that SASL may provide both user authentication and transport
 security. Once transport security is successfully negotiated for a
 BEEP session, then a SASL security layer must not be negotiated;
 similarly, once any SASL negotiation is successful, a transport
 security profile must not begin its underlying negotiation process.

 Section 4 of the SASL specification [4] requires the following
 information be supplied by a protocol definition:

 service name: "beep"

 initiation sequence: Creating a channel using a BEEP profile
 corresponding to a SASL mechanism starts the exchange. An
 optional parameter corresponding to the "initial response" sent by
 the client is carried within a "blob" element during channel
 creation.

 exchange sequence: "Challenges" and "responses" are carried in
 exchanges of the "blob" element. The "status" attribute of the
 "blob" element is used both by a server indicating a successful
 completion of the exchange, and a client aborting the exchange,
 The server indicates failure of the exchange by sending an "error"
 element.

 security layer negotiation: When a security layer starts negotiation,
 all channels (including channel zero) are closed on the BEEP
 session. Accordingly, upon completion of the negotiation process,
 regardless of its outcome, a new greeting is issued by both BEEP
 peers.

 If a security layer is successfully negotiated, it takes effect
 immediately following the message that concludes the server’s
 successful completion reply.

 use of the authorization identity: This is made available to all
 channels for the duration of the BEEP session.

Rose Standards Track [Page 38]

RFC 3080 The BEEP Core March 2001

4.1.1 Profile Identification and Initialization

 Each SASL mechanism registered with the IANA is identified as:

 http://iana.org/beep/SASL/mechanism

 where "MECHANISM" is the token assigned to that mechanism by the
 IANA.

 Note that during channel creation, a BEEP peer may provide multiple
 profiles to the remote peer, e.g.,

 C: MSG 0 1 . 52 178
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/ANONYMOUS’ />
 C: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 C: </start>
 C: END
 S: RPY 0 1 . 221 87
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/SASL/OTP’ />
 S: END

Rose Standards Track [Page 39]

RFC 3080 The BEEP Core March 2001

 During channel creation, the corresponding "profile" element in the
 BEEP "start" element may contain a "blob" element. Note that it is
 possible for the channel to be created, but for the encapsulated
 operation to fail, e.g.,

 C: MSG 0 1 . 52 183
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’>
 C: <![CDATA[<blob>AGJsb2NrbWFzdGVy</blob>]]>
 C: </profile>
 C: </start>
 C: END
 S: RPY 0 1 . 221 178
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/SASL/OTP’>
 S: <![CDATA[<error code=’534’>authentication mechanism is
 S: too weak</error>]]>
 S: </profile>
 S: END

 In this case, a positive reply is sent (as channel creation
 succeeded), but the encapsulated response contains an indication as
 to why the operation failed.

 Otherwise, the server sends a challenge (or signifies success), e.g.,

 C: MSG 0 1 . 52 183
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/OTP’>
 C: <![CDATA[<blob>AGJsb2NrbWFzdGVy</blob>]]>
 C: </profile>
 C: </start>
 C: END
 S: RPY 0 1 . 221 171
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/SASL/OTP’>
 S: <![CDATA[<blob>b3RwLXNoYTEgOTk5NyBwaXh5bWlzYXM4NTgwNSBleHQ=
 </blob>]]>
 S: </profile>
 S: END

Rose Standards Track [Page 40]

RFC 3080 The BEEP Core March 2001

 Note that this example implies that the "blob" element in the
 server’s reply appears on two lines -- this is an artifact of the
 presentation; in fact, only one line is used.

 If a challenge is received, then the client responds and awaits
 another reply, e.g.,

 C: MSG 1 0 . 0 97
 C: Content-Type: application/beep+xml
 C:
 C: <blob>d29yZDpmZXJuIGhhbmcgYnJvdyBib25nIGhlcmQgdG9n</blob>
 C: END
 S: RPY 1 0 . 0 66
 S: Content-Type: application/beep+xml
 S:
 S: <blob status=’complete’ />
 S: END

 Of course, the client could abort the authentication process by
 sending "<blob status=’abort’ />" instead.

 Alternatively, the server might reject the response with an error:
 e.g.,

 C: MSG 1 0 . 0 97
 C: Content-Type: application/beep+xml
 C:
 C: <blob>d29yZDpmZXJuIGhhbmcgYnJvdyBib25nIGhlcmQgdG9n</blob>
 C: END
 S: ERR 1 0 . 0 60
 S: Content-Type: application/beep+xml
 S:
 S: <error code=’535’ />
 S: END

Rose Standards Track [Page 41]

RFC 3080 The BEEP Core March 2001

 Finally, depending on the SASL mechanism, an initialization element
 may be exchanged unidirectionally during channel creation, e.g.,

 C: MSG 0 1 . 52 125
 C: Content-Type: application/beep+xml
 C:
 C: <start number=’1’>
 C: <profile uri=’http://iana.org/beep/SASL/CRAM-MD5’ />
 C: </start>
 C: END
 S: RPY 0 1 . 221 185
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri=’http://iana.org/beep/SASL/CRAM-MD5’>
 S: <![CDATA[<blob>PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9uLm1
 jaS5uZXQ+</blob>]]>
 S: </profile>
 S: END

 Note that this example implies that the "blob" element in the
 server’s reply appears on two lines -- this is an artifact of the
 presentation; in fact, only one line is used.

4.1.2 Message Syntax

 Section 7.3 defines the messages that are used for each profile in
 the SASL family.

 Note that because many SASL mechanisms exchange binary data, the
 content of the "blob" element is always a base64-encoded string.

Rose Standards Track [Page 42]

RFC 3080 The BEEP Core March 2001

4.1.3 Message Semantics

 The "blob" element has an optional "status" attribute, and arbitrary
 octets as its content:

 o the "status" attribute, if present, takes one of three values:

 abort: used by a client to indicate that it is aborting the
 authentication process;

 complete: used by a server to indicate that the exchange is
 complete and successful; or,

 continue: used by either a client or server, otherwise.

 Finally, note that SASL’s EXTERNAL mechanism works with an "external
 authentication" service, which is provided by one of:

 o a transport security profile, capable of providing authentication
 information (e.g., Section 3.1), being active on the connection;

 o a network service, capable of providing strong authentication
 (e.g., IPSec [12]), underlying the connection; or,

 o a locally-defined security service.

 For authentication to succeed, two conditions must hold:

 o an external authentication service must be active; and,

 o if present, the authentication identity must be consistent with
 the credentials provided by the external authentication service
 (if the authentication identity is empty, then an authorization
 identity is automatically derived from the credentials provided by
 the external authentication service).

Rose Standards Track [Page 43]

RFC 3080 The BEEP Core March 2001

5. Registration Templates

5.1 Profile Registration Template

 When a profile is registered, the following information is supplied:

 Profile Identification: specify a URI [10] that authoritatively
 identifies this profile.

 Message Exchanged during Channel Creation: specify the datatypes that
 may be exchanged during channel creation.

 Messages starting one-to-one exchanges: specify the datatypes that
 may be present when an exchange starts.

 Messages in positive replies: specify the datatypes that may be
 present in a positive reply.

 Messages in negative replies: specify the datatypes that may be
 present in a negative reply.

 Messages in one-to-many exchanges: specify the datatypes that may be
 present in a one-to-many exchange.

 Message Syntax: specify the syntax of the datatypes exchanged by the
 profile.

 Message Semantics: specify the semantics of the datatypes exchanged
 by the profile.

 Contact Information: specify the postal and electronic contact
 information for the author of the profile.

5.2 Feature Registration Template

 When a feature for the channel management profile is registered, the
 following information is supplied:

 Feature Identification: specify a string that identifies this
 feature. Unless the feature is registered with the IANA, the
 feature’s identification must start with "x-".

 Feature Semantics: specify the semantics of the feature.

 Contact Information: specify the postal and electronic contact
 information for the author of the feature.

Rose Standards Track [Page 44]

RFC 3080 The BEEP Core March 2001

6. Initial Registrations

6.1 Registration: BEEP Channel Management

 Profile Identification: not applicable

 Messages exchanged during Channel Creation: not applicable

 Messages starting one-to-one exchanges: "start" or "close"

 Messages in positive replies: "greeting", "profile", or "ok"

 Messages in negative replies: "error"

 Messages in one-to-many exchanges: none

 Message Syntax: c.f., Section 7.1

 Message Semantics: c.f., Section 2.3.1

 Contact Information: c.f., the "Author’s Address" section of this
 memo

6.2 Registration: TLS Transport Security Profile

 Profile Identification: http://iana.org/beep/TLS

 Messages exchanged during Channel Creation: "ready"

 Messages starting one-to-one exchanges: "ready"

 Messages in positive replies: "proceed"

 Messages in negative replies: "error"

 Messages in one-to-many exchanges: none

 Message Syntax: c.f., Section 7.2

 Message Semantics: c.f., Section 3.1.3

 Contact Information: c.f., the "Author’s Address" section of this
 memo

Rose Standards Track [Page 45]

RFC 3080 The BEEP Core March 2001

6.3 Registration: SASL Family of Profiles

 Profile Identification: http://iana.org/beep/SASL/mechanism, where
 "mechanism" is a token registered with the IANA

 Messages exchanged during Channel Creation: "blob"

 Messages starting one-to-one exchanges: "blob"

 Messages in positive replies: "blob"

 Messages in negative replies: "error"

 Messages in one-to-many exchanges: none

 Message Syntax: c.f., Section 7.3

 Message Semantics: c.f., Section 4.1.3

 Contact Information: c.f., the "Author’s Address" section of this
 memo

Rose Standards Track [Page 46]

RFC 3080 The BEEP Core March 2001

6.4 Registration: application/beep+xml

 MIME media type name: application

 MIME subtype name: beep+xml

 Required parameters: none

 Optional parameters: charset (defaults to "UTF-8" [13])

 Encoding considerations: This media type may contain binary content;
 accordingly, when used over a transport that does not permit
 binary transfer, an appropriate encoding must be applied

 Security considerations: none, per se; however, any BEEP profile
 which uses this media type must describe its relevant security
 considerations

 Interoperability considerations: n/a

 Published specification: This media type is a proper subset of the
 the XML 1.0 specification [2]. Two restrictions are made.

 First, no entity references other than the five predefined general
 entities references ("&", "<", ">", "'", and
 """) and numeric entity references may be present.

 Second, neither the "XML" declaration (e.g., <?xml version="1.0"
 ?>) nor the "DOCTYPE" declaration (e.g., <!DOCTYPE ...>) may be
 present. (Accordingly, if another character set other than UTF-8
 is desired, then the "charset" parameter must be present.)

 All other XML 1.0 instructions (e.g., CDATA blocks, processing
 instructions, and so on) are allowed.

 Applications which use this media type: any BEEP profile wishing to
 make use of this XML 1.0 subset

 Additional Information: none

 Contact for further information: c.f., the "Author’s Address" section
 of this memo

 Intended usage: limited use

 Author/Change controller: the IESG

Rose Standards Track [Page 47]

RFC 3080 The BEEP Core March 2001

7. DTDs

7.1 BEEP Channel Management DTD

 <!--
 DTD for BEEP Channel Management, as of 2000-10-29

 Refer to this DTD as:

 <!ENTITY % BEEP PUBLIC "-//IETF//DTD BEEP//EN"
 "http://xml.resource.org/profiles/BEEP/beep.dtd">
 %BEEP;
 -->

 <!--
 DTD data types:

 entity syntax/reference example
 ====== ================ =======
 a channel number
 CHAN 1..2147483647 1

 authoritative profile identification
 URI c.f., [RFC-2396] http://invisible.net/

 one or more feature tokens, separated by space
 FTRS NMTOKENS "magic"

 a language tag
 LANG c.f., [RFC-1766] "en", "en-US", etc.

 zero or more language tags
 LOCS NMTOKENS "en-US"

 a 3-digit reply code
 XYZ [1-5][0-9][0-9] 500
 -->

 <!ENTITY % CHAN "CDATA">
 <!ENTITY % URI "CDATA">
 <!ENTITY % FTRS "NMTOKENS">
 <!ENTITY % LANG "NMTOKEN">
 <!ENTITY % LOCS "NMTOKEN">
 <!ENTITY % XYZ "CDATA">

Rose Standards Track [Page 48]

RFC 3080 The BEEP Core March 2001

 <!--
 BEEP messages, exchanged as application/beep+xml

 role MSG RPY ERR
 ======= === === ===
 I and L greeting error

 I or L start profile error

 I or L close ok error
 -->

 <!ELEMENT greeting (profile)*>
 <!ATTLIST greeting
 features %FTRS; #IMPLIED
 localize %LOCS; "i-default">

 <!ELEMENT start (profile)+>
 <!ATTLIST start
 number %CHAN; #REQUIRED
 serverName CDATA #IMPLIED>

 <!-- profile element is empty if contained in a greeting -->
 <!ELEMENT profile (#PCDATA)>
 <!ATTLIST profile
 uri %URI; #REQUIRED
 encoding (none|base64) "none">

 <!ELEMENT close (#PCDATA)>
 <!ATTLIST close
 number %CHAN; "0"
 code %XYZ; #REQUIRED
 xml:lang %LANG; #IMPLIED>

 <!ELEMENT ok EMPTY>

 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error
 code %XYZ; #REQUIRED
 xml:lang %LANG; #IMPLIED>

Rose Standards Track [Page 49]

RFC 3080 The BEEP Core March 2001

7.2 TLS Transport Security Profile DTD

 <!--
 DTD for the TLS Transport Security Profile, as of 2000-09-04

 Refer to this DTD as:

 <!ENTITY % TLS PUBLIC "-//IETF//DTD TLS//EN"
 "http://xml.resource.org/profiles/TLS/tls.dtd">
 %TLS;
 -->

 <!--
 TLS messages, exchanged as application/beep+xml

 role MSG RPY ERR
 ====== === === ===
 I or L ready proceed error
 -->

 <!ELEMENT ready EMPTY>
 <!ATTLIST ready
 version CDATA "1">

 <!ELEMENT proceed EMPTY>

Rose Standards Track [Page 50]

RFC 3080 The BEEP Core March 2001

7.3 SASL Family of Profiles DTD

 <!--
 DTD for the SASL Family of Profiles, as of 2000-09-04

 Refer to this DTD as:

 <!ENTITY % SASL PUBLIC "-//IETF//DTD SASL//EN"
 "http://xml.resource.org/profiles/sasl/sasl.dtd">
 %SASL;
 -->

 <!--
 SASL messages, exchanged as application/beep+xml

 role MSG RPY ERR
 ====== === === ===
 I or L blob blob error
 -->

 <!ELEMENT blob (#PCDATA)>
 <!ATTLIST blob
 xml:space (default|preserve)
 "preserve"
 status (abort|complete|continue)
 "continue">

Rose Standards Track [Page 51]

RFC 3080 The BEEP Core March 2001

8. Reply Codes

 code meaning
 ==== =======
 200 success

 421 service not available

 450 requested action not taken
 (e.g., lock already in use)

 451 requested action aborted
 (e.g., local error in processing)

 454 temporary authentication failure

 500 general syntax error
 (e.g., poorly-formed XML)

 501 syntax error in parameters
 (e.g., non-valid XML)

 504 parameter not implemented

 530 authentication required

 534 authentication mechanism insufficient
 (e.g., too weak, sequence exhausted, etc.)

 535 authentication failure

 537 action not authorized for user

 538 authentication mechanism requires encryption

 550 requested action not taken
 (e.g., no requested profiles are acceptable)

 553 parameter invalid

 554 transaction failed
 (e.g., policy violation)

Rose Standards Track [Page 52]

RFC 3080 The BEEP Core March 2001

9. Security Considerations

 The BEEP framing mechanism, per se, provides no protection against
 attack; however, judicious use of initial tuning profiles provides
 varying degrees of assurance:

 1. If one of the profiles from the SASL family is used, refer to
 [4]’s Section 9 for a discussion of security considerations.

 2. If the TLS transport security profile is used (or if a SASL
 security layer is negotiated), then:

 1. A man-in-the-middle may remove the security-related profiles
 from the BEEP greeting or generate a negative reply to the
 "ready" element of the TLS transport security profile. A
 BEEP peer may be configurable to refuse to proceed without an
 acceptable level of privacy.

 2. A man-in-the-middle may cause a down-negotiation to the
 weakest cipher suite available. A BEEP peer should be
 configurable to refuse weak cipher suites.

 3. A man-in-the-middle may modify any protocol exchanges prior
 to a successful negotiation. Upon completing the
 negotiation, a BEEP peer must discard previously cached
 information about the BEEP session.

 As different TLS ciphersuites provide varying levels of security,
 administrators should carefully choose which ciphersuites are
 provisioned.

 As BEEP is peer-to-peer in nature, before performing any task
 associated with a message, each channel should apply the appropriate
 access control based on the authenticated identity and privacy level
 associated with the BEEP session.

Rose Standards Track [Page 53]

RFC 3080 The BEEP Core March 2001

References

 [1] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [2] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0", W3C XML, February 1998, <http://www.w3.org/TR/1998/REC-
 xml-19980210>.

 [3] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

 [4] Myers, J., "Simple Authentication and Security Layer (SASL)",
 RFC 2222, October 1997.

 [5] Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081, March
 2001.

 [6] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [7] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [8] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 August 1996.

 [9] Alvestrand, H., "Tags for the Identification of Languages", RFC
 BCP 47, RFC 3066, January 2001.

 [10] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [11] Newman, C., "The One-Time-Password SASL Mechanism", RFC 2444,
 October 1998.

 [12] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [13] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
 2279, January 1998.

 [14] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

Rose Standards Track [Page 54]

RFC 3080 The BEEP Core March 2001

 [15] <http://www.isi.edu/in-notes/iana/assignments/sasl-mechanisms>

Author’s Address

 Marshall T. Rose
 Invisible Worlds, Inc.
 1179 North McDowell Boulevard
 Petaluma, CA 94954-6559
 US

 Phone: +1 707 789 3700
 EMail: mrose@invisible.net
 URI: http://invisible.net/

Rose Standards Track [Page 55]

RFC 3080 The BEEP Core March 2001

Appendix A. Acknowledgements

 The author gratefully acknowledges the contributions of: David Clark,
 Dave Crocker, Steve Deering, Wesley Michael Eddy, Huston Franklin,
 Marco Gazzetta, Danny Goodman, Steve Harris, Robert Herriot, Ken
 Hirsch, Greg Hudson, Ben Laurie, Carl Malamud, Michael Mealling,
 Keith McCloghrie, Paul Mockapetris, RL ’Bob’ Morgan, Frank Morton,
 Darren New, Chris Newman, Joe Touch, Paul Vixie, Gabe Wachob, Daniel
 Woods, and, James Woodyatt. In particular, Dave Crocker provided
 helpful suggestions on the nature of segmentation in the framing
 mechanism.

Rose Standards Track [Page 56]

RFC 3080 The BEEP Core March 2001

Appendix B. IANA Considerations

 The IANA registers "beep" as a GSSAPI [14] service name, as specified
 in Section 4.1.

 The IANA maintains a list of:

 o standards-track BEEP profiles, c.f., Section 5.1; and,

 o standards-track features for the channel management profile, c.f.,
 Section 5.2.

 For each list, the IESG is responsible for assigning a designated
 expert to review the specification prior to the IANA making the
 assignment. As a courtesy to developers of non-standards track BEEP
 profiles and channel management features, the mailing list
 bxxpwg@invisible.net may be used to solicit commentary.

 The IANA makes the registrations specified in Section 6.2 and Section
 6.3. It is recommended that the IANA register these profiles using
 the IANA as a URI-prefix, and populate those URIs with the respective
 profile registrations.

Rose Standards Track [Page 57]

RFC 3080 The BEEP Core March 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rose Standards Track [Page 58]

