
Network Working Group J. Kempf
Request for Comments: 3082 J. Goldschmidt
Category: Experimental Sun Microsystems
 March 2001

 Notification and Subscription for SLP

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 The Service Location Protocol (SLP) provides mechanisms whereby
 service agent clients can advertise and user agent clients can query
 for services. The design is very much demand-driven, so that user
 agents only obtain service information when they specifically ask for
 it. There exists another class of user agent applications, however,
 that requires notification when a new service appears or disappears.
 In the RFC 2608 design, these applications are forced to poll the
 network to catch changes. In this document, we describe a protocol
 for allowing such clients to be notified when a change occurs,
 removing the need for polling.

1. Introduction

 The Service Location Protocol (SLP) [1] provides a mechanism for
 service agent (SA) clients to advertise network services and for user
 agent (UA) clients to find them. The mechanism is demand-driven.
 UAs obtain service information by actively querying for it, and do
 not obtain any information unless they do so. While this design
 satisfies the requirements for most applications, there are some
 applications that require more timely information about the
 appearance or disappearance in the services of interest.

 Ideally, these applications would like to be notified when a new
 service comes up or when a service disappears. In order to obtain
 this information with SLP as described in RFC 2608, such applications
 must poll the network to periodically refresh their local cache of
 available service advertisements.

Kempf & Goldschmidt Experimental [Page 1]

RFC 3082 Notification and Subscription for SLP March 2001

 An example of such a client is a desktop GUI that wants to display
 network service icons as soon as they appear to provide users with an
 accurate picture of all services available to them.

 Because polling is inefficient and wasteful of network and processor
 resources, we would like to provide these applications a mechanism
 whereby they can be explicitly notified of changes. In this
 document, we describe a scalable mechanism allowing UAs to be
 notified of changes in service availability.

2. Notation Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

3. Terminology

 In this section, we present some additional terminology beyond that
 in [1] and [3].

 Notification - A message sent to an interested agent informing that
 agent that a service has appeared or disappeared.

 Subscription - A request to be informed about changes in service
 availability for a particular service type and scopes.

4. Design Considerations

 The primary design consideration in a notification protocol for SLP
 is that we would like it to exhibit the same high degree of
 scalability and robustness that the base SLP protocol exhibits.
 Notification should work in small networks with only a few SAs, as
 well as large enterprise networks with thousands of SAs and hundreds
 of DAs. Small networks should not be required to deploy DAs in order
 to receive the benefits of notification. We also want to assure that
 notification in large networks does not cause heavy processing loads
 to fall on any one particular SLP agent. This requires that the task
 of notification be distributed rather than centralized, to avoid
 loading down one agent with doing all the notification work.
 Finally, we would like the notification scheme to be robust in the
 face of DA failures, just as the base SLP design is.

 An important consideration is that the UA clients obtain
 notifications of SA events in a timely fashion. If a UA has
 subscribed to notification for a particular service type, the UA
 should receive such notification regardless of the state of
 intervening DAs. SLP is transparent with respect to DAs supporting a

Kempf & Goldschmidt Experimental [Page 2]

RFC 3082 Notification and Subscription for SLP March 2001

 particular scope; that is, a UA can use any DA with a particular
 scope and expect to get the same service advertisements.
 Notifications should exhibit the same property. Whether or not a UA
 receives a notification should not depend on the DA to which they
 happen to connect. This preserves the DAs’ identity as a pure cache.

 Another goal is that the notification messages contain enough
 information about the triggering event that the UA can determine
 whether or not it is of interest in the large majority of cases
 without having to issue another SLP request a priori. The UA may, of
 course, issue an SLP request for related reasons, but it should not
 have to issue a request to obtain more information on the event that
 triggered the notification in most cases. This reduces the amount of
 network traffic related to the event.

 In order to simplify implementation, we would like to use similar
 mechanisms for notification in large and small networks. The
 mechanisms are not identical, obviously, but we want to avoid having
 radically different mechanisms that require completely separate
 implementations. Having similar mechanisms reduces the amount of
 code in UA and SA clients.

 A minor goal is to make use of existing SLP message types and
 mechanisms wherever possible. This reduces the amount of code
 necessary to implement the notification mechanism, because much code
 can be reused between the base SLP and the notification mechanism.
 In particular, we expect to make use of the SLP extension mechanism
 in certain cases to support subscription.

5. Notification Design Description

 In order to support scalability, we split the design into two parts.
 A small network design is used when no DAs are present in the
 network. A large network design is used in networks with DAs. The
 following subsections describe the two designs.

5.1 Small Network Design

 In networks without DAs, UAs are notified by an SA when the SA
 initially appears, and when the SA disappears. This allows UAs to
 know about the list of service types the SA supports. In small
 networks, there is no centralized agent available to administer
 subscriptions for newly appearing SAs. This rules out any kind of
 subscription design in which a UA subscribes to notifications for a
 particular service type in particular scopes of interest, because a
 newly appearing SA can’t tell whether or not there are any
 subscriptions without a centralizing agent to tell it.

Kempf & Goldschmidt Experimental [Page 3]

RFC 3082 Notification and Subscription for SLP March 2001

 As a result, SAs perform notification when they come on line and
 prior to shutting down regardless of their scope or service type, if
 they are capable of performing notification. This means that a UA
 receives notification of all types of changes for all scopes and
 service types, and consequently must be prepared to filter out those
 changes in which it is not interested (other scopes, other service
 types).

 The design requires SAs to perform notification by IP multicasting
 (or broadcasting in IPv4 if multicast is not available) SLP SrvReg or
 SrvDereg messages using the multicast transmit algorithm described in
 Section 9.0. The port number for notifications is not the default
 SLP port, because that port is only accessible to privileged users on
 some operating systems, but rather the port 1847, as assigned by
 IANA.

 In IPv4, the SA performs multicast on the SLP multicast address
 (239.255.255.253, default TTL 255) and is administratively scoped in
 the same manner as SLP [4]. IPv4 UAs interested in notification join
 the multicast group 239.255.255.253 and listen on port 1847. In
 IPv6, the multicast is performed to the scoped IPv6 addresses for the
 service type advertised, as described in [8]. The SA advertises on
 all addresses up to and including the largest multicast scope that it
 supports. IPv6 UAs interested in notification join the multicast
 groups corresponding to the multicast scopes and service type in
 which they are interested and listen on port 1847. For example, an
 IPv6 UA that has access to site local scope and is interested in a
 service type whose hash is 42, calculated according to the algorithm
 in [8], joins the groups FF01:0:0:0:0:0:10042 through
 FF05:0:0:0:0:0:10042.

5.2 Large Network Design

 In networks with DAs, a DA supporting a particular scope can act as
 an intermediary for administering UA subscriptions. A subscription
 consists of a service type and a collection of scopes. A UA
 interested in being notified about changes in a particular service
 type attaches the Subscribe extension to a SrvRqst message sent to
 the DA. The DA obtains multicast group addresses for notification
 based on the algorithm described in Section 8.0 and puts them into a
 NotifyAt extension which it attaches to the SrvRply. The UA listens
 on the group addresses in the reply for notifications.

 When a new subscription comes in, existing SAs are informed about the
 subscription using the following procedure. The DA compares the
 service type and scopes in the new subscription against a list of
 existing subscriptions. If no previous subscription has the same
 service type and scopes, the DA MUST multicast a DAAdvert, using the

Kempf & Goldschmidt Experimental [Page 4]

RFC 3082 Notification and Subscription for SLP March 2001

 multicast transmit algorithm described in Section 9.0, and MUST
 include the NotifyAt extension with the multicast group addresses for
 notification. If an existing subscription covers the same service
 type and scopes as the new subscription, the DA MUST NOT multicast a
 DAAdvert.

 A DA MUST keep track of subscriptions it has arranged as well as
 subscriptions arranged by other DAs in any scopes with which the DA
 is configured. To avoid multiple multicast NotifyAt messages, a DA
 MUST wait a random amount of time, uniformly distributed between 0
 and 3 seconds before sending the multicast DAAdvert with NotifyAt.
 During this period, the DA MUST listen for NotifyAt messages that
 match the one from the new subscription. If a matching NotifyAt is
 detected, the DA MUST not multicast.

 When a new SA registers with a DA that has existing subscriptions,
 the new SA is informed of notifications it should perform using the
 following procedure. If the service type and scopes in the new SA’s
 SrvReg messages match an existing subscription, a NotifyAt containing
 the multicast addresses for notification MUST be included in the
 SrvAck. If the SA doesn’t support notification, it simply ignores
 the extension. If the service type and scopes in the new SA’s SrvReg
 do not match any existing subscriptions, the DA MUST NOT include a
 NotifyAt.

 The DA itself MUST also perform notification, according to the
 multicast transmit algorithm, when a service advertisement times out.
 Time-out of a service advertisement results in the DA multicasting a
 SrvDereg for the deregistered URL. This allows interested UAs to be
 informed of the service advertisement’s demise even if the SA has
 disappeared without deregistering. A DA MUST NOT perform
 notification when it receives a SrvReg from an SA, however, that is
 the job of the SA.

 As in small networks, notification is performed primarily by SAs. If
 an SA receives a DAAdvert or SrvAck with a NotifyAt extension and the
 following conditions are met:

 1. The SA supports notification.

 2. The SA’s service type matches the service type in the
 NotifyAt extension.

 3. The SA’s scopes match one of the scopes of the NotifyAt
 extension.

Kempf & Goldschmidt Experimental [Page 5]

RFC 3082 Notification and Subscription for SLP March 2001

 then the SA saves the multicast addresses that correspond to the
 scopes and service types it supports. The SA MUST perform
 notification immediately after the SA has performed the SrvReg or
 SrvDereg with the DA. An SA that has detected a DA in its scopes
 MUST NOT multicast any notifications unless it receives a NotifyAt
 extension in a SrvAck with service type and scopes matching the SA’s
 service type and scopes.

6. Subscribe Extension

 The Subscribe extension has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension Type = 0x0004 | Extension Length |
 +-+
 | Ex. Len. (ct) | Abs. Type Fl. |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The scope list and service type of the extension are taken from the
 accompanying SrvRqst. The abstract type flag indicates whether the
 UA is interested in hearing from all SAs advertising concrete
 instances of an abstract type [3], and is only of interest if the
 service type in the SrvRqst is a concrete type. If the flag is 1,
 the UA is interested in hearing from all SAs advertising concrete
 types having the same abstract type as the type of the SrvRqst. If
 the flag is 0, the UA is only interested in hearing from SAs
 supporting the particular concrete type in the SrvRqst. If the
 service type in the accompanying SrvRqst is not a concrete type, the
 flag is ignored.

7. NotifyAt Extension

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Extension Type = 0x0005 | Extension Length |
 +-+
 | Ext. Len (ct) | Subscription Lifetime |SGL List Len. \
 +-+
 |SGL L. Len (ct)| Scope/Group List \
 +-+
 | Length of Service Type Name | Service Type Name \
 +-+

Kempf & Goldschmidt Experimental [Page 6]

RFC 3082 Notification and Subscription for SLP March 2001

 The service type name is in the same format as in the SrvRqst. The
 scope/group list is a list of scope names and multicast group
 addresses. The following ABNF [5] syntax describes the list:

 sglist = sgitem / sgitem "," sglist
 sgitem = scope-name ":" ip-addr
 ip-addr = ipv4-number | ipv6-number
 scope-name = ; See RFC 2608 for the format of scope names.
 ipv4-number = 1*3DIGIT 3("." 1*3DIGIT)
 ipv6-number = ;See RFC 2373 [9] Section 2.2

 An example of a scope/group list for IPv4 is:

 eng:239.255.255.42,corp:239.255.255.43

 An example of a scope/group listfor IPv6 is:

 eng:FF02:0:0:0:0:0:1:1042,corp:FF03:0:0:0:0:0:1:1042

 The scope/group list gives the multicast addresses to use for
 notifications involving the service type for the given scopes.

 The service type name can be a simple type name, an abstract type
 name, or a concrete type name. If the name is an abstract type name,
 all SAs advertising the abstract type MUST notify. If the name is a
 concrete or simple type name, ONLY those SAs advertising the simple
 or concrete type MUST notify, others MUST NOT notify. A DA that
 receives a subscription for a concrete type with the abstract type
 flag set, MUST include the abstract type name in all the NotifyAt
 messages it sends. If the DA receives a subscription for a concrete
 type with the abstract type flag not set, the DA MUST NOT include the
 abstract type, but rather MUST include the concrete type name.

 There are three cases in which an agent may receive a NotifyAt
 extension: in a SrvRply returned to a UA, in a multicast DAAdvert,
 and in a SrvAck returned to an SA. The three subsections below
 describe the response in each of these cases.

7.1 NotifyAt received with SrvRply

 When a UA sends a SrvRqst with a Subscribe extension, the DA responds
 with a SrvRply including a NotifyAt. The DA MUST NOT unicast a
 NotifyAt to a UA with any other message and MUST NOT send a NotifyAt
 unless a SrvRqst with a Subscribe extension was received.

 The UA responds by setting up a multicast listener to the group
 addresses included in the extension on the SLP notification port
 1847. The UA MAY also want to note the expiration lifetime of the

Kempf & Goldschmidt Experimental [Page 7]

RFC 3082 Notification and Subscription for SLP March 2001

 subscription assigned by the DA, and reissue a subscription before
 the lifetime expires.

7.2 NotifyAt received with Multicast DAAdvert

 The DA multicasts a NotifyAt with a DAAdvert using the multicast
 transmit algorithm when a UA has requested notification and the
 scopes and service type in the subscription were not previously seen.
 This message informs existing SAs having the service type and scopes
 in the announcement that they should multicast notifications when
 they shut down.

 A receiving SA participating in notification responds by noting the
 multicast address if the service type and scopes match. When the SA
 is about to go down, the SA MUST first unicast a SrvDereg without
 attribute tag list to its DAs (as per standard SLP), then it MUST
 multicast the same SrvDereg message according to the multicast
 transmit algorithm. The SA MUST cease performing notification when
 the subscription lifetime expires, unless a subsequent NotifyAt is
 received prolonging the subscription.

 A UA that is performing passive DA detection will naturally also
 receive the extension, but the UA SHOULD ignore the extension.

7.3 NotifyAt received with SrvAck

 An SA can receive a NotifyAt with a SrvAck when it first comes up and
 registers itself with a DA. If the DA has any subscriptions from UAs
 for the service type and scopes represented by the SA, it MUST return
 a NotifyAt with the SrvAck.

 The SA upon receiving the NotifyAt immediately multicasts the same
 SrvReg it sent to the DA, according to the multicast transmit
 algorithm. The SA MUST only perform the multicast algorithm once,
 even if it registers with more than one DA and receives the NotifyAt
 in reply from more than one. Prior to its demise and after
 deregistering with a DA, the SA MUST notify with the same SrvDereg,
 as described in Section 7.2.

8. Multicast Address Allocation

 Enterprise networks that allow SLP notification SHOULD deploy the
 Multicast Address Allocation Architecture (MAAA) including
 administratively scoped multicast and Multicast Address Dynamic
 Client Allocation Protocol (MADCAP) [6].

 If it is not possible to obtain a multicast address for use in SLP
 notifications, the SLP multicast address is used.

Kempf & Goldschmidt Experimental [Page 8]

RFC 3082 Notification and Subscription for SLP March 2001

 If the MAAA infrastructure is deployed, DAs and SAs obtain their
 scope configuration from MADCAP, because the SLP scopes are the same
 as the MADCAP scopes. Each SLP scope MUST correspond to a multicast
 scope name, in the sense of [6]. In such a case, a DA allocates,
 using MADCAP, a new multicast group address for each new service
 type/scope pair to which a UA subscribes. The allocation is made by
 MADCAP from the multicast address range for the scope. In this way,
 only those UAs interested in the service type and scopes in the
 subscription receive the multicast notification. The DA sets up the
 lease on the multicast address to correspond with the duration of the
 subscription. If the MADCAP server runs out of addresses, the SLP
 multicast group is used as a last resort.

 For example, if the multicast scope has an address range of 239.1.0.0
 through 239.1.255.255, the notification group address for service
 type X in scope A could be 239.1.0.42 and for service type Y in scope
 B could be 239.1.42.42.

9. Multicast Transmit Algorithm

 The DA and SAs use a multicast transmit algorithm similar to that
 used for discovering services in SLP, described in RFC 2608 [1],
 except the agent performing the notification doesn’t wait for
 replies. The agent performing the notification transmits a
 notification message repeatedly over a period of 15 seconds, backing
 off exponentially on the duration of the time interval between the
 multicasts. The rationale for this algorithm is to limit the
 duration and scope of the multicast announcement while still
 repeating the announcement enough times to increase the probability
 that one message gets through.

 For an SA, a notification message is either a SrvReg or a SrvDereg
 message, depending on whether the SA is registering a new service or
 deregistering a service. When a new service is registered, the
 SrvReg message MUST have the fresh bit set in the SLP header. The
 entire list of attributes for the service SHOULD be included. The
 SrvDereg message MUST NOT include an attribute tag list.
 Notifications MUST NOT be transmitted at any other time, to minimize
 multicast traffic.

 Since a SrvReg could contain attribute lists of arbitrary length, the
 message could potentially overflow the packet MTU for UDP. If an
 attribute list causes a packet MTU overflow, the SA MUST set the
 overflow bit in the SLP header. The attribute list in the
 notification message MUST be formatted so that a UA can use the
 attributes even if an overflow occurs. If a UA needs more attributes
 than are transmitted in the notification message, it can contact the
 SA (if no DA is present) or the DA for the attributes it needs.

Kempf & Goldschmidt Experimental [Page 9]

RFC 3082 Notification and Subscription for SLP March 2001

 A DA multicasts a DAAdvert when a subscription comes in containing a
 service type and scopes that do not match any on the DA’s list of
 known subscriptions. The same algorithm MUST be used. If the
 combination of the DA attributes and the NotifyAt message cause the
 DAAdvert to overflow a UDP packet, DA attributes MUST be truncated to
 allow the NotifyAt to fit and the overflow bit MUST be set in the
 header. An SA knows that the purpose of the message is to inform it
 of a new subscription rather than for passive advertisement, because
 of the extension, and it can therefore ignore the DA attribute list
 field if the overflow bit is set in the header. A DA also transmits
 a SrvDereg message when a service advertisement is deregistered due
 to timeout, following the same rules as for an SA.

10.0 DA Disappearance

 Robustness to DA failure is an important goal of the design. When a
 DA disappears due to unforeseen circumstances, subscription
 information from UAs is lost. UAs continue to get notifications from
 existing SAs. However, new SAs will not be informed of the
 subscription unless other DAs also have the subscription information.
 Because a UA may not discover a new DA until it tries to perform an
 active request, the UA could potentially miss the appearance of new
 services. For this reason, UAs that are concerned about receiving
 notification of absolutely every service that appears SHOULD issue
 subscriptions to every newly discovered DA that supports the scopes
 it supports. Similarly, if a DA disappears through controlled
 shutdown, a UA performing passive discovery can detect the shutdown
 and reissue the subscription to an alternate DA.

 On the SA side, when a DA goes down, existing SAs continue to notify
 until the subscription expires. Before ceasing to notify, an SA MUST
 determine whether the DA is still active and, if not, verify with
 another DA whether the subscription has been extended. If no other
 DA is available, the SA MUST ignore the subscription expiration time
 and continue notifying until a new DA is discovered. When a new DA
 is discovered the SA must send a new SrvReg to the DA, according to
 RFC 2608 [1]. The replying SrvAck contains a NotifyAt extension if
 the UA has renewed its subscription with the DA. If the SrvAck does
 not contain a NotifyAt message the SA MUST continue to notify until
 the subscription expires. If a UA is interested in continuing the
 notification, it renews the subscription with the new DA prior to the
 expiration of the old one, and so the SA is informed to continue
 notifying.

Kempf & Goldschmidt Experimental [Page 10]

RFC 3082 Notification and Subscription for SLP March 2001

 Note that this procedure still does not inform SAs that come up
 between the time a newly booted DA comes up and the time the UA has
 renewed its subscription with the newly booted DA. If this situation
 is of concern, multiple DAs can be used to assure that all
 subscriptions are covered when a DA goes down.

11. Network Administration Considerations

 In SLP networks with DAs as described in RFC 2608, the only multicast
 is the SrvRqst for DAAdverts performed during active DA discovery,
 and unsolicited DAAdverts sent periodically by the DA for passive
 discovery. There is no multicast involved in UA queries or SA
 registrations. This allows network administrators to set up DAs for
 a particular collection of IP subnets and confine all service
 discovery traffic to unicast between the SA and UA clients and the
 DA. Administratively scoped multicast can additionally be used to
 limit the extent of active DA discovery and passive DA advertising.
 The amount of multicast involved is not high and DHCP DA and scope
 configuration can be used to limit which DAs a particular UA or SA
 client sees, or to inhibit multicast entirely so that UAs and SAs
 only use configured DAs.

 With notification, however, multicast traffic involving events in SAs
 becomes available. Because DAs request multicast addresses based on
 scope and service type, the multicast associated with particular
 events should only propagate to those subnets in which UAs and SAs of
 the same scope are interacting. Routers should be configured with
 administrative multicast scoping to limit multicast. If DAs are not
 deployed (or the MAAA is not deployed), however, the amount of
 multicast on the SLP multicast address when notifications are being
 used could quickly become very large. Therefore, it is crucial that
 DAs supporting notification be deployed in large networks where UA
 clients are interested in notification.

12. Security Considerations

 The SrvReg and SrvDereg messages contain authentication blocks for
 all SLP SPIs supported by the DAs with which the SA registers. Since
 these SPIs are necessarily the same as those that UAs can verify, a
 UA receiving a multicast notification is in a position to verify the
 notification. It does so by selecting the authentication block or
 blocks that it can verify. If authentication fails, either due to
 lack of an authentication block, or lack of the proper SPI, the UA
 simply discards the notification. In a network without DAs, the SPIs
 of the UA and SA must also match.

Kempf & Goldschmidt Experimental [Page 11]

RFC 3082 Notification and Subscription for SLP March 2001

13. IANA Considerations

 The SLP Notification services use the IANA-assigned port number of
 1847. The SLP extension identifiers assigned by IANA are 0x0004 for
 Subscribe and 0x0005 for NotifyAt.

14. Acknowledgements

 The authors would like to thank Charles Perkins, of Nokia, and Erik
 Guttman and Jonathan Wood, of Sun Microsystems, for their stimulating
 discussion and suggestions during the initial phases of the
 subscription/notification design. We would also like to thank Erik
 for his intense scrutiny of the specification during the later
 phases. His comments were instrumental in refining the design.
 Shivaun Albright, of HP, motivated simplification of the protocol to
 focus on initial registration and deregistration only. Vaishali
 Mithbaokar implemented the simplified protocol.

15. References

 [1] Guttman, E., Perkins, C., Veizades, J. and M. Day, "Service
 Location Protocol", RFC 2608, July 1999.

 [2] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Guttman, E., Perkins, C. and J. Kempf, "Service Templates and
 service: Schemes", RFC 2609, July 1999.

 [4] Meyer, D., "Administratively Scoped IP Multicast", RFC 2365, July
 1998.

 [5] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [6] Hanna, S., Patel,B. and M. Shah, "Multicast Address Dynamic
 Client Allocation Protocol (MADCAP)", RFC 2730, December 1999.

 [7] http://www.isi.edu/in-notes/iana/assignments/multicast-addresses

 [8] Guttman, E., "Service Location Protocol Modifications for IPv6",
 Work in Progress.

 [9] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2375, July 1997.

Kempf & Goldschmidt Experimental [Page 12]

RFC 3082 Notification and Subscription for SLP March 2001

16. Author’s Addresses

 James Kempf
 Sun Microsystems
 UMPK15-214
 901 San Antonio Rd.
 Palo Alto, CA 94040
 USA

 Phone: +1 650 786 5890
 EMail: james.kempf@sun.com

 Jason Goldschmidt
 Sun Microsystems
 UMPK17-202
 901 San Antonio Rd.
 Palo Alto, CA 94040
 USA

 Phone: +1 650 786 3502
 EMail: jason.goldschmidt@sun.com

Kempf & Goldschmidt Experimental [Page 13]

RFC 3082 Notification and Subscription for SLP March 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kempf & Goldschmidt Experimental [Page 14]

