
Network Working Group H. Kitamura
Request for Comments: 3089 NEC Corporation
Category: Informational April 2001

 A SOCKS-based IPv6/IPv4 Gateway Mechanism

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document describes a SOCKS-based IPv6/IPv4 gateway mechanism
 that enables smooth heterogeneous communications between the IPv6
 nodes and IPv4 nodes.

 It is based on the SOCKS protocol [SOCKSv5]. By applying the SOCKS
 mechanism to the heterogeneous communications and relaying two
 "terminated" IPv4 and IPv6 connections at the "application layer"
 (the SOCKS server), the SOCKS-based IPv6/IPv4 gateway mechanism is
 accomplished.

 Since it is accomplished without introducing new protocols, it
 provides the same communication environment that is provided by the
 SOCKS mechanism. The same appearance is provided to the
 heterogeneous communications. No conveniences or functionalities of
 current communications are sacrificed.

1. Introduction

 The SOCKS-based IPv6/IPv4 gateway mechanism is based on a mechanism
 that relays two "terminated" IPv4 and IPv6 connections at the
 "application layer" (the SOCKS server); its characteristics are
 inherited from those of the connection relay mechanism at the
 application layer and those of the native SOCKS mechanism.

Kitamura Informational [Page 1]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

2. Basic SOCKS-based Gateway Mechanism

 Figure 1 shows the basic SOCKS-based gateway mechanism.

 Client C Gateway G Destination D
 +-----------+ (Server)
 |Application|
 +-->+===========+ +-------------+ +-----------+
 same-+ |*SOCKS Lib*| | *Gateway* | |Application|
 API +-->+===========+ +=====---=====+ +-----------+
 | Socket DNS| | Socket DNS | | Socket DNS|
 +-----------+ +-------------+ +-----------+
 | [IPv X] | |[IPvX]|(IPvY)| | (IPv Y) |
 +-----------+ +-------------+ +-----------+
 |Network I/F| | Network I/F | |Network I/F|
 +-----+-----+ +---+-----+---+ +-----+-----+
 | | | |
 +============+ +------------+
 socksified normal
 connection connection
 (ctrl)+data data only

 Fig. 1 Basic SOCKS-based Gateway Mechanism

 In this figure, the Client C initiates the communication to the
 Destination D. Two new functional blocks are introduced and they
 compose the mechanism.

 One, *Socks Lib*, is introduced into the client side (Client C) (this
 procedure is called "socksifying"). The *Socks Lib* is located
 between the application layer and the socket layer, and can replace
 applications’ socket APIs and DNS name resolving APIs (e.g.,
 gethostbyname(), getaddrinfo() etc.). There is a mapping table in it
 for a "DNS name resolving delegation" feature (described below).
 Each socksified application has its own *Socks Lib*.

 The other, *Gateway*, is installed on the IPv6 and IPv4 dual stack
 node (Gateway G). It is an enhanced SOCKS server that enables any
 types of protocol combination relays between Client C (IPvX) and
 Destination D (IPvY). When the *Socks Lib* invokes a relay, one
 corresponding *Gateway* process (thread) is spawned from the parent
 Gateway to take charge of the relay connection.

 The following four types of combinations of IPvX and IPvY are
 possible in the mechanism.

Kitamura Informational [Page 2]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

 type C ------ G ------ D
 [IPvX] (IPvY)
 A IPv4 IPv4 homogeneous (normal SOCKS)
 B IPv4 IPv6 * heterogeneous *
 C IPv6 IPv4 * heterogeneous *
 D IPv6 IPv6 homogeneous

 Type A is supported by the normal SOCKS mechanism. Type B and C are
 the main targets for the SOCKS-based IPv6/IPv4 gateway mechanism.
 They provide heterogeneous communications. Type D can be supported
 by the natural extension of the SOCKS mechanism, because it is a
 homogeneous communication.

 Since the *Socks Lib* communicates with the *Gateway* by using SOCKS
 protocol [SOCKSv5], the connection between them (the Client C and the
 Gateway G) is a special connection and is called a "socksified
 connection". It can transfer not only data but also control
 information (e.g., the location information of Destination D).

 The connection between the Gateway G and the Destination D is a
 normal connection. It is not modified (socksified). A server
 application that runs on Destination D does not notice the existence
 of the Client C. It recognizes that the peer node of the connection
 is the Gateway G (not Client C).

 No new protocols are introduced to the SOCKS protocol [SOCKSv5] to
 accomplish the mechanism.

 * Packet Size Adjustment

 Since the length of the IPv6 header is different from that of the
 IPv4 header, it is necessary to consider the packet size adjustment
 in heterogeneous communications. If this is not taken into
 consideration, the packet size may exceed the MTU of the network.

 In the SOCKS-based IPv6/IPv4 gateway mechanism, it never exceeds
 the MTU, because the mechanism is based on relaying two
 "terminated" connections at the "application layer". The relayed
 data is a simple data stream for the application, and the packet
 size is naturally adjusted at each relayed connection side.

 * Authenticated Relay

 Since the SOCKS is originally designed for firewall systems and it
 has various authentication methods, the relayed connections can be
 authenticated by the native SOCKS authentication methods.

Kitamura Informational [Page 3]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

3. DNS Name Resolving Procedure

 In all communication applications, it is a necessary to obtain
 destination IP address information to start a communication. It is,
 however, theoretically impossible for the heterogeneous
 communications to obtain correct information, because an existing
 IPv4 application can not deal with an IPv6 address. It prepares only
 a 4-byte address space to store an IP address information, and it can
 not store an IPv6 address information into there. This is a critical
 problem caused by differences in address length.

 In order to solve the problem, a feature called "DNS name resolving
 delegation" is used in the SOCKS-based IPv6/IPv4 gateway mechanism.
 The feature involves the delegating of DNS name resolving actions at
 the source node (Client C) to the relay server (Gateway G). Since
 the relay server is an IPv4 and IPv6 dual stack node, DNS name
 resolving queries for any address family types of destinations can be
 made without causing any problems. Therefore, it is not necessary to
 modify the existing DNS mechanism at all.

 The feature supports not only the case in which a destination logical
 host name (FQDN) information is given but also the case in which a
 destination literal (numerical) IP address is given. The latter case
 is supported in almost the same way as the former case. Since the
 literal IPv6 address expression includes colons (":"), it is
 identified as an FQDN (not a literal IPv4 address) for the IPv4
 application.

 The SOCKS protocol specification [SOCKSv5] defines that IPv4 address,
 IPv6 address, and DOMAINNAME (FQDN) information can be used in the
 ATYP (address type) field of the SOCKS protocol format. In the "DNS
 name resolving delegation" feature, the DOMAINNAME (FQDN) information
 is used in the ATYP (address type) field. The FQDN information is
 transferred from the Client C to the Gateway G to indicate the
 Destination D.

 In order to solve the formerly explained critical problem, an
 appropriate "fake IP" address is introduced in the feature, and it is
 used as a virtual destination IP address for a socksified
 application. A mapping table is also introduced in the *Socks Lib*
 (at the Client C) to manage mappings between "fake IP" and "FQDN". A
 "fake IP" address is used as a key to look up the corresponding
 "FQDN" information. The mapping table is local and independent of
 other applications or their *Socks Lib*s.

Kitamura Informational [Page 4]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

 The transparentness to applications is maintained in the feature.
 Nothing special is required to execute it except socksifying the
 applications. Since DNS name resolving APIs are replaced by the
 Socks Lib, the "DNS name resolving delegation" is executed
 internally merely by calling the DNS name resolving APIs in ordinal
 methods.

 The "DNS name resolving delegation" is accomplished only when FQDN
 information is used in the ATYP (address type) field of the SOCKS
 command. Therefore, it is mandatory to do so for heterogeneous
 communications. The method of using FQDN information in the ATYP
 field depends on the configuration setting and implementation of the
 SOCKS protocol. In order to simplify the discussion, only the case
 in which the FQDN information is used in the ATYP field is discussed
 here.

 The detailed internal procedure of the "DNS name resolving
 delegation" and address mapping management related issues are
 described as follows.

 1. An application on the source node (Client C) tries to get the
 IP address information of the destination node (Destination D) by
 calling the DNS name resolving function (e.g., gethostbyname()).
 At this time, the logical host name ("FQDN") information of the
 Destination D is passed to the application’s *Socks Lib* as an
 argument of called APIs.

 2. Since the *Socks Lib* has replaced such DNS name resolving APIs,
 the real DNS name resolving APIs is not called here. The argued
 "FQDN" information is merely registered into a mapping table in
 Socks Lib, and a "fake IP" address is selected as information
 that is replied to the application from a reserved special IP
 address space that is never used in real communications (e.g.,
 0.0.0.x). The address family type of the "fake IP" address must be
 suitable for requests called by the applications. Namely, it must
 belong to the same address family of the Client C, even if the
 address family of the Destination D is different from it. After
 the selected "fake IP" address is registered into the mapping
 table as a pair with the "FQDN", it is replied to the application.

 3. The application receives the "fake IP" address, and prepares a
 "socket". The "fake IP" address information is used as an element
 of the "socket". The application calls socket APIs (e.g.,
 connect()) to start a communication. The "socket" is used as an
 argument of the APIs.

Kitamura Informational [Page 5]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

 4. Since the *Socks Lib* has replaced such socket APIs, the real
 socket function is not called. The IP address information of the
 argued socket is checked. If the address belongs to the special
 address space for the fake address, the matched registered "FQDN"
 information of the "fake IP" address is obtained from the mapping
 table.

 5. The "FQDN" information is transferred to the *Gateway* on the
 relay server (Gateway G) by using the SOCKS command that is
 matched to the called socket APIs. (e.g., for connect(), the
 CONNECT command is used.)

 6. Finally, the real DNS name resolving API (e.g., getaddrinfo()) is
 called at the *Gateway*. At this time, the received "FQDN"
 information via the SOCKS protocol is used as an argument of the
 called APIs.

 7. The *Gateway* obtains the "real IP" address from a DNS server,
 and creates a "socket". The "real IP" address information is used
 as an element of the "socket".

 8. The *Gateway* calls socket APIs (e.g., connect()) to communicate
 with the Destination D. The "socket" is used as an argument of the
 APIs.

 The problem with the feature is that failures of the DNS name
 resolving process are detected incorrectly at the source node (Client
 C). They are detected as connection-establishment failures.

 (Restrictions on applicability of "fake IP" address, etc., are
 described in Section 5.)

 * Operations for Address Management (reservation, mapping etc.)

 The SOCKS-based gateway mechanism does not require the reserving of a
 wide global address space for the address mapping, and complex
 address allocation and garbage-collection mechanisms are not
 necessary.

 Such address management operations are done at the *Socks Lib* by
 using the fake IP address and the mapping table for the DNS name
 resolving delegation. Since the mapping table is prepared in each
 application, it is locally closed and independent of other
 applications. Therefore, it is easy to manage the table, and it is
 not necessary to reserve a wide global address space.

Kitamura Informational [Page 6]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

4. Multiple Chained Relay Mechanism (Advanced usage)

 The SOCKS-based gateway mechanism has the flexibility to support
 multiple chained relay topologies. With the mechanism, IPv4 and IPv6
 mixed various communication topologies are accomplished.

 Figure 2 shows the structure of the multiple chained relay mechanism.

 Client C Gateway G1 Gateway G2 Destination D
 +-----------+ (Server 1) (Server 2)
 |Application|
 +===========+ +-------------+ +-------------+ +-----------+
 |*SOCKS Lib*| | *Gateway1* | | *Gateway2* | |Application|
 +===========+ +=====---=====+ +=====---=====+ +-----------+
 | Socket DNS| | Socket DNS | | Socket DNS | | Socket DNS|
 +-----------+ +-------------+ +-------------+ +-----------+
 | [IPv X] | |[IPvX]|(IPvY)| |(IPvY)|{IPvZ}| | { IPv Z } |
 +-----------+ +-------------+ +-------------+ +-----------+
 |Network I/F| | Network I/F | | Network I/F | |Network I/F|
 +-----+-----+ +---+-----+---+ +---+-----+---+ +-----+-----+
 | | | | | |
 +============+ +==========+ +------------+
 socksified socksified normal
 connection connection connection
 (ctrl)+data (ctrl)+data data only

 Fig. 2 Multiple Chained Relay Mechanism

 In this figure, the source node (Client C) initiates the
 communication with the destination (Destination D). Underneath, the
 connection is replaced with three connections, and they are relayed
 at the two relay servers (Gateway G1 and G2). The *Gateway* includes
 the same type of functions of *Socks Lib*. By enabling the *Socks
 Lib* functions at the *Gateway1* on the first relay server (Gateway
 G1), the multiple chained relay topology is accomplished.

 There is no limitation on the number of relay operations between the
 source node and the final destination node. It is possible to have
 more than two intermediate relay servers. To simplify the
 explanation, a twice-relayed topology is shown here.

 Since the multiple chained relay is more complex than one-time relay
 and causes complexity, it is recommended that the multiple chained
 relay communication should be used only when it is necessary for some
 reason (e.g., usable protocols or topologies are limited by routers
 etc.).

Kitamura Informational [Page 7]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

5. Applicability statement

 The SOCKS-based gateway mechanism requests socksification of
 applications (install *Socks Lib*) to accomplish heterogeneous
 communications. It is not necessary to modify (change source codes
 and recompile them, etc.) the applications, because typical
 socksification is done by changing the linking order of dynamic link
 libraries (specifically, by linking the SOCKS dynamic link library
 before the dynamic link libraries for normal socket and DNS name
 resolving APIs).

 The mechanism does not request modification of the DNS system,
 because the DNS name resolving procedure at the Client C is delegated
 to the dual stack node Gateway G.

 Other than the socksification, the SOCKS-based gateway mechanism has
 the following three types of constraints.

 1. Essential constraints:

 Constraints are caused by the address length difference between
 IPv4 and IPv6.

 Functions that request an IP address as one of the return values
 (e.g., getpeername() and getsockname() etc.) can not provide the
 correct IP address as a return value. However, a suitable port
 value can be provided, because IPv4 and IPv6 use the same size
 port space and an appropriate port information is transferred by
 the SOCKS protocol.

 2. Constraints of the SOCKS mechanism:

 Since the current SOCKS system can not socksify all of the tricky
 applications in which extraordinary manners are used to create
 connections, the SOCKS-based gateway mechanism can not be applied
 to them.

 3. Constraints to deal with the fake address:

 The fake address must be dealt with as a temporary value at the
 application. It is used as a key value in the mapping table for
 the "DNS name resolving delegation" feature. When the application
 is finished and the mapping table disappears, the fake address
 information must be also released.

 Even if it is recorded permanently (e.g., recorded as a bookmark),
 serious problems will not occur. The recorded fake address
 information will merely become useless, because fake address

Kitamura Informational [Page 8]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

 information is taken from a reserved special IP address space that
 is never used in real communications (e.g., 0.0.0.x) and such a
 information is useless for the normal communication applications.
 Furthermore, such cases will be rare because most applications
 usually record FQDN information (not fake IP address information)
 to the bookmark, etc.

5.1 Native SOCKS mechanism considerations

 The characteristics of the SOCKS-based IPv6/IPv4 gateway mechanism
 are inherited from those of the native SOCKS mechanism. Therefore,
 consideration issues of the native SOCKS mechanism are discussed in
 this section.

 The SOCKSv5 protocol is composed of three commands (CONNECT, BIND and
 UDP ASSOCIATE). All of three commands can be applied in the SOCKS-
 based IPv6/IPv4 gateway mechanism.

 This document is described with assuming the usage of the CONNECT
 command mainly, because the CONNECT command is the main and most
 frequently used command in the SOCKS mechanism. Since the CONNECT
 command does not have clear week points, we can use it freely without
 considerations.

 The other (BIND and UDP ASSOCIATE) commands have the following weak
 points. So, we have to consider these points when we use the BIND or
 UDP ASSOCIATE commands in the mechanism.

 The BIND command is basically designed to support reverse-channel
 rendezvous of the FTP type applications. So, general usages of the
 BIND command may cause problems.

 The UDP ASSOCIATE command is basically designed for simple UDP
 applications (e.g., archie). It is not general enough to support a
 large class of applications that use both TCP and UDP.

Kitamura Informational [Page 9]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

6. Security Considerations

 Since the SOCKS-based IPv6/IPv4 gateway mechanism is based on SOCKSv5
 protocol, the security feature of the mechanism matches that of
 SOCKSv5. It is described in the Security Considerations section of
 the SOCKS Protocol Version 5 [SOCKSv5].

 The mechanism is based on relaying two "terminated" connections at
 the "application layer". The end-to-end security is maintained at
 each of the relayed connections (i.e., between Client C and Gateway
 G, and between Gateway G and Destination D). The mechanism does not
 provide total end-to-end security relay between the original source
 (Client C) and the final destination (Destination D).

Kitamura Informational [Page 10]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

Appendix A. Implementations

 Currently, there are two independent implementations of the SOCKS-
 based IPv6/IPv4 gateway mechanism. Both of them are open to the
 public.

 One is NEC’s implementation. Its source codes are available at the
 following URL.

 http://www.socks.nec.com/

 The other is Fujitsu Lab.’s implementation, which is called
 "SOCKS64". Its source codes are available at the following URL.

 ftp://ftp.kame.net/pub/kame/misc/socks64-...

References

 [SOCKSv5] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D. and
 L. Jones, "SOCKS Protocol V5", RFC 1928, April 1996.

 [TRANSMECH] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 2893, August 2000.

 [IPv6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [INET99] H. Kitamura, "Entering the IPv6 communication world by
 the SOCKS-based IPv6/IPv4 Translator", in Proceedings of
 INET99, July 1999.

Author’s Address

 Hiroshi Kitamura
 NEC Corporation
 Development Laboratories
 (Igarashi Building 4F) 11-5, Shibaura 2-Chome,
 Minato-Ku, Tokyo 108-8557, JAPAN

 Phone: +81 (3) 5476-1071
 Fax: +81 (3) 5476-1005
 EMail: kitamura@da.jp.nec.com

Kitamura Informational [Page 11]

RFC 3089 SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kitamura Informational [Page 12]

