
Network Working Group H. Balakrishnan
Request for Comments: 3124 MIT LCS
Category: Standards Track S. Seshan
 CMU
 June 2001

 The Congestion Manager

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document describes the Congestion Manager (CM), an end-system
 module that:

 (i) Enables an ensemble of multiple concurrent streams from a sender
 destined to the same receiver and sharing the same congestion
 properties to perform proper congestion avoidance and control, and

 (ii) Allows applications to easily adapt to network congestion.

1. Conventions used in this document:

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [Bradner97].

 STREAM

 A group of packets that all share the same source and destination
 IP address, IP type-of-service, transport protocol, and source and
 destination transport-layer port numbers.

Balakrishnan, et. al. Standards Track [Page 1]

RFC 3124 The Congestion Manager June 2001

 MACROFLOW

 A group of CM-enabled streams that all use the same congestion
 management and scheduling algorithms, and share congestion state
 information. Currently, streams destined to different receivers
 belong to different macroflows. Streams destined to the same
 receiver MAY belong to different macroflows. When the Congestion
 Manager is in use, streams that experience identical congestion
 behavior and use the same congestion control algorithm SHOULD
 belong to the same macroflow.

 APPLICATION

 Any software module that uses the CM. This includes user-level
 applications such as Web servers or audio/video servers, as well
 as in-kernel protocols such as TCP [Postel81] that use the CM for
 congestion control.

 WELL-BEHAVED APPLICATION

 An application that only transmits when allowed by the CM and
 accurately accounts for all data that it has sent to the receiver
 by informing the CM using the CM API.

 PATH MAXIMUM TRANSMISSION UNIT (PMTU)

 The size of the largest packet that the sender can transmit
 without it being fragmented en route to the receiver. It includes
 the sizes of all headers and data except the IP header.

 CONGESTION WINDOW (cwnd)

 A CM state variable that modulates the amount of outstanding data
 between sender and receiver.

 OUTSTANDING WINDOW (ownd)

 The number of bytes that has been transmitted by the source, but
 not known to have been either received by the destination or lost
 in the network.

 INITIAL WINDOW (IW)

 The size of the sender’s congestion window at the beginning of a
 macroflow.

Balakrishnan, et. al. Standards Track [Page 2]

RFC 3124 The Congestion Manager June 2001

 DATA TYPE SYNTAX

 We use "u64" for unsigned 64-bit, "u32" for unsigned 32-bit, "u16"
 for unsigned 16-bit, "u8" for unsigned 8-bit, "i32" for signed
 32-bit, "i16" for signed 16-bit quantities, "float" for IEEE
 floating point values. The type "void" is used to indicate that
 no return value is expected from a call. Pointers are referred to
 using "*" syntax, following C language convention.

 We emphasize that all the API functions described in this document
 are "abstract" calls and that conformant CM implementations may
 differ in specific implementation details.

2. Introduction

 The framework described in this document integrates congestion
 management across all applications and transport protocols. The CM
 maintains congestion parameters (available aggregate and per-stream
 bandwidth, per-receiver round-trip times, etc.) and exports an API
 that enables applications to learn about network characteristics,
 pass information to the CM, share congestion information with each
 other, and schedule data transmissions. This document focuses on
 applications and transport protocols with their own independent per-
 byte or per-packet sequence number information, and does not require
 modifications to the receiver protocol stack. However, the receiving
 application must provide feedback to the sending application about
 received packets and losses, and the latter is expected to use the CM
 API to update CM state. This document does not address networks with
 reservations or service differentiation.

 The CM is an end-system module that enables an ensemble of multiple
 concurrent streams to perform stable congestion avoidance and
 control, and allows applications to easily adapt their transmissions
 to prevailing network conditions. It integrates congestion
 management across all applications and transport protocols. It
 maintains congestion parameters (available aggregate and per-stream
 bandwidth, per-receiver round-trip times, etc.) and exports an API
 that enables applications to learn about network characteristics,
 pass information to the CM, share congestion information with each
 other, and schedule data transmissions. When the CM is used, all
 data transmissions subject to the CM must be done with the explicit
 consent of the CM via this API to ensure proper congestion behavior.

 Systems MAY choose to use CM, and if so they MUST follow this
 specification.

 This document focuses on applications and networks where the
 following conditions hold:

Balakrishnan, et. al. Standards Track [Page 3]

RFC 3124 The Congestion Manager June 2001

 1. Applications are well-behaved with their own independent
 per-byte or per-packet sequence number information, and use the
 CM API to update internal state in the CM.

 2. Networks are best-effort without service discrimination or
 reservations. In particular, it does not address situations
 where different streams between the same pair of hosts traverse
 paths with differing characteristics.

 The Congestion Manager framework can be extended to support
 applications that do not provide their own feedback and to
 differentially-served networks. These extensions will be addressed
 in later documents.

 The CM is motivated by two main goals:

 (i) Enable efficient multiplexing. Increasingly, the trend on the
 Internet is for unicast data senders (e.g., Web servers) to transmit
 heterogeneous types of data to receivers, ranging from unreliable
 real-time streaming content to reliable Web pages and applets. As a
 result, many logically different streams share the same path between
 sender and receiver. For the Internet to remain stable, each of
 these streams must incorporate control protocols that safely probe
 for spare bandwidth and react to congestion. Unfortunately, these
 concurrent streams typically compete with each other for network
 resources, rather than share them effectively. Furthermore, they do
 not learn from each other about the state of the network. Even if
 they each independently implement congestion control (e.g., a group
 of TCP connections each implementing the algorithms in [Jacobson88,
 Allman99]), the ensemble of streams tends to be more aggressive in
 the face of congestion than a single TCP connection implementing
 standard TCP congestion control and avoidance [Balakrishnan98].

 (ii) Enable application adaptation to congestion. Increasingly,
 popular real-time streaming applications run over UDP using their own
 user-level transport protocols for good application performance, but
 in most cases today do not adapt or react properly to network
 congestion. By implementing a stable control algorithm and exposing
 an adaptation API, the CM enables easy application adaptation to
 congestion. Applications adapt the data they transmit to the current
 network conditions.

 The CM framework builds on recent work on TCP control block sharing
 [Touch97], integrated TCP congestion control (TCP-Int)
 [Balakrishnan98] and TCP sessions [Padmanabhan98]. [Touch97]
 advocates the sharing of some of the state in the TCP control block
 to improve transient transport performance and describes sharing
 across an ensemble of TCP connections. [Balakrishnan98],

Balakrishnan, et. al. Standards Track [Page 4]

RFC 3124 The Congestion Manager June 2001

 [Padmanabhan98], and [Eggert00] describe several experiments that
 quantify the benefits of sharing congestion state, including improved
 stability in the face of congestion and better loss recovery.
 Integrating loss recovery across concurrent connections significantly
 improves performance because losses on one connection can be detected
 by noticing that later data sent on another connection has been
 received and acknowledged. The CM framework extends these ideas in
 two significant ways: (i) it extends congestion management to non-TCP
 streams, which are becoming increasingly common and often do not
 implement proper congestion management, and (ii) it provides an API
 for applications to adapt their transmissions to current network
 conditions. For an extended discussion of the motivation for the CM,
 its architecture, API, and algorithms, see [Balakrishnan99]; for a
 description of an implementation and performance results, see
 [Andersen00].

 The resulting end-host protocol architecture at the sender is shown
 in Figure 1. The CM helps achieve network stability by implementing
 stable congestion avoidance and control algorithms that are "TCP-
 friendly" [Mahdavi98] based on algorithms described in [Allman99].
 However, it does not attempt to enforce proper congestion behavior
 for all applications (but it does not preclude a policer on the host
 that performs this task). Note that while the policer at the end-
 host can use CM, the network has to be protected against compromises
 to the CM and the policer at the end hosts, a task that requires
 router machinery [Floyd99a]. We do not address this issue further in
 this document.

Balakrishnan, et. al. Standards Track [Page 5]

RFC 3124 The Congestion Manager June 2001

--------		--------		--------		--------		--------------
HTTP		FTP		RTP 1		RTP 2		
--------		--------		--------		--------		
 | | | ^ | ^ | |
 | | | | | | | Scheduler |
 | | | | | | |---| | |
 | | | |-------|--+->| | | |
 | | | | | |<--| |
 v v v v | | |--------------|
 |--------| |--------| |-------------| | | ^
 | TCP 1 | | TCP 2 | | UDP 1 | | A | |
 |--------| |--------| |-------------| | | |
 ^ | ^ | | | | |--------------|
 | | | | | | P |-->| |
 | | | | | | | | |
 |---|------+---|--------------|------->| | | Congestion |
 | | | | I | | |
 v v v | | | Controller |
 |-----------------------------------| | | | |
 | IP |-->| | | |
 |-----------------------------------| | | |--------------|
 |---|

 Figure 1

 The key components of the CM framework are (i) the API, (ii) the
 congestion controller, and (iii) the scheduler. The API is (in part)
 motivated by the requirements of application-level framing (ALF)
 [Clark90], and is described in Section 4. The CM internals (Section
 5) include a congestion controller (Section 5.1) and a scheduler to
 orchestrate data transmissions between concurrent streams in a
 macroflow (Section 5.2). The congestion controller adjusts the
 aggregate transmission rate between sender and receiver based on its
 estimate of congestion in the network. It obtains feedback about its
 past transmissions from applications themselves via the API. The
 scheduler apportions available bandwidth amongst the different
 streams within each macroflow and notifies applications when they are
 permitted to send data. This document focuses on well-behaved
 applications; a future one will describe the sender-receiver protocol
 and header formats that will handle applications that do not
 incorporate their own feedback to the CM.

3. CM API

 By convention, the IETF does not treat Application Programming
 Interfaces as standards track. However, it is considered important
 to have the CM API and CM algorithm requirements in one coherent
 document. The following section on the CM API uses the terms MUST,

Balakrishnan, et. al. Standards Track [Page 6]

RFC 3124 The Congestion Manager June 2001

 SHOULD, etc., but the terms are meant to apply within the context of
 an implementation of the CM API. The section does not apply to
 congestion control implementations in general, only to those
 implementations offering the CM API.

 Using the CM API, streams can determine their share of the available
 bandwidth, request and have their data transmissions scheduled,
 inform the CM about successful transmissions, and be informed when
 the CM’s estimate of path bandwidth changes. Thus, the CM frees
 applications from having to maintain information about the state of
 congestion and available bandwidth along any path.

 The function prototypes below follow standard C language convention.
 We emphasize that these API functions are abstract calls and
 conformant CM implementations may differ in specific details, as long
 as equivalent functionality is provided.

 When a new stream is created by an application, it passes some
 information to the CM via the cm_open(stream_info) API call.
 Currently, stream_info consists of the following information: (i) the
 source IP address, (ii) the source port, (iii) the destination IP
 address, (iv) the destination port, and (v) the IP protocol number.

3.1 State maintenance

 1. Open: All applications MUST call cm_open(stream_info) before
 using the CM API. This returns a handle, cm_streamid, for the
 application to use for all further CM API invocations for that
 stream. If the returned cm_streamid is -1, then the cm_open()
 failed and that stream cannot use the CM.

 All other calls to the CM for a stream use the cm_streamid
 returned from the cm_open() call.

 2. Close: When a stream terminates, the application SHOULD invoke
 cm_close(cm_streamid) to inform the CM about the termination
 of the stream.

 3. Packet size: cm_mtu(cm_streamid) returns the estimated PMTU of
 the path between sender and receiver. Internally, this
 information SHOULD be obtained via path MTU discovery
 [Mogul90]. It MAY be statically configured in the absence of
 such a mechanism.

Balakrishnan, et. al. Standards Track [Page 7]

RFC 3124 The Congestion Manager June 2001

3.2 Data transmission

 The CM accommodates two types of adaptive senders, enabling
 applications to dynamically adapt their content based on prevailing
 network conditions, and supporting ALF-based applications.

 1. Callback-based transmission. The callback-based transmission API
 puts the stream in firm control of deciding what to transmit at each
 point in time. To achieve this, the CM does not buffer any data;
 instead, it allows streams the opportunity to adapt to unexpected
 network changes at the last possible instant. Thus, this enables
 streams to "pull out" and repacketize data upon learning about any
 rate change, which is hard to do once the data has been buffered.
 The CM must implement a cm_request(i32 cm_streamid) call for streams
 wishing to send data in this style. After some time, depending on
 the rate, the CM MUST invoke a callback using cmapp_send(), which is
 a grant for the stream to send up to PMTU bytes. The callback-style
 API is the recommended choice for ALF-based streams. Note that
 cm_request() does not take the number of bytes or MTU-sized units as
 an argument; each call to cm_request() is an implicit request for
 sending up to PMTU bytes. The CM MAY provide an alternate interface,
 cm_request(int k). The cmapp_send callback for this request is
 granted the right to send up to k PMTU sized segments. Section 4.3
 discusses the time duration for which the transmission grant is
 valid, while Section 5.2 describes how these requests are scheduled
 and callbacks made.

 2. Synchronous-style. The above callback-based API accommodates a
 class of ALF streams that are "asynchronous." Asynchronous
 transmitters do not transmit based on a periodic clock, but do so
 triggered by asynchronous events like file reads or captured frames.
 On the other hand, there are many streams that are "synchronous"
 transmitters, which transmit periodically based on their own internal
 timers (e.g., an audio senders that sends at a constant sampling
 rate). While CM callbacks could be configured to periodically
 interrupt such transmitters, the transmit loop of such applications
 is less affected if they retain their original timer-based loop. In
 addition, it complicates the CM API to have a stream express the
 periodicity and granularity of its callbacks. Thus, the CM MUST
 export an API that allows such streams to be informed of changes in
 rates using the cmapp_update(u64 newrate, u32 srtt, u32 rttdev)
 callback function, where newrate is the new rate in bits per second
 for this stream, srtt is the current smoothed round trip time
 estimate in microseconds, and rttdev is the smoothed linear deviation
 in the round-trip time estimate calculated using the same algorithm
 as in TCP [Paxson00]. The newrate value reports an instantaneous
 rate calculated, for example, by taking the ratio of cwnd and srtt,
 and dividing by the fraction of that ratio allocated to the stream.

Balakrishnan, et. al. Standards Track [Page 8]

RFC 3124 The Congestion Manager June 2001

 In response, the stream MUST adapt its packet size or change its
 timer interval to conform to (i.e., not exceed) the allowed rate. Of
 course, it may choose not to use all of this rate. Note that the CM
 is not on the data path of the actual transmission.

 To avoid unnecessary cmapp_update() callbacks that the application
 will only ignore, the CM MUST provide a cm_thresh(float
 rate_downthresh, float rate_upthresh, float rtt_downthresh, float
 rtt_upthresh) function that a stream can use at any stage in its
 execution. In response, the CM SHOULD invoke the callback only when
 the rate decreases to less than (rate_downthresh * lastrate) or
 increases to more than (rate_upthresh * lastrate), where lastrate is
 the rate last notified to the stream, or when the round-trip time
 changes correspondingly by the requisite thresholds. This
 information is used as a hint by the CM, in the sense the
 cmapp_update() can be called even if these conditions are not met.

 The CM MUST implement a cm_query(i32 cm_streamid, u64* rate, u32*
 srtt, u32* rttdev) to allow an application to query the current CM
 state. This sets the rate variable to the current rate estimate in
 bits per second, the srtt variable to the current smoothed round-trip
 time estimate in microseconds, and rttdev to the mean linear
 deviation. If the CM does not have valid estimates for the
 macroflow, it fills in negative values for the rate, srtt, and
 rttdev.

 Note that a stream can use more than one of the above transmission
 APIs at the same time. In particular, the knowledge of sustainable
 rate is useful for asynchronous streams as well as synchronous ones;
 e.g., an asynchronous Web server disseminating images using TCP may
 use cmapp_send() to schedule its transmissions and cmapp_update() to
 decide whether to send a low-resolution or high-resolution image. A
 TCP implementation using the CM is described in Section 6.1.1, where
 the benefit of the cm_request() callback API for TCP will become
 apparent.

 The reader will notice that the basic CM API does not provide an
 interface for buffered congestion-controlled transmissions. This is
 intentional, since this transmission mode can be implemented using
 the callback-based primitive. Section 6.1.2 describes how
 congestion-controlled UDP sockets may be implemented using the CM
 API.

3.3 Application notification

 When a stream receives feedback from receivers, it MUST use
 cm_update(i32 cm_streamid, u32 nrecd, u32 nlost, u8 lossmode, i32
 rtt) to inform the CM about events such as congestion losses,

Balakrishnan, et. al. Standards Track [Page 9]

RFC 3124 The Congestion Manager June 2001

 successful receptions, type of loss (timeout event, Explicit
 Congestion Notification [Ramakrishnan99], etc.) and round-trip time
 samples. The nrecd parameter indicates how many bytes were
 successfully received by the receiver since the last cm_update call,
 while the nrecd parameter identifies how many bytes were received
 were lost during the same time period. The rtt value indicates the
 round-trip time measured during the transmission of these bytes. The
 rtt value must be set to -1 if no valid round-trip sample was
 obtained by the application. The lossmode parameter provides an
 indicator of how a loss was detected. A value of CM_NO_FEEDBACK
 indicates that the application has received no feedback for all its
 outstanding data, and is reporting this to the CM. For example, a
 TCP that has experienced a timeout would use this parameter to inform
 the CM of this. A value of CM_LOSS_FEEDBACK indicates that the
 application has experienced some loss, which it believes to be due to
 congestion, but not all outstanding data has been lost. For example,
 a TCP segment loss detected using duplicate (selective)
 acknowledgments or other data-driven techniques fits this category.
 A value of CM_EXPLICIT_CONGESTION indicates that the receiver echoed
 an explicit congestion notification message. Finally, a value of
 CM_NO_CONGESTION indicates that no congestion-related loss has
 occurred. The lossmode parameter MUST be reported as a bit-vector
 where the bits correspond to CM_NO_FEEDBACK, CM_LOSS_FEEDBACK,
 CM_EXPLICIT_CONGESTION, and CM_NO_CONGESTION. Note that over links
 (paths) that experience losses for reasons other than congestion, an
 application SHOULD inform the CM of losses, with the CM_NO_CONGESTION
 field set.

 cm_notify(i32 cm_streamid, u32 nsent) MUST be called when data is
 transmitted from the host (e.g., in the IP output routine) to inform
 the CM that nsent bytes were just transmitted on a given stream.
 This allows the CM to update its estimate of the number of
 outstanding bytes for the macroflow and for the stream.

 A cmapp_send() grant from the CM to an application is valid only for
 an expiration time, equal to the larger of the round-trip time and an
 implementation-dependent threshold communicated as an argument to the
 cmapp_send() callback function. The application MUST NOT send data
 based on this callback after this time has expired. Furthermore, if
 the application decides not to send data after receiving this
 callback, it SHOULD call cm_notify(stream_info, 0) to allow the CM to
 permit other streams in the macroflow to transmit data. The CM
 congestion controller MUST be robust to applications forgetting to
 invoke cm_notify(stream_info, 0) correctly, or applications that
 crash or disappear after having made a cm_request() call.

Balakrishnan, et. al. Standards Track [Page 10]

RFC 3124 The Congestion Manager June 2001

3.4 Querying

 If applications wish to learn about per-stream available bandwidth
 and round-trip time, they can use the CM’s cm_query(i32 cm_streamid,
 i64* rate, i32* srtt, i32* rttdev) call, which fills in the desired
 quantities. If the CM does not have valid estimates for the
 macroflow, it fills in negative values for the rate, srtt, and
 rttdev.

3.5 Sharing granularity

 One of the decisions the CM needs to make is the granularity at which
 a macroflow is constructed, by deciding which streams belong to the
 same macroflow and share congestion information. The API provides
 two functions that allow applications to decide which of their
 streams ought to belong to the same macroflow.

 cm_getmacroflow(i32 cm_streamid) returns a unique i32 macroflow
 identifier. cm_setmacroflow(i32 cm_macroflowid, i32 cm_streamid)
 sets the macroflow of the stream cm_streamid to cm_macroflowid. If
 the cm_macroflowid that is passed to cm_setmacroflow() is -1, then a
 new macroflow is constructed and this is returned to the caller.
 Each call to cm_setmacroflow() overrides the previous macroflow
 association for the stream, should one exist.

 The default suggested aggregation method is to aggregate by
 destination IP address; i.e., all streams to the same destination
 address are aggregated to a single macroflow by default. The
 cm_getmacroflow() and cm_setmacroflow() calls can then be used to
 change this as needed. We do note that there are some cases where
 this may not be optimal, even over best-effort networks. For
 example, when a group of receivers are behind a NAT device, the
 sender will see them all as one address. If the hosts behind the NAT
 are in fact connected over different bottleneck links, some of those
 hosts could see worse performance than before. It is possible to
 detect such hosts when using delay and loss estimates, although the
 specific mechanisms for doing so are beyond the scope of this
 document.

 The objective of this interface is to set up sharing of groups not
 sharing policy of relative weights of streams in a macroflow. The
 latter requires the scheduler to provide an interface to set sharing
 policy. However, because we want to support many different
 schedulers (each of which may need different information to set
 policy), we do not specify a complete API to the scheduler (but see

Balakrishnan, et. al. Standards Track [Page 11]

RFC 3124 The Congestion Manager June 2001

 Section 5.2). A later guideline document is expected to describe a
 few simple schedulers (e.g., weighted round-robin, hierarchical
 scheduling) and the API they export to provide relative
 prioritization.

4. CM internals

 This section describes the internal components of the CM. It
 includes a Congestion Controller and a Scheduler, with well-defined,
 abstract interfaces exported by them.

4.1 Congestion controller

 Associated with each macroflow is a congestion control algorithm; the
 collection of all these algorithms comprises the congestion
 controller of the CM. The control algorithm decides when and how
 much data can be transmitted by a macroflow. It uses application
 notifications (Section 4.3) from concurrent streams on the same
 macroflow to build up information about the congestion state of the
 network path used by the macroflow.

 The congestion controller MUST implement a "TCP-friendly" [Mahdavi98]
 congestion control algorithm. Several macroflows MAY (and indeed,
 often will) use the same congestion control algorithm but each
 macroflow maintains state about the network used by its streams.

 The congestion control module MUST implement the following abstract
 interfaces. We emphasize that these are not directly visible to
 applications; they are within the context of a macroflow, and are
 different from the CM API functions of Section 4.

 - void query(u64 *rate, u32 *srtt, u32 *rttdev): This function
 returns the estimated rate (in bits per second) and smoothed
 round trip time (in microseconds) for the macroflow.

 - void notify(u32 nsent): This function MUST be used to notify the
 congestion control module whenever data is sent by an
 application. The nsent parameter indicates the number of bytes
 just sent by the application.

 - void update(u32 nsent, u32 nrecd, u32 rtt, u32 lossmode): This
 function is called whenever any of the CM streams associated with
 a macroflow identifies that data has reached the receiver or has
 been lost en route. The nrecd parameter indicates the number of
 bytes that have just arrived at the receiver. The nsent
 parameter is the sum of the number of bytes just received and the

Balakrishnan, et. al. Standards Track [Page 12]

RFC 3124 The Congestion Manager June 2001

 number of bytes identified as lost en route. The rtt parameter is
 the estimated round trip time in microseconds during the
 transfer. The lossmode parameter provides an indicator of how a
 loss was detected (section 4.3).

 Although these interfaces are not visible to applications, the
 congestion controller MUST implement these abstract interfaces to
 provide for modular inter-operability with different separately-
 developed schedulers.

 The congestion control module MUST also call the associated
 scheduler’s schedule function (section 5.2) when it believes that the
 current congestion state allows an MTU-sized packet to be sent.

4.2 Scheduler

 While it is the responsibility of the congestion control module to
 determine when and how much data can be transmitted, it is the
 responsibility of a macroflow’s scheduler module to determine which
 of the streams should get the opportunity to transmit data.

 The Scheduler MUST implement the following interfaces:

 - void schedule(u32 num_bytes): When the congestion control module
 determines that data can be sent, the schedule() routine MUST be
 called with no more than the number of bytes that can be sent.
 In turn, the scheduler MAY call the cmapp_send() function that CM
 applications must provide.

 - float query_share(i32 cm_streamid): This call returns the
 described stream’s share of the total bandwidth available to the
 macroflow. This call combined with the query call of the
 congestion controller provides the information to satisfy an
 application’s cm_query() request.

 - void notify(i32 cm_streamid, u32 nsent): This interface is used
 to notify the scheduler module whenever data is sent by a CM
 application. The nsent parameter indicates the number of bytes
 just sent by the application.

 The Scheduler MAY implement many additional interfaces. As
 experience with CM schedulers increases, future documents may
 make additions and/or changes to some parts of the scheduler
 API.

Balakrishnan, et. al. Standards Track [Page 13]

RFC 3124 The Congestion Manager June 2001

5. Examples

5.1 Example applications

 This section describes three possible uses of the CM API by
 applications. We describe two asynchronous applications---an
 implementation of a TCP sender and an implementation of congestion-
 controlled UDP sockets, and a synchronous application---a streaming
 audio server. More details of these applications and CM
 implementation optimizations for efficient operation are described in
 [Andersen00].

 All applications that use the CM MUST incorporate feedback from the
 receiver. For example, it must periodically (typically once or twice
 per round trip time) determine how many of its packets arrived at the
 receiver. When the source gets this feedback, it MUST use
 cm_update() to inform the CM of this new information. This results
 in the CM updating ownd and may result in the CM changing its
 estimates and calling cmapp_update() of the streams of the macroflow.

 The protocols in this section are examples and suggestions for
 implementation, rather than requirements for any conformant
 implementation.

5.1.1 TCP

 A TCP implementation that uses CM should use the cmapp_send()
 callback API. TCP only identifies which data it should send upon the
 arrival of an acknowledgement or expiration of a timer. As a result,
 it requires tight control over when and if new data or
 retransmissions are sent.

 When TCP either connects to or accepts a connection from another
 host, it performs a cm_open() call to associate the TCP connection
 with a cm_streamid.

 Once a connection is established, the CM is used to control the
 transmission of outgoing data. The CM eliminates the need for
 tracking and reacting to congestion in TCP, because the CM and its
 transmission API ensure proper congestion behavior. Loss recovery is
 still performed by TCP based on fast retransmissions and recovery as
 well as timeouts. In addition, TCP is also modified to have its own
 outstanding window (tcp_ownd) estimate. Whenever data segments are
 sent from its cmapp_send() callback, TCP updates its tcp_ownd value.
 The ownd variable is also updated after each cm_update() call. TCP
 also maintains a count of the number of outstanding segments
 (pkt_cnt). At any time, TCP can calculate the average packet size
 (avg_pkt_size) as tcp_ownd/pkt_cnt. The avg_pkt_size is used by TCP

Balakrishnan, et. al. Standards Track [Page 14]

RFC 3124 The Congestion Manager June 2001

 to help estimate the amount of outstanding data. Note that this is
 not needed if the SACK option is used on the connection, since this
 information is explicitly available.

 The TCP output routines are modified as follows:

 1. All congestion window (cwnd) checks are removed.

 2. When application data is available. The TCP output routines
 perform all non-congestion checks (Nagle algorithm, receiver-
 advertised window check, etc). If these checks pass, the output
 routine queues the data and calls cm_request() for the stream.

 3. If incoming data or timers result in a loss being detected, the
 retransmission is also placed in a queue and cm_request() is
 called for the stream.

 4. The cmapp_send() callback for TCP is set to an output routine.
 If any retransmission is enqueued, the routine outputs the
 retransmission. Otherwise, the routine outputs as much new data
 as the TCP connection state allows. However, the cmapp_send()
 never sends more than a single segment per call. This routine
 arranges for the other output computations to be done, such as
 header and options computations.

 The IP output routine on the host calls cm_notify() when the packets
 are actually sent out. Because it does not know which cm_streamid is
 responsible for the packet, cm_notify() takes the stream_info as
 argument (see Section 4 for what the stream_info should contain).
 Because cm_notify() reports the IP payload size, TCP keeps track of
 the total header size and incorporates these updates.

 The TCP input routines are modified as follows:

 1. RTT estimation is done as normal using either timestamps or
 Karn’s algorithm. Any rtt estimate that is generated is passed to
 CM via the cm_update call.

 2. All cwnd and slow start threshold (ssthresh) updates are
 removed.

 3. Upon the arrival of an ack for new data, TCP computes the value
 of in_flight (the amount of data in flight) as snd_max-ack-1
 (i.e., MAX Sequence Sent - Current Ack - 1). TCP then calls
 cm_update(streamid, tcp_ownd - in_flight, 0, CM_NO_CONGESTION,
 rtt).

Balakrishnan, et. al. Standards Track [Page 15]

RFC 3124 The Congestion Manager June 2001

 4. Upon the arrival of a duplicate acknowledgement, TCP must check
 its dupack count (dup_acks) to determine its action. If dup_acks
 < 3, the TCP does nothing. If dup_acks == 3, TCP assumes that a
 packet was lost and that at least 3 packets arrived to generate
 these duplicate acks. Therefore, it calls cm_update(streamid, 4 *
 avg_pkt_size, 3 * avg_pkt_size, CM_LOSS_FEEDBACK, rtt). The
 average packet size is used since the acknowledgments do not
 indicate exactly how much data has reached the other end. Most
 TCP implementations interpret a duplicate ACK as an indication
 that a full MSS has reached its destination. Once a new ACK is
 received, these TCP sender implementations may resynchronize with
 TCP receiver. The CM API does not provide a mechanism for TCP to
 pass information from this resynchronization. Therefore, TCP can
 only infer the arrival of an avg_pkt_size amount of data from each
 duplicate ack. TCP also enqueues a retransmission of the lost
 segment and calls cm_request(). If dup_acks > 3, TCP assumes that
 a packet has reached the other end and caused this ack to be sent.
 As a result, it calls cm_update(streamid, avg_pkt_size,
 avg_pkt_size, CM_NO_CONGESTION, rtt).

 5. Upon the arrival of a partial acknowledgment (one that does not
 exceed the highest segment transmitted at the time the loss
 occurred, as defined in [Floyd99b]), TCP assumes that a packet was
 lost and that the retransmitted packet has reached the recipient.
 Therefore, it calls cm_update(streamid, 2 * avg_pkt_size,
 avg_pkt_size, CM_NO_CONGESTION, rtt). CM_NO_CONGESTION is used
 since the loss period has already been reported. TCP also
 enqueues a retransmission of the lost segment and calls
 cm_request().

 When the TCP retransmission timer expires, the sender identifies that
 a segment has been lost and calls cm_update(streamid, avg_pkt_size,
 0, CM_NO_FEEDBACK, 0) to signify that no feedback has been received
 from the receiver and that one segment is sure to have "left the
 pipe." TCP also enqueues a retransmission of the lost segment and
 calls cm_request().

5.1.2 Congestion-controlled UDP

 Congestion-controlled UDP is a useful CM application, which we
 describe in the context of Berkeley sockets [Stevens94]. They
 provide the same functionality as standard Berkeley UDP sockets, but
 instead of immediately sending the data from the kernel packet queue
 to lower layers for transmission, the buffered socket implementation
 makes calls to the API exported by the CM inside the kernel and gets
 callbacks from the CM. When a CM UDP socket is created, it is bound
 to a particular stream. Later, when data is added to the packet
 queue, cm_request() is called on the stream associated with the

Balakrishnan, et. al. Standards Track [Page 16]

RFC 3124 The Congestion Manager June 2001

 socket. When the CM schedules this stream for transmission, it calls
 udp_ccappsend() in the UDP module. This function transmits one MTU
 from the packet queue, and schedules the transmission of any
 remaining packets. The in-kernel implementation of the CM UDP API
 should not require any additional data copies and should support all
 standard UDP options. Modifying existing applications to use
 congestion-controlled UDP requires the implementation of a new socket
 option on the socket. To work correctly, the sender must obtain
 feedback about congestion. This can be done in at least two ways:
 (i) the UDP receiver application can provide feedback to the sender
 application, which will inform the CM of network conditions using
 cm_update(); (ii) the UDP receiver implementation can provide
 feedback to the sending UDP. Note that this latter alternative
 requires changes to the receiver’s network stack and the sender UDP
 cannot assume that all receivers support this option without explicit
 negotiation.

5.1.3 Audio server

 A typical audio application often has access to the sample in a
 multitude of data rates and qualities. The objective of the
 application is then to deliver the highest possible quality of audio
 (typically the highest data rate) its clients. The selection of
 which version of audio to transmit should be based on the current
 congestion state of the network. In addition, the source will want
 audio delivered to its users at a consistent sampling rate. As a
 result, it must send data a regular rate, minimizing delaying
 transmissions and reducing buffering before playback. To meet these
 requirements, this application can use the synchronous sender API
 (Section 4.2).

 When the source first starts, it uses the cm_query() call to get an
 initial estimate of network bandwidth and delay. If some other
 streams on that macroflow have already been active, then it gets an
 initial estimate that is valid; otherwise, it gets negative values,
 which it ignores. It then chooses an encoding that does not exceed
 these estimates (or, in the case of an invalid estimate, uses
 application-specific initial values) and begins transmitting data.
 The application also implements the cmapp_update() callback. When
 the CM determines that network characteristics have changed, it calls
 the application’s cmapp_update() function and passes it a new rate
 and round-trip time estimate. The application must change its choice
 of audio encoding to ensure that it does not exceed these new
 estimates.

Balakrishnan, et. al. Standards Track [Page 17]

RFC 3124 The Congestion Manager June 2001

5.2 Example congestion control module

 To illustrate the responsibilities of a congestion control module,
 the following describes some of the actions of a simple TCP-like
 congestion control module that implements Additive Increase
 Multiplicative Decrease congestion control (AIMD_CC):

 - query(): AIMD_CC returns the current congestion window (cwnd)
 divided by the smoothed rtt (srtt) as its bandwidth estimate. It
 returns the smoothed rtt estimate as srtt.

 - notify(): AIMD_CC adds the number of bytes sent to its
 outstanding data window (ownd).

 - update(): AIMD_CC subtracts nsent from ownd. If the value of rtt
 is non-zero, AIMD_CC updates srtt using the TCP srtt calculation.
 If the update indicates that data has been lost, AIMD_CC sets
 cwnd to 1 MTU if the loss_mode is CM_NO_FEEDBACK and to cwnd/2
 (with a minimum of 1 MTU) if the loss_mode is CM_LOSS_FEEDBACK or
 CM_EXPLICIT_CONGESTION. AIMD_CC also sets its internal ssthresh
 variable to cwnd/2. If no loss had occurred, AIMD_CC mimics TCP
 slow start and linear growth modes. It increments cwnd by nsent
 when cwnd < ssthresh (bounded by a maximum of ssthresh-cwnd) and
 by nsent * MTU/cwnd when cwnd > ssthresh.

 - When cwnd or ownd are updated and indicate that at least one MTU
 may be transmitted, AIMD_CC calls the CM to schedule a
 transmission.

5.3 Example Scheduler Module

 To clarify the responsibilities of a scheduler module, the following
 describes some of the actions of a simple round robin scheduler
 module (RR_sched):

 - schedule(): RR_sched schedules as many streams as possible in round
 robin fashion.

 - query_share(): RR_sched returns 1/(number of streams in macroflow).

 - notify(): RR_sched does nothing. Round robin scheduling is not
 affected by the amount of data sent.

6. Security Considerations

 The CM provides many of the same services that the congestion control
 in TCP provides. As such, it is vulnerable to many of the same
 security problems. For example, incorrect reports of losses and

Balakrishnan, et. al. Standards Track [Page 18]

RFC 3124 The Congestion Manager June 2001

 transmissions will give the CM an inaccurate picture of the network’s
 congestion state. By giving CM a high estimate of congestion, an
 attacker can degrade the performance observed by applications. For
 example, a stream on a host can arbitrarily slow down any other
 stream on the same macroflow, a form of denial of service.

 The more dangerous form of attack occurs when an application gives
 the CM a low estimate of congestion. This would cause CM to be
 overly aggressive and allow data to be sent much more quickly than
 sound congestion control policies would allow.

 [Touch97] describes a number of the security problems that arise with
 congestion information sharing. An additional vulnerability (not
 covered by [Touch97])) occurs because applications have access
 through the CM API to control shared state that will affect other
 applications on the same computer. For instance, a poorly designed,
 possibly a compromised, or intentionally malicious UDP application
 could misuse cm_update() to cause starvation and/or too-aggressive
 behavior of others in the macroflow.

7. References

 [Allman99] Allman, M. and Paxson, V., "TCP Congestion
 Control", RFC 2581, April 1999.

 [Andersen00] Balakrishnan, H., System Support for Bandwidth
 Management and Content Adaptation in Internet
 Applications, Proc. 4th Symp. on Operating Systems
 Design and Implementation, San Diego, CA, October
 2000. Available from
 http://nms.lcs.mit.edu/papers/cm-osdi2000.html

 [Balakrishnan98] Balakrishnan, H., Padmanabhan, V., Seshan, S.,
 Stemm, M., and Katz, R., "TCP Behavior of a Busy
 Web Server: Analysis and Improvements," Proc. IEEE
 INFOCOM, San Francisco, CA, March 1998.

 [Balakrishnan99] Balakrishnan, H., Rahul, H., and Seshan, S., "An
 Integrated Congestion Management Architecture for
 Internet Hosts," Proc. ACM SIGCOMM, Cambridge, MA,
 September 1999.

 [Bradner96] Bradner, S., "The Internet Standards Process ---
 Revision 3", BCP 9, RFC 2026, October 1996.

 [Bradner97] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Balakrishnan, et. al. Standards Track [Page 19]

RFC 3124 The Congestion Manager June 2001

 [Clark90] Clark, D. and Tennenhouse, D., "Architectural
 Consideration for a New Generation of Protocols",
 Proc. ACM SIGCOMM, Philadelphia, PA, September
 1990.

 [Eggert00] Eggert, L., Heidemann, J., and Touch, J., "Effects
 of Ensemble TCP," ACM Computer Comm. Review,
 January 2000.

 [Floyd99a] Floyd, S. and Fall, K.," Promoting the Use of End-
 to-End Congestion Control in the Internet,"
 IEEE/ACM Trans. on Networking, 7(4), August 1999,
 pp. 458-472.

 [Floyd99b] Floyd, S. and T. Henderson,"The New Reno
 Modification to TCP’s Fast Recovery Algorithm," RFC
 2582, April 1999.

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control,"
 Proc. ACM SIGCOMM, Stanford, CA, August 1988.

 [Mahdavi98] Mahdavi, J. and Floyd, S., "The TCP Friendly
 Website,"
 http://www.psc.edu/networking/tcp_friendly.html

 [Mogul90] Mogul, J. and S. Deering, "Path MTU Discovery," RFC
 1191, November 1990.

 [Padmanabhan98] Padmanabhan, V., "Addressing the Challenges of Web
 Data Transport," PhD thesis, Univ. of California,
 Berkeley, December 1998.

 [Paxson00] Paxson, V. and M. Allman, "Computing TCP’s
 Retransmission Timer", RFC 2988, November 2000.

 [Postel81] Postel, J., Editor, "Transmission Control
 Protocol", STD 7, RFC 793, September 1981.

 [Ramakrishnan99] Ramakrishnan, K. and Floyd, S., "A Proposal to Add
 Explicit Congestion Notification (ECN) to IP," RFC
 2481, January 1999.

 [Stevens94] Stevens, W., TCP/IP Illustrated, Volume 1.
 Addison-Wesley, Reading, MA, 1994.

 [Touch97] Touch, J., "TCP Control Block Interdependence", RFC
 2140, April 1997.

Balakrishnan, et. al. Standards Track [Page 20]

RFC 3124 The Congestion Manager June 2001

8. Acknowledgments

 We thank David Andersen, Deepak Bansal, and Dorothy Curtis for their
 work on the CM design and implementation. We thank Vern Paxson for
 his detailed comments, feedback, and patience, and Sally Floyd, Mark
 Handley, and Steven McCanne for useful feedback on the CM
 architecture. Allison Mankin and Joe Touch provided several useful
 comments on previous drafts of this document.

9. Authors’ Addresses

 Hari Balakrishnan
 Laboratory for Computer Science
 200 Technology Square
 Massachusetts Institute of Technology
 Cambridge, MA 02139

 EMail: hari@lcs.mit.edu
 Web: http://nms.lcs.mit.edu/˜hari/

 Srinivasan Seshan
 School of Computer Science
 Carnegie Mellon University
 5000 Forbes Ave.
 Pittsburgh, PA 15213

 EMail: srini@cmu.edu
 Web: http://www.cs.cmu.edu/˜srini/

Balakrishnan, et. al. Standards Track [Page 21]

RFC 3124 The Congestion Manager June 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Balakrishnan, et. al. Standards Track [Page 22]

