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                         The Congestion Manager

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   This document describes the Congestion Manager (CM), an end-system
   module that:

   (i) Enables an ensemble of multiple concurrent streams from a sender
   destined to the same receiver and sharing the same congestion
   properties to perform proper congestion avoidance and control, and

   (ii) Allows applications to easily adapt to network congestion.

1. Conventions used in this document:

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [Bradner97].

   STREAM

      A group of packets that all share the same source and destination
      IP address, IP type-of-service, transport protocol, and source and
      destination transport-layer port numbers.
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   MACROFLOW

      A group of CM-enabled streams that all use the same congestion
      management and scheduling algorithms, and share congestion state
      information.  Currently, streams destined to different receivers
      belong to different macroflows.  Streams destined to the same
      receiver MAY belong to different macroflows.  When the Congestion
      Manager is in use, streams that experience identical congestion
      behavior and use the same congestion control algorithm SHOULD
      belong to the same macroflow.

   APPLICATION

      Any software module that uses the CM.  This includes user-level
      applications such as Web servers or audio/video servers, as well
      as in-kernel protocols such as TCP [Postel81] that use the CM for
      congestion control.

   WELL-BEHAVED APPLICATION

      An application that only transmits when allowed by the CM and
      accurately accounts for all data that it has sent to the receiver
      by informing the CM using the CM API.

   PATH MAXIMUM TRANSMISSION UNIT (PMTU)

      The size of the largest packet that the sender can transmit
      without it being fragmented en route to the receiver.  It includes
      the sizes of all headers and data except the IP header.

   CONGESTION WINDOW (cwnd)

      A CM state variable that modulates the amount of outstanding data
      between sender and receiver.

   OUTSTANDING WINDOW (ownd)

      The number of bytes that has been transmitted by the source, but
      not known to have been either received by the destination or lost
      in the network.

   INITIAL WINDOW (IW)

      The size of the sender’s congestion window at the beginning of a
      macroflow.
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   DATA TYPE SYNTAX

      We use "u64" for unsigned 64-bit, "u32" for unsigned 32-bit, "u16"
      for unsigned 16-bit, "u8" for unsigned 8-bit, "i32" for signed
      32-bit, "i16" for signed 16-bit quantities, "float" for IEEE
      floating point values.  The type "void" is used to indicate that
      no return value is expected from a call.  Pointers are referred to
      using "*" syntax, following C language convention.

      We emphasize that all the API functions described in this document
      are "abstract" calls and that conformant CM implementations may
      differ in specific implementation details.

2. Introduction

   The framework described in this document integrates congestion
   management across all applications and transport protocols.  The CM
   maintains congestion parameters (available aggregate and per-stream
   bandwidth, per-receiver round-trip times, etc.) and exports an API
   that enables applications to learn about network characteristics,
   pass information to the CM, share congestion information with each
   other, and schedule data transmissions.  This document focuses on
   applications and transport protocols with their own independent per-
   byte or per-packet sequence number information, and does not require
   modifications to the receiver protocol stack.  However, the receiving
   application must provide feedback to the sending application about
   received packets and losses, and the latter is expected to use the CM
   API to update CM state.  This document does not address networks with
   reservations or service differentiation.

   The CM is an end-system module that enables an ensemble of multiple
   concurrent streams to perform stable congestion avoidance and
   control, and allows applications to easily adapt their transmissions
   to prevailing network conditions.  It integrates congestion
   management across all applications and transport protocols.  It
   maintains congestion parameters (available aggregate and per-stream
   bandwidth, per-receiver round-trip times, etc.) and exports an API
   that enables applications to learn about network characteristics,
   pass information to the CM, share congestion information with each
   other, and schedule data transmissions.  When the CM is used, all
   data transmissions subject to the CM must be done with the explicit
   consent of the CM via this API to ensure proper congestion behavior.

   Systems MAY choose to use CM, and if so they MUST follow this
   specification.

   This document focuses on applications and networks where the
   following conditions hold:
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   1. Applications are well-behaved with their own independent
      per-byte or per-packet sequence number information, and use the
      CM API to update internal state in the CM.

   2. Networks are best-effort without service discrimination or
      reservations.  In particular, it does not address situations
      where different streams between the same pair of hosts traverse
      paths with differing characteristics.

   The Congestion Manager framework can be extended to support
   applications that do not provide their own feedback and to
   differentially-served networks.  These extensions will be addressed
   in later documents.

   The CM is motivated by two main goals:

   (i) Enable efficient multiplexing.  Increasingly, the trend on the
   Internet is for unicast data senders (e.g., Web servers) to transmit
   heterogeneous types of data to receivers, ranging from unreliable
   real-time streaming content to reliable Web pages and applets.  As a
   result, many logically different streams share the same path between
   sender and receiver.  For the Internet to remain stable, each of
   these streams must incorporate control protocols that safely probe
   for spare bandwidth and react to congestion.  Unfortunately, these
   concurrent streams typically compete with each other for network
   resources, rather than share them effectively.  Furthermore, they do
   not learn from each other about the state of the network.  Even if
   they each independently implement congestion control (e.g., a group
   of TCP connections each implementing the algorithms in [Jacobson88,
   Allman99]), the ensemble of streams tends to be more aggressive in
   the face of congestion than a single TCP connection implementing
   standard TCP congestion control and avoidance [Balakrishnan98].

   (ii) Enable application adaptation to congestion.  Increasingly,
   popular real-time streaming applications run over UDP using their own
   user-level transport protocols for good application performance, but
   in most cases today do not adapt or react properly to network
   congestion.  By implementing a stable control algorithm and exposing
   an adaptation API, the CM enables easy application adaptation to
   congestion.  Applications adapt the data they transmit to the current
   network conditions.

   The CM framework builds on recent work on TCP control block sharing
   [Touch97], integrated TCP congestion control (TCP-Int)
   [Balakrishnan98] and TCP sessions [Padmanabhan98].  [Touch97]
   advocates the sharing of some of the state in the TCP control block
   to improve transient transport performance and describes sharing
   across an ensemble of TCP connections.  [Balakrishnan98],
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   [Padmanabhan98], and [Eggert00] describe several experiments that
   quantify the benefits of sharing congestion state, including improved
   stability in the face of congestion and better loss recovery.
   Integrating loss recovery across concurrent connections significantly
   improves performance because losses on one connection can be detected
   by noticing that later data sent on another connection has been
   received and acknowledged.  The CM framework extends these ideas in
   two significant ways: (i) it extends congestion management to non-TCP
   streams, which are becoming increasingly common and often do not
   implement proper congestion management, and (ii) it provides an API
   for applications to adapt their transmissions to current network
   conditions.  For an extended discussion of the motivation for the CM,
   its architecture, API, and algorithms, see [Balakrishnan99]; for a
   description of an implementation and performance results, see
   [Andersen00].

   The resulting end-host protocol architecture at the sender is shown
   in Figure 1.  The CM helps achieve network stability by implementing
   stable congestion avoidance and control algorithms that are "TCP-
   friendly" [Mahdavi98] based on algorithms described in [Allman99].
   However, it does not attempt to enforce proper congestion behavior
   for all applications (but it does not preclude a policer on the host
   that performs this task).  Note that while the policer at the end-
   host can use CM, the network has to be protected against compromises
   to the CM and the policer at the end hosts, a task that requires
   router machinery [Floyd99a].  We do not address this issue further in
   this document.
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   |--------| |--------| |--------| |--------|       |--------------|
   |  HTTP  | |  FTP   | |  RTP 1 | |  RTP 2 |       |              |
   |--------| |--------| |--------| |--------|       |              |
       |          |         |  ^       |  ^          |              |
       |          |         |  |       |  |          |   Scheduler  |
       |          |         |  |       |  |  |---|   |              |
       |          |         |  |-------|--+->|   |   |              |
       |          |         |          |     |   |<--|              |
       v          v         v          v     |   |   |--------------|
   |--------| |--------|  |-------------|    |   |           ^
   |  TCP 1 | |  TCP 2 |  |    UDP 1    |    | A |           |
   |--------| |--------|  |-------------|    |   |           |
      ^   |      ^   |              |        |   |   |--------------|
      |   |      |   |              |        | P |-->|              |
      |   |      |   |              |        |   |   |              |
      |---|------+---|--------------|------->|   |   |  Congestion  |
          |          |              |        | I |   |              |
          v          v              v        |   |   |  Controller  |
     |-----------------------------------|   |   |   |              |
     |               IP                  |-->|   |   |              |
     |-----------------------------------|   |   |   |--------------|
                                             |---|

                                      Figure 1

   The key components of the CM framework are (i) the API, (ii) the
   congestion controller, and (iii) the scheduler.  The API is (in part)
   motivated by the requirements of application-level framing (ALF)
   [Clark90], and is described in Section 4.  The CM internals (Section
   5) include a congestion controller (Section 5.1) and a scheduler to
   orchestrate data transmissions between concurrent streams in a
   macroflow (Section 5.2).  The congestion controller adjusts the
   aggregate transmission rate between sender and receiver based on its
   estimate of congestion in the network.  It obtains feedback about its
   past transmissions from applications themselves via the API.  The
   scheduler apportions available bandwidth amongst the different
   streams within each macroflow and notifies applications when they are
   permitted to send data.  This document focuses on well-behaved
   applications; a future one will describe the sender-receiver protocol
   and header formats that will handle applications that do not
   incorporate their own feedback to the CM.

3. CM API

   By convention, the IETF does not treat Application Programming
   Interfaces as standards track.  However, it is considered important
   to have the CM API and CM algorithm requirements in one coherent
   document.  The following section on the CM API uses the terms MUST,
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   SHOULD, etc., but the terms are meant to apply within the context of
   an implementation of the CM API.  The section does not apply to
   congestion control implementations in general, only to those
   implementations offering the CM API.

   Using the CM API, streams can determine their share of the available
   bandwidth, request and have their data transmissions scheduled,
   inform the CM about successful transmissions, and be informed when
   the CM’s estimate of path bandwidth changes.  Thus, the CM frees
   applications from having to maintain information about the state of
   congestion and available bandwidth along any path.

   The function prototypes below follow standard C language convention.
   We emphasize that these API functions are abstract calls and
   conformant CM implementations may differ in specific details, as long
   as equivalent functionality is provided.

   When a new stream is created by an application, it passes some
   information to the CM via the cm_open(stream_info) API call.
   Currently, stream_info consists of the following information: (i) the
   source IP address, (ii) the source port, (iii) the destination IP
   address, (iv) the destination port, and (v) the IP protocol number.

3.1 State maintenance

   1. Open: All applications MUST call cm_open(stream_info) before
      using the CM API.  This returns a handle, cm_streamid, for the
      application to use for all further CM API invocations for that
      stream.  If the returned cm_streamid is -1, then the cm_open()
      failed and that stream cannot use the CM.

      All other calls to the CM for a stream use the cm_streamid
      returned from the cm_open() call.

   2. Close: When a stream terminates, the application SHOULD invoke
      cm_close(cm_streamid) to inform the CM about the termination
      of the stream.

   3. Packet size: cm_mtu(cm_streamid) returns the estimated PMTU of
      the path between sender and receiver.  Internally, this
      information SHOULD be obtained via path MTU discovery
      [Mogul90].  It MAY be statically configured in the absence of
      such a mechanism.
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3.2 Data transmission

   The CM accommodates two types of adaptive senders, enabling
   applications to dynamically adapt their content based on prevailing
   network conditions, and supporting ALF-based applications.

   1. Callback-based transmission.  The callback-based transmission API
   puts the stream in firm control of deciding what to transmit at each
   point in time.  To achieve this, the CM does not buffer any data;
   instead, it allows streams the opportunity to adapt to unexpected
   network changes at the last possible instant.  Thus, this enables
   streams to "pull out" and repacketize data upon learning about any
   rate change, which is hard to do once the data has been buffered.
   The CM must implement a cm_request(i32 cm_streamid) call for streams
   wishing to send data in this style.  After some time, depending on
   the rate, the CM MUST invoke a callback using cmapp_send(), which is
   a grant for the stream to send up to PMTU bytes.  The callback-style
   API is the recommended choice for ALF-based streams.  Note that
   cm_request() does not take the number of bytes or MTU-sized units as
   an argument; each call to cm_request() is an implicit request for
   sending up to PMTU bytes.  The CM MAY provide an alternate interface,
   cm_request(int k).  The cmapp_send callback for this request is
   granted the right to send up to k PMTU sized segments.  Section 4.3
   discusses the time duration for which the transmission grant is
   valid, while Section 5.2 describes how these requests are scheduled
   and callbacks made.

   2. Synchronous-style.  The above callback-based API accommodates a
   class of ALF streams that are "asynchronous."  Asynchronous
   transmitters do not transmit based on a periodic clock, but do so
   triggered by asynchronous events like file reads or captured frames.
   On the other hand, there are many streams that are "synchronous"
   transmitters, which transmit periodically based on their own internal
   timers (e.g., an audio senders that sends at a constant sampling
   rate).  While CM callbacks could be configured to periodically
   interrupt such transmitters, the transmit loop of such applications
   is less affected if they retain their original timer-based loop.  In
   addition, it complicates the CM API to have a stream express the
   periodicity and granularity of its callbacks.  Thus, the CM MUST
   export an API that allows such streams to be informed of changes in
   rates using the cmapp_update(u64 newrate, u32 srtt, u32 rttdev)
   callback function, where newrate is the new rate in bits per second
   for this stream, srtt is the current smoothed round trip time
   estimate in microseconds, and rttdev is the smoothed linear deviation
   in the round-trip time estimate calculated using the same algorithm
   as in TCP [Paxson00].  The newrate value reports an instantaneous
   rate calculated, for example, by taking the ratio of cwnd and srtt,
   and dividing by the fraction of that ratio allocated to the stream.

Balakrishnan, et. al.       Standards Track                     [Page 8]



RFC 3124                 The Congestion Manager                June 2001

   In response, the stream MUST adapt its packet size or change its
   timer interval to conform to (i.e., not exceed) the allowed rate.  Of
   course, it may choose not to use all of this rate.  Note that the CM
   is not on the data path of the actual transmission.

   To avoid unnecessary cmapp_update() callbacks that the application
   will only ignore, the CM MUST provide a cm_thresh(float
   rate_downthresh, float rate_upthresh, float rtt_downthresh, float
   rtt_upthresh) function that a stream can use at any stage in its
   execution.  In response, the CM SHOULD invoke the callback only when
   the rate decreases to less than (rate_downthresh * lastrate) or
   increases to more than (rate_upthresh * lastrate), where lastrate is
   the rate last notified to the stream, or when the round-trip time
   changes correspondingly by the requisite thresholds.  This
   information is used as a hint by the CM, in the sense the
   cmapp_update() can be called even if these conditions are not met.

   The CM MUST implement a cm_query(i32 cm_streamid, u64* rate, u32*
   srtt, u32* rttdev) to allow an application to query the current CM
   state.  This sets the rate variable to the current rate estimate in
   bits per second, the srtt variable to the current smoothed round-trip
   time estimate in microseconds, and rttdev to the mean linear
   deviation.  If the CM does not have valid estimates for the
   macroflow, it fills in negative values for the rate, srtt, and
   rttdev.

   Note that a stream can use more than one of the above transmission
   APIs at the same time.  In particular, the knowledge of sustainable
   rate is useful for asynchronous streams as well as synchronous ones;
   e.g., an asynchronous Web server disseminating images using TCP may
   use cmapp_send() to schedule its transmissions and cmapp_update() to
   decide whether to send a low-resolution or high-resolution image.  A
   TCP implementation using the CM is described in Section 6.1.1, where
   the benefit of the cm_request() callback API for TCP will become
   apparent.

   The reader will notice that the basic CM API does not provide an
   interface for buffered congestion-controlled transmissions.  This is
   intentional, since this transmission mode can be implemented using
   the callback-based primitive.  Section 6.1.2 describes how
   congestion-controlled UDP sockets may be implemented using the CM
   API.

3.3 Application notification

   When a stream receives feedback from receivers, it MUST use
   cm_update(i32 cm_streamid, u32 nrecd, u32 nlost, u8 lossmode, i32
   rtt) to inform the CM about events such as congestion losses,
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   successful receptions, type of loss (timeout event, Explicit
   Congestion Notification [Ramakrishnan99], etc.) and round-trip time
   samples.  The nrecd parameter indicates how many bytes were
   successfully received by the receiver since the last cm_update call,
   while the nrecd parameter identifies how many bytes were received
   were lost during the same time period.  The rtt value indicates the
   round-trip time measured during the transmission of these bytes.  The
   rtt value must be set to -1 if no valid round-trip sample was
   obtained by the application.  The lossmode parameter provides an
   indicator of how a loss was detected.  A value of CM_NO_FEEDBACK
   indicates that the application has received no feedback for all its
   outstanding data, and is reporting this to the CM.  For example, a
   TCP that has experienced a timeout would use this parameter to inform
   the CM of this.  A value of CM_LOSS_FEEDBACK indicates that the
   application has experienced some loss, which it believes to be due to
   congestion, but not all outstanding data has been lost.  For example,
   a TCP segment loss detected using duplicate (selective)
   acknowledgments or other data-driven techniques fits this category.
   A value of CM_EXPLICIT_CONGESTION indicates that the receiver echoed
   an explicit congestion notification message.  Finally, a value of
   CM_NO_CONGESTION indicates that no congestion-related loss has
   occurred.  The lossmode parameter MUST be reported as a bit-vector
   where the bits correspond to CM_NO_FEEDBACK, CM_LOSS_FEEDBACK,
   CM_EXPLICIT_CONGESTION, and CM_NO_CONGESTION.  Note that over links
   (paths) that experience losses for reasons other than congestion, an
   application SHOULD inform the CM of losses, with the CM_NO_CONGESTION
   field set.

   cm_notify(i32 cm_streamid, u32 nsent) MUST be called when data is
   transmitted from the host (e.g., in the IP output routine) to inform
   the CM that nsent bytes were just transmitted on a given stream.
   This allows the CM to update its estimate of the number of
   outstanding bytes for the macroflow and for the stream.

   A cmapp_send() grant from the CM to an application is valid only for
   an expiration time, equal to the larger of the round-trip time and an
   implementation-dependent threshold communicated as an argument to the
   cmapp_send() callback function.  The application MUST NOT send data
   based on this callback after this time has expired.  Furthermore, if
   the application decides not to send data after receiving this
   callback, it SHOULD call cm_notify(stream_info, 0) to allow the CM to
   permit other streams in the macroflow to transmit data.  The CM
   congestion controller MUST be robust to applications forgetting to
   invoke cm_notify(stream_info, 0) correctly, or applications that
   crash or disappear after having made a cm_request() call.
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3.4 Querying

   If applications wish to learn about per-stream available bandwidth
   and round-trip time, they can use the CM’s cm_query(i32 cm_streamid,
   i64* rate, i32* srtt, i32* rttdev) call, which fills in the desired
   quantities.  If the CM does not have valid estimates for the
   macroflow, it fills in negative values for the rate, srtt, and
   rttdev.

3.5 Sharing granularity

   One of the decisions the CM needs to make is the granularity at which
   a macroflow is constructed, by deciding which streams belong to the
   same macroflow and share congestion information.  The API provides
   two functions that allow applications to decide which of their
   streams ought to belong to the same macroflow.

   cm_getmacroflow(i32 cm_streamid) returns a unique i32 macroflow
   identifier.  cm_setmacroflow(i32 cm_macroflowid, i32 cm_streamid)
   sets the macroflow of the stream cm_streamid to cm_macroflowid.  If
   the cm_macroflowid that is passed to cm_setmacroflow() is -1, then a
   new macroflow is constructed and this is returned to the caller.
   Each call to cm_setmacroflow() overrides the previous macroflow
   association for the stream, should one exist.

   The default suggested aggregation method is to aggregate by
   destination IP address; i.e., all streams to the same destination
   address are aggregated to a single macroflow by default.  The
   cm_getmacroflow() and cm_setmacroflow() calls can then be used to
   change this as needed.  We do note that there are some cases where
   this may not be optimal, even over best-effort networks.  For
   example, when a group of receivers are behind a NAT device, the
   sender will see them all as one address.  If the hosts behind the NAT
   are in fact connected over different bottleneck links, some of those
   hosts could see worse performance than before.  It is possible to
   detect such hosts when using delay and loss estimates, although the
   specific mechanisms for doing so are beyond the scope of this
   document.

   The objective of this interface is to set up sharing of groups not
   sharing policy of relative weights of streams in a macroflow.  The
   latter requires the scheduler to provide an interface to set sharing
   policy.  However, because we want to support many different
   schedulers (each of which may need different information to set
   policy), we do not specify a complete API to the scheduler (but see
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   Section 5.2).  A later guideline document is expected to describe a
   few simple schedulers (e.g., weighted round-robin, hierarchical
   scheduling) and the API they export to provide relative
   prioritization.

4. CM internals

   This section describes the internal components of the CM.  It
   includes a Congestion Controller and a Scheduler, with well-defined,
   abstract interfaces exported by them.

4.1 Congestion controller

   Associated with each macroflow is a congestion control algorithm; the
   collection of all these algorithms comprises the congestion
   controller of the CM.  The control algorithm decides when and how
   much data can be transmitted by a macroflow.  It uses application
   notifications (Section 4.3) from concurrent streams on the same
   macroflow to build up information about the congestion state of the
   network path used by the macroflow.

   The congestion controller MUST implement a "TCP-friendly" [Mahdavi98]
   congestion control algorithm.  Several macroflows MAY (and indeed,
   often will) use the same congestion control algorithm but each
   macroflow maintains state about the network used by its streams.

   The congestion control module MUST implement the following abstract
   interfaces.  We emphasize that these are not directly visible to
   applications; they are within the context of a macroflow, and are
   different from the CM API functions of Section 4.

   - void query(u64 *rate, u32 *srtt, u32 *rttdev): This function
     returns the estimated rate (in bits per second) and smoothed
     round trip time (in microseconds) for the macroflow.

   - void notify(u32 nsent): This function MUST be used to notify the
     congestion control module whenever data is sent by an
     application.  The nsent parameter indicates the number of bytes
     just sent by the application.

   - void update(u32 nsent, u32 nrecd, u32 rtt, u32 lossmode): This
     function is called whenever any of the CM streams associated with
     a macroflow identifies that data has reached the receiver or has
     been lost en route.  The nrecd parameter indicates the number of
     bytes that have just arrived at the receiver.  The nsent
     parameter is the sum of the number of bytes just received and the
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     number of bytes identified as lost en route.  The rtt parameter is
     the estimated round trip time in microseconds during the
     transfer.  The lossmode parameter provides an indicator of how a
     loss was detected (section 4.3).

   Although these interfaces are not visible to applications, the
   congestion controller MUST implement these abstract interfaces to
   provide for modular inter-operability with different separately-
   developed schedulers.

   The congestion control module MUST also call the associated
   scheduler’s schedule function (section 5.2) when it believes that the
   current congestion state allows an MTU-sized packet to be sent.

4.2 Scheduler

   While it is the responsibility of the congestion control module to
   determine when and how much data can be transmitted, it is the
   responsibility of a macroflow’s scheduler module to determine which
   of the streams should get the opportunity to transmit data.

   The Scheduler MUST implement the following interfaces:

   - void schedule(u32 num_bytes): When the congestion control module
     determines that data can be sent, the schedule() routine MUST be
     called with no more than the number of bytes that can be sent.
     In turn, the scheduler MAY call the cmapp_send() function that CM
     applications must provide.

   - float query_share(i32 cm_streamid): This call returns the
     described stream’s share of the total bandwidth available to the
     macroflow.  This call combined with the query call of the
     congestion controller provides the information to satisfy an
     application’s cm_query() request.

   - void notify(i32 cm_streamid, u32 nsent): This interface is used
     to notify the scheduler module whenever data is sent by a CM
     application.  The nsent parameter indicates the number of bytes
     just sent by the application.

     The Scheduler MAY implement many additional interfaces.  As
     experience with CM schedulers increases, future documents may
     make additions and/or changes to some parts of the scheduler
     API.
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5. Examples

5.1 Example applications

   This section describes three possible uses of the CM API by
   applications.  We describe two asynchronous applications---an
   implementation of a TCP sender and an implementation of congestion-
   controlled UDP sockets, and a synchronous application---a streaming
   audio server.  More details of these applications and CM
   implementation optimizations for efficient operation are described in
   [Andersen00].

   All applications that use the CM MUST incorporate feedback from the
   receiver.  For example, it must periodically (typically once or twice
   per round trip time) determine how many of its packets arrived at the
   receiver.  When the source gets this feedback, it MUST use
   cm_update() to inform the CM of this new information.  This results
   in the CM updating ownd and may result in the CM changing its
   estimates and calling cmapp_update() of the streams of the macroflow.

   The protocols in this section are examples and suggestions for
   implementation, rather than requirements for any conformant
   implementation.

5.1.1 TCP

   A TCP implementation that uses CM should use the cmapp_send()
   callback API.  TCP only identifies which data it should send upon the
   arrival of an acknowledgement or expiration of a timer.  As a result,
   it requires tight control over when and if new data or
   retransmissions are sent.

   When TCP either connects to or accepts a connection from another
   host, it performs a cm_open() call to associate the TCP connection
   with a cm_streamid.

   Once a connection is established, the CM is used to control the
   transmission of outgoing data.  The CM eliminates the need for
   tracking and reacting to congestion in TCP, because the CM and its
   transmission API ensure proper congestion behavior.  Loss recovery is
   still performed by TCP based on fast retransmissions and recovery as
   well as timeouts.  In addition, TCP is also modified to have its own
   outstanding window (tcp_ownd) estimate.  Whenever data segments are
   sent from its cmapp_send() callback, TCP updates its tcp_ownd value.
   The ownd variable is also updated after each cm_update() call.  TCP
   also maintains a count of the number of outstanding segments
   (pkt_cnt).  At any time, TCP can calculate the average packet size
   (avg_pkt_size) as tcp_ownd/pkt_cnt.  The avg_pkt_size is used by TCP
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   to help estimate the amount of outstanding data.  Note that this is
   not needed if the SACK option is used on the connection, since this
   information is explicitly available.

   The TCP output routines are modified as follows:

      1. All congestion window (cwnd) checks are removed.

      2. When application data is available.  The TCP output routines
      perform all non-congestion checks (Nagle algorithm, receiver-
      advertised window check, etc).  If these checks pass, the output
      routine queues the data and calls cm_request() for the stream.

      3. If incoming data or timers result in a loss being detected, the
      retransmission is also placed in a queue and cm_request() is
      called for the stream.

      4. The cmapp_send() callback for TCP is set to an output routine.
      If any retransmission is enqueued, the routine outputs the
      retransmission.  Otherwise, the routine outputs as much new data
      as the TCP connection state allows.  However, the cmapp_send()
      never sends more than a single segment per call.  This routine
      arranges for the other output computations to be done, such as
      header and options computations.

   The IP output routine on the host calls cm_notify() when the packets
   are actually sent out.  Because it does not know which cm_streamid is
   responsible for the packet, cm_notify() takes the stream_info as
   argument (see Section 4 for what the stream_info should contain).
   Because cm_notify() reports the IP payload size, TCP keeps track of
   the total header size and incorporates these updates.

   The TCP input routines are modified as follows:

      1. RTT estimation is done as normal using either timestamps or
      Karn’s algorithm.  Any rtt estimate that is generated is passed to
      CM via the cm_update call.

      2. All cwnd and slow start threshold (ssthresh) updates are
      removed.

      3. Upon the arrival of an ack for new data, TCP computes the value
      of in_flight (the amount of data in flight) as snd_max-ack-1
      (i.e., MAX Sequence Sent - Current Ack - 1).  TCP then calls
      cm_update(streamid, tcp_ownd - in_flight, 0, CM_NO_CONGESTION,
      rtt).
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      4. Upon the arrival of a duplicate acknowledgement, TCP must check
      its dupack count (dup_acks) to determine its action.  If dup_acks
      < 3, the TCP does nothing.  If dup_acks == 3, TCP assumes that a
      packet was lost and that at least 3 packets arrived to generate
      these duplicate acks.  Therefore, it calls cm_update(streamid, 4 *
      avg_pkt_size, 3 * avg_pkt_size, CM_LOSS_FEEDBACK, rtt).  The
      average packet size is used since the acknowledgments do not
      indicate exactly how much data has reached the other end.  Most
      TCP implementations interpret a duplicate ACK as an indication
      that a full MSS has reached its destination.  Once a new ACK is
      received, these TCP sender implementations may resynchronize with
      TCP receiver.  The CM API does not provide a mechanism for TCP to
      pass information from this resynchronization.  Therefore, TCP can
      only infer the arrival of an avg_pkt_size amount of data from each
      duplicate ack.  TCP also enqueues a retransmission of the lost
      segment and calls cm_request().  If dup_acks > 3, TCP assumes that
      a packet has reached the other end and caused this ack to be sent.
      As a result, it calls cm_update(streamid, avg_pkt_size,
      avg_pkt_size, CM_NO_CONGESTION, rtt).

      5. Upon the arrival of a partial acknowledgment (one that does not
      exceed the highest segment transmitted at the time the loss
      occurred, as defined in [Floyd99b]), TCP assumes that a packet was
      lost and that the retransmitted packet has reached the recipient.
      Therefore, it calls cm_update(streamid, 2 * avg_pkt_size,
      avg_pkt_size, CM_NO_CONGESTION, rtt).  CM_NO_CONGESTION is used
      since the loss period has already been reported.  TCP also
      enqueues a retransmission of the lost segment and calls
      cm_request().

   When the TCP retransmission timer expires, the sender identifies that
   a segment has been lost and calls cm_update(streamid, avg_pkt_size,
   0, CM_NO_FEEDBACK, 0) to signify that no feedback has been received
   from the receiver and that one segment is sure to have "left the
   pipe."  TCP also enqueues a retransmission of the lost segment and
   calls cm_request().

5.1.2 Congestion-controlled UDP

   Congestion-controlled UDP is a useful CM application, which we
   describe in the context of Berkeley sockets [Stevens94].  They
   provide the same functionality as standard Berkeley UDP sockets, but
   instead of immediately sending the data from the kernel packet queue
   to lower layers for transmission, the buffered socket implementation
   makes calls to the API exported by the CM inside the kernel and gets
   callbacks from the CM.  When a CM UDP socket is created, it is bound
   to a particular stream.  Later, when data is added to the packet
   queue, cm_request() is called on the stream associated with the
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   socket.  When the CM schedules this stream for transmission, it calls
   udp_ccappsend() in the UDP module.  This function transmits one MTU
   from the packet queue, and schedules the transmission of any
   remaining packets.  The in-kernel implementation of the CM UDP API
   should not require any additional data copies and should support all
   standard UDP options.  Modifying existing applications to use
   congestion-controlled UDP requires the implementation of a new socket
   option on the socket.  To work correctly, the sender must obtain
   feedback about congestion.  This can be done in at least two ways:
   (i) the UDP receiver application can provide feedback to the sender
   application, which will inform the CM of network conditions using
   cm_update(); (ii) the UDP receiver implementation can provide
   feedback to the sending UDP.  Note that this latter alternative
   requires changes to the receiver’s network stack and the sender UDP
   cannot assume that all receivers support this option without explicit
   negotiation.

5.1.3 Audio server

   A typical audio application often has access to the sample in a
   multitude of data rates and qualities.  The objective of the
   application is then to deliver the highest possible quality of audio
   (typically the highest data rate) its clients.  The selection of
   which version of audio to transmit should be based on the current
   congestion state of the network.  In addition, the source will want
   audio delivered to its users at a consistent sampling rate.  As a
   result, it must send data a regular rate, minimizing delaying
   transmissions and reducing buffering before playback.  To meet these
   requirements, this application can use the synchronous sender API
   (Section 4.2).

   When the source first starts, it uses the cm_query() call to get an
   initial estimate of network bandwidth and delay.  If some other
   streams on that macroflow have already been active, then it gets an
   initial estimate that is valid; otherwise, it gets negative values,
   which it ignores.  It then chooses an encoding that does not exceed
   these estimates (or, in the case of an invalid estimate, uses
   application-specific initial values) and begins transmitting data.
   The application also implements the cmapp_update() callback.  When
   the CM determines that network characteristics have changed, it calls
   the application’s cmapp_update() function and passes it a new rate
   and round-trip time estimate.  The application must change its choice
   of audio encoding to ensure that it does not exceed these new
   estimates.
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5.2 Example congestion control module

   To illustrate the responsibilities of a congestion control module,
   the following describes some of the actions of a simple TCP-like
   congestion control module that implements Additive Increase
   Multiplicative Decrease congestion control (AIMD_CC):

   - query(): AIMD_CC returns the current congestion window (cwnd)
     divided by the smoothed rtt (srtt) as its bandwidth estimate.  It
     returns the smoothed rtt estimate as srtt.

   - notify(): AIMD_CC adds the number of bytes sent to its
     outstanding data window (ownd).

   - update(): AIMD_CC subtracts nsent from ownd.  If the value of rtt
     is non-zero, AIMD_CC updates srtt using the TCP srtt calculation.
     If the update indicates that data has been lost, AIMD_CC sets
     cwnd to 1 MTU if the loss_mode is CM_NO_FEEDBACK and to cwnd/2
     (with a minimum of 1 MTU) if the loss_mode is CM_LOSS_FEEDBACK or
     CM_EXPLICIT_CONGESTION.  AIMD_CC also sets its internal ssthresh
     variable to cwnd/2.  If no loss had occurred, AIMD_CC mimics TCP
     slow start and linear growth modes.  It increments cwnd by nsent
     when cwnd < ssthresh (bounded by a maximum of ssthresh-cwnd) and
     by nsent * MTU/cwnd when cwnd > ssthresh.

   - When cwnd or ownd are updated and indicate that at least one MTU
     may be transmitted, AIMD_CC calls the CM to schedule a
     transmission.

5.3 Example Scheduler Module

   To clarify the responsibilities of a scheduler module, the following
   describes some of the actions of a simple round robin scheduler
   module (RR_sched):

   - schedule(): RR_sched schedules as many streams as possible in round
     robin fashion.

   - query_share(): RR_sched returns 1/(number of streams in macroflow).

   - notify(): RR_sched does nothing.  Round robin scheduling is not
     affected by the amount of data sent.

6. Security Considerations

   The CM provides many of the same services that the congestion control
   in TCP provides.  As such, it is vulnerable to many of the same
   security problems.  For example, incorrect reports of losses and
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   transmissions will give the CM an inaccurate picture of the network’s
   congestion state.  By giving CM a high estimate of congestion, an
   attacker can degrade the performance observed by applications.  For
   example, a stream on a host can arbitrarily slow down any other
   stream on the same macroflow, a form of denial of service.

   The more dangerous form of attack occurs when an application gives
   the CM a low estimate of congestion.  This would cause CM to be
   overly aggressive and allow data to be sent much more quickly than
   sound congestion control policies would allow.

   [Touch97] describes a number of the security problems that arise with
   congestion information sharing.  An additional vulnerability (not
   covered by [Touch97])) occurs because applications have access
   through the CM API to control shared state that will affect other
   applications on the same computer.  For instance, a poorly designed,
   possibly a compromised, or intentionally malicious UDP application
   could misuse cm_update() to cause starvation and/or too-aggressive
   behavior of others in the macroflow.
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