
Network Working Group J. Ross
Request for Comments: 3125 Security & Standards
Category: Experimental D. Pinkas
 Integris
 N. Pope
 Security & Standards
 September 2001

 Electronic Signature Policies

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document defines signature policies for electronic signatures. A
 signature policy is a set of rules for the creation and validation of
 an electronic signature, under which the validity of signature can be
 determined. A given legal/contractual context may recognize a
 particular signature policy as meeting its requirements.

 A signature policy has a globally unique reference, which is bound to
 an electronic signature by the signer as part of the signature
 calculation.

 The signature policy needs to be available in human readable form so
 that it can be assessed to meet the requirements of the legal and
 contractual context in which it is being applied.

 To allow for the automatic processing of an electronic signature
 another part of the signature policy specifies the electronic rules
 for the creation and validation of the electronic signature in a
 computer processable form. In the current document the format of the
 signature policy is defined using ASN.1.

 The contents of this document is based on the signature policy
 defined in ETSI TS 101 733 V.1.2.2 (2000-12) Copyright (C).
 Individual copies of this ETSI deliverable can be downloaded from
 http://www.etsi.org.

Ross, et al. Experimental [Page 1]

RFC 3125 Electronic Signature Policies September 2001

Table of Contents

 1. Introduction 3
 2. Major Parties 3
 3. Signature Policy Specification 5
 3.1 Overall ASN.1 Structure 5
 3.2 Signature Validation Policy 6
 3.3 Common Rules 7
 3.4 Commitment Rules 8
 3.5 Signer and Verifier Rules 9
 3.5.1 Signer Rules 9
 3.5.2 Verifier Rules 11
 3.6 Certificate and Revocation Requirements 11
 3.6.1 Certificate Requirements 11
 3.6.2 Revocation Requirements 13
 3.7 Signing Certificate Trust Conditions 14
 3.8 Time-Stamp Trust Conditions 15
 3.9 Attribute Trust Conditions 16
 3.10 Algorithm Constraints 17
 3.11 Signature Policy Extensions 18
 4. Security Considerations 18
 4.1 Protection of Private Key 18
 4.2 Choice of Algorithms 18
 5. Conformance Requirements 19
 6. References 19
 7. Authors’ Addresses 20
 Annex A (normative): 21
 A.1 Definitions Using X.208 (1988) ASN.1 Syntax 21
 A.2 Definitions Using X.680 (1997) ASN.1 Syntax 27
 Annex B (informative): 34
 B.1 Signature Policy and Signature Validation Policy 34
 B.2 Identification of Signature Policy 36
 B.3 General Signature Policy Information 36
 B.4 Recognized Commitment Types 37
 B.5 Rules for Use of Certification Authorities 37
 B.5.1 Trust Points 38
 B.5.2 Certification Path 38
 B.6 Revocation Rules 39
 B.7 Rules for the Use of Roles 39
 B.7.1 Attribute Values 39
 B.7.2 Trust Points for Certified Attributes 40
 B.7.3 Certification Path for Certified Attributes 40
 B.8 Rules for the Use of Time-Stamping and Timing 40
 B.8.1 Trust Points and Certificate Paths 41
 B.8.2 Time-Stamping Authority Names 41
 B.8.3 Timing Constraints - Caution Period 41
 B.8.4 Timing Constraints - Time-Stamp Delay 41
 B.9 Rules for Verification Data to be followed 41

Ross, et al. Experimental [Page 2]

RFC 3125 Electronic Signature Policies September 2001

 B.10 Rules for Algorithm Constraints and Key Lengths 42
 B.11 Other Signature Policy Rules 42
 B.12 Signature Policy Protection 42
 Full Copyright Statement 44

1. Introduction

 This document is intended to cover signature policies which can be
 used with electronic signatures for various types of transactions,
 including business transactions (e.g., purchase requisition,
 contract, and invoice applications). Electronic signatures can be
 used for any transaction between an individual and a company, between
 two companies, between an individual and a governmental body, etc.
 This document is independent of any environment. It can be applied
 to any environment e.g., smart cards, GSM SIM cards, special programs
 for electronic signatures etc.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
 as shown) are to be interpreted as described in [RFC2119].

2. Major Parties

 The document uses the following terms:

 * the Signature Policy Issuer;
 * the Signer;
 * the Verifier;
 * the Arbitrator;
 * Trusted Service Providers (TSP);

 The Signature Policy Issuer (which is a Trusted Service Provider
 (TSP)) issues signatures policies that define the technical and
 procedural requirements for electronic signature creation, and
 validation/ verification, in order to meet a particular business
 need.

 The Signer is the entity that creates the electronic signature. When
 the signer digitally signs over an signature policy identifier, it
 represents a commitment on behalf of the signing entity that the data
 being signed is signed under the rules defined by the signature
 policy.

 The Verifier is the entity that validates the electronic signature,
 it may be a single entity or multiple entities. The verifier MUST
 validate the electronic signature under the rules defined by the
 electronic signature policy for the signature to be valid.

Ross, et al. Experimental [Page 3]

RFC 3125 Electronic Signature Policies September 2001

 An arbitrator, is an entity which arbitrates disputes between a
 signer and a verifier. It acts as verifier when it verifies the
 electronic signature after it has been previously validated.

 The Trusted Service Providers (TSPs) are one or more entities that
 help to build trust relationships between the signer and verifier.
 Use of TSP specific services MAY be mandated by signature policy.
 TSP supporting services include: user certificates, cross-
 certificates, time-stamping tokens,CRLs, ARLs, OCSP responses.

 A Trusted Service Providers (TSPs) MAY be a Signature Policy Issuer,
 as Such, the TSP MUST define the technical and procedural
 requirements for electronic signature creation and validation, in
 order to meet a particular business need.

 The following other TSPs are used to support the functions defined in
 this document:

 * Certification Authorities;
 * Registration Authorities;
 * Repository Authorities (e.g., a Directory);
 * Time-Stamping Authorities;
 * One-line Certificate Status Protocol responders;
 * Attribute Authorities.

 Certification Authorities provide users with public key certificates.

 Registration Authorities allows the registration of entities before a
 CA generates certificates.

 Repository Authorities publish CRLs issued by CAs, , cross-
 certificates (i.e., CA certificates) issued by CAs, signature
 policies issued by Signature Policy Issuers and optionally public key
 certificates (i.e., leaf certificates) issued by CAs.

 Time-Stamping Authorities attest that some data was formed before a
 given trusted time.

 One-line Certificate Status Protocol responders (OSCP responders)
 provide information about the status (i.e., revoked, not revoked,
 unknown) of a particular certificate.

 Attributes Authorities provide users with attributes linked to public
 key certificates

 An Arbitrator is an entity that arbitrates disputes between a signer
 and a verifier.

Ross, et al. Experimental [Page 4]

RFC 3125 Electronic Signature Policies September 2001

3. Signature Policy Specification

 A signature policy specification includes general information about
 the policy, the validation policy rules and other signature policy
 information.

 This document mandates that:

 * an electronic signature must be processed by the signer and
 verifier in accordance with the signature policy referenced by
 the signer;
 * the signature policy referenced by the signer must be
 identifiable by an Object Identifier;
 * there must exist a specification of the signature policy;
 * for a given signature policy there must be one definitive form
 of the specification which has a unique binary encoding;
 * a hash of the definitive specification, using an agreed
 algorithm, must be provided by the signer and checked by the
 verifier.

 This document defines but does not mandate the form of the signature
 policy specification. The signature policy may be specified either:

 * in a free form document for human interpretation; or
 * in a structured form using an agreed syntax and encoding.

 This document defines an ASN.1 based syntax that may be used to
 define a structured signature policy. Future versions of this
 document may include structured a signature policy specification
 using XML.

3.1 Overall ASN.1 Structure

 The overall structure of a signature policy defined using ASN.1 is
 given in this section. Use of this ASN.1 structure is optional.

 This ASN.1 syntax is encoded using the Distinguished Encoding Rules
 (DER).

 In this structure the policy information is preceded by an identifier
 for the hashing algorithm used to protect the signature policy and
 followed by the hash value which must be re-calculated and checked
 whenever the signature policy is passed between the issuer and
 signer/verifier.

 The hash is calculated without the outer type and length fields.

Ross, et al. Experimental [Page 5]

RFC 3125 Electronic Signature Policies September 2001

SignaturePolicy ::= SEQUENCE {
 signPolicyHashAlg AlgorithmIdentifier,
 signPolicyInfo SignPolicyInfo,
 signPolicyHash SignPolicyHash OPTIONAL }

SignPolicyHash ::= OCTET STRING

SignPolicyInfo ::= SEQUENCE {
 signPolicyIdentifier SignPolicyId,
 dateOfIssue GeneralizedTime,
 policyIssuerName PolicyIssuerName,
 fieldOfApplication FieldOfApplication,
 signatureValidationPolicy SignatureValidationPolicy,
 signPolExtensions SignPolExtensions
 OPTIONAL
 }

SignPolicyId ::= OBJECT IDENTIFIER

PolicyIssuerName ::= GeneralNames

FieldOfApplication ::= DirectoryString

 The policyIssuerName field identifies the policy issuer in one or
 more of the general name forms.

 The fieldofApplication is a description of the expected application
 of this policy.

 The signature validation policy rules are fully processable to allow
 the validation of electronic signatures issued under that form of
 signature policy. They are described in the rest of this section.

 The signPolExtensions is a generic way to extend the definition of
 any sub-component of a signature policy.

3.2 Signature Validation Policy

 The signature validation policy defines for the signer which data
 elements must be present in the electronic signature he provides and
 for the verifier which data elements must be present under that
 signature policy for an electronic signature to be potentially valid.

 The signature validation policy is described as follows:

Ross, et al. Experimental [Page 6]

RFC 3125 Electronic Signature Policies September 2001

SignatureValidationPolicy ::= SEQUENCE {
 signingPeriod SigningPeriod,
 commonRules CommonRules,
 commitmentRules CommitmentRules,
 signPolExtensions SignPolExtensions OPTIONAL
 }

 The signingPeriod identifies the date and time before which the
 signature policy SHOULD NOT be used for creating signatures, and an
 optional date after which it should not be used for creating
 signatures.

SigningPeriod ::= SEQUENCE {
 notBefore GeneralizedTime,
 notAfter GeneralizedTime OPTIONAL }

3.3 Common Rules

 The CommonRules define rules that are common to all commitment types.
 These rules are defined in terms of trust conditions for
 certificates, time-stamps and attributes, along with any constraints
 on attributes that may be included in the electronic signature.

CommonRules ::= SEQUENCE {
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,
 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,
 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }

 If a field is present in CommonRules then the equivalent field must
 not be present in any of the CommitmentRules (see below). If any of
 the following fields are not present in CommonRules then it must be
 present in each CommitmentRule:

 * signerAndVeriferRules;
 * signingCertTrustCondition;
 * timeStampTrustCondition.

Ross, et al. Experimental [Page 7]

RFC 3125 Electronic Signature Policies September 2001

3.4 Commitment Rules

 The CommitmentRules consists of the validation rules which apply to
 given commitment types:

 CommitmentRules ::= SEQUENCE OF CommitmentRule

 The CommitmentRule for given commitment types are defined in terms of
 trust conditions for certificates, time-stamps and attributes, along
 with any constraints on attributes that may be included in the
 electronic signature.

CommitmentRule ::= SEQUENCE {
 selCommitmentTypes SelectedCommitmentTypes,
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,
 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,
 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }

SelectedCommitmentTypes ::= SEQUENCE OF CHOICE {
 empty NULL,
 recognizedCommitmentType CommitmentType }

 If the SelectedCommitmentTypes indicates "empty" then this rule
 applied when a commitment type is not present (i.e., the type of
 commitment is indicated in the semantics of the message). Otherwise,
 the electronic signature must contain a commitment type indication
 that must fit one of the commitments types that are mentioned in
 CommitmentType.

 A specific commitment type identifier must not appear in more than
 one commitment rule.

CommitmentType ::= SEQUENCE {
 identifier CommitmentTypeIdentifier,
 fieldOfApplication [0] FieldOfApplication OPTIONAL,
 semantics [1] DirectoryString OPTIONAL }

Ross, et al. Experimental [Page 8]

RFC 3125 Electronic Signature Policies September 2001

 The fieldOfApplication and semantics fields define the specific use
 and meaning of the commitment within the overall field of application
 defined for the policy.

3.5 Signer and Verifier Rules

 The following rules apply to the format of electronic signatures
 defined using [ES-FORMATS].

 The SignerAndVerifierRules consists of signer rule and verification
 rules as defined below:

SignerAndVerifierRules ::= SEQUENCE {
 signerRules SignerRules,
 verifierRules VerifierRules }

3.5.1 Signer Rules

 The signer rules identify:

 * if the eContent is empty and the signature is calculated using
 a hash of signed data external to CMS structure.

 * the CMS signed attributes that must be provided by the signer
 under this policy;

 * the CMS unsigned attribute that must be provided by the signer
 under this policy;

 * whether the certificate identifiers from the full certification
 path up to the trust point must be provided by the signer in
 the SigningCertificate attribute;

 * whether a signer’s certificate, or all certificates in the
 certification path to the trust point must be by the signer in
 the * certificates field of SignedData.

SignerRules ::= SEQUENCE {
 externalSignedData BOOLEAN OPTIONAL,
 -- True if signed data is external to CMS structure
 -- False if signed data part of CMS structure
 -- Not present if either allowed
 mandatedSignedAttr CMSAttrs,
 -- Mandated CMS signed attributes
 mandatedUnsignedAttr CMSAttrs,
 -- Mandated CMS unsigned attributed
 mandatedCertificateRef [0] CertRefReq DEFAULT signerOnly,
 -- Mandated Certificate Reference

Ross, et al. Experimental [Page 9]

RFC 3125 Electronic Signature Policies September 2001

 mandatedCertificateInfo [1] CertInfoReq DEFAULT none,
 -- Mandated Certificate Info
 signPolExtensions [2] SignPolExtensions OPTIONAL
 }

CMSattrs ::= SEQUENCE OF OBJECT IDENTIFIER

 The mandated SignedAttr field must include the object identifier for
 all those signed attributes required by this document as well as
 additional attributes required by this policy.

 The mandatedUnsignedAttr field must include the object identifier for
 all those unsigned attributes required by this document as well as
 additional attributes required by this policy. For example, if a
 signature time-stamp <see section 1.1) is required by the signer the
 object identifier for this attribute must be included.

 The mandatedCertificateRef identifies whether just the signer’s
 certificate, or all the full certificate path must be provided by the
 signer.

CertRefReq ::= ENUMERATED {
 signerOnly (1),
 -- Only reference to signer cert mandated
 fullpath (2)

 -- References for full cert path up to a trust point required
 }

 The mandatedCertificateInfo field identifies whether a signer’s
 certificate, or all certificates in the certification path to the
 trust point must be provided by the signer in the certificates field
 of SignedData.

CertInfoReq ::= ENUMERATED {
 none (0) ,
 -- No mandatory requirements
 signerOnly (1) ,
 -- Only reference to signer cert mandated
 fullpath (2)
 -- References for full cert path up to a
 -- trust point mandated
 }

Ross, et al. Experimental [Page 10]

RFC 3125 Electronic Signature Policies September 2001

3.5.2 Verifier Rules

 The verifier rules identify:

 * The CMS unsigned attributes that must be present under this
 policy and must be added by the verifier if not added by the
 signer.

VerifierRules ::= SEQUENCE {
 mandatedUnsignedAttr MandatedUnsignedAttr,
 signPolExtensions SignPolExtensions OPTIONAL
 }

MandatedUnsignedAttr ::= CMSAttrs
 -- Mandated CMS unsigned attributed

3.6 Certificate and Revocation Requirement

 The SigningCertTrustCondition, TimestampTrustCondition and
 AttributeTrustCondition (defined in subsequent sub-sections) make use
 of two ASN1 structures which are defined below: CertificateTrustTrees
 and CertRevReq.

3.6.1 Certificate Requirements

 The certificateTrustTrees identifies a set of self signed
 certificates for the trust points used to start (or end) certificate
 path processing and the initial conditions for certificate path
 validation as defined RFC 2459 [7] section 4. This ASN1 structure is
 used to define policy for validating the signing certificate, the
 TSA’s certificate and attribute certificates.

CertificateTrustTrees ::= SEQUENCE OF CertificateTrustPoint

CertificateTrustPoint ::= SEQUENCE {
 trustpoint Certificate,
 -- self-signed certificate
 pathLenConstraint [0] PathLenConstraint OPTIONAL,
 acceptablePolicySet [1] AcceptablePolicySet OPTIONAL,
 -- If not present "any policy"
 nameConstraints [2] NameConstraints OPTIONAL,
 policyConstraints [3] PolicyConstraints OPTIONAL }

 The trustPoint field gives the self signed certificate for the CA
 that is used as the trust point for the start of certificate path
 processing.

Ross, et al. Experimental [Page 11]

RFC 3125 Electronic Signature Policies September 2001

 The pathLenConstraint field gives the maximum number of CA
 certificates that may be in a certification path following the
 trustpoint. A value of zero indicates that only the given trustpoint
 certificate and an end-entity certificate may be used. If present,
 the pathLenConstraint field must be greater than or equal to zero.
 Where pathLenConstraint is not present, there is no limit to the
 allowed length of the certification path.

 PathLenConstraint ::= INTEGER (0..MAX)

 The acceptablePolicySet field identifies the initial set of
 certificate policies, any of which are acceptable under the signature
 policy. AcceptablePolicySet ::= SEQUENCE OF CertPolicyId

 CertPolicyId ::= OBJECT IDENTIFIER

 The nameConstraints field indicates a name space within which all
 subject names in subsequent certificates in a certification path must
 be located. Restrictions may apply to the subject distinguished name
 or subject alternative names. Restrictions apply only when the
 specified name form is present. If no name of the type is in the
 certificate, the certificate is acceptable.

 Restrictions are defined in terms of permitted or excluded name
 subtrees. Any name matching a restriction in the excludedSubtrees
 field is invalid regardless of information appearing in the
 permittedSubtrees.

NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

 The policyConstraints extension constrains path processing in two
 ways. It can be used to prohibit policy mapping or require that each
 certificate in a path contain an acceptable policy identifier.

 The policyConstraints field, if present specifies requirement for
 explicit indication of the certificate policy and/or the constraints
 on policy mapping.

Ross, et al. Experimental [Page 12]

RFC 3125 Electronic Signature Policies September 2001

PolicyConstraints ::= SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

 If the inhibitPolicyMapping field is present, the value indicates the
 number of additional certificates that may appear in the path
 (including the trustpoint’s self certificate) before policy mapping
 is no longer permitted. For example, a value of one indicates that
 policy mapping may be processed in certificates issued by the subject
 of this certificate, but not in additional certificates in the path.

 If the requireExplicitPolicy field is present, subsequent
 certificates must include an acceptable policy identifier. The value
 of requireExplicitPolicy indicates the number of additional
 certificates that may appear in the path (including the trustpoint’s
 self certificate) before an explicit policy is required. An
 acceptable policy identifier is the identifier of a policy required
 by the user of the certification path or the identifier of a policy
 which has been declared equivalent through policy mapping.

3.6.2 Revocation Requirements

 The RevocRequirements field specifies minimum requirements for
 revocation information, obtained through CRLs and/or OCSP responses,
 to be used in checking the revocation status of certificates. This
 ASN1 structure is used to define policy for validating the signing
 certificate, the TSA’s certificate and attribute certificates.

CertRevReq ::= SEQUENCE {
 endCertRevReq RevReq,
 caCerts [0] RevReq
 }

 Certificate revocation requirements are specified in terms of checks
 required on:

 * endCertRevReq: end certificates (i.e., the signers certificate,
 the attribute certificate or the time-stamping authority
 certificate).

 * caCerts: CA certificates.

 RevReq ::= SEQUENCE {
 enuRevReq EnuRevReq,
 exRevReq SignPolExtensions OPTIONAL}

Ross, et al. Experimental [Page 13]

RFC 3125 Electronic Signature Policies September 2001

 An authority certificate is certificate issued to an authority (e.g.,
 either to a certification authority or to an attribute authority
 (AA)).

 A Time-Stamping Authority (TSA) is a trusted third party that creates
 time-stamp tokens in order to indicate that a datum existed at a
 particular point in time. See [TSP].

EnuRevReq ::= ENUMERATED {
 clrCheck (0),
 --Checks must be made against current CRLs
 -- (or authority revocation lists (ARL))
 ocspCheck (1), -- The revocation status must be checked
 -- using the Online Certificate Status Protocol
 -- (OCSP),RFC 2450.
 bothCheck (2),
 -- Both CRL and OCSP checks must be carried out
 eitherCheck (3),
 -- At least one of CRL or OCSP checks must be
 -- carried out
 noCheck (4),
 -- no check is mandated
 other (5)
 -- Other mechanism as defined by signature policy
 -- extension
 }

 Revocation requirements are specified in terms of:

 * clrCheck: Checks must be made against current CRLs (or
 authority revocation lists);
 * ocspCheck: The revocation status must be checked using the
 Online Certificate Status Protocol (RFC 2450);
 * bothCheck: Both OCSP and CRL checks must be carried out;
 * eitherCheck: Either OCSP or CRL checks must be carried out;
 * noCheck: No check is mandated.

3.7 Signing Certificate Trust Conditions

 The SigningCertTrustCondition field identifies trust conditions for
 certificate path processing used to validate the signing certificate.

SigningCertTrustCondition ::= SEQUENCE {
 signerTrustTrees CertificateTrustTrees,
 signerRevReq CertRevReq
 }

Ross, et al. Experimental [Page 14]

RFC 3125 Electronic Signature Policies September 2001

3.8 Time-Stamp Trust Conditions

 The TimeStampTrustCondition field identifies trust conditions for
 certificate path processing used to authenticate the timstamping
 authority and constraints on the name of the time-stamping authority.
 This applies to the time-stamp that must be present in every ES-T.

TimestampTrustCondition ::= SEQUENCE {
 ttsCertificateTrustTrees [0] CertificateTrustTrees
 OPTIONAL,
 ttsRevReq [1] CertRevReq
 OPTIONAL,
 ttsNameConstraints [2] NameConstraints
 OPTIONAL,
 cautionPeriod [3] DeltaTime
 OPTIONAL,
 signatureTimestampDelay [4] DeltaTime
 OPTIONAL }

DeltaTime ::= SEQUENCE {
 deltaSeconds INTEGER,
 deltaMinutes INTEGER,
 deltaHours INTEGER,
 deltaDays INTEGER }

 If ttsCertificateTrustTrees is not present then the same rule as
 defined in certificateTrustCondition applies to certification of the
 time-stamping authorities public key.

 The tstrRevReq specifies minimum requirements for revocation
 information, obtained through CRLs and/or OCSP responses, to be used
 in checking the revocation status of the time-stamp that must be
 present in the ES-T.

 If ttsNameConstraints is not present then there are no additional
 naming constraints on the trusted time-stamping authority other than
 those implied by the ttsCertificateTrustTrees.

 The cautionPeriod field specifies a caution period after the signing
 time that it is mandated the verifier must wait to get high assurance
 of the validity of the signer’s key and that any relevant revocation
 has been notified. The revocation status information forming the ES
 with Complete validation data must not be collected and used to
 validate the electronic signature until after this caution period.

 The signatureTimestampDelay field specifies a maximum acceptable time
 between the signing time and the time at which the signature time-
 stamp, as used to form the ES Time-Stamped, is created for the

Ross, et al. Experimental [Page 15]

RFC 3125 Electronic Signature Policies September 2001

 verifier. If the signature time-stamp is later that the time in the
 signing-time attribute by more than the value given in
 signatureTimestampDelay, the signature must be considered invalid.

3.9 Attribute Trust Conditions

 If the attributeTrustCondition field is not present then any
 certified attributes may not considered to be valid under this
 validation policy. The AttributeTrustCondition field is defined as
 follows:

AttributeTrustCondition ::= SEQUENCE {
 attributeMandated BOOLEAN,
 -- Attribute must be present
 howCertAttribute HowCertAttribute,
 attrCertificateTrustTrees [0] CertificateTrustTrees OPTIONAL,
 attrRevReq [1] CertRevReq OPTIONAL,
 attributeConstraints [2] AttributeConstraints OPTIONAL }

 If attributeMandated is true then an attribute, certified within the
 following constraints, must be present. If false, then the signature
 is still valid if no attribute is specified.

 The howCertAttribute field specifies whether attributes uncertified
 attributes "claimed" by the signer, or certified attributes (i.e.,
 Attribute Certificates) or either using the signer attributes
 attribute defined in [ES-FORMATS] section 3.12.3.

HowCertAttribute ::= ENUMERATED {
 claimedAttribute (0),
 certifiedAttribtes (1),
 either (2) }

 The attrCertificateTrustTrees specifies certificate path conditions
 for any attribute certificate. If not present the same rules apply
 as in certificateTrustCondition.

 The attrRevReq specifies minimum requirements for revocation
 information, obtained through CRLs and/or OCSP responses, to be used
 in checking the revocation status of Attribute Certificates, if any
 are present.

 If the attributeConstraints field is not present then there are no
 constraints on the attributes that may be validated under this
 policy. The attributeConstraints field is defined as follows:

Ross, et al. Experimental [Page 16]

RFC 3125 Electronic Signature Policies September 2001

AttributeConstraints ::= SEQUENCE {
 attributeTypeConstarints [0] AttributeTypeConstraints
 OPTIONAL,
 attributeValueConstarints [1] AttributeValueConstraints
 OPTIONAL }

 If present, the attributeTypeConstarints field specifies the
 attribute types which are considered valid under the signature
 policy. Any value for that attribute is considered valid.

 AttributeTypeConstraints ::= SEQUENCE OF AttributeType

 If present, the attributeTypeConstraints field specifies the specific
 attribute values which are considered valid under the signature
 policy.

 AttributeValueConstraints ::= SEQUENCE OF AttributeTypeAndValue

3.10 Algorithm Constraints

 The algorithmConstrains fields, if present, identifies the signing
 algorithms (hash, public key cryptography, combined hash and public
 key cryptography) that may be used for specific purposes and any
 minimum length. If this field is not present then the policy applies
 no constraints.

AlgorithmConstraintSet ::= SEQUENCE { -- Algorithm constrains on:
signerAlgorithmConstraints [0] AlgorithmConstraints OPTIONAL,
 -- signer
eeCertAlgorithmConstraints [1] AlgorithmConstraints OPTIONAL,
 -- issuer of end entity certs.
caCertAlgorithmConstraints [2] AlgorithmConstraints OPTIONAL,
 -- issuer of CA certificates
aaCertAlgorithmConstraints [3] AlgorithmConstraints OPTIONAL,
 -- Attribute Authority
tsaCertAlgorithmConstraints [4] AlgorithmConstraints OPTIONAL
 -- Time-Stamping Authority
 }

AlgorithmConstraints ::= SEQUENCE OF AlgAndLength

AlgAndLength ::= SEQUENCE {
 algID OBJECT IDENTIFIER,
 minKeyLength INTEGER OPTIONAL,
 -- Minimum key length in bits
 other SignPolExtensions OPTIONAL
 }

Ross, et al. Experimental [Page 17]

RFC 3125 Electronic Signature Policies September 2001

 An Attribute Authority (AA)is authority which assigns privileges by
 issuing attribute certificates

3.11 Signature Policy Extensions

 Additional signature policy rules may be added to:

 * the overall signature policy structure, as defined in section
 3.1;
 * the signature validation policy structure, as defined in
 section 3.2;
 * the common rules, as defined in section 3.3;
 * the commitment rules, as defined in section 3.4;
 * the signer rules, as defined in section 3.5.1;
 * the verifier rules, as defined in section 3.5.2;
 * the revocation requirements in section 3.6.2;
 * the algorithm constraints in section 3.10.

 These extensions to the signature policy rules must be defined using
 an ASN.1 syntax with an associated object identifier carried in the
 SignPolExtn as defined below:

SignPolExtensions ::= SEQUENCE OF SignPolExtn

SignPolExtn ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 extnValue OCTET STRING }

 The extnID field must contain the object identifier for the
 extension. The extnValue field must contain the DER (see ITU-T
 Recommendation X.690 [4]) encoded value of the extension. The
 definition of an extension, as identified by extnID must include a
 definition of the syntax and semantics of the extension.

4. Security Considerations

4.1 Protection of Private Key

 The security of the electronic signature mechanism defined in this
 document depends on the privacy of the signer’s private key.
 Implementations must take steps to ensure that private keys cannot be
 compromised.

4.2 Choice of Algorithms

 Implementers should be aware that cryptographic algorithms become
 weaker with time. As new cryptoanalysis techniques are developed and
 computing performance improves, the work factor to break a particular

Ross, et al. Experimental [Page 18]

RFC 3125 Electronic Signature Policies September 2001

 cryptographic algorithm will reduce. Therefore, cryptographic
 algorithm implementations should be modular allowing new algorithms
 to be readily inserted. That is, implementers should be prepared for
 the set of mandatory to implement algorithms to change over time.

5. Conformance Requirements

 Signer and verifier systems shall be able to process an electronic
 signature in accordance with the specification of the signature
 policy signature policy referenced identifiable by an Object
 Identifier, see section 3.

6. References

 [TS101733] ETSI Standard TS 101 733 V.1.2.2 (2000-12) Electronic
 Signature Formats. Note: copies of ETSI TS 101 733 can
 be freely download from the ETSI web site www.etsi.org.

 [ES-FORMATS] Pinkas, D., Ross, J. and N. Pope, "Electronic Signature
 Formats for Long Term Electronic Signatures", RFC 3126,
 June 2001.

 [TSP] Adams, C, Pinkas, D., Zuccherato, R. and P. Cain,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, August 2001.

 [OCSP] Myers, M., Ankney, R., Malpani, R., Galperin, S. and C.
 Adams, "On-line Status Certificate Protocol", RFC 2560,
 June 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [ESS] Hoffman, P., "Enhanced Security Services for S/MIME",
 RFC 2634, June 1999.

 [CMS] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [RFC2459] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure, Certificate and CRL
 Profile," RFC 2459, January 1999.

 [PKCS9] RSA Laboratories, "The Public-Key Cryptography Standards
 (PKCS)", RSA Data Security Inc., Redwood City,
 California, November 1993 Release.

Ross, et al. Experimental [Page 19]

RFC 3125 Electronic Signature Policies September 2001

 [ISONR] ISO/IEC 10181-5: Security Frameworks in Open Systems.
 Non-Repudiation Framework. April 1997.

7. Authors’ Addresses

 This Experimental RFC has been produced in ETSI TC-SEC.

 ETSI
 F-06921 Sophia Antipolis, Cedex - FRANCE
 650 Route des Lucioles - Sophia Antipolis
 Valbonne - FranceTel: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
 secretariat@etsi.fr
 http://www.etsi.org

 Contact Point

 Harri Rasilainen
 ETSI
 650 Route des Lucioles
 F-06921 Sophia Antipolis Cedex
 FRANCE

 EMail: harri.rasilainen@etsi.fr

 John Ross
 Security & Standards
 192 Moulsham Street
 Chelmsford, Essex
 CM2 0LG
 United Kingdom

 EMail: ross@secstan.com

 Denis Pinkas
 Integris, Bull.
 68, Route de Versailles
 78434 Louveciennes CEDEX
 FRANCE

 EMail: Denis.Pinkas@bull.net

 Nick Pope
 Security & Standards
 192 Moulsham Street
 Chelmsford, Essex
 CM2 0LG
 United Kingdom
 EMail: pope@secstan.com

Ross, et al. Experimental [Page 20]

RFC 3125 Electronic Signature Policies September 2001

Annex A (normative):

 ASN.1 Definitions This annex provides the reference definition of the
 ASN.1 syntax signature policies definitions for new syntax defined in
 this document.

A.1 Definitions Using X.208 (1988) ASN.1 Syntax

 NOTE: The ASN.1 Module defined in section A.1 has precedence over
 that defined in Annex A-2 in the case of any conflict.

 ETS-ElectronicSignaturePolicies-88syntax { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0)
 7}

DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- EXPORTS All

IMPORTS

-- Internet X.509 Public Key Infrastructure
 - Certificate and CRL Profile: RFC 2560
 Certificate, AlgorithmIdentifier, CertificateList, Name,
 GeneralNames, GeneralName, DirectoryString,Attribute,
 AttributeTypeAndValue, AttributeType, AttributeValue,
 PolicyInformation, BMPString, UTF8String

 FROM PKIX1Explicit88
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit-88(1)}
 ;

-- Signature Policy Specification
-- ==============================

SignaturePolicy ::= SEQUENCE {
 signPolicyHashAlg AlgorithmIdentifier,
 signPolicyInfo SignPolicyInfo,
 signPolicyHash SignPolicyHash OPTIONAL }

SignPolicyHash ::= OCTET STRING

SignPolicyInfo ::= SEQUENCE {
 signPolicyIdentifier SignPolicyId,
 dateOfIssue GeneralizedTime,
 policyIssuerName PolicyIssuerName,

Ross, et al. Experimental [Page 21]

RFC 3125 Electronic Signature Policies September 2001

 fieldOfApplication FieldOfApplication,
 signatureValidationPolicy SignatureValidationPolicy,
 signPolExtensions SignPolExtensions
 OPTIONAL
 }

PolicyIssuerName ::= GeneralNames

FieldOfApplication ::= DirectoryString

SignatureValidationPolicy ::= SEQUENCE {
 signingPeriod SigningPeriod,
 commonRules CommonRules,
 commitmentRules CommitmentRules,
 signPolExtensions SignPolExtensions
 OPTIONAL
 }

SigningPeriod ::= SEQUENCE {
 notBefore GeneralizedTime,
 notAfter GeneralizedTime OPTIONAL }

CommonRules ::= SEQUENCE {
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,
 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,
 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }

CommitmentRules ::= SEQUENCE OF CommitmentRule

CommitmentRule ::= SEQUENCE {
 selCommitmentTypes SelectedCommitmentTypes,
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,
 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,

Ross, et al. Experimental [Page 22]

RFC 3125 Electronic Signature Policies September 2001

 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }
SelectedCommitmentTypes ::= SEQUENCE OF CHOICE {
 empty NULL,
 recognizedCommitmentType CommitmentType }

CommitmentType ::= SEQUENCE {
 identifier CommitmentTypeIdentifier,
 fieldOfApplication [0] FieldOfApplication OPTIONAL,
 semantics [1] DirectoryString OPTIONAL }

SignerAndVerifierRules ::= SEQUENCE {
 signerRules SignerRules,
 verifierRules VerifierRules }

SignerRules ::= SEQUENCE {
 externalSignedData BOOLEAN OPTIONAL,
 -- True if signed data is external to CMS structure
 -- False if signed data part of CMS structure
 -- not present if either allowed
 mandatedSignedAttr CMSAttrs,
 -- Mandated CMS signed attributes
 mandatedUnsignedAttr CMSAttrs,
 -- Mandated CMS unsigned attributed
 mandatedCertificateRef [0] CertRefReq DEFAULT signerOnly,
 -- Mandated Certificate Reference
 mandatedCertificateInfo [1] CertInfoReq DEFAULT none,
 -- Mandated Certificate Info
 signPolExtensions [2] SignPolExtensions
 OPTIONAL}

CMSAttrs ::= SEQUENCE OF OBJECT IDENTIFIER

CertRefReq ::= ENUMERATED {
 signerOnly (1),
-- Only reference to signer cert mandated
 fullPath (2)
-- References for full cert path up to a trust point required

 }

CertInfoReq ::= ENUMERATED {

Ross, et al. Experimental [Page 23]

RFC 3125 Electronic Signature Policies September 2001

 none (0),
-- No mandatory requirements
 signerOnly (1),
-- Only reference to signer cert mandated
 fullPath (2)
-- References for full cert path up to a trust point mandated
 }

VerifierRules ::= SEQUENCE {
 mandatedUnsignedAttr MandatedUnsignedAttr,
 signPolExtensions SignPolExtensions OPTIONAL
 }

MandatedUnsignedAttr ::= CMSAttrs
-- Mandated CMS unsigned attributed

CertificateTrustTrees ::= SEQUENCE OF CertificateTrustPoint

CertificateTrustPoint ::= SEQUENCE {
 trustpoint Certificate,
 -- self-signed certificate
 pathLenConstraint [0] PathLenConstraint OPTIONAL,
 acceptablePolicySet [1] AcceptablePolicySet OPTIONAL,
 -- If not present "any policy"
 nameConstraints [2] NameConstraints OPTIONAL,
 policyConstraints [3] PolicyConstraints OPTIONAL }

PathLenConstraint ::= INTEGER (0..MAX)

AcceptablePolicySet ::= SEQUENCE OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

PolicyConstraints ::= SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,

Ross, et al. Experimental [Page 24]

RFC 3125 Electronic Signature Policies September 2001

 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

CertRevReq ::= SEQUENCE {
 endCertRevReq RevReq,
 caCerts [0] RevReq
 }

RevReq ::= SEQUENCE {
 enuRevReq EnuRevReq,
 exRevReq SignPolExtensions OPTIONAL}

EnuRevReq ::= ENUMERATED {
 clrCheck (0), --Checks must be made against current CRLs
 -- (or authority revocation lists)
 ocspCheck (1), -- The revocation status must be checked
 -- using the Online Certificate Status Protocol (RFC 2450)
 bothCheck (2),
 -- Both CRL and OCSP checks must be carried out
 eitherCheck (3),
 -- At least one of CRL or OCSP checks must be carried out
 noCheck (4),
 -- no check is mandated
 other (5)
 -- Other mechanism as defined by signature policy extension
 }

SigningCertTrustCondition ::= SEQUENCE {
 signerTrustTrees CertificateTrustTrees,
 signerRevReq CertRevReq
 }

TimestampTrustCondition ::= SEQUENCE {
 ttsCertificateTrustTrees [0] CertificateTrustTrees
 OPTIONAL,
 ttsRevReq [1] CertRevReq
 OPTIONAL,
 ttsNameConstraints [2] NameConstraints
 OPTIONAL,
 cautionPeriod [3] DeltaTime
 OPTIONAL,
 signatureTimestampDelay [4] DeltaTime
 OPTIONAL }

DeltaTime ::= SEQUENCE {
 deltaSeconds INTEGER,
 deltaMinutes INTEGER,

Ross, et al. Experimental [Page 25]

RFC 3125 Electronic Signature Policies September 2001

 deltaHours INTEGER,
 deltaDays INTEGER }

AttributeTrustCondition ::= SEQUENCE {
 attributeMandated BOOLEAN,
 -- Attribute must be present
 howCertAttribute HowCertAttribute,
 attrCertificateTrustTrees [0] CertificateTrustTrees OPTIONAL,
 attrRevReq [1] CertRevReq OPTIONAL,
 attributeConstraints [2] AttributeConstraints OPTIONAL }

HowCertAttribute ::= ENUMERATED {
 claimedAttribute (0),
 certifiedAttribtes (1),
 either (2) }

AttributeConstraints ::= SEQUENCE {
 attributeTypeConstarints [0] AttributeTypeConstraints
 OPTIONAL,
 attributeValueConstarints [1] AttributeValueConstraints
 OPTIONAL }

AttributeTypeConstraints ::= SEQUENCE OF AttributeType

AttributeValueConstraints ::= SEQUENCE OF AttributeTypeAndValue

AlgorithmConstraintSet ::= SEQUENCE { -- Algorithm constrains on:
signerAlgorithmConstraints [0] AlgorithmConstraints OPTIONAL,
 -- signer
eeCertAlgorithmConstraints [1] AlgorithmConstraints OPTIONAL,
 -- issuer of end entity certs.
caCertAlgorithmConstraints [2] AlgorithmConstraints OPTIONAL,
 -- issuer of CA certificates
aaCertAlgorithmConstraints [3] AlgorithmConstraints OPTIONAL,
 -- Attribute Authority
tsaCertAlgorithmConstraints [4] AlgorithmConstraints OPTIONAL
 -- Time-Stamping Authority
 }

AlgorithmConstraints ::= SEQUENCE OF AlgAndLength

AlgAndLength ::= SEQUENCE {
 algID OBJECT IDENTIFIER,
 minKeyLength INTEGER OPTIONAL,
 -- Minimum key length in bits other
 SignPolExtensions OPTIONAL

Ross, et al. Experimental [Page 26]

RFC 3125 Electronic Signature Policies September 2001

 }

SignPolExtensions ::= SEQUENCE OF SignPolExtn

SignPolExtn ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 extnValue OCTET STRING }

END -- ETS-ElectronicSignaturePolicies-88syntax --

A.2 Definitions Using X.680 1997 ASN.1 Syntax

 NOTE: The ASN.1 module defined in section A.1 has precedence over
 that defined in section A.2 in the case of any conflict.

ETS-ElectronicSignaturePolicies-97Syntax { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-mod(0) 8}

DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- EXPORTS All -

IMPORTS

-- Internet X.509 Public Key Infrastructure
-- Certificate and CRL Profile: RFC 2560
 Certificate, AlgorithmIdentifier, CertificateList, Name,
 GeneralNames, GeneralName, DirectoryString, Attribute,
 AttributeTypeAndValue, AttributeType, AttributeValue,
 PolicyInformation

 FROM PKIX1Explicit93
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 nid-pkix1-explicit-88(1)}
;

-- S/MIME Object Identifier arcs used in the present document
-- ==

-- S/MIME OID arc used in the present document
-- id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
-- us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

-- S/MIME Arcs
-- id-mod OBJECT IDENTIFIER ::= { id-smime 0 }
-- modules

Ross, et al. Experimental [Page 27]

RFC 3125 Electronic Signature Policies September 2001

-- id-ct OBJECT IDENTIFIER ::= { id-smime 1 }
-- content types
-- id-aa OBJECT IDENTIFIER ::= { id-smime 2 }
-- attributes
-- id-spq OBJECT IDENTIFIER ::= { id-smime 5 }
-- signature policy qualifier
-- id-cti OBJECT IDENTIFIER ::= { id-smime 6 }
-- commitment type identifier
-- Signature Policy Specification
-- ==============================

SignaturePolicy ::= SEQUENCE {
 signPolicyHashAlg AlgorithmIdentifier,
 signPolicyInfo SignPolicyInfo,
 signPolicyHash SignPolicyHash OPTIONAL }

SignPolicyHash ::= OCTET STRING

SignPolicyInfo ::= SEQUENCE {
 signPolicyIdentifier SignPolicyId,
 dateOfIssue GeneralizedTime,
 policyIssuerName PolicyIssuerName,
 fieldOfApplication FieldOfApplication,
 signatureValidationPolicy SignatureValidationPolicy,
 signPolExtensions SignPolExtensions
 OPTIONAL
 }

SignPolicyId ::= OBJECT IDENTIFIER

PolicyIssuerName ::= GeneralNames

FieldOfApplication ::= DirectoryString

SignatureValidationPolicy ::= SEQUENCE {
 signingPeriod SigningPeriod,
 commonRules CommonRules,
 commitmentRules CommitmentRules,
 signPolExtensions SignPolExtensions OPTIONAL
 }

SigningPeriod ::= SEQUENCE {
 notBefore GeneralizedTime,
 notAfter GeneralizedTime OPTIONAL }

CommonRules ::= SEQUENCE {
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,

Ross, et al. Experimental [Page 28]

RFC 3125 Electronic Signature Policies September 2001

 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,
 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }

CommitmentRules ::= SEQUENCE OF CommitmentRule

CommitmentRule ::= SEQUENCE {
 selCommitmentTypes SelectedCommitmentTypes,
 signerAndVeriferRules [0] SignerAndVerifierRules
 OPTIONAL,
 signingCertTrustCondition [1] SigningCertTrustCondition
 OPTIONAL,
 timeStampTrustCondition [2] TimestampTrustCondition
 OPTIONAL,
 attributeTrustCondition [3] AttributeTrustCondition
 OPTIONAL,
 algorithmConstraintSet [4] AlgorithmConstraintSet
 OPTIONAL,
 signPolExtensions [5] SignPolExtensions
 OPTIONAL
 }

SelectedCommitmentTypes ::= SEQUENCE OF CHOICE {
 empty NULL,
 recognizedCommitmentType CommitmentType }

CommitmentType ::= SEQUENCE {
 identifier CommitmentTypeIdentifier,
 fieldOfApplication [0] FieldOfApplication OPTIONAL,
 semantics [1] DirectoryString OPTIONAL }

SignerAndVerifierRules ::= SEQUENCE {
 signerRules SignerRules,
 verifierRules VerifierRules }

SignerRules ::= SEQUENCE {
 externalSignedData BOOLEAN OPTIONAL,
 -- True if signed data is external to CMS structure
 -- False if signed data part of CMS structure
 -- not present if either allowed

Ross, et al. Experimental [Page 29]

RFC 3125 Electronic Signature Policies September 2001

 mandatedSignedAttr CMSAttrs,
 -- Mandated CMS signed attributes
 mandatedUnsignedAttr CMSAttrs,
 -- Mandated CMS unsigned attributed
 mandatedCertificateRef [0] CertRefReq DEFAULT signerOnly,
 -- Mandated Certificate Reference
 mandatedCertificateInfo [1] CertInfoReq DEFAULT none,
 -- Mandated Certificate Info
 signPolExtensions [2] SignPolExtensions OPTIONAL
 }

CMSAttrs ::= SEQUENCE OF OBJECT IDENTIFIER

CertRefReq ::= ENUMERATED {
 signerOnly (1),
 -- Only reference to signer cert mandated
 fullPath (2)
 -- References for full cert path up to a trust
 -- point required
 }

CertInfoReq ::= ENUMERATED {
 none (0) ,
 -- No mandatory requirements
 signerOnly (1) ,
 -- Only reference to signer cert mandated
 fullPath (2)
 -- References for full cert path up to a
 -- trust point mandated
 }

VerifierRules ::= SEQUENCE {
 mandatedUnsignedAttr MandatedUnsignedAttr,
 signPolExtensions SignPolExtensions OPTIONAL
 }
MandatedUnsignedAttr ::= CMSAttrs
 -- Mandated CMS unsigned attributed

CertificateTrustTrees ::= SEQUENCE OF CertificateTrustPoint

CertificateTrustPoint ::= SEQUENCE {
 trustpoint Certificate,
 -- self-signed certificate
 pathLenConstraint [0] PathLenConstraint OPTIONAL,
 acceptablePolicySet [1] AcceptablePolicySet OPTIONAL,
 -- If not present "any policy"
 nameConstraints [2] NameConstraints OPTIONAL,
 policyConstraints [3] PolicyConstraints OPTIONAL }

Ross, et al. Experimental [Page 30]

RFC 3125 Electronic Signature Policies September 2001

PathLenConstraint ::= INTEGER (0..MAX)

AcceptablePolicySet ::= SEQUENCE OF CertPolicyId

CertPolicyId ::= OBJECT IDENTIFIER

NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

PolicyConstraints ::= SEQUENCE {
 requireExplicitPolicy [0] SkipCerts OPTIONAL,
 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

SkipCerts ::= INTEGER (0..MAX)

CertRevReq ::= SEQUENCE {
 endCertRevReq RevReq,
 caCerts [0] RevReq
 }

RevReq ::= SEQUENCE {
 enuRevReq EnuRevReq,
 exRevReq SignPolExtensions OPTIONAL}

EnuRevReq ::= ENUMERATED {
 clrCheck (0),
 -- Checks must be made against current CRLs
 -- (or authority revocation lists)
 ocspCheck (1),
 -- The revocation status must be checked using
 -- the Online Certificate Status Protocol (RFC 2450)
 bothCheck (2),
 -- Both CRL and OCSP checks must be carried out
 eitherCheck (3),
 -- At least one of CRL or OCSP checks must be
 -- carried out
 noCheck (4),
 -- no check is mandated

Ross, et al. Experimental [Page 31]

RFC 3125 Electronic Signature Policies September 2001

 other (5)
 -- Other mechanism as defined by signature policy
 -- extension
 }

SigningCertTrustCondition ::= SEQUENCE {
 signerTrustTrees CertificateTrustTrees,
 signerRevReq CertRevReq
 }

TimestampTrustCondition ::= SEQUENCE {
 ttsCertificateTrustTrees [0] CertificateTrustTrees
 OPTIONAL,
 ttsRevReq [1] CertRevReq
 OPTIONAL,
 ttsNameConstraints [2] NameConstraints
 OPTIONAL,
 cautionPeriod [3] DeltaTime
 OPTIONAL,
 signatureTimestampDelay [4] DeltaTime
 OPTIONAL }

DeltaTime ::= SEQUENCE {
 deltaSeconds INTEGER,
 deltaMinutes INTEGER,
 deltaHours INTEGER,
 deltaDays INTEGER }

AttributeTrustCondition ::= SEQUENCE {
 attributeMandated BOOLEAN,
 -- Attribute must be present
 howCertAttribute HowCertAttribute,
 attrCertificateTrustTrees [0] CertificateTrustTrees OPTIONAL,
 attrRevReq [1] CertRevReq OPTIONAL,
 attributeConstraints [2] AttributeConstraints OPTIONAL }

HowCertAttribute ::= ENUMERATED {
 claimedAttribute (0),
 certifiedAttribtes (1),
 either (2) }

AttributeConstraints ::= SEQUENCE {
 attributeTypeConstarints [0] AttributeTypeConstraints
 OPTIONAL,
 attributeValueConstarints [1] AttributeValueConstraints
 OPTIONAL }

Ross, et al. Experimental [Page 32]

RFC 3125 Electronic Signature Policies September 2001

AttributeTypeConstraints ::= SEQUENCE OF AttributeType

AttributeValueConstraints ::= SEQUENCE OF AttributeTypeAndValue

AlgorithmConstraintSet ::= SEQUENCE {
 -- Algorithm constrains on:
signerAlgorithmConstraints [0] AlgorithmConstraints OPTIONAL,
 -- signer
eeCertAlgorithmConstraints [1] AlgorithmConstraints OPTIONAL,
 -- issuer of end entity certs.
caCertAlgorithmConstraints [2] AlgorithmConstraints OPTIONAL,
 -- issuer of CA certificates
aaCertAlgorithmConstraints [3] AlgorithmConstraints OPTIONAL,
 -- Attribute Authority
tsaCertAlgorithmConstraints [4] AlgorithmConstraints OPTIONAL
 -- Time-Stamping Authority
 }

AlgorithmConstraints ::= SEQUENCE OF AlgAndLength

AlgAndLength ::= SEQUENCE {
 algID OBJECT IDENTIFIER,
 minKeyLength INTEGER OPTIONAL,
 -- Minimum key length in bits
 other SignPolExtensions OPTIONAL
 }

SignPolExtensions ::= SEQUENCE OF SignPolExtn

SignPolExtn ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 extnValue OCTET STRING }

END -- ETS-ElectronicPolicies-97Syntax

Ross, et al. Experimental [Page 33]

RFC 3125 Electronic Signature Policies September 2001

Annex B (informative):

B.1 Signature Policy and Signature Validation Policy

 The definition of electronic signature mentions: "a commitment has
 been explicitly endorsed under a "Signature Policy", at a given time,
 by a signer under an identifier, e.g., a name or a pseudonym, and
 optionally a role."

 Electronic signatures are commonly applied within the context of a
 legal or contractual framework. This establishes the requirements on
 the electronic signatures and any special semantics (e.g., agreement,
 intent). These requirements may be defined in very general abstract
 terms or in terms of detailed rules. The specific semantics
 associated with an electronic signature implied by a legal or
 contractual framework are outside the scope of this document.

 If the signature policy is recognized, within the legal/contractual
 context, as providing commitment, then the signer explicitly agrees
 with terms and conditions which are implicitly or explicitly part of
 the signed data.

 When two independent parties want to evaluate an electronic
 signature, it is fundamental that they get the same result. It is
 therefore important that the conditions agreed by the signer at the
 time of signing are indicated to the verifier and any arbitrator. An
 aspect that enables this to be known by all parties is the signature
 policy. The technical implications of the signature policy on the
 electronic signature with all the validation data are called the
 "Signature Validation Policy". The signature validation policy
 specifies the rules used to validate the signature.

 This document does not mandate the form and encoding of the
 specification of the signature policy. However, for a given
 signature policy there must be one definitive form that has a unique
 binary encoded value.

 This document includes, as an option, a formal structure for
 signature validation policy based on the use of Abstract Syntax
 Notation 1 (ASN.1).

 Given the specification of the signature policy and its hash value an
 implementation of a verification process must obey the rules defined
 in the specification.

 This document places no restriction on how it should be implemented.
 Provide the implementation conforms to the conformance requirements
 as define in section 5 implementation options include:

Ross, et al. Experimental [Page 34]

RFC 3125 Electronic Signature Policies September 2001

 A validation process that supports a specific signature policy as
 identified by the signature policy OID. Such an implementation
 should conform to a human readable description provided all the
 processing rules of the signature policy are clearly defined.
 However, if additional policies need to be supported, then such an
 implementation would need to be customized for each additional
 policy. This type of implementation may be simpler to implement
 initially, but can be difficult to enhance to support numerous
 additional signature policies.

 A validation process that is dynamically programmable and able to
 adapt its validation rules in accordance with a description of the
 signature policy provided in a computer-processable language. This
 present document defines such a policy using an ASN.1 structure (see
 6.1). This type of implementation could support multiple signature
 policies without being modified every time, provided all the
 validation rules specified as part of the signature policy are known
 by the implementation. (i.e., only requires modification if there
 are additional rules specified).

 The precise content of a signature policy is not mandated by the
 current document. However, a signature policy must be sufficiently
 definitive to avoid any ambiguity as to its implementation
 requirements. It must be absolutely clear under which conditions an
 electronic signature should be accepted. For this reason, it should
 contain the following information:

 * General information about the signature policy which includes:
 - a unique identifier of the policy;
 - the name of the issuer of the policy;
 - the date the policy was issued;
 - the field of application of the policy.

 * The signature verification policy which includes:
 - the signing period,
 - a list of recognized commitment types;
 - rules for Use of Certification Authorities;
 - rules for Use of Revocation Status Information;
 - rules for Use of Roles;
 - rules for use of Time-Stamping and Timing;
 - signature verification data to be provided by the
 signer/collected by verifier;
 - any constraints on signature algorithms and key lengths.
 * Other signature policy rules required to meet the objectives of
 the signature.

 Variations of the validation policy rules may apply to different
 commitment types.

Ross, et al. Experimental [Page 35]

RFC 3125 Electronic Signature Policies September 2001

B.2 Identification of Signature Policy

 When data is signed the signer indicates the signature policy
 applicable to that electronic signature by including an object
 identifier for the signature policy with the signature. The signer
 and verifier must apply the rules specified by the identified policy.
 In addition to the identifier of the signature policy the signer must
 include the hash of the signature policy, so it can be verified that
 the policy selected by the signer is the identical to the one being
 used the verifier.

 A signature policy may be qualified by additional information. This
 can includes:

 * A URL where a copy of the Signature Policy may be obtained;
 * A user notice that should be displayed when the signature is
 verified;

 If no signature policy is identified then the signature may be
 assumed to have been generated/verified without any policy
 constraints, and hence may be given no specific legal or contractual
 significance through the context of a signature policy.

 A "Signature Policy" will be identifiable by an OID (Object
 Identifier) and verifiable using a hash of the signature policy.

B.3 General Signature Policy Information

 General information should be recorded about the signature policy
 along with the definition of the rules which form the signature
 policy as described in subsequent subsections. This should include:

 * Policy Object Identifier: The "Signature Policy" will be
 identifiable by an OID (Object Identifier) whose last component
 (i.e., right most) is an integer that is specific to a
 particular version issued on the given date.
 * Date of issue: When the "Signature Policy" was issued.
 * Signature Policy Issuer name: An identifier for the body
 responsible for issuing the Signature Policy. This may be used
 by the signer or verifying in deciding if a policy is to be
 trusted, in which case the signer/verifier must authenticate
 the origin of the signature policy as coming from the
 identified issuer.
 * Signing period: The start time and date, optionally with an end
 time and date, for the period over which the signature policy
 may be used to generate electronic signatures.

Ross, et al. Experimental [Page 36]

RFC 3125 Electronic Signature Policies September 2001

 * Field of application: This defines in general terms the general
 legal/contract/application contexts in which the signature
 policy is to be used and the specific purposes for which the
 electronic signature is to be applied.

B.4 Recognized Commitment Types

 The signature validation policy may recognize one or more types of
 commitment as being supported by electronic signatures produced under
 the security policy. If an electronic signature does not contain a
 recognized commitment type then the semantics of the electronic
 signature is dependent on the data being signed and the context in
 which it is being used.

 Only recognized commitment types are allowed in an electronic
 signature.

 The definition of a commitment type includes:

 * the object identifier for the commitment;
 * the contractual/legal/application context in which the
 signature may be used (e.g., submission of messages);
 * a description of the support provided within the terms of the
 context (e.g., proof that the identified source submitted the
 message if the signature is created when message submission is
 initiated).

 The definition of a commitment type can be registered:

 * as part of the validation policy;
 * as part of the application/contract/legal environment;
 * as part of generic register of definitions.

 The legal/contractual context will determine the rules applied to the
 signature, as defined by the signature policy and its recognized
 commitment types, make it fit for purpose intended.

B.5 Rules for Use of Certification Authorities

 The certificate validation process of the verifier, and hence the
 certificates that may be used by the signer for a valid electronic
 signature, may be constrained by the combination of the trust point
 and certificate path constraints in the signature validation policy.

Ross, et al. Experimental [Page 37]

RFC 3125 Electronic Signature Policies September 2001

B.5.1 Trust Points

 The signature validation policy defines the certification authority
 trust points that are to be used for signature verification. Several
 trust points may be specified under one signature policy. Specific
 trust points may be specified for a particular type of commitment
 defined under the signature policy. For a signature to be valid a
 certification path must exists between the Certification Authority
 that has granted the certificate selected by the signer (i.e., the
 used user-certificate) and one of the trust point of the "Signature
 Validation Policy".

B.5.2 Certification Path

 There may be constraints on the use of certificates issued by one or
 more CA(s) in the certificate chain and trust points. The two prime
 constraints are certificate policy constraints and naming
 constraints:

 * Certificate policy constraints limit the certification chain
 between the user certificate and the certificate of the trusted
 point to a given set of certificate policies, or equivalents
 identified through certificate policy mapping.
 * The naming constraints limit the forms of names that the CA is
 allowed to certify.

 Name constraints are particularly important when a "Signature policy"
 identifies more than one trust point. In this case, a certificate of
 a particular trusted point may only be used to verify signatures from
 users with names permitted under the name constraint.

 Certificate Authorities may be organized in a tree structure, this
 tree structure may represent the trust relationship between various
 CA(s) and the users CA. Alternatively, a mesh relationship may exist
 where a combination of tree and peer cross-certificates may be used.
 The requirement of the certificate path in this document is that it
 provides the trust relationship between all the CAs and the signers
 user certificate. The starting point from a verification point of
 view, is the "trust point". A trust point is usually a CA that
 publishes self-certified certificates, is the starting point from
 which the verifier verifies the certificate chain. Naming
 constraints may apply from the trust point, in which case they apply
 throughout the set of certificates that make up the certificate path
 down to the signer’s user certificate.

 Policy constraints can be easier to process but to be effective
 require the presence of a certificate policy identifier in the
 certificates used in a certification path.

Ross, et al. Experimental [Page 38]

RFC 3125 Electronic Signature Policies September 2001

 Certificate path processing, thus generally starts with one of the
 trust point from the signature policy and ends with the user
 certificate. The certificate path processing procedures defined in
 RFC 2459 section 6 identifies the following initial parameters that
 are selected by the verifier in certificate path processing:

 * acceptable certificate policies;
 * naming constraints in terms of constrained and excluded naming
 subtree;
 * requirements for explicit certificate policy indication and
 whether certificate policy mapping are allowed;
 * restrictions on the certificate path length.

 The signature validation policy identifies constraints on these
 parameters.

B.6 Revocation Rules

 The signature policy should defines rules specifying requirements for
 the use of certificate revocation lists (CRLs) and/or on-line
 certificate status check service to check the validity of a
 certificate. These rules specify the mandated minimum checks that
 must be carried out.

 It is expected that in many cases either check may be selected with
 CRLs checks being carried out for certificate status that are
 unavailable from OCSP servers. The verifier may take into account
 information in the certificate in deciding how best to check the
 revocation status (e.g., a certificate extension field about
 authority information access or a CRL distribution point) provided
 that it does not conflict with the signature policy revocation rules.

B.7 Rules for the Use of Roles

 Roles can be supported as claimed roles or as certified roles using
 Attribute Certificates.

B.7.1 Attribute Values

 When signature under a role is mandated by the signature policy, then
 either Attribute Certificates may be used or the signer may provide a
 claimed role attribute. The acceptable attribute types or values may
 be dependent on the type of commitment. For example, a user may have
 several roles that allow the user to sign data that imply commitments
 based on one or more of his roles.

Ross, et al. Experimental [Page 39]

RFC 3125 Electronic Signature Policies September 2001

B.7.2 Trust Points for Certified Attributes

 When a signature under a certified role is mandated by the signature
 policy, Attribute Authorities are used and need to be validated as
 part of the overall validation of the electronic signature. The
 trust points for Attribute Authorities do not need to be the same as
 the trust points to evaluate a certificate from the CA of the signer.
 Thus the trust point for verifying roles need not be the same as
 trust point used to validate the certificate path of the user’s key.

 Naming and certification policy constraints may apply to the AA in
 similar circumstance to when they apply to CA. Constraints on the AA
 and CA need not be exactly the same.

 AA(s) may be used when a signer is creating a signature on behalf of
 an organization, they can be particularly useful when the signature
 represents an organizational role. AA(s) may or may not be the same
 authority as CA(s).

 Thus, the Signature Policy identifies trust points that can be used
 for Attribute Authorities, either by reference to the same trust
 points as used for Certification Authorities, or by an independent
 list.

B.7.3 Certification Path for Certified Attributes

 Attribute Authorities may be organized in a tree structure in similar
 way to CA where the AAs are the leafs of such a tree. Naming and
 other constraints may be required on attribute certificate paths in a
 similar manner to other electronic signature certificate paths.

 Thus, the Signature Policy identify constraints on the following
 parameters used as input to the certificate path processing:

 * acceptable certificate policies, including requirements for
 explicit certificate policy indication and whether certificate
 policy mapping is allowed;
 * naming constraints in terms of constrained and excluded naming
 subtrees;
 * restrictions on the certificate path length.

B.8 Rules for the Use of Time-Stamping and Timing

 The following rules should be used when specifying, constraints on
 the certificate paths for time-stamping authorities, constraints on
 the time-stamping authority names and general timing constraints.

Ross, et al. Experimental [Page 40]

RFC 3125 Electronic Signature Policies September 2001

B.8.1 Trust Points and Certificate Paths

 Signature keys from time-stamping authorities will need to be
 supported by a certification path. The certification path used for
 time-stamping authorities requires a trustpoint and possibly path
 constraints in the same way that the certificate path for the
 signer’s key.

B.8.2 Time-Stamping Authority Names

 Restrictions may need to be placed by the validation policy on the
 named entities that may act a time-stamping authorities.

B.8.3 Timing Constraints - Caution Period

 Before an electronic signature may really be valid, the verifier has
 to be sure that the holder of the private key was really the only one
 in possession of key at the time of signing. However, there is an
 inevitable delay between a compromise or loss of key being noted, and
 a report of revocation being distributed. To allow greater
 confidence in the validity of a signature, a "cautionary period" may
 be identified before a signature may be said to be valid with high
 confidence. A verifier may revalidate a signature after this
 cautionary signature, or wait for this period before validating a
 signature.

 The validation policy may specify such a cautionary period.

B.8.4 Timing Constraints - Time-Stamp Delay

 There will be some delay between the time that a signature is created
 and the time the signer’s digital signature is time-stamped.
 However, the longer this elapsed period the greater the risk of the
 signature being invalidated due to compromise or deliberate
 revocation of its private signing key by the signer. Thus the
 signature policy should specify a maximum acceptable delay between
 the signing time as claimed by the signer and the time included
 within the time-stamp.

B.9 Rules for Verification Data to be followed

 By specifying the requirements on the signer and verifier the
 responsibilities of the two parties can be clearly defined to
 establish all the necessary information.

Ross, et al. Experimental [Page 41]

RFC 3125 Electronic Signature Policies September 2001

 These verification data rules should include:

 * requirements on the signer to provide given signed attributes;
 * requirements on the verifier to obtain additional certificates,
 CRLs, results of on line certificate status checks and to use
 time-stamps (if no already provided by the signer).

B.10 Rules for Algorithm Constraints and Key Lengths

 The signature validation policy may identify a set of signing
 algorithms (hashing, public key, combinations) and minimum key
 lengths that may be used:

 * by the signer in creating the signature;
 * in end entity public key Certificates;
 * CA Certificates;
 * attribute Certificates;
 * by the time-stamping authority.

B.11 Other Signature Policy Rules

 The signature policy may specify additional policy rules, for example
 rules that relate to the environment used by the signer. These
 additional rules may be defined in computer processable and/or human
 readable form.

B.12 Signature Policy Protection

 When signer or verifier obtains a copy of the Signature Policy from
 an issuer, the source should be authenticated (for example by using
 electronic signatures). When the signer references a signature
 policy the Object Identifier (OID) of the policy, the hash value and
 the hash algorithm OID of that policy must be included in the
 Electronic Signature.

 It is a mandatory requirement of this present document that the
 signature policy value computes to one, and only one hash value using
 the specified hash algorithm. This means that there must be a single
 binary value of the encoded form of the signature policy for the
 unique hash value to be calculated. For example, there may exist a
 particular file type, length and format on which the hash value is
 calculated which is fixed and definitive for a particular signature
 policy.

Ross, et al. Experimental [Page 42]

RFC 3125 Electronic Signature Policies September 2001

 The hash value may be obtained by:

 the signer performing his own computation of the hash over the
 signature policy using his preferred hash algorithm permitted by
 the signature policy, and the definitive binary encoded form.

 the signer, having verified the source of the policy, may use both
 the hash algorithm and the hash value included in the computer
 processable form of the policy (see section 6.1).

Ross, et al. Experimental [Page 43]

RFC 3125 Electronic Signature Policies September 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ross, et al. Experimental [Page 44]

