
Network Working Group R. Zuccherato
Request for Comments: 3163 Entrust Technologies
Category: Experimental M. Nystrom
 RSA Security
 August 2001

 ISO/IEC 9798-3 Authentication SASL Mechanism

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

IESG Note

 It is the opinion of the Security Area Directors that this document
 defines a mechanism to use a complex system (namely PKI certificates)
 for authentication, but then intentionally discards the key benefits
 (namely integrity on each transmission). Put another way, it has all
 of the pain of implementing a PKI and none of the benefits. We
 should not support it in use in Internet protocols.

 The same effect, with the benefits of PKI, can be had by using
 TLS/SSL, an existing already standards track protocol.

Abstract

 This document defines a SASL (Simple Authentication and Security
 Layer) authentication mechanism based on ISO/IEC 9798-3 and FIPS PUB
 196 entity authentication.

Zuccherato & Nystrom Experimental [Page 1]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

1. Introduction

1.1. Overview

 This document defines a SASL [RFC2222] authentication mechanism based
 on ISO/IEC 9798-3 [ISO3] and FIPS PUB 196 [FIPS] entity
 authentication.

 This mechanism only provides authentication using X.509 certificates
 [X509]. It has no effect on the protocol encodings and does not
 provide integrity or confidentiality services.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The key benefit of asymmetric (public key) security, is that the
 secret (private key) only needs to be placed with the entity that is
 being authenticated. Thus, a private key can be issued to a client,
 which can then be authenticated by ANY server based on a token
 generated by the client and the generally available public key.
 Symmetric authentication mechanisms (password mechanisms such as
 CRAM-MD5 [RFC2195]) require a shared secret, and the need to maintain
 it at both endpoints. This means that a secret key for the client
 needs to be maintained at every server that may need to authenticate
 the client.

 The service described in this memo provides authentication only.
 There are a number of places where an authentication only service is
 useful, e.g., where confidentiality and integrity are provided by
 lower layers, or where confidentiality or integrity services are
 provided by the application.

1.2. Relationship to TLS

 The functionality defined here can be provided by TLS, and it is
 important to consider why it is useful to have it in both places.
 There are several reasons for this, e.g.:

 - Simplicity. This mechanism is simpler than TLS. If there is
 only a requirement for this functionality (as distinct from all
 of TLS), this simplicity will facilitate deployment.

 - Layering. The SASL mechanism to establish authentication works
 cleanly with most protocols. This mechanism can fit more
 cleanly than TLS for some protocols.

Zuccherato & Nystrom Experimental [Page 2]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 - Proxies. In some architectures the endpoint of the TLS session
 may not be the application endpoint. In these situations, this
 mechanism can be used to obtain end-to-end authentication.

 - Upgrade of authentication. In some applications it may not be
 clear at the time of TLS session negotiation what type of
 authentication may be required (e.g., anonymous, server,
 client-server). This mechanism allows the negotiation of an
 anonymous or server authenticated TLS session which can, at a
 later time, be upgraded to provide the desired level of
 authentication.

2. Description of Mechanism

2.1. Scope

 The mechanism described in this memo provides either mutual or
 unilateral entity authentication as defined in ISO/IEC 9798-1 [ISO1]
 using an asymmetric (public-key) digital signature mechanism.

2.2. Authentication modes

 This SASL mechanism contains two authentication modes:

 - Unilateral client authentication: The client digitally signs a
 challenge from the server, thus authenticating itself to the
 server.

 - Mutual authentication: The client digitally signs a challenge
 from the server and the server digitally signs a challenge from
 the client. Thus both the client and server authenticate each
 other.

2.3. SASL key

 This mechanism has two SASL keys corresponding to the two different
 modes:

 - "9798-U-<algorithm>" for unilateral client authentication.

 - "9798-M-<algorithm>" for mutual authentication.

 Each SASL key may be used with a list of algorithms. A list of
 supported algorithms is given in Section 4.

Zuccherato & Nystrom Experimental [Page 3]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

2.4. Unilateral Client Authentication

 This section gives a brief description of the steps that are
 performed for unilateral client authentication. The actual data
 structures are described fully in Section 3.

 a) The server generates a random challenge value R_B and sends it
 to the client.

 b) The client generates a random value R_A and creates a token
 TokenAB. The token contains R_A, the client’s certificate and
 also a digital signature created by the client over both R_A
 and R_B. Optionally, it also contains an identifier for the
 server.

 c) The client sends the token to the server.

 d) The server verifies the token by:

 - verifying the client’s signature in TokenAB (this includes
 full certificate path processing as described in [RFC2459]),

 - verifying that the random number R_B, sent to the client in
 Step 1, agrees with the random number contained in the
 signed data of TokenAB, and

 - verifying that the identifier for the server, if present,
 matches the server’s distinguishing identifier.

2.5. Mutual Authentication

 This section gives a brief description of the steps that are
 performed for mutual authentication. The actual data structures are
 described fully in Section 3.

 a) The server generates a random challenge value R_B and sends it
 to the client.

 b) The client generates a random value R_A and creates a token
 TokenAB. The token contains R_A, the client’s certificate and
 also a digital signature created by the client over both R_A
 and R_B. Optionally, it also contains an identifier for the
 server.

 c) The client sends the token to the server.

 d) The server verifies the token by:

Zuccherato & Nystrom Experimental [Page 4]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 - verifying the client’s signature in TokenAB (this includes
 full certificate path processing as described in [RFC2459]),

 - verifying that the random number R_B, sent to the client in
 Step 1, agrees with the random number contained in the
 signed data of TokenAB, and

 - verifying that the identifier for the server, if present,
 matches the server’s distinguishing identifier.

 e) The server creates a token TokenBA. The token contains a third
 random value R_C, the server’s certificate and a digital
 signature created by the server over R_A, R_B and R_C.
 Optionally, it also contains an identifier for the client.

 f) The server sends the token to the client.

 g) The client verifies the token by:

 - verifying the server’s signature in TokenBA (this includes
 full certificate path processing as described in [RFC2459]),

 - verifying that the random number R_B, received by the client
 in Step 1, agrees with the random number contained in the
 signed data of TokenBA,

 - verifying that the random number R_A, sent to the server in
 Step 2, agrees with the random number contained in the
 signed data of Token BA and

 - verifying that the identifier for the client, if present,
 matches the client’s distinguishing identifier.

3. Token and Message Definition

 Note - Protocol data units (PDUs) SHALL be DER-encoded [X690]
 before transmitted.

3.1. The "TokenBA1" PDU

 TokenBA1 is used in both the unilateral client authentication and
 mutual authentication modes and is sent by the server to the client.

 TokenBA1 contains a random value, and, optionally, the servers name
 and certificate information.

Zuccherato & Nystrom Experimental [Page 5]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 TokenBA1 ::= SEQUENCE {
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certPref [1] SEQUENCE SIZE (1..MAX) OF TrustedAuth OPTIONAL
 }

3.2. The "TokenAB" PDU

 TokenAB is used in the unilateral client authentication and mutual
 authentication modes and is sent by the client to the server.
 TokenAB contains a random number, entity B’s name (optionally),
 entity certification information, an (optional) authorization
 identity, and a signature of a DER-encoded value of type TBSDataAB.
 The certA field is used to send the client’s X.509 certificate (or a
 URL to it) and a related certificate chain to the server.

 The authID field is to be used when the identity to be used for
 access control is different than the identity contained in the
 certificate of the signer. If this field is not present, then the
 identity from the client’s X.509 certificate shall be used.

 TokenAB ::= SEQUENCE {
 randomA RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certA [1] CertData,
 authID [2] GeneralNames OPTIONAL,
 signature SIGNATURE { TBSDataAB }

 }(CONSTRAINED BY {-- The entityB and authID fields shall be included
 -- in TokenAB if and only if they are also included in TBSDataAB.
 -- The entityB field SHOULD be present in TokenAB whenever the
 -- client believes it knows the identity of the server.--})

 TBSDataAB ::= SEQUENCE {
 randomA RandomNumber,
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 authID [1] GeneralNames OPTIONAL
 }

3.3. The "TokenBA2" PDU

 TokenBA2 is used in the mutual authentication mode and is sent by the
 server to the client. TokenBA2 contains a random number, entity A’s
 name (optionally), certification information, and a signature of a
 DER-encoded value of type TBSDataBA. The certB field is to be used
 to send the server’s X.509 certificate and a related certificate
 chain to the client.

Zuccherato & Nystrom Experimental [Page 6]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 TokenBA2 ::= SEQUENCE {
 randomC RandomNumber,
 entityA [0] GeneralNames OPTIONAL,
 certB [1] CertData,
 signature SIGNATURE { TBSDataBA }
 }(CONSTRAINED BY {-- The entityA field shall be included in TokenBA2
 -- if and only if it is also included in TBSDataBA. The entityA
 -- field SHOULD be present and MUST contain the client’s name
 -- from their X.509 certificate.--})

 TBSDataBA ::= SEQUENCE {
 randomB RandomNumber,
 randomA RandomNumber,
 randomC RandomNumber,
 entityA GeneralNames OPTIONAL
 }

3.4. The "TrustedAuth" type

 TrustedAuth ::= CHOICE {
 authorityName [0] Name,
 -- SubjectName from CA certificate
 issuerNameHash [1] OCTET STRING,
 -- SHA-1 hash of Authority’s DN
 issuerKeyHash [2] OCTET STRING,
 -- SHA-1 hash of Authority’s public key
 authorityCertificate [3] Certificate,
 -- CA certificate
 pkcs15KeyHash [4] OCTET STRING
 -- PKCS #15 key hash
 }

 The TrustedAuth type can be used by a server in its initial message
 ("TokenBA1") to indicate to a client preferred certificates/public
 key pairs to use in the authentication.

 A trusted authority is identified by its name, hash of its name, hash
 of its public key, its certificate, or PKCS #15 key hash. If
 identified by its name, then the authorityName field in TrustedAuth
 contains the SubjectName of its CA certificate. If it is identified
 by the hash of its name then the issuerNameHash field contains the
 SHA-1 hash of the DER encoding of SubjectName from its CA
 certificate. If it is identified by the hash of its public key then
 the issuerKeyHash field contains the SHA-1 hash of the authority’s
 public key. The hash shall be calculated over the value (excluding
 tag and length) of the subject public key field in the issuer’s
 certificate. If it is identified by its certificate then the
 authorityCertificate field contains its CA certificate. If it is

Zuccherato & Nystrom Experimental [Page 7]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 identified by the PKCS #15 key hash then the pkcs15KeyHash field
 contains the hash of the CA’s public key as defined in PKCS #15
 [PKCS15] Section 6.1.4.

3.5. The "CertData" type

 The certification data is a choice between a set of certificates and
 a certificate URL.

 The certificate set alternative is as in [RFC2630], meaning it is
 intended that the set be sufficient to contain chains from a
 recognized "root" or "top-level certification authority" to all of
 the sender certificates with which the set is associated. However,
 there may be more certificates than necessary, or there may be fewer
 than necessary.

 Note - The precise meaning of a "chain" is outside the scope of
 this document. Some applications may impose upper limits on
 the length of a chain; others may enforce certain
 relationships between the subjects and issuers of
 certificates within a chain.

 When the certURL type is used to specify the location at which the
 user’s certificate can be found, it MUST be a non-relative URL, and
 MUST follow the URL syntax and encoding rules specified in [RFC1738].
 The URL must include both a scheme (e.g., "http" or "ldap") and a
 scheme-specific part. The scheme-specific part must include a fully
 qualified domain name or IP address as the host.

 CertData ::= CHOICE {
 certificateSet SET SIZE (1..MAX) OF Certificate,
 certURL IA5String,
 ... -- For future extensions
 }

3.6. The "RandomNumber" type

 A random number is simply defined as an octet string, at least 8
 bytes long.

 RandomNumber ::= OCTET STRING (SIZE(8..MAX))

3.7. The "SIGNATURE" type

 This is similar to the "SIGNED" parameterized type defined in
 [RFC2459], the difference being that the "SIGNATURE" type does not
 include the data to be signed.

Zuccherato & Nystrom Experimental [Page 8]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 SIGNATURE { ToBeSigned } ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 signature BIT STRING
 }(CONSTRAINED BY {-- Must be the result of applying the signing
 -- operation indicated in "algorithm" to the DER-encoded octets of
 -- a value of type -- ToBeSigned })

3.8. Other types

 The "GeneralNames" type is defined in [RFC2459].

4. Supported Algorithms

 The following signature algorithms are recognized for use with this
 mechanism, and identified by a key. Each key would be combined to
 make two possible SASL mechanisms. For example the DSA-SHA1
 algorithm would give 9798-U-DSA-SHA1, and 9798-M-DSA-SHA1. All
 algorithm names are constrained to 13 characters, to keep within the
 total SASL limit of 20 characters.

 The following table gives a list of algorithm keys, noting the object
 identifier and the body that assigned the identifier.

 Key Object Id Body
 RSA-SHA1-ENC 1.2.840.113549.1.1.5 RSA
 DSA-SHA1 1.2.840.10040.4.3 ANSI
 ECDSA-SHA1 1.2.840.10045.4.1 ANSI

 Support of the RSA-SHA1-ENC algorithm is RECOMMENDED for use with
 this mechanism.

5. Examples

5.1. IMAP4 example

 The following example shows the use of the ISO/IEC 9798-3
 Authentication SASL mechanism with IMAP4 [RFC2060].

 The base64 encoding of challenges and responses, as well as the "+ "
 preceding the responses are part of the IMAP4 profile, not part of
 this specification itself (note that the line breaks in the sample
 authenticators are for editorial clarity and are not in real
 authenticators).

Zuccherato & Nystrom Experimental [Page 9]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 S: * OK IMAP4 server ready
 C: A001 AUTHENTICATE 9798-U-RSA-SHA1
 S: + MAoECBI4l1h5h0eY
 C: MIIBAgQIIxh5I0h5RYegD4INc2FzbC1yLXVzLmNvbaFPFk1odHRwOi8vY2VydHMt
 ci11cy5jb20vY2VydD9paD1odmNOQVFFRkJRQURnWUVBZ2hBR2hZVFJna0ZqJnNu
 PUVQOXVFbFkzS0RlZ2pscjCBkzANBgkqhkiG9w0BAQUFAAOBgQCkuC2GgtYcxGG1
 NEzLA4bh5lqJGOZySACMmc+mDrV7A7KAgbpO2OuZpMCl7zvNt/L3OjQZatiX8d1X
 buQ40l+g2TJzJt06o7ogomxdDwqlA/3zp2WMohlI0MotHmfDSWEDZmEYDEA3/eGg
 kWyi1v1lEVdFuYmrTr8E4wE9hxdQrA==
 S: A001 OK Welcome, 9798-U-RSA-SHA1 authenticated user: Magnus

6. IANA Considerations

 By registering the 9798-<U/M>-<algorithm> protocols as SASL
 mechanisms, implementers will have a well-defined way of adding this
 authentication mechanism to their product. Here is the registration
 template for the SASL mechanisms defined in this memo:

 SASL mechanism names: 9798-U-RSA-SHA1-ENC
 9798-M-RSA-SHA1-ENC
 9798-U-DSA-SHA1
 9798-M-DSA-SHA1
 9798-U-ECDSA-SHA1
 9798-M-ECDSA-SHA1
 ; For a definition of the algorithms
 see Section 4 of this memo.

 Security Considerations: See Section 7 of this memo
 Published specification: This memo
 Person & email address to
 contact for further
 information: See Section 9 of this memo.
 Intended usage: COMMON
 Author/Change controller: See Section 9 of this memo.

7. Security Considerations

 The mechanisms described in this memo only provides protection
 against passive eavesdropping attacks. They do not provide session
 privacy or protection from active attacks. In particular, man-in-
 the-middle attacks aimed at session "hi-jacking" are possible.

 The random numbers used in this protocol MUST be generated by a
 cryptographically strong random number generator. If the number is
 chosen from a small set or is otherwise predictable by a third party,
 then this mechanism can be attacked.

Zuccherato & Nystrom Experimental [Page 10]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 The inclusion of the random number R_A in the signed part of TokenAB
 prevents the server from obtaining the signature of the client on
 data chosen by the server prior to the start of the authentication
 mechanism. This measure may be required, for example, when the same
 key is used by the client for purposes other than entity
 authentication. However, the inclusion of R_B in TokenBA2, whilst
 necessary for security reasons which dictate that the client should
 check that it is the same as the value sent in the first message, may
 not offer the same protection to the server, since R_B is known to
 the client before R_A is chosen. For this reason a third random
 number, R_C, is included in the TokenBA2 PDU.

8. Bibliography

 [FIPS] FIPS 196, "Entity authentication using public key
 cryptography," Federal Information Processing Standards
 Publication 196, U.S. Department of Commerce/N.I.S.T.,
 National Technical Information Service, Springfield,
 Virginia, 1997.

 [ISO1] ISO/IEC 9798-1: 1997, Information technology - Security
 techniques - Entity authentication - Part 1: General.

 [ISO3] ISO/IEC 9798-3: 1997, Information technology - Security
 techniques - Entity authentication - Part 3: Mechanisms
 using digital signature techniques.

 [PKCS15] RSA Laboratories, "The Public-Key Cryptography Standards
 - PKCS #15 v1.1: Cryptographic token information syntax
 standard", June 6, 2000.

 [RFC1738] Berners-Lee, T., Masinter L. and M. McCahill "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2060] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, December 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2195] Klensin, J., Catoe, R. and P. Krumviede "IMAP/POP
 AUTHorize Extension for Simple Challenge/Response", RFC
 2195, September 1997.

Zuccherato & Nystrom Experimental [Page 11]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 [RFC2222] J. Meyers, "Simple Authentication and Security Layer",
 RFC 2222, October 1997.

 [RFC2459] Housley, R., Ford, W., Polk, W. and D. Solo "Internet
 X.509 Public Key Infrastructure: X.509 Certificate and
 CRL Profile", RFC 2459, January 1999.

 [RFC2630] R. Housley, "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [X509] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,
 Information Technology - Open Systems Interconnection -
 The Directory: Authentication Framework.

 [X690] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998,
 Information Technology - ASN.1 Encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER).

9. Authors’ Addresses

 Robert Zuccherato
 Entrust Technologies
 1000 Innovation Drive
 Ottawa, Ontario
 Canada K2K 3E7

 Phone: +1 613 247 2598
 EMail: robert.zuccherato@entrust.com

 Magnus Nystrom
 RSA Security
 Box 10704
 121 29 Stockholm
 Sweden

 Phone: +46 8 725 0900
 EMail: magnus@rsasecurity.com

Zuccherato & Nystrom Experimental [Page 12]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

APPENDICES

A. ASN.1 modules

A.1. 1988 ASN.1 module

 SASL-9798-3-1988

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 Name, AlgorithmIdentifier, Certificate
 FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit-88(1)}

 GeneralNames
 FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit-88(2)};

 TokenBA1 ::= SEQUENCE {
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certPref [1] SEQUENCE SIZE (1..MAX) OF TrustedAuth OPTIONAL
 }

 TokenAB ::= SEQUENCE {
 randomA RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certA [1] CertData,
 authID [2] GeneralNames OPTIONAL,
 signature SEQUENCE {
 algorithm AlgorithmIdentifier,
 signature BIT STRING
 }
 } -- The entityB and authID fields shall be included in TokenAB
 -- if and only if they are also included in TBSDataAB. The entityB
 -- field SHOULD be present in TokenAB whenever the client
 -- believes it knows the identity of the server.
 -- The signature operation shall be done on a
 -- DER-encoded value of type TBSDataAB.

Zuccherato & Nystrom Experimental [Page 13]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 TBSDataAB ::= SEQUENCE {
 randomA RandomNumber,
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 authID [1] GeneralNames OPTIONAL
 }

 TokenBA2 ::= SEQUENCE {
 randomC RandomNumber,
 entityA [0] GeneralNames OPTIONAL,
 certB [1] CertData,
 signature SEQUENCE {
 algorithm AlgorithmIdentifier,
 signature BIT STRING
 }
 } -- The entityA field shall be included in TokenBA2
 -- if and only if it is also included in TBSDataBA. The entityA
 -- field SHOULD be present and MUST contain the client’s name
 -- from their X.509 certificate. The signature shall be done
 -- on a DER-encoded value of type TBSDataBA.

 TBSDataBA ::= SEQUENCE {
 randomB RandomNumber,
 randomA RandomNumber,
 randomC RandomNumber,
 entityA GeneralNames OPTIONAL
 }

 TrustedAuth ::= CHOICE {
 authorityName [0] Name,
 -- SubjectName from CA certificate
 issuerNameHash [1] OCTET STRING,
 -- SHA-1 hash of Authority’s DN
 issuerKeyHash [2] OCTET STRING,
 -- SHA-1 hash of Authority’s public key
 authorityCertificate [3] Certificate,
 -- CA certificate
 pkcs15KeyHash [4] OCTET STRING
 -- PKCS #15 key hash
 }

 CertData ::= CHOICE {
 certificateSet SET SIZE (1..MAX) OF Certificate,
 certURL IA5String
 }

 RandomNumber ::= OCTET STRING (SIZE(8..MAX))

Zuccherato & Nystrom Experimental [Page 14]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 END

A.2. 1997 ASN.1 module

 SASL-9798-3-1997

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 AlgorithmIdentifier, Name, Certificate
 FROM PKIX1Explicit93 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit-93(3)}

 GeneralNames
 FROM PKIX1Implicit93 {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit-93(4)};

 TokenBA1 ::= SEQUENCE {
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certPref [1] SEQUENCE SIZE (1..MAX) OF TrustedAuth OPTIONAL
 }

 TokenAB ::= SEQUENCE {
 randomA RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 certA [1] CertData,
 authID [2] GeneralNames OPTIONAL,
 signature SIGNATURE { TBSDataAB }
 }(CONSTRAINED BY {-- The entityB and authID fields shall be included
 -- in TokenAB if and only if they are also included in TBSDataAB.
 -- The entityB field SHOULD be present in TokenAB whenever the
 -- client believes it knows the identity of the server.--})

 TBSDataAB ::= SEQUENCE {
 randomA RandomNumber,
 randomB RandomNumber,
 entityB [0] GeneralNames OPTIONAL,
 authID [1] GeneralNames OPTIONAL
 }

Zuccherato & Nystrom Experimental [Page 15]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

 TokenBA2 ::= SEQUENCE {
 randomC RandomNumber,
 entityA [0] GeneralNames OPTIONAL,
 certB [1] CertData,
 signature SIGNATURE { TBSDataBA }
 }(CONSTRAINED BY {-- The entityA field shall be included in TokenBA2
 -- if and only if it is also included in TBSDataBA. The entityA
 -- field SHOULD be present and MUST contain the client’s name
 -- from their X.509 certificate.--})

 TBSDataBA ::= SEQUENCE {
 randomB RandomNumber,
 randomA RandomNumber,
 randomC RandomNumber,
 entityA GeneralNames OPTIONAL
 }

 TrustedAuth ::= CHOICE {
 authorityName [0] Name,
 -- SubjectName from CA certificate
 issuerNameHash [1] OCTET STRING,
 -- SHA-1 hash of Authority’s DN
 issuerKeyHash [2] OCTET STRING,
 -- SHA-1 hash of Authority’s public key
 authorityCertificate [3] Certificate,
 -- CA certificate
 pkcs15KeyHash [4] OCTET STRING
 -- PKCS #15 key hash
 }

 CertData ::= CHOICE {
 certificateSet SET SIZE (1..MAX) OF Certificate,
 certURL IA5String,
 ... -- For future extensions
 }

 RandomNumber ::= OCTET STRING (SIZE(8..MAX))

 SIGNATURE { ToBeSigned } ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 signature BIT STRING
 }(CONSTRAINED BY {-- Must be the result of applying the signing
 -- operation indicated in "algorithm" to the DER-encoded octets of
 -- a value of type -- ToBeSigned })

 END

Zuccherato & Nystrom Experimental [Page 16]

RFC 3163 ISO/IEC 9798-3 Authentication SASL Mechanism August 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Zuccherato & Nystrom Experimental [Page 17]

