
Network Working Group P. Gutmann
Request for Comments: 3211 University of Auckland
Category: Standards Track December 2001

 Password-based Encryption for CMS

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document provides a method of encrypting data using user-
 supplied passwords and, by extension, any form of variable-length
 keying material which is not necessarily an algorithm-specific
 fixed-format key. The Cryptographic Message Syntax data format does
 not currently contain any provisions for password-based data
 encryption.

1. Introduction

 This document describes a password-based content encryption mechanism
 for CMS. This is implemented as a new RecipientInfo type and is an
 extension to the RecipientInfo types currently defined in RFC 2630.

 The format of the messages are described in ASN.1 [ASN1].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119.

Gutmann Standards Track [Page 1]

RFC 3211 Password-based Encryption for CMS December 2001

1.1 Password-based Content Encryption

 CMS currently defined three recipient information types for public-
 key key wrapping (KeyTransRecipientInfo), conventional key wrapping
 (KEKRecipientInfo), and key agreement (KeyAgreeRecipientInfo). The
 recipient information described here adds a fourth type,
 PasswordRecipientInfo, which provides for password-based key
 wrapping.

1.2 RecipientInfo Types

 The new recipient information type is an extension to the
 RecipientInfo type defined in section 6.2 of CMS, extending the types
 to:

 RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari [1] KeyAgreeRecipientInfo,
 kekri [2] KEKRecipientInfo,
 pwri [3] PasswordRecipientinfo -- New RecipientInfo type
 }

 Although the recipient information generation process is described in
 terms of a password-based operation (since this will be its most
 common use), the transformation employed is a general-purpose key
 derivation one which allows any type of keying material to be
 converted into a key specific to a particular content-encryption
 algorithm. Since the most common use for password-based encryption
 is to encrypt files which are stored locally (rather than being
 transmitted across a network), the term "recipient" is somewhat
 misleading, but is used here because the other key transport
 mechanisms have always been described in similar terms.

1.2.1 PasswordRecipientInfo Type

 Recipient information using a user-supplied password or previously
 agreed-upon key is represented in the type PasswordRecipientInfo.
 Each instance of PasswordRecipientInfo will transfer the content-
 encryption key (CEK) to one or more recipients who have the
 previously agreed-upon password or key-encryption key (KEK).

 PasswordRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- Always set to 0
 keyDerivationAlgorithm
 [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

Gutmann Standards Track [Page 2]

RFC 3211 Password-based Encryption for CMS December 2001

 The fields of type PasswordRecipientInfo have the following meanings:

 version is the syntax version number. It MUST be 0. Details of
 the CMSVersion type are discussed in CMS [RFC2630], section
 10.2.5.

 keyDerivationAlgorithm identifies the key-derivation algorithm,
 and any associated parameters, used to derive the KEK from the
 user-supplied password. If this field is absent, the KEK is
 supplied from an external source, for example a crypto token such
 as a smart card.

 keyEncryptionAlgorithm identifies the key-encryption algorithm,
 and any associated parameters, used to encrypt the CEK with the
 KEK.

 encryptedKey is the result of encrypting the content-encryption
 key with the KEK.

1.2.2 Rationale

 Password-based key wrapping is a two-stage process, a first stage in
 which a user-supplied password is converted into a KEK if required,
 and a second stage in which the KEK is used to encrypt a CEK. These
 two stages are identified by the two algorithm identifiers. Although
 the PKCS #5v2 standard [RFC2898] goes one step further to wrap these
 up into a single algorithm identifier, this design is particular to
 that standard and may not be applicable for other key wrapping
 mechanisms. For this reason the two steps are specified separately.

 The current format doesn’t provide any means of differentiating
 between multiple password recipient infos, which would occur for
 example if two passwords are used to encrypt the same data.
 Unfortunately there is a lack of existing practice in this area,
 since typical applications follow the model of encrypting data such
 as a file with a single password obtained from the user. Without any
 clear requirements, an appropriate multiple password mechanism would
 be difficult (perhaps impossible) to define at this time. If
 sufficient demand emerges then this may be addressed in a future
 version of this document, for example by adding an optional
 identification field of an appropriate form.

2 Supported Algorithms

 This section lists the algorithms that must be implemented.
 Additional algorithms that should be implemented are also included.

Gutmann Standards Track [Page 3]

RFC 3211 Password-based Encryption for CMS December 2001

2.1 Key Derivation Algorithms

 These algorithms are used to convert the password into a KEK. The
 key derivation algorithms are:

 KeyDerivationAlgorithmIdentifer ::= AlgorithmIdentifier

 Conforming implementations MUST include PBKDF2 [RFC2898]. Appendix B
 contains a more precise definition of the allowed algorithm type than
 is possible using 1988 ASN.1.

2.2 Key Encryption Algorithms

 These algorithms are used to encrypt the CEK using the derived KEK.
 The key encryption algorithms are:

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

 The PasswordRecipientInfo key encryption algorithm identifier is:

 id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

 The AlgorithmIdentifier parameters field for this algorithm contains
 the KEK encryption algorithm used with the the key wrap algorithm
 specified in section 2.3.

 There is no requirement that the CEK algorithm match the KEK
 encryption algorithm, although care should be taken to ensure that,
 if different algorithms are used, they offer an equivalent level of
 security (for example wrapping a Triple-DES key with an RC2/40 key
 leads to a severe impedance mismatch in encryption strength).

 Conforming implementations MUST implement the id-alg-PWRI-KEK key
 wrap algorithm. For the KEK encryption algorithms used by id-alg-
 PWRI-KEK, conforming implementations MUST include Triple-DES in CBC
 mode and MAY include other algorithms such as AES, CAST-128, RC5,
 IDEA, Skipjack, Blowfish, and encryption modes as required.
 Implementations SHOULD NOT include any KSG (keystream generator)
 ciphers such as RC4 or a block cipher in OFB mode, and SHOULD NOT
 include a block cipher in ECB mode.

2.2.1 Rationale

 The use of a level of indirection in specifying the
 KeyEncryptionAlgorithmIdentifier allows alternative wrapping
 algorithms to be used in the future. If the KEK algorithm were
 specified directly in this field then any use of an alternative

Gutmann Standards Track [Page 4]

RFC 3211 Password-based Encryption for CMS December 2001

 wrapping algorithm would require a change to the
 PasswordRecipientInfo structure rather than simply a change to the
 key encryption algorithm identifier.

 The parameter field for this algorithm identifier could be specified
 to default to triple-DES, however due to the confusion over NULL vs
 absent parameters in algorithm identifiers it’s left explicit with no
 default value.

2.3.1 Key Wrap

 The key wrap algorithm encrypts a CEK with a KEK in a manner which
 ensures that every bit of plaintext effects every bit of ciphertext.
 This makes it equivalent in function to the package transform
 [PACKAGE] without requiring additional mechanisms or resources such
 as hash functions or cryptographically strong random numbers. The
 key wrap algorithm is performed in two phases, a first phase which
 formats the CEK into a form suitable for encryption by the KEK, and a
 second phase which wraps the formatted CEK using the KEK.

 Key formatting: Create a formatted CEK block consisting of the
 following:

 1. A one-byte count of the number of bytes in the CEK.

 2. A check value containing the bitwise complement of the first
 three bytes of the CEK.

 3. The CEK.

 4. Enough random padding data to make the CEK data block a
 multiple of the KEK block length and at least two KEK cipher
 blocks long (the fact that 32 bits of count+check value are
 used means that even with a 40-bit CEK, the resulting data size
 will always be at least two (64-bit) cipher blocks long). The
 padding data does not have to be cryptographically strong,
 although unpredictability helps. Note that PKCS #5 padding is
 not used, since the length of the data is already known.

 The formatted CEK block then looks as follows:

 CEK byte count || check value || CEK || padding (if required)

 Key wrapping:

 1. Encrypt the padded key using the KEK.

Gutmann Standards Track [Page 5]

RFC 3211 Password-based Encryption for CMS December 2001

 2. Without resetting the IV (that is, using the last ciphertext
 block as the IV), encrypt the encrypted padded key a second
 time.

 The resulting double-encrypted data is the EncryptedKey.

2.3.2 Key Unwrap

 Key unwrapping:

 1. Using the n-1’th ciphertext block as the IV, decrypt the n’th
 ciphertext block.

 2. Using the decrypted n’th ciphertext block as the IV, decrypt
 the 1st ... n-1’th ciphertext blocks. This strips the outer
 layer of encryption.

 3. Decrypt the inner layer of encryption using the KEK.

 Key format verification:

 1a. If the CEK byte count is less than the minimum allowed key
 size (usually 5 bytes for 40-bit keys) or greater than the
 wrapped CEK length or not valid for the CEK algorithm (eg not
 16 or 24 bytes for triple DES), the KEK was invalid.

 1b. If the bitwise complement of the key check value doesn’t match
 the first three bytes of the key, the KEK was invalid.

2.3.3 Example

 Given a content-encryption algorithm of Skipjack and a KEK algorithm
 of Triple-DES, the wrap steps are as follows:

 1. Set the first 4 bytes of the CEK block to the Skipjack key size
 (10 bytes) and the bitwise complement of the first three bytes
 of the CEK.

 2. Append the 80-bit (10-byte) Skipjack CEK and pad the total to
 16 bytes (two triple-DES blocks) using 2 bytes of random data.

 2. Using the IV given in the KeyEncryptionAlgorithmIdentifer,
 encrypted the padded Skipjack key.

 3. Without resetting the IV, encrypt the encrypted padded key a
 second time.

Gutmann Standards Track [Page 6]

RFC 3211 Password-based Encryption for CMS December 2001

 The unwrap steps are as follows:

 1. Using the first 8 bytes of the double-encrypted key as the IV,
 decrypt the second 8 bytes.

 2. Without resetting the IV, decrypt the first 8 bytes.

 3. Decrypt the inner layer of encryption using the the IV given in
 the KeyEncryptionAlgorithmIdentifer to recover the padded
 Skipjack key.

 4. If the length byte isn’t equal to the Skipjack key size (80
 bits or 10 bytes) or the bitwise complement of the check bytes
 doesn’t match the first three bytes of the CEK, the KEK was
 invalid.

2.3.4 Rationale for the Double Wrapping

 If many CEKs are encrypted in a standard way with the same KEK and
 the KEK has a 64-bit block size then after about 2^32 encryptions
 there is a high probability of a collision between different blocks
 of encrypted CEKs. If an opponent manages to obtain a CEK, they may
 be able to solve for other CEKs. The double-encryption wrapping
 process, which makes every bit of ciphertext dependent on every bit
 of the CEK, eliminates this collision problem (as well as preventing
 other potential problems such as bit-flipping attacks). Since the IV
 is applied to the inner layer of encryption, even wrapping the same
 CEK with the same KEK will result in a completely different wrapped
 key each time.

 An additional feature of the double wrapping is that it doesn’t
 require the use of any extra algorithms such as hash algorithms in
 addition to the wrapping algorithm itself, allowing it to be
 implemented in devices which only support one type of encryption
 algorithm. A typical example of such a device is a crypto token such
 as a smart card which often only supports a single block cipher and a
 single public-key algorithm, making it impossible to wrap keys if the
 use of an additional algorithm were required.

3. Test Vectors

 This section contains two sets of test vectors, a very basic set for
 DES which can be used to verify correctness and which uses an
 algorithm which is freely exportable from the US, and a stress-test
 version which uses very long passphrase and key sizes and a mixture
 of algorithms which can be used to verify the behaviour in extreme
 cases.

Gutmann Standards Track [Page 7]

RFC 3211 Password-based Encryption for CMS December 2001

 The basic test contains two subtests, a known-answer test for the key
 derivation stage and a full test of the key wrapping. Both tests use
 a DES-CBC key derived from the password "password" with salt { 12 34
 56 78 78 56 34 12 } using 5 iterations of PBKDF2. In the known
 answer test the IV is set to all zeroes (equivalent to using ECB) and
 used to encrypt an all-zero data block.

 The following values are obtained for the known-answer test:

 PKCS #5v2 values:

 input 70 61 73 73 77 6f 72 64
 passphrase: "password"
 input salt: 12 34 56 78 78 56 34 12
 iterations: 5

 output key: D1 DA A7 86 15 F2 87 E6
 known answer: 9B BD 78 FC 11 A3 A9 08

 The following values are obtained when wrapping a 64-bit (parity-
 adjusted) DES-EBC key:

 PKCS #5v2 values:

 input 70 61 73 73 77 6f 72 64
 passphrase: "password"
 input salt: 12 34 56 78 78 56 34 12
 iterations: 5

 output key: D1 DA A7 86 15 F2 87 E6

 CEK formatting phase:

 length byte: 08
 key check: 73 9D 83
 CEK: 8C 62 7C 89 73 23 A2 F8
 padding: C4 36 F5 41

 complete 08 73 9D 83 8C 62 7C 89 73 23 A2 F8 C4 36 F5 41
 CEK block:

Gutmann Standards Track [Page 8]

RFC 3211 Password-based Encryption for CMS December 2001

 Key wrap phase (wrap CEK block using DES key):

 IV: EF E5 98 EF 21 B3 3D 6D

 first encr. 06 A0 43 86 1E 82 88 E4 8B 59 9E B9 76 10 00 D4
 pass output:
 second encr. B8 1B 25 65 EE 37 3C A6 DE DC A2 6A 17 8B 0C 10
 pass output:

 ASN.1 encoded PasswordRecipientInfo:

 0 A3 68: [3] {
 2 02 1: INTEGER 0
 5 A0 26: [0] {
 7 06 9: OBJECT IDENTIFIER id-PBKDF2 (1 2 840 113549 1 5 12)
 18 30 13: SEQUENCE {
 20 04 8: OCTET STRING
 : 12 34 56 78 78 56 34 12
 30 02 1: INTEGER 5
 : }
 : }
 34 30 32: SEQUENCE {
 36 06 11: OBJECT IDENTIFIER id-alg-PWRI-KEK
 : (1 2 840 113549 1 9 16 3 9)
 33 30 17: SEQUENCE {
 35 06 5: OBJECT IDENTIFIER des-CBC (1 3 14 3 2 7)
 42 04 8: OCTET STRING
 : EF E5 98 EF 21 B3 3D 6D
 : }
 : }
 68 04 16: OCTET STRING
 : B8 1B 25 65 EE 37 3C A6 DE DC A2 6A 17 8B 0C 10
 : }

Gutmann Standards Track [Page 9]

RFC 3211 Password-based Encryption for CMS December 2001

 The following values are obtained when wrapping a 256-bit key (for
 example one for AES or Blowfish) using a triple DES-CBC key derived
 from the passphrase "All n-entities must communicate with other
 n-entities via n-1 entiteeheehees" with salt
 { 12 34 56 78 78 56 34 12 } using 500 iterations of PBKDF2.

 PKCS #5v2 values:

 input 41 6C 6C 20 6E 2D 65 6E 74 69 74 69 65 73 20 6D
 passphrase: 75 73 74 20 63 6F 6D 6D 75 6E 69 63 61 74 65 20
 77 69 74 68 20 6F 74 68 65 72 20 6E 2d 65 6E 74
 69 74 69 65 73 20 76 69 61 20 6E 2D 31 20 65 6E
 74 69 74 65 65 68 65 65 68 65 65 73
 "All n-entities must communicate with other "
 "n-entities via n-1 entiteeheehees"
 input
 salt: 12 34 56 78 78 56 34 12
 iterations: 500

 output 6A 89 70 BF 68 C9 2C AE A8 4A 8D F2 85 10 85 86
 3DES key: 07 12 63 80 CC 47 AB 2D

 CEK formatting phase:

 length byte: 20
 key check: 73 9C 82
 CEK: 8C 63 7D 88 72 23 A2 F9 65 B5 66 EB 01 4B 0F A5
 D5 23 00 A3 F7 EA 40 FF FC 57 72 03 C7 1B AF 3B
 padding: FA 06 0A 45

 complete 20 73 9C 82 8C 63 7D 88 72 23 A2 F9 65 B5 66 EB
 CEK block: 01 4B 0F A5 D5 23 00 A3 F7 EA 40 FF FC 57 72 03
 C7 1B AF 3B FA 06 0A 45

 Key wrap phase (wrap CEK block using 3DES key):

 IV: BA F1 CA 79 31 21 3C 4E

 first encr. F8 3F 9E 16 78 51 41 10 64 27 65 A9 F5 D8 71 CD
 pass output: 27 DB AA 41 E7 BD 80 48 A9 08 20 FF 40 82 A2 80
 96 9E 65 27 9E 12 6A EB

 second encr. C0 3C 51 4A BD B9 E2 C5 AA C0 38 57 2B 5E 24 55
 pass output: 38 76 B3 77 AA FB 82 EC A5 A9 D7 3F 8A B1 43 D9
 EC 74 E6 CA D7 DB 26 0C

Gutmann Standards Track [Page 10]

RFC 3211 Password-based Encryption for CMS December 2001

 ASN.1 encoded PasswordRecipientInfo:

 0 A3 96: [3] {
 2 02 1: INTEGER 0
 5 A0 27: [0] {
 7 06 9: OBJECT IDENTIFIER id-PBKDF2 (1 2 840 113549 1 5 12)
 18 30 14: SEQUENCE {
 20 04 8: OCTET STRING
 : 12 34 56 78 78 56 34 12
 30 02 2: INTEGER 500
 : }
 : }
 34 30 35: SEQUENCE {
 36 06 11: OBJECT IDENTIFIER id-alg-PWRI-KEK
 : (1 2 840 113549 1 9 16 3 9)
 34 30 20: SEQUENCE {
 36 06 8: OBJECT IDENTIFIER des-EDE3-CBC (1 2 840 113549 3 7)
 46 04 8: OCTET STRING
 : BA F1 CA 79 31 21 3C 4E
 : }
 : }
 71 04 40: OCTET STRING
 : C0 3C 51 4A BD B9 E2 C5 AA C0 38 57 2B 5E 24 55
 : 38 76 B3 77 AA FB 82 EC A5 A9 D7 3F 8A B1 43 D9
 : EC 74 E6 CA D7 DB 26 0C
 : }

4. Security Considerations

 The security of this recipient information type rests on the security
 of the underlying mechanisms employed, for which further information
 can be found in RFC 2630 and PKCS5v2. More importantly, however,
 when used with a password the security of this information type rests
 on the entropy of the user-selected password, which is typically
 quite low. Pass phrases (as opposed to simple passwords) are
 STRONGLY RECOMMENDED, although it should be recognized that even with
 pass phrases it will be difficult to use this recipient information
 type to derive a KEK with sufficient entropy to properly protect a
 128-bit (or higher) CEK.

Gutmann Standards Track [Page 11]

RFC 3211 Password-based Encryption for CMS December 2001

5. IANA Considerations

 The PasswordRecipientInfo key encryption algorithms are identified by
 object identifiers (OIDs). OIDs were assigned from an arc
 contributed to the S/MIME Working Group by the RSA Security. Should
 additional encryption algorithms be introduced, the advocates for
 such algorithms are expected to assign the necessary OIDs from their
 own arcs. No action by the IANA is necessary for this document or
 any anticipated updates.

Acknowledgments

 The author would like to thank Jim Schaad, Phil Griffin, and the
 members of the S/MIME Working Group for their comments and feedback
 on this document.

Author Address

 Peter Gutmann
 University of Auckland
 Private Bag 92019
 Auckland, New Zealand

 EMail: pgut001@cs.auckland.ac.nz

References

 [ASN1] CCITT Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1), 1988.

 [RFC2119] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2630] Housley, R., "Cryptographic Message Syntax", RFC 2630, June
 1999.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification, Version 2.0", RFC 2898, September 2000.

 [PACKAGE] All-or-Nothing Encryption and the Package Transform, R.
 Rivest, Proceedings of Fast Software Encryption ’97, Haifa,
 Israel, January 1997.

Gutmann Standards Track [Page 12]

RFC 3211 Password-based Encryption for CMS December 2001

Appendix A: ASN.1:1988 Module

PasswordRecipientInfo-88
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) pwri(17) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS

 AlgorithmIdentifier
 FROM AuthenticationFramework { joint-iso-itu-t ds(5) module(1)
 authenticationFramework(7) 3 }

 CMSVersion, EncryptedKey
 FROM CryptographicMessageSyntax { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) cms(1) };

-- The following PDU is defined in PKCS5 { iso(1) member-body(2)
-- us(840) rsadsi(113549) pkcs(1) pkcs-5(5) modules(16)
-- pkcs5v2-0(1) }, however it can’t be imported because because
-- it’s specified in 1994/1997 ASN.1. Because of this it’s copied
-- here from the source but rephrased as 1988 ASN.1. Further
-- details are given in [RFC 2898].

PBKDF2-params ::= SEQUENCE {
 salt OCTET STRING,
 iterationCount INTEGER (1..MAX),
 keyLength INTEGER (1..MAX) OPTIONAL,
 prf AlgorithmIdentifier
 DEFAULT { algorithm id-hmacWithSHA1, parameters NULL } }

-- The PRF algorithm is also defined in PKCS5 and can neither be
-- imported nor expressed in 1988 ASN.1, however it is encoded as
-- an AlgorithmIdentifier with the OID:

id-hmacWithSHA1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) digestAlgorithm(2) 7 }

-- and NULL parameters. Further details are given in [RFC 2898].

-- Implementation note: Because of the inability to precisely
-- specify the PBKDF2 PDU or its parameters in 1988 ASN.1, it is
-- likely that implementors will also encounter alternative
-- interpretations of these parameters, usually using an alternate
-- OID from the IPsec arc which is generally used for HMAC-SHA1:

Gutmann Standards Track [Page 13]

RFC 3211 Password-based Encryption for CMS December 2001

--
-- hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1)
-- identified-organization(3) dod(6) internet(1) security(5)
-- mechanisms(5) 8 1 2 }
--
-- with absent (rather than NULL) parameters.

-- The PasswordRecipientInfo

id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

PasswordRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- Always set to 0
 keyDerivationAlgorithm
 [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier

KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

END -- PasswordRecipientInfo-88 --

Appendix B: ASN.1:1997 Module

This appendix contains the same information as Appendix A in a more
recent (and precise) ASN.1 notation, however Appendix A takes
precedence in case of conflict.

PasswordRecipientInfo-97
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) pwri(18) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS

 id-PBKDF2, PBKDF2-params,
 FROM PKCS5 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-5(5) }

 CMSVersion, EncryptedKey, des-ede3-cbc, CBCParameter
 FROM CryptographicMessageSyntax { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) cms(1) };

Gutmann Standards Track [Page 14]

RFC 3211 Password-based Encryption for CMS December 2001

id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

PasswordRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- Always set to 0
 keyDerivationAlgorithm
 [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

KeyDerivationAlgorithmIdentifier ::=
 AlgorithmIdentifier {{ KeyDerivationAlgorithms }}

KeyDerivationAlgorithms ALGORITHM ::= {
 { OID id-PBKDF2 PARMS PBKDF2-params },
 ...
 }

KeyEncryptionAlgorithmIdentifier ::=
 AlgorithmIdentifier {{ KeyEncryptionAlgorithms }}

KeyEncryptionAlgorithms ALGORITHM ::= {
 { OID id-alg-PWRI-KEK PARMS
 AlgorithmIdentifier {{ PWRIAlgorithms }} },
 ...
 }

-- Algorithm identifiers for algorithms used with the
-- id-alg-PWRI-KEK key wrap algorithm. Currently only 3DES is a
-- MUST, all others are optional

PWRIAlgorithms ALGORITHM ::= {
 { OID des-ede3-cbc PARMS CBCParameter },
 ...
 }

-- Supporting definitions. We could also pull in the
-- AlgorithmIdentifier from an appropriately recent X.500 module (or
-- wherever) but it’s just as easy (and more convenient for readers)
-- to provide a definition here

AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
 algorithm ALGORITHM.&id({IOSet}),
 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
 }

ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,

Gutmann Standards Track [Page 15]

RFC 3211 Password-based Encryption for CMS December 2001

 &Type OPTIONAL
 }
 WITH SYNTAX { OID &id [PARMS &Type] }

END -- PasswordRecipientInfo-97 --

Gutmann Standards Track [Page 16]

RFC 3211 Password-based Encryption for CMS December 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gutmann Standards Track [Page 17]

