
Network Working Group Y. Bernet
Request for Comments: 3290 Microsoft
Category: Informational S. Blake
 Ericsson
 D. Grossman
 Motorola
 A. Smith
 Harbour Networks
 May 2002

 An Informal Management Model for Diffserv Routers

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document proposes an informal management model of Differentiated
 Services (Diffserv) routers for use in their management and
 configuration. This model defines functional datapath elements
 (e.g., classifiers, meters, actions, marking, absolute dropping,
 counting, multiplexing), algorithmic droppers, queues and schedulers.
 It describes possible configuration parameters for these elements and
 how they might be interconnected to realize the range of traffic
 conditioning and per-hop behavior (PHB) functionalities described in
 the Diffserv Architecture.

Table of Contents

 1 Introduction ... 3
 2 Glossary ... 4
 3 Conceptual Model ... 7
 3.1 Components of a Diffserv Router 7
 3.1.1 Datapath ... 7
 3.1.2 Configuration and Management Interface 9
 3.1.3 Optional QoS Agent Module 10
 3.2 Diffserv Functions at Ingress and Egress 10
 3.3 Shaping and Policing 12
 3.4 Hierarchical View of the Model 12
 4 Classifiers .. 13

Bernet, et. al. Informational [Page 1]

RFC 3290 Diffserv Informal Management Model May 2002

 4.1 Definition ... 13
 4.1.1 Filters .. 15
 4.1.2 Overlapping Filters 15
 4.2 Examples ... 16
 4.2.1 Behavior Aggregate (BA) Classifier 16
 4.2.2 Multi-Field (MF) Classifier 17
 4.2.3 Free-form Classifier 17
 4.2.4 Other Possible Classifiers 18
 5 Meters ... 19
 5.1 Examples ... 20
 5.1.1 Average Rate Meter 20
 5.1.2 Exponential Weighted Moving Average (EWMA) Meter 21
 5.1.3 Two-Parameter Token Bucket Meter 21
 5.1.4 Multi-Stage Token Bucket Meter 22
 5.1.5 Null Meter ... 23
 6 Action Elements .. 23
 6.1 DSCP Marker .. 24
 6.2 Absolute Dropper ... 24
 6.3 Multiplexor .. 25
 6.4 Counter .. 25
 6.5 Null Action .. 25
 7 Queuing Elements ... 25
 7.1 Queuing Model .. 26
 7.1.1 FIFO Queue ... 27
 7.1.2 Scheduler .. 28
 7.1.3 Algorithmic Dropper 30
 7.2 Sharing load among traffic streams using queuing 33
 7.2.1 Load Sharing ... 34
 7.2.2 Traffic Priority ... 35
 8 Traffic Conditioning Blocks (TCBs) 35
 8.1 TCB .. 36
 8.1.1 Building blocks for Queuing 37
 8.2 An Example TCB ... 37
 8.3 An Example TCB to Support Multiple Customers 42
 8.4 TCBs Supporting Microflow-based Services 44
 8.5 Cascaded TCBs .. 47
 9 Security Considerations 47
 10 Acknowledgments ... 47
 11 References .. 47
 Appendix A. Discussion of Token Buckets and Leaky Buckets 50
 Authors’ Addresses ... 55
 Full Copyright Statement.. 56

Bernet, et. al. Informational [Page 2]

RFC 3290 Diffserv Informal Management Model May 2002

1. Introduction

 Differentiated Services (Diffserv) [DSARCH] is a set of technologies
 which allow network service providers to offer services with
 different kinds of network quality-of-service (QoS) objectives to
 different customers and their traffic streams. This document uses
 terminology defined in [DSARCH] and [NEWTERMS] (some of these
 definitions are included here in Section 2 for completeness).

 The premise of Diffserv networks is that routers within the core of
 the network handle packets in different traffic streams by forwarding
 them using different per-hop behaviors (PHBs). The PHB to be applied
 is indicated by a Diffserv codepoint (DSCP) in the IP header of each
 packet [DSFIELD]. The DSCP markings are applied either by a trusted
 upstream node, e.g., a customer, or by the edge routers on entry to
 the Diffserv network.

 The advantage of such a scheme is that many traffic streams can be
 aggregated to one of a small number of behavior aggregates (BA),
 which are each forwarded using the same PHB at the router, thereby
 simplifying the processing and associated storage. In addition,
 there is no signaling other than what is carried in the DSCP of each
 packet, and no other related processing that is required in the core
 of the Diffserv network since QoS is invoked on a packet-by-packet
 basis.

 The Diffserv architecture enables a variety of possible services
 which could be deployed in a network. These services are reflected
 to customers at the edges of the Diffserv network in the form of a
 Service Level Specification (SLS - see [NEWTERMS]). Whilst further
 discussion of such services is outside the scope of this document
 (see [PDBDEF]), the ability to provide these services depends on the
 availability of cohesive management and configuration tools that can
 be used to provision and monitor a set of Diffserv routers in a
 coordinated manner. To facilitate the development of such
 configuration and management tools it is helpful to define a
 conceptual model of a Diffserv router that abstracts away
 implementation details of particular Diffserv routers from the
 parameters of interest for configuration and management. The purpose
 of this document is to define such a model.

 The basic forwarding functionality of a Diffserv router is defined in
 other specifications; e.g., [DSARCH, DSFIELD, AF-PHB, EF-PHB].

 This document is not intended in any way to constrain or to dictate
 the implementation alternatives of Diffserv routers. It is expected
 that router implementers will demonstrate a great deal of variability
 in their implementations. To the extent that implementers are able

Bernet, et. al. Informational [Page 3]

RFC 3290 Diffserv Informal Management Model May 2002

 to model their implementations using the abstractions described in
 this document, configuration and management tools will more readily
 be able to configure and manage networks incorporating Diffserv
 routers of assorted origins.

 This model is intended to be abstract and capable of representing the
 configuration parameters important to Diffserv functionality for a
 variety of specific router implementations. It is not intended as a
 guide to system implementation nor as a formal modeling description.
 This model serves as the rationale for the design of an SNMP MIB
 [DSMIB] and for other configuration interfaces (e.g., other policy-
 management protocols) and, possibly, more detailed formal models
 (e.g., [QOSDEVMOD]): these should all be consistent with this model.

 o Section 3 starts by describing the basic high-level blocks of a
 Diffserv router. It explains the concepts used in the model,
 including the hierarchical management model for these blocks which
 uses low-level functional datapath elements such as Classifiers,
 Actions, Queues.

 o Section 4 describes Classifier elements.

 o Section 5 discusses Meter elements.

 o Section 6 discusses Action elements.

 o Section 7 discusses the basic queuing elements of Algorithmic
 Droppers, Queues, and Schedulers and their functional behaviors
 (e.g., traffic shaping).

 o Section 8 shows how the low-level elements can be combined to
 build modules called Traffic Conditioning Blocks (TCBs) which are
 useful for management purposes.

 o Section 9 discusses security concerns.

 o Appendix A contains a brief discussion of the token bucket and
 leaky bucket algorithms used in this model and some of the
 practical effects of the use of token buckets within the Diffserv
 architecture.

2. Glossary

 This document uses terminology which is defined in [DSARCH]. There
 is also current work-in-progress on this terminology in the IETF and
 some of the definitions provided here are taken from that work. Some

Bernet, et. al. Informational [Page 4]

RFC 3290 Diffserv Informal Management Model May 2002

 of the terms from these other references are defined again here in
 order to provide additional detail, along with some new terms
 specific to this document.

 Absolute A functional datapath element which simply discards all
 Dropper packets arriving at its input.

 Algorithmic A functional datapath element which selectively
 Dropper discards packets that arrive at its input, based on a
 discarding algorithm. It has one data input and one
 output.

 Classifier A functional datapath element which consists of filters
 that select matching and non-matching packets. Based
 on this selection, packets are forwarded along the
 appropriate datapath within the router. A classifier,
 therefore, splits a single incoming traffic stream into
 multiple outgoing streams.

 Counter A functional datapath element which updates a packet
 counter and also an octet counter for every
 packet that passes through it.

 Datapath A conceptual path taken by packets with particular
 characteristics through a Diffserv router. Decisions
 as to the path taken by a packet are made by functional
 datapath elements such as Classifiers and Meters.

 Filter A set of wildcard, prefix, masked, range and/or exact
 match conditions on the content of a packet’s
 headers or other data, and/or on implicit or derived
 attributes associated with the packet. A filter is
 said to match only if each condition is satisfied.

 Functional A basic building block of the conceptual router.
 Datapath Typical elements are Classifiers, Meters, Actions,
 Element Algorithmic Droppers, Queues and Schedulers.

 Multiplexer A multiplexor.
 (Mux)

 Multiplexor A functional datapath element that merges multiple
 (Mux) traffic streams (datapaths) into a single traffic
 stream (datapath).

Bernet, et. al. Informational [Page 5]

RFC 3290 Diffserv Informal Management Model May 2002

 Non-work- A property of a scheduling algorithm such that it
 conserving services packets no sooner than a scheduled departure
 time, even if this means leaving packets queued
 while the output (e.g., a network link or connection
 to the next element) is idle.

 Policing The process of comparing the arrival of data packets
 against a temporal profile and forwarding, delaying
 or dropping them so as to make the output stream
 conformant to the profile.

 Queuing A combination of functional datapath elements
 Block that modulates the transmission of packets belonging
 to a traffic streams and determines their
 ordering, possibly storing them temporarily or
 discarding them.

 Scheduling An algorithm which determines which queue of a set
 algorithm of queues to service next. This may be based on the
 relative priority of the queues, on a weighted fair
 bandwidth sharing policy or some other policy. Such
 an algorithm may be either work-conserving or non-
 work-conserving.

 Service-Level A set of parameters and their values which together
 Specification define the treatment offered to a traffic stream by a
 (SLS) Diffserv domain.

 Shaping The process of delaying packets within a traffic stream
 to cause it to conform to some defined temporal
 profile. Shaping can be implemented using a queue
 serviced by a non-work-conserving scheduling algorithm.

 Traffic A logical datapath entity consisting of a number of
 Conditioning functional datapath elements interconnected in
 Block (TCB) such a way as to perform a specific set of traffic
 conditioning functions on an incoming traffic stream.
 A TCB can be thought of as an entity with one
 input and one or more outputs and a set of control
 parameters.

 Traffic A set of parameters and their values which together
 Conditioning specify a set of classifier rules and a traffic
 Specification profile. A TCS is an integral element of a SLS.
 (TCS)

Bernet, et. al. Informational [Page 6]

RFC 3290 Diffserv Informal Management Model May 2002

 Work- A property of a scheduling algorithm such that it
 conserving services a packet, if one is available, at every
 transmission opportunity.

3. Conceptual Model

 This section introduces a block diagram of a Diffserv router and
 describes the various components illustrated in Figure 1. Note that
 a Diffserv core router is likely to require only a subset of these
 components: the model presented here is intended to cover the case of
 both Diffserv edge and core routers.

3.1. Components of a Diffserv Router

 The conceptual model includes abstract definitions for the following:

 o Traffic Classification elements.

 o Metering functions.

 o Actions of Marking, Absolute Dropping, Counting, and
 Multiplexing.

 o Queuing elements, including capabilities of algorithmic
 dropping and scheduling.

 o Certain combinations of the above functional datapath elements
 into higher-level blocks known as Traffic Conditioning Blocks
 (TCBs).

 The components and combinations of components described in this
 document form building blocks that need to be manageable by Diffserv
 configuration and management tools. One of the goals of this
 document is to show how a model of a Diffserv device can be built
 using these component blocks. This model is in the form of a
 connected directed acyclic graph (DAG) of functional datapath
 elements that describes the traffic conditioning and queuing
 behaviors that any particular packet will experience when forwarded
 to the Diffserv router. Figure 1 illustrates the major functional
 blocks of a Diffserv router.

3.1.1. Datapath

 An ingress interface, routing core, and egress interface are
 illustrated at the center of the diagram. In actual router
 implementations, there may be an arbitrary number of ingress and
 egress interfaces interconnected by the routing core. The routing
 core element serves as an abstraction of a router’s normal routing

Bernet, et. al. Informational [Page 7]

RFC 3290 Diffserv Informal Management Model May 2002

 and switching functionality. The routing core moves packets between
 interfaces according to policies outside the scope of Diffserv (note:
 it is possible that such policies for output-interface selection
 might involve use of packet fields such as the DSCP but this is
 outside the scope of this model). The actual queuing delay and
 packet loss behavior of a specific router’s switching
 fabric/backplane is not modeled by the routing core; these should be
 modeled using the functional datapath elements described later. The
 routing core of this model can be thought of as an infinite
 bandwidth, zero-delay interconnect between interfaces - properties
 like the behavior of the core when overloaded need to be reflected
 back into the queuing elements that are modeled around it (e.g., when
 too much traffic is directed across the core at an egress interface),
 the excess must either be dropped or queued somewhere: the elements
 performing these functions must be modeled on one of the interfaces
 involved.

 The components of interest at the ingress to and egress from
 interfaces are the functional datapath elements (e.g., Classifiers,
 Queuing elements) that support Diffserv traffic conditioning and
 per-hop behaviors [DSARCH]. These are the fundamental components
 comprising a Diffserv router and are the focal point of this model.

Bernet, et. al. Informational [Page 8]

RFC 3290 Diffserv Informal Management Model May 2002

 +---------------+
 | Diffserv |
 Mgmt | configuration |
 <----+-->| & management |------------------+
 SNMP,| | interface | |
 COPS | +---------------+ |
 etc. | | |
 | | |
 | v v
 | +-------------+ +-------------+
 | | ingress i/f | +---------+ | egress i/f |
 -------->| classify, |-->| routing |-->| classify, |---->
 data | | meter, | | core | | meter |data out
 in | | action, | +---------+ | action, |
 | | queuing | | queuing |
 | +-------------+ +-------------+
 | ^ ^
 | | |
 | | |
 | +------------+ |
 +-->| QOS agent | |
 -------->| (optional) |---------------------+
 QOS |(e.g., RSVP)|
 cntl +------------+
 msgs

 Figure 1: Diffserv Router Major Functional Blocks

3.1.2. Configuration and Management Interface

 Diffserv operating parameters are monitored and provisioned through
 this interface. Monitored parameters include statistics regarding
 traffic carried at various Diffserv service levels. These statistics
 may be important for accounting purposes and/or for tracking
 compliance to Traffic Conditioning Specifications (TCSs) negotiated
 with customers. Provisioned parameters are primarily the TCS
 parameters for Classifiers and Meters and the associated PHB
 configuration parameters for Actions and Queuing elements. The
 network administrator interacts with the Diffserv configuration and
 management interface via one or more management protocols, such as
 SNMP or COPS, or through other router configuration tools such as
 serial terminal or telnet consoles.

 Specific policy rules and goals governing the Diffserv behavior of a
 router are presumed to be installed by policy management mechanisms.
 However, Diffserv routers are always subject to implementation limits

Bernet, et. al. Informational [Page 9]

RFC 3290 Diffserv Informal Management Model May 2002

 which scope the kinds of policies which can be successfully
 implemented by the router. External reporting of such implementation
 capabilities is considered out of scope for this document.

3.1.3. Optional QoS Agent Module

 Diffserv routers may snoop or participate in either per-microflow or
 per-flow-aggregate signaling of QoS requirements [E2E] (e.g., using
 the RSVP protocol). Snooping of RSVP messages may be used, for
 example, to learn how to classify traffic without actually
 participating as a RSVP protocol peer. Diffserv routers may reject
 or admit RSVP reservation requests to provide a means of admission
 control to Diffserv-based services or they may use these requests to
 trigger provisioning changes for a flow-aggregation in the Diffserv
 network. A flow-aggregation in this context might be equivalent to a
 Diffserv BA or it may be more fine-grained, relying on a multi-field
 (MF) classifier [DSARCH]. Note that the conceptual model of such a
 router implements the Integrated Services Model as described in
 [INTSERV], applying the control plane controls to the data classified
 and conditioned in the data plane, as described in [E2E].

 Note that a QoS Agent component of a Diffserv router, if present,
 might be active only in the control plane and not in the data plane.
 In this scenario, RSVP could be used merely to signal reservation
 state without installing any actual reservations in the data plane of
 the Diffserv router: the data plane could still act purely on
 Diffserv DSCPs and provide PHBs for handling data traffic without the
 normal per-microflow handling expected to support some Intserv
 services.

3.2. Diffserv Functions at Ingress and Egress

 This document focuses on the Diffserv-specific components of the
 router. Figure 2 shows a high-level view of ingress and egress
 interfaces of a router. The diagram illustrates two Diffserv router
 interfaces, each having a set of ingress and a set of egress
 elements. It shows classification, metering, action and queuing
 functions which might be instantiated at each interface’s ingress and
 egress.

 The simple diagram of Figure 2 assumes that the set of Diffserv
 functions to be carried out on traffic on a given interface are
 independent of those functions on all other interfaces. There are
 some architectures where Diffserv functions may be shared amongst
 multiple interfaces (e.g., processor and buffering resources that
 handle multiple interfaces on the same line card before forwarding
 across a routing core). The model presented in this document may be
 easily extended to handle such cases; however, this topic is not

Bernet, et. al. Informational [Page 10]

RFC 3290 Diffserv Informal Management Model May 2002

 treated further here as it leads to excessive complexity in the
 explanation of the concepts.

 Interface A Interface B
 +-------------+ +---------+ +-------------+
 | ingress: | | | | egress: |
 | classify, | | | | classify, |
 --->| meter, |---->| |---->| meter, |--->
 | action, | | | | action, |
 | queuing | | routing | | queuing |
 +-------------+ | core | +-------------+
 | egress: | | | | ingress: |
 | classify, | | | | classify, |
 <---| meter, |<----| |<----| meter, |<---
 | action, | | | | action, |
 | queuing | +---------+ | queuing |
 +-------------+ +-------------+

 Figure 2. Traffic Conditioning and Queuing Elements

 In principle, if one were to construct a network entirely out of
 two-port routers (connected by LANs or similar media), then it might
 be necessary for each router to perform four QoS control functions in
 the datapath on traffic in each direction:

 - Classify each message according to some set of rules, possibly
 just a "match everything" rule.

 - If necessary, determine whether the data stream the message is
 part of is within or outside its rate by metering the stream.

 - Perform a set of resulting actions, including applying a drop
 policy appropriate to the classification and queue in question and
 perhaps additionally marking the traffic with a Differentiated
 Services Code Point (DSCP) [DSFIELD].

 - Enqueue the traffic for output in the appropriate queue. The
 scheduling of output from this queue may lead to shaping of the
 traffic or may simply cause it to be forwarded with some minimum
 rate or maximum latency assurance.

 If the network is now built out of N-port routers, the expected
 behavior of the network should be identical. Therefore, this model
 must provide for essentially the same set of functions at the ingress
 as on the egress of a router’s interfaces. The one point of
 difference in the model between ingress and the egress is that all
 traffic at the egress of an interface is queued, while traffic at the
 ingress to an interface is likely to be queued only for shaping

Bernet, et. al. Informational [Page 11]

RFC 3290 Diffserv Informal Management Model May 2002

 purposes, if at all. Therefore, equivalent functional datapath
 elements may be modeled at both the ingress to and egress from an
 interface.

 Note that it is not mandatory that each of these functional datapath
 elements be implemented at both ingress and egress; equally, the
 model allows that multiple sets of these elements may be placed in
 series and/or in parallel at ingress or at egress. The arrangement
 of elements is dependent on the service requirements on a particular
 interface on a particular router. By modeling these elements at both
 ingress and egress, it is not implied that they must be implemented
 in this way in a specific router. For example, a router may
 implement all shaping and PHB queuing at the interface egress or may
 instead implement it only at the ingress. Furthermore, the
 classification needed to map a packet to an egress queue (if present)
 need not be implemented at the egress but instead might be
 implemented at the ingress, with the packet passed through the
 routing core with in-band control information to allow for egress
 queue selection.

 Specifically, some interfaces will be at the outer "edge" and some
 will be towards the "core" of the Diffserv domain. It is to be
 expected (from the general principles guiding the motivation of
 Diffserv) that "edge" interfaces, or at least the routers that
 contain them, will implement more complexity and require more
 configuration than those in the core although this is obviously not a
 requirement.

3.3. Shaping and Policing

 Diffserv nodes may apply shaping, policing and/or marking to traffic
 streams that exceed the bounds of their TCS in order to prevent one
 traffic stream from seizing more than its share of resources from a
 Diffserv network. In this model, Shaping, sometimes considered as a
 TC action, is treated as a function of queuing elements - see section
 7. Algorithmic Dropping techniques (e.g., RED) are similarly treated
 since they are often closely associated with queues. Policing is
 modeled as either a concatenation of a Meter with an Absolute Dropper
 or as a concatenation of an Algorithmic Dropper with a Scheduler.
 These elements will discard packets which exceed the TCS.

3.4. Hierarchical View of the Model

 From a device-level configuration management perspective, the
 following hierarchy exists:

Bernet, et. al. Informational [Page 12]

RFC 3290 Diffserv Informal Management Model May 2002

 At the lowest level considered here, there are individual
 functional datapath elements, each with their own configuration
 parameters and management counters and flags.

 At the next level, the network administrator manages groupings of
 these functional datapath elements interconnected in a DAG. These
 functional datapath elements are organized in self-contained TCBs
 which are used to implement some desired network policy (see
 Section 8). One or more TCBs may be instantiated at each
 interface’s ingress or egress; they may be connected in series
 and/or in parallel configurations on the multiple outputs of a
 preceding TCB. A TCB can be thought of as a "black box" with one
 input and one or more outputs (in the data path). Each interface
 may have a different TCB configuration and each direction (ingress
 or egress) may too.

 At the topmost level considered here, the network administrator
 manages interfaces. Each interface has ingress and egress
 functionality, with each of these expressed as one or more TCBs.
 This level of the hierarchy is what was illustrated in Figure 2.

 Further levels may be built on top of this hierarchy, in particular
 ones for aiding in the repetitive configuration tasks likely for
 routers with many interfaces: some such "template" tools for Diffserv
 routers are outside the scope of this model but are under study by
 other working groups within IETF.

4. Classifiers

4.1. Definition

 Classification is performed by a classifier element. Classifiers are
 1:N (fan-out) devices: they take a single traffic stream as input and
 generate N logically separate traffic streams as output. Classifiers
 are parameterized by filters and output streams. Packets from the
 input stream are sorted into various output streams by filters which
 match the contents of the packet or possibly match other attributes
 associated with the packet. Various types of classifiers using
 different filters are described in the following sections. Figure 3
 illustrates a classifier, where the outputs connect to succeeding
 functional datapath elements.

 The simplest possible Classifier element is one that matches all
 packets that are applied at its input. In this case, the Classifier
 element is just a no-op and may be omitted.

Bernet, et. al. Informational [Page 13]

RFC 3290 Diffserv Informal Management Model May 2002

 Note that we allow a Multiplexor (see Section 6.5) before the
 Classifier to allow input from multiple traffic streams. For
 example, if traffic streams originating from multiple ingress
 interfaces feed through a single Classifier then the interface number
 could be one of the packet classification keys used by the
 Classifier. This optimization may be important for scalability in
 the management plane. Classifiers may also be cascaded in sequence
 to perform more complex lookup operations whilst still maintaining
 such scalability.

 Another example of a packet attribute could be an integer
 representing the BGP community string associated with the packet’s
 best-matching route. Other contextual information may also be used
 by a Classifier (e.g., knowledge that a particular interface faces a
 Diffserv domain or a legacy IP TOS domain [DSARCH] could be used when
 determining whether a DSCP is present or not).

 unclassified classified
 traffic traffic
 +------------+
 | |--> match Filter1 --> OutputA
 ------->| classifier |--> match Filter2 --> OutputB
 | |--> no match --> OutputC
 +------------+

 Figure 3. An Example Classifier

 The following BA classifier separates traffic into one of three
 output streams based on matching filters:

 Filter Matched Output Stream
 -------------- ---------------
 Filter1 A
 Filter2 B
 no match C

 Where the filters are defined to be the following BA filters
 ([DSARCH], Section 4.2.1):

 Filter DSCP
 ------ ------
 Filter1 101010
 Filter2 111111
 Filter3 ****** (wildcard)

Bernet, et. al. Informational [Page 14]

RFC 3290 Diffserv Informal Management Model May 2002

4.1.1. Filters

 A filter consists of a set of conditions on the component values of a
 packet’s classification key (the header values, contents, and
 attributes relevant for classification). In the BA classifier
 example above, the classification key consists of one packet header
 field, the DSCP, and both Filter1 and Filter2 specify exact-match
 conditions on the value of the DSCP. Filter3 is a wildcard default
 filter which matches every packet, but which is only selected in the
 event that no other more specific filter matches.

 In general there are a set of possible component conditions including
 exact, prefix, range, masked and wildcard matches. Note that ranges
 can be represented (with less efficiency) as a set of prefixes and
 that prefix matches are just a special case of both masked and range
 matches.

 In the case of a MF classifier, the classification key consists of a
 number of packet header fields. The filter may specify a different
 condition for each key component, as illustrated in the example below
 for a IPv4/TCP classifier:

 Filter IPv4 Src Addr IPv4 Dest Addr TCP SrcPort TCP DestPort
 ------ ------------- -------------- ----------- ------------
 Filter4 172.31.8.1/32 172.31.3.X/24 X 5003

 In this example, the fourth octet of the destination IPv4 address and
 the source TCP port are wildcard or "don’t care".

 MF classification of IP-fragmented packets is impossible if the
 filter uses transport-layer port numbers (e.g., TCP port numbers).
 MTU-discovery is therefore a prerequisite for proper operation of a
 Diffserv network that uses such classifiers.

4.1.2. Overlapping Filters

 Note that it is easy to define sets of overlapping filters in a
 classifier. For example:

 Filter IPv4 Src Addr IPv4 Dest Addr
 ------ ------------- --------------
 Filter5 172.31.8.X/24 X/0
 Filter6 X/0 172.30.10.1/32

 A packet containing {IP Dest Addr 172.31.8.1, IP Src Addr
 172.30.10.1} cannot be uniquely classified by this pair of filters
 and so a precedence must be established between Filter5 and Filter6
 in order to break the tie. This precedence must be established

Bernet, et. al. Informational [Page 15]

RFC 3290 Diffserv Informal Management Model May 2002

 either (a) by a manager which knows that the router can accomplish
 this particular ordering (e.g., by means of reported capabilities),
 or (b) by the router along with a mechanism to report to a manager
 which precedence is being used. Such precedence mechanisms must be
 supported in any translation of this model into specific syntax for
 configuration and management protocols.

 As another example, one might want first to disallow certain
 applications from using the network at all, or to classify some
 individual traffic streams that are not Diffserv-marked. Traffic
 that is not classified by those tests might then be inspected for a
 DSCP. The word "then" implies sequence and this must be specified by
 means of precedence.

 An unambiguous classifier requires that every possible classification
 key match at least one filter (possibly the wildcard default) and
 that any ambiguity between overlapping filters be resolved by
 precedence. Therefore, the classifiers on any given interface must
 be "complete" and will often include an "everything else" filter as
 the lowest precedence element in order for the result of
 classification to be deterministic. Note that this completeness is
 only required of the first classifier that incoming traffic will meet
 as it enters an interface - subsequent classifiers on an interface
 only need to handle the traffic that it is known that they will
 receive.

 This model of classifier operation makes the assumption that all
 filters of the same precedence be applied simultaneously. Whilst
 convenient from a modeling point-of-view, this may or may not be how
 the classifier is actually implemented - this assumption is not
 intended to dictate how the implementation actually handles this,
 merely to clearly define the required end result.

4.2. Examples

4.2.1. Behavior Aggregate (BA) Classifier

 The simplest Diffserv classifier is a behavior aggregate (BA)
 classifier [DSARCH]. A BA classifier uses only the Diffserv
 codepoint (DSCP) in a packet’s IP header to determine the logical
 output stream to which the packet should be directed. We allow only
 an exact-match condition on this field because the assigned DSCP
 values have no structure, and therefore no subset of DSCP bits are
 significant.

Bernet, et. al. Informational [Page 16]

RFC 3290 Diffserv Informal Management Model May 2002

 The following defines a possible BA filter:

 Filter8:
 Type: BA
 Value: 111000

4.2.2. Multi-Field (MF) Classifier

 Another type of classifier is a multi-field (MF) classifier [DSARCH].
 This classifies packets based on one or more fields in the packet
 (possibly including the DSCP). A common type of MF classifier is a
 6-tuple classifier that classifies based on six fields from the IP
 and TCP or UDP headers (destination address, source address, IP
 protocol, source port, destination port, and DSCP). MF classifiers
 may classify on other fields such as MAC addresses, VLAN tags, link-
 layer traffic class fields, or other higher-layer protocol fields.

 The following defines a possible MF filter:

 Filter9:
 Type: IPv4-6-tuple
 IPv4DestAddrValue: 0.0.0.0
 IPv4DestAddrMask: 0.0.0.0
 IPv4SrcAddrValue: 172.31.8.0
 IPv4SrcAddrMask: 255.255.255.0
 IPv4DSCP: 28
 IPv4Protocol: 6
 IPv4DestL4PortMin: 0
 IPv4DestL4PortMax: 65535
 IPv4SrcL4PortMin: 20
 IPv4SrcL4PortMax: 20

 A similar type of classifier can be defined for IPv6.

4.2.3. Free-form Classifier

 A Free-form classifier is made up of a set of user definable
 arbitrary filters each made up of {bit-field size, offset (from head
 of packet), mask}:

 Classifier2:
 Filter12: OutputA
 Filter13: OutputB
 Default: OutputC

Bernet, et. al. Informational [Page 17]

RFC 3290 Diffserv Informal Management Model May 2002

 Filter12:
 Type: FreeForm
 SizeBits: 3 (bits)
 Offset: 16 (bytes)
 Value: 100 (binary)
 Mask: 101 (binary)

 Filter13:
 Type: FreeForm
 SizeBits: 12 (bits)
 Offset: 16 (bytes)
 Value: 100100000000 (binary)
 Mask: 111111111111 (binary)

 Free-form filters can be combined into filter groups to form very
 powerful filters.

4.2.4. Other Possible Classifiers

 Classification may also be performed based on information at the
 datalink layer below IP (e.g., VLAN or datalink-layer priority) or
 perhaps on the ingress or egress IP, logical or physical interface
 identifier (e.g., the incoming channel number on a channelized
 interface). A classifier that filters based on IEEE 802.1p Priority
 and on 802.1Q VLAN-ID might be represented as:

 Classifier3:
 Filter14 AND Filter15: OutputA
 Default: OutputB

 Filter14: -- priority 4 or 5
 Type: Ieee8021pPriority
 Value: 100 (binary)
 Mask: 110 (binary)

 Filter15: -- VLAN 2304
 Type: Ieee8021QVlan
 Value: 100100000000 (binary)
 Mask: 111111111111 (binary)

 Such classifiers may be the subject of other standards or may be
 proprietary to a router vendor but they are not discussed further
 here.

Bernet, et. al. Informational [Page 18]

RFC 3290 Diffserv Informal Management Model May 2002

5. Meters

 Metering is defined in [DSARCH]. Diffserv network providers may
 choose to offer services to customers based on a temporal (i.e.,
 rate) profile within which the customer submits traffic for the
 service. In this event, a meter might be used to trigger real-time
 traffic conditioning actions (e.g., marking) by routing a non-
 conforming packet through an appropriate next-stage action element.
 Alternatively, by counting conforming and/or non-conforming traffic
 using a Counter element downstream of the Meter, it might also be
 used to help in collecting data for out-of-band management functions
 such as billing applications.

 Meters are logically 1:N (fan-out) devices (although a multiplexor
 can be used in front of a meter). Meters are parameterized by a
 temporal profile and by conformance levels, each of which is
 associated with a meter’s output. Each output can be connected to
 another functional element.

 Note that this model of a meter differs slightly from that described
 in [DSARCH]. In that description the meter is not a datapath element
 but is instead used to monitor the traffic stream and send control
 signals to action elements to dynamically modulate their behavior
 based on the conformance of the packet. This difference in the
 description does not change the function of a meter. Figure 4
 illustrates a meter with 3 levels of conformance.

 In some Diffserv examples (e.g., [AF-PHB]), three levels of
 conformance are discussed in terms of colors, with green representing
 conforming, yellow representing partially conforming and red
 representing non-conforming. These different conformance levels may
 be used to trigger different queuing, marking or dropping treatment
 later on in the processing. Other example meters use a binary notion
 of conformance; in the general case N levels of conformance can be
 supported. In general there is no constraint on the type of
 functional datapath element following a meter output, but care must
 be taken not to inadvertently configure a datapath that results in
 packet reordering that is not consistent with the requirements of the
 relevant PHB specification.

Bernet, et. al. Informational [Page 19]

RFC 3290 Diffserv Informal Management Model May 2002

 unmetered metered
 traffic traffic
 +---------+
 | |--------> conformance A
 --------->| meter |--------> conformance B
 | |--------> conformance C
 +---------+

 Figure 4. A Generic Meter

 A meter, according to this model, measures the rate at which packets
 making up a stream of traffic pass it, compares the rate to some set
 of thresholds, and produces some number of potential results (two or
 more): a given packet is said to be "conformant" to a level of the
 meter if, at the time that the packet is being examined, the stream
 appears to be within the rate limit for the profile associated with
 that level. A fuller discussion of conformance to meter profiles
 (and the associated requirements that this places on the schedulers
 upstream) is provided in Appendix A.

5.1. Examples

 The following are some examples of possible meters.

5.1.1. Average Rate Meter

 An example of a very simple meter is an average rate meter. This
 type of meter measures the average rate at which packets are
 submitted to it over a specified averaging time.

 An average rate profile may take the following form:

 Meter1:
 Type: AverageRate
 Profile: Profile1
 ConformingOutput: Queue1
 NonConformingOutput: Counter1

 Profile1:
 Type: AverageRate
 AverageRate: 120 kbps
 Delta: 100 msec

 A Meter measuring against this profile would continually maintain a
 count that indicates the total number and/or cumulative byte-count of
 packets arriving between time T (now) and time T - 100 msecs. So
 long as an arriving packet does not push the count over 12 kbits in
 the last 100 msec, the packet would be deemed conforming. Any packet

Bernet, et. al. Informational [Page 20]

RFC 3290 Diffserv Informal Management Model May 2002

 that pushes the count over 12 kbits would be deemed non-conforming.
 Thus, this Meter deems packets to correspond to one of two
 conformance levels: conforming or non-conforming, and sends them on
 for the appropriate subsequent treatment.

5.1.2. Exponential Weighted Moving Average (EWMA) Meter

 The EWMA form of Meter is easy to implement in hardware and can be
 parameterized as follows:

 avg_rate(t) = (1 - Gain) * avg_rate(t’) + Gain * rate(t)
 t = t’ + Delta

 For a packet arriving at time t:

 if (avg_rate(t) > AverageRate)
 non-conforming
 else
 conforming

 "Gain" controls the time constant (e.g., frequency response) of what
 is essentially a simple IIR low-pass filter. "Rate(t)" measures the
 number of incoming bytes in a small fixed sampling interval, Delta.
 Any packet that arrives and pushes the average rate over a predefined
 rate AverageRate is deemed non-conforming. An EWMA Meter profile
 might look something like the following:

 Meter2:
 Type: ExpWeightedMovingAvg
 Profile: Profile2
 ConformingOutput: Queue1
 NonConformingOutput: AbsoluteDropper1

 Profile2:
 Type: ExpWeightedMovingAvg
 AverageRate: 25 kbps
 Delta: 10 usec
 Gain: 1/16

5.1.3. Two-Parameter Token Bucket Meter

 A more sophisticated Meter might measure conformance to a token
 bucket (TB) profile. A TB profile generally has two parameters, an
 average token rate, R, and a burst size, B. TB Meters compare the
 arrival rate of packets to the average rate specified by the TB
 profile. Logically, tokens accumulate in a bucket at the average

Bernet, et. al. Informational [Page 21]

RFC 3290 Diffserv Informal Management Model May 2002

 rate, R, up to a maximum credit which is the burst size, B. When a
 packet of length L arrives, a conformance test is applied. There are
 at least two such tests in widespread use:

 Strict conformance
 Packets of length L bytes are considered conforming only if there
 are sufficient tokens available in the bucket at the time of
 packet arrival for the complete packet (i.e., the current depth is
 greater than or equal to L): no tokens may be borrowed from future
 token allocations. For examples of this approach, see [SRTCM] and
 [TRTCM].

 Loose conformance
 Packets of length L bytes are considered conforming if any tokens
 are available in the bucket at the time of packet arrival: up to L
 bytes may then be borrowed from future token allocations.

 Packets are allowed to exceed the average rate in bursts up to the
 burst size. For further discussion of loose and strict conformance
 to token bucket profiles, as well as system and implementation
 issues, see Appendix A.

 A two-parameter TB meter has exactly two possible conformance levels
 (conforming, non-conforming). Such a meter might appear as follows:

 Meter3:
 Type: SimpleTokenBucket
 Profile: Profile3
 ConformanceType: loose
 ConformingOutput: Queue1
 NonConformingOutput: AbsoluteDropper1

 Profile3:
 Type: SimpleTokenBucket
 AverageRate: 200 kbps
 BurstSize: 100 kbytes

5.1.4. Multi-Stage Token Bucket Meter

 More complicated TB meters might define multiple burst sizes and more
 conformance levels. Packets found to exceed the larger burst size
 are deemed non-conforming. Packets found to exceed the smaller burst
 size are deemed partially-conforming. Packets exceeding neither are
 deemed conforming. Some token bucket meters designed for Diffserv
 networks are described in more detail in [SRTCM, TRTCM]; in some of
 these references, three levels of conformance are discussed in terms
 of colors with green representing conforming, yellow representing
 partially conforming, and red representing non-conforming. Note that

Bernet, et. al. Informational [Page 22]

RFC 3290 Diffserv Informal Management Model May 2002

 these multiple-conformance-level meters can sometimes be implemented
 using an appropriate sequence of multiple two-parameter TB meters.

 A profile for a multi-stage TB meter with three levels of conformance
 might look as follows:

 Meter4:
 Type: TwoRateTokenBucket
 ProfileA: Profile4
 ConformanceTypeA: strict
 ConformingOutputA: Queue1

 ProfileB: Profile5
 ConformanceTypeB: strict
 ConformingOutputB: Marker1
 NonConformingOutput: AbsoluteDropper1

 Profile4:
 Type: SimpleTokenBucket
 AverageRate: 100 kbps
 BurstSize: 20 kbytes

 Profile5:
 Type: SimpleTokenBucket
 AverageRate: 100 kbps
 BurstSize: 100 kbytes

5.1.5. Null Meter

 A null meter has only one output: always conforming, and no
 associated temporal profile. Such a meter is useful to define in the
 event that the configuration or management interface does not have
 the flexibility to omit a meter in a datapath segment.

 Meter5:
 Type: NullMeter
 Output: Queue1

6. Action Elements

 The classifiers and meters described up to this point are fan-out
 elements which are generally used to determine the appropriate action
 to apply to a packet. The set of possible actions that can then be
 applied include:

 - Marking

 - Absolute Dropping

Bernet, et. al. Informational [Page 23]

RFC 3290 Diffserv Informal Management Model May 2002

 - Multiplexing

 - Counting

 - Null action - do nothing

 The corresponding action elements are described in the following
 sections.

6.1. DSCP Marker

 DSCP Markers are 1:1 elements which set a codepoint (e.g., the DSCP
 in an IP header). DSCP Markers may also act on unmarked packets
 (e.g., those submitted with DSCP of zero) or may re-mark previously
 marked packets. In particular, the model supports the application of
 marking based on a preceding classifier match. The mark set in a
 packet will determine its subsequent PHB treatment in downstream
 nodes of a network and possibly also in subsequent processing stages
 within this router.

 DSCP Markers for Diffserv are normally parameterized by a single
 parameter: the 6-bit DSCP to be marked in the packet header.

 Marker1:
 Type: DSCPMarker
 Mark: 010010

6.2. Absolute Dropper

 Absolute Droppers simply discard packets. There are no parameters
 for these droppers. Because this Absolute Dropper is a terminating
 point of the datapath and has no outputs, it is probably desirable to
 forward the packet through a Counter Action first for instrumentation
 purposes.

 AbsoluteDropper1:
 Type: AbsoluteDropper

 Absolute Droppers are not the only elements than can cause a packet
 to be discarded: another element is an Algorithmic Dropper element
 (see Section 7.1.3). However, since this element’s behavior is
 closely tied the state of one or more queues, we choose to
 distinguish it as a separate functional datapath element.

Bernet, et. al. Informational [Page 24]

RFC 3290 Diffserv Informal Management Model May 2002

6.3. Multiplexor

 It is occasionally necessary to multiplex traffic streams into a
 functional datapath element with a single input. A M:1 (fan-in)
 multiplexor is a simple logical device for merging traffic streams.
 It is parameterized by its number of incoming ports.

 Mux1:
 Type: Multiplexor
 Output: Queue2

6.4. Counter

 One passive action is to account for the fact that a data packet was
 processed. The statistics that result might be used later for
 customer billing, service verification or network engineering
 purposes. Counters are 1:1 functional datapath elements which update
 a counter by L and a packet counter by 1 every time a L-byte sized
 packet passes through them. Counters can be used to count packets
 about to be dropped by an Absolute Dropper or to count packets
 arriving at or departing from some other functional element.

 Counter1:
 Type: Counter
 Output: Queue1

6.5. Null Action

 A null action has one input and one output. The element performs no
 action on the packet. Such an element is useful to define in the
 event that the configuration or management interface does not have
 the flexibility to omit an action element in a datapath segment.

 Null1:
 Type: Null
 Output: Queue1

7. Queuing Elements

 Queuing elements modulate the transmission of packets belonging to
 the different traffic streams and determine their ordering, possibly
 storing them temporarily or discarding them. Packets are usually
 stored either because there is a resource constraint (e.g., available
 bandwidth) which prevents immediate forwarding, or because the
 queuing block is being used to alter the temporal properties of a
 traffic stream (i.e., shaping). Packets are discarded for one of the
 following reasons:

Bernet, et. al. Informational [Page 25]

RFC 3290 Diffserv Informal Management Model May 2002

 - because of buffering limitations.
 - because a buffer threshold is exceeded (including when shaping
 is performed).
 - as a feedback control signal to reactive control protocols such
 as TCP.
 - because a meter exceeds a configured profile (i.e., policing).

 The queuing elements in this model represent a logical abstraction of
 a queuing system which is used to configure PHB-related parameters.
 The model can be used to represent a broad variety of possible
 implementations. However, it need not necessarily map one-to-one
 with physical queuing systems in a specific router implementation.
 Implementors should map the configurable parameters of the
 implementation’s queuing systems to these queuing element parameters
 as appropriate to achieve equivalent behaviors.

7.1. Queuing Model

 Queuing is a function which lends itself to innovation. It must be
 modeled to allow a broad range of possible implementations to be
 represented using common structures and parameters. This model uses
 functional decomposition as a tool to permit the needed latitude.

 Queuing systems perform three distinct, but related, functions: they
 store packets, they modulate the departure of packets belonging to
 various traffic streams and they selectively discard packets. This
 model decomposes queuing into the component elements that perform
 each of these functions: Queues, Schedulers, and Algorithmic
 Droppers, respectively. These elements may be connected together as
 part of a TCB, as described in section 8.

 The remainder of this section discusses FIFO Queues: typically, the
 Queue element of this model will be implemented as a FIFO data
 structure. However, this does not preclude implementations which are
 not strictly FIFO, in that they also support operations that remove
 or examine packets (e.g., for use by discarders) other than at the
 head or tail. However, such operations must not have the effect of
 reordering packets belonging to the same microflow.

 Note that the term FIFO has multiple different common usages: it is
 sometimes taken to mean, among other things, a data structure that
 permits items to be removed only in the order in which they were
 inserted or a service discipline which is non-reordering.

Bernet, et. al. Informational [Page 26]

RFC 3290 Diffserv Informal Management Model May 2002

7.1.1. FIFO Queue

 In this model, a FIFO Queue element is a data structure which at any
 time may contain zero or more packets. It may have one or more
 thresholds associated with it. A FIFO has one or more inputs and
 exactly one output. It must support an enqueue operation to add a
 packet to the tail of the queue and a dequeue operation to remove a
 packet from the head of the queue. Packets must be dequeued in the
 order in which they were enqueued. A FIFO has a current depth, which
 indicates the number of packets and/or bytes that it contains at a
 particular time. FIFOs in this model are modeled without inherent
 limits on their depth - obviously this does not reflect the reality
 of implementations: FIFO size limits are modeled here by an
 algorithmic dropper associated with the FIFO, typically at its input.
 It is quite likely that every FIFO will be preceded by an algorithmic
 dropper. One exception might be the case where the packet stream has
 already been policed to a profile that can never exceed the scheduler
 bandwidth available at the FIFO’s output - this would not need an
 algorithmic dropper at the input to the FIFO.

 This representation of a FIFO allows for one common type of depth
 limit, one that results from a FIFO supplied from a limited pool of
 buffers, shared between multiple FIFOs.

 In an implementation, packets are presumably stored in one or more
 buffers. Buffers are allocated from one or more free buffer pools.
 If there are multiple instances of a FIFO, their packet buffers may
 or may not be allocated out of the same free buffer pool. Free
 buffer pools may also have one or more thresholds associated with
 them, which may affect discarding and/or scheduling. Other than
 this, buffering mechanisms are implementation specific and not part
 of this model.

 A FIFO might be represented using the following parameters:

 Queue1:
 Type: FIFO
 Output: Scheduler1

 Note that a FIFO must provide triggers and/or current state
 information to other elements upstream and downstream from it: in
 particular, it is likely that the current depth will need to be used
 by Algorithmic Dropper elements placed before or after the FIFO. It
 will also likely need to provide an implicit "I have packets for you"
 signal to downstream Scheduler elements.

Bernet, et. al. Informational [Page 27]

RFC 3290 Diffserv Informal Management Model May 2002

7.1.2. Scheduler

 A scheduler is an element which gates the departure of each packet
 that arrives at one of its inputs, based on a service discipline. It
 has one or more inputs and exactly one output. Each input has an
 upstream element to which it is connected, and a set of parameters
 that affects the scheduling of packets received at that input.

 The service discipline (also known as a scheduling algorithm) is an
 algorithm which might take any of the following as its input(s):

 a) static parameters such as relative priority associated with each
 of the scheduler’s inputs.

 b) absolute token bucket parameters for maximum or minimum rates
 associated with each of the scheduler’s inputs.

 c) parameters, such as packet length or DSCP, associated with the
 packet currently present at its input.

 d) absolute time and/or local state.

 Possible service disciplines fall into a number of categories,
 including (but not limited to) first come, first served (FCFS),
 strict priority, weighted fair bandwidth sharing (e.g., WFQ), rate-
 limited strict priority, and rate-based. Service disciplines can be
 further distinguished by whether they are work-conserving or non-
 work-conserving (see Glossary). Non-work-conserving schedulers can
 be used to shape traffic streams to match some profile by delaying
 packets that might be deemed non-conforming by some downstream node:
 a packet is delayed until such time as it would conform to a
 downstream meter using the same profile.

 [DSARCH] defines PHBs without specifying required scheduling
 algorithms. However, PHBs such as the class selectors [DSFIELD], EF
 [EF-PHB] and AF [AF-PHB] have descriptions or configuration
 parameters which strongly suggest the sort of scheduling discipline
 needed to implement them. This document discusses a minimal set of
 queue parameters to enable realization of these PHBs. It does not
 attempt to specify an all-embracing set of parameters to cover all
 possible implementation models. A minimal set includes:

 a) a minimum service rate profile which allows rate guarantees for
 each traffic stream as required by EF and AF without specifying
 the details of how excess bandwidth between these traffic streams
 is shared. Additional parameters to control this behavior should
 be made available, but are dependent on the particular scheduling
 algorithm implemented.

Bernet, et. al. Informational [Page 28]

RFC 3290 Diffserv Informal Management Model May 2002

 b) a service priority, used only after the minimum rate profiles of
 all inputs have been satisfied, to decide how to allocate any
 remaining bandwidth.

 c) a maximum service rate profile, for use only with a non-work-
 conserving service discipline.

 Any one of these profiles is composed, for the purposes of this
 model, of both a rate (in suitable units of bits, bytes or larger
 chunks in some unit of time) and a burst size, as discussed further
 in Appendix A.

 By way of example, for an implementation of the EF PHB using a strict
 priority scheduling algorithm that assumes that the aggregate EF rate
 has been appropriately bounded by upstream policing to avoid
 starvation of other BAs, the service rate profiles are not used: the
 minimum service rate profile would be defaulted to zero and the
 maximum service rate profile would effectively be the "line rate".
 Such an implementation, with multiple priority classes, could also be
 used for the Diffserv class selectors [DSFIELD].

 Alternatively, setting the service priority values for each input to
 the scheduler to the same value enables the scheduler to satisfy the
 minimum service rates for each input, so long as the sum of all
 minimum service rates is less than or equal to the line rate.

 For example, a non-work-conserving scheduler, allocating spare
 bandwidth equally between all its inputs, might be represented using
 the following parameters:

 Scheduler1:
 Type: Scheduler2Input

 Input1:
 MaxRateProfile: Profile1
 MinRateProfile: Profile2
 Priority: none

 Input2:
 MaxRateProfile: Profile3
 MinRateProfile: Profile4
 Priority: none

 A work-conserving scheduler might be represented using the following
 parameters:

Bernet, et. al. Informational [Page 29]

RFC 3290 Diffserv Informal Management Model May 2002

 Scheduler2:
 Type: Scheduler3Input
 Input1:
 MaxRateProfile: WorkConserving
 MinRateProfile: Profile5
 Priority: 1

 Input2:
 MaxRateProfile: WorkConserving
 MinRateProfile: Profile6
 Priority: 2

 Input3:
 MaxRateProfile: WorkConserving
 MinRateProfile: none
 Priority: 3

7.1.3. Algorithmic Dropper

 An Algorithmic Dropper is an element which selectively discards
 packets that arrive at its input, based on a discarding algorithm.
 It has one data input and one output. In this model (but not
 necessarily in a real implementation), a packet enters the dropper at
 its input and either its buffer is returned to a free buffer pool or
 the packet exits the dropper at the output.

 Alternatively, an Algorithmic Dropper can be thought of as invoking
 operations on a FIFO Queue which selectively remove a packet and
 return its buffer to the free buffer pool based on a discarding
 algorithm. In this case, the operation could be modeled as being a
 side-effect on the FIFO upon which it operated, rather than as having
 a discrete input and output. This treatment is equivalent and we
 choose the one described in the previous paragraph for this model.

 One of the primary characteristics of an Algorithmic Dropper is the
 choice of which packet (if any) is to be dropped: for the purposes of
 this model, we restrict the packet selection choices to one of the
 following and we indicate the choice by the relative positions of
 Algorithmic Dropper and FIFO Queue elements in the model:

 a) selection of a packet that is about to be added to the tail of a
 queue (a "Tail Dropper"): the output of the Algorithmic Dropper
 element is connected to the input of the relevant FIFO Queue
 element.

 b) a packet that is currently at the head of a queue (a "Head
 Dropper"): the output of the FIFO Queue element is connected to
 the input of the Algorithmic Dropper element.

Bernet, et. al. Informational [Page 30]

RFC 3290 Diffserv Informal Management Model May 2002

 Other packet selection methods could be added to this model in the
 form of a different type of datapath element.

 The Algorithmic Dropper is modeled as having a single input. It is
 possible that packets which were classified differently by a
 Classifier in this TCB will end up passing through the same dropper.
 The dropper’s algorithm may need to apply different calculations
 based on characteristics of the incoming packet (e.g., its DSCP). So
 there is a need, in implementations of this model, to be able to
 relate information about which classifier element was matched by a
 packet from a Classifier to an Algorithmic Dropper. In the rare
 cases where this is required, the chosen model is to insert another
 Classifier element at this point in the flow and for it to feed into
 multiple Algorithmic Dropper elements, each one implementing a drop
 calculation that is independent of any classification keys of the
 packet: this will likely require the creation of a new TCB to contain
 the Classifier and the Algorithmic Dropper elements.

 NOTE: There are many other formulations of a model that could
 represent this linkage that are different from the one described
 above: one formulation would have been to have a pointer from one
 of the drop probability calculation algorithms inside the dropper
 to the original Classifier element that selects this algorithm.
 Another way would have been to have multiple "inputs" to the
 Algorithmic Dropper element fed from the preceding elements,
 leading eventually back to the Classifier elements that matched
 the packet. Yet another formulation might have been for the
 Classifier to (logically) include some sort of "classification
 identifier" along with the packet along its path, for use by any
 subsequent element. And yet another could have been to include a
 classifier inside the dropper, in order for it to pick out the
 drop algorithm to be applied. These other approaches could be
 used by implementations but were deemed to be less clear than the
 approach taken here.

 An Algorithmic Dropper, an example of which is illustrated in Figure
 5, has one or more triggers that cause it to make a decision whether
 or not to drop one (or possibly more than one) packet. A trigger may
 be internal (the arrival of a packet at the input to the dropper) or
 it may be external (resulting from one or more state changes at
 another element, such as a FIFO Queue depth crossing a threshold or a
 scheduling event). It is likely that an instantaneous FIFO depth
 will need to be smoothed over some averaging interval before being
 used as a useful trigger. Some dropping algorithms may require
 several trigger inputs feeding back from events elsewhere in the
 system (e.g., depth-smoothing functions that calculate averages over
 more than one time interval).

Bernet, et. al. Informational [Page 31]

RFC 3290 Diffserv Informal Management Model May 2002

 +------------------+ +-----------+
 | +-------+ | n |smoothing | | |
 | |trigger|<----------/---|function(s)|
 | |calc. | | |(optional) |
 | +-------+ | +-----------+
 | | | ^
 | v | |Depth
 Input | +-------+ no | ------------+ to Scheduler
 ---------->|discard|--------------> |x|x|x|x|------->
 | | ? | | ------------+
 | +-------+ | FIFO
 | |yes | | |
 | | | | |
 | | v | count + |
 | +---+ bit-bucket|
 +------------------+
 Algorithmic
 Dropper

 Figure 5. Example of Algorithmic Dropper from Tail of a Queue

 A trigger may be a boolean combination of events (e.g., a FIFO depth
 exceeding a threshold OR a buffer pool depth falling below a
 threshold). It takes as its input some set of dynamic parameters
 (e.g., smoothed or instantaneous FIFO depth), and some set of static
 parameters (e.g., thresholds), and possibly other parameters
 associated with the packet. It may also have internal state (e.g.,
 history of its past actions). Note that, although an Algorithmic
 Dropper may require knowledge of data fields in a packet, as
 discovered by a Classifier in the same TCB, it may not modify the
 packet (i.e., it is not a marker).

 The result of the trigger calculation is that the dropping algorithm
 makes a decision on whether to forward or to discard a packet. The
 discarding function is likely to keep counters regarding the
 discarded packets (there is no appropriate place here to include a
 Counter Action element).

 The example in Figure 5 also shows a FIFO Queue element from whose
 tail the dropping is to take place and whose depth characteristics
 are used by this Algorithmic Dropper. It also shows where a depth-
 smoothing function might be included: smoothing functions are outside
 the scope of this document and are not modeled explicitly here, we
 merely indicate where they might be added.

 RED, RED-on-In-and-Out (RIO) and Drop-on-threshold are examples of
 dropping algorithms. Tail-dropping and head-dropping are effected by
 the location of the Algorithmic Dropper element relative to the FIFO

Bernet, et. al. Informational [Page 32]

RFC 3290 Diffserv Informal Management Model May 2002

 Queue element. As an example, a dropper using a RIO algorithm might
 be represented using 2 Algorithmic Droppers with the following
 parameters:

 AlgorithmicDropper1: (for in-profile traffic)
 Type: AlgorithmicDropper
 Discipline: RED
 Trigger: Internal
 Output: Fifo1
 MinThresh: Fifo1.Depth > 20 kbyte
 MaxThresh: Fifo1.Depth > 30 kbyte
 SampleWeight .002
 MaxDropProb 1%

 AlgorithmicDropper2: (for out-of-profile traffic)
 Type: AlgorithmicDropper
 Discipline: RED
 Trigger: Internal
 Output: Fifo1
 MinThresh: Fifo1.Depth > 10 kbyte
 MaxThresh: Fifo1.Depth > 20 kbyte
 SampleWeight .002
 MaxDropProb 2%

 Another form of Algorithmic Dropper, a threshold-dropper, might be
 represented using the following parameters:

 AlgorithmicDropper3:
 Type: AlgorithmicDropper
 Discipline: Drop-on-threshold
 Trigger: Fifo2.Depth > 20 kbyte
 Output: Fifo1

7.2. Sharing load among traffic streams using queuing

 Queues are used, in Differentiated Services, for a number of
 purposes. In essence, they are simply places to store traffic until
 it is transmitted. However, when several queues are used together in
 a queuing system, they can also achieve effects beyond that for given
 traffic streams. They can be used to limit variation in delay or
 impose a maximum rate (shaping), to permit several streams to share a
 link in a semi-predictable fashion (load sharing), or to move
 variation in delay from some streams to other streams.

 Traffic shaping is often used to condition traffic, such that packets
 arriving in a burst will be "smoothed" and deemed conforming by
 subsequent downstream meters in this or other nodes. In [DSARCH] a
 shaper is described as a queuing element controlled by a meter which

Bernet, et. al. Informational [Page 33]

RFC 3290 Diffserv Informal Management Model May 2002

 defines its temporal profile. However, this representation of a
 shaper differs substantially from typical shaper implementations.

 In the model described here, a shaper is realized by using a non-
 work-conserving Scheduler. Some implementations may elect to have
 queues whose sole purpose is shaping, while others may integrate the
 shaping function with other buffering, discarding, and scheduling
 associated with access to a resource. Shapers operate by delaying
 the departure of packets that would be deemed non-conforming by a
 meter configured to the shaper’s maximum service rate profile. The
 packet is scheduled to depart no sooner than such time that it would
 become conforming.

7.2.1. Load Sharing

 Load sharing is the traditional use of queues and was theoretically
 explored by Floyd & Jacobson [FJ95], although it has been in use in
 communications systems since the 1970’s.

 [DSARCH] discusses load sharing as dividing an interface among
 traffic classes predictably, or applying a minimum rate to each of a
 set of traffic classes, which might be measured as an absolute lower
 bound on the rate a traffic stream achieves or a fraction of the rate
 an interface offers. It is generally implemented as some form of
 weighted queuing algorithm among a set of FIFO queues i.e., a WFQ
 scheme. This has interesting side-effects.

 A key effect sought is to ensure that the mean rate the traffic in a
 stream experiences is never lower than some threshold when there is
 at least that much traffic to send. When there is less traffic than
 this, the queue tends to be starved of traffic, meaning that the
 queuing system will not delay its traffic by very much. When there
 is significantly more traffic and the queue starts filling, packets
 in this class will be delayed significantly more than traffic in
 other classes that are under-using their available capacity. This
 form of queuing system therefore tends to move delay and variation in
 delay from under-used classes of traffic to heavier users, as well as
 managing the rates of the traffic streams.

 A side-effect of a WRR or WFQ implementation is that between any two
 packets in a given traffic class, the scheduler may emit one or more
 packets from each of the other classes in the queuing system. In
 cases where average behavior is in view, this is perfectly
 acceptable. In cases where traffic is very intolerant of jitter and
 there are a number of competing classes, this may have undesirable
 consequences.

Bernet, et. al. Informational [Page 34]

RFC 3290 Diffserv Informal Management Model May 2002

7.2.2. Traffic Priority

 Traffic Prioritization is a special case of load sharing, wherein a
 certain traffic class is deemed so jitter-intolerant that if it has
 traffic present, that traffic must be sent at the earliest possible
 time. By extension, several priorities might be defined, such that
 traffic in each of several classes is given preferential service over
 any traffic of a lower class. It is the obvious implementation of IP
 Precedence as described in [RFC 791], of 802.1p traffic classes
 [802.1D], and other similar technologies.

 Priority is often abused in real networks; people tend to think that
 traffic which has a high business priority deserves this treatment
 and talk more about the business imperatives than the actual
 application requirements. This can have severe consequences;
 networks have been configured which placed business-critical traffic
 at a higher priority than routing-protocol traffic, resulting in
 collapse of the network’s management or control systems. However, it
 may have a legitimate use for services based on an Expedited
 Forwarding (EF) PHB, where it is absolutely sure, thanks to policing
 at all possible traffic entry points, that a traffic stream does not
 abuse its rate and that the application is indeed jitter-intolerant
 enough to merit this type of handling. Note that, even in cases with
 well-policed ingress points, there is still the possibility of
 unexpected traffic loops within an un-policed core part of the
 network causing such collapse.

8. Traffic Conditioning Blocks (TCBs)

 The Classifier, Meter, Action, Algorithmic Dropper, Queue and
 Scheduler functional datapath elements described above can be
 combined into Traffic Conditioning Blocks (TCBs). A TCB is an
 abstraction of a set of functional datapath elements that may be used
 to facilitate the definition of specific traffic conditioning
 functionality (e.g., it might be likened to a template which can be
 replicated multiple times for different traffic streams or different
 customers). It has no likely physical representation in the
 implementation of the data path: it is invented purely as an
 abstraction for use by management tools.

 This model describes the configuration and management of a Diffserv
 interface in terms of a TCB that contains, by definition, zero or
 more Classifier, Meter, Action, Algorithmic Dropper, Queue and
 Scheduler elements. These elements are arranged arbitrarily
 according to the policy being expressed, but always in the order
 here. Traffic may be classified; classified traffic may be metered;
 each stream of traffic identified by a combination of classifiers and
 meters may have some set of actions performed on it, followed by drop

Bernet, et. al. Informational [Page 35]

RFC 3290 Diffserv Informal Management Model May 2002

 algorithms; packets of the traffic stream may ultimately be stored
 into a queue and then be scheduled out to the next TCB or physical
 interface. It is permissible to omit elements or include null
 elements of any type, or to concatenate multiple functional datapath
 elements of the same type.

 When the Diffserv treatment for a given packet needs to have such
 building blocks repeated, this is performed by cascading multiple
 TCBs: an output of one TCB may drive the input of a succeeding one.
 For example, consider the case where traffic of a set of classes is
 shaped to a set of rates, but the total output rate of the group of
 classes must also be limited to a rate. One might imagine a set of
 network news feeds, each with a certain maximum rate, and a policy
 that their aggregate may not exceed some figure. This may be simply
 accomplished by cascading two TCBs. The first classifies the traffic
 into its separate feeds and queues each feed separately. The feeds
 (or a subset of them) are now fed into a second TCB, which places all
 input (these news feeds) into a single queue with a certain maximum
 rate. In implementation, one could imagine this as the several
 literal queues, a CBQ or WFQ system with an appropriate (and complex)
 weighting scheme, or a number of other approaches. But they would
 have the same externally measurable effect on the traffic as if they
 had been literally implemented with separate TCBs.

8.1. TCB

 A generalized TCB might consist of the following stages:

 - Classification stage

 - Metering stage

 - Action stage (involving Markers, Absolute Droppers, Counters,
 and Multiplexors)

 - Queuing stage (involving Algorithmic Droppers, Queues, and
 Schedulers)

 where each stage may consist of a set of parallel datapaths
 consisting of pipelined elements.

 A Classifier or a Meter is typically a 1:N element, an Action,
 Algorithmic Dropper, or Queue is typically a 1:1 element and a
 Scheduler is a N:1 element. A complete TCB should, however, result
 in a 1:1 or 1:N abstract element. Note that the fan-in or fan-out of
 an element is not an important defining characteristic of this
 taxonomy.

Bernet, et. al. Informational [Page 36]

RFC 3290 Diffserv Informal Management Model May 2002

8.1.1. Building blocks for Queuing

 Some particular rules are applied to the ordering of elements within
 a Queuing stage within a TCB: elements of the same type may appear
 more than once, either in parallel or in series. Typically, a
 queuing stage will have relatively many elements in parallel and few
 in series. Iteration and recursion are not supported constructs (the
 elements are arranged in an acyclic graph). The following inter-
 connections of elements are allowed:

 - The input of a Queue may be the input of the queuing block, or
 it may be connected to the output of an Algorithmic Dropper, or
 to an output of a Scheduler.

 - Each input of a Scheduler may be connected to the output of a
 Queue, to the output of an Algorithmic Dropper, or to the
 output of another Scheduler.

 - The input of an Algorithmic Dropper may be the first element of
 the queuing stage, the output of another Algorithmic Dropper,
 or it may be connected to the output of a Queue (to indicate
 head-dropping).

 - The output of the queuing block may be the output of a Queue,
 an Algorithmic Dropper, or a Scheduler.

 Note, in particular, that Schedulers may operate in series such so
 that a packet at the head of a Queue feeding the concatenated
 Schedulers is serviced only after all of the scheduling criteria are
 met. For example, a Queue which carries EF traffic streams may be
 served first by a non-work-conserving Scheduler to shape the stream
 to a maximum rate, then by a work-conserving Scheduler to mix EF
 traffic streams with other traffic streams. Alternatively, there
 might be a Queue and/or a dropper between the two Schedulers.

 Note also that some non-sensical scenarios (e.g., a Queue preceding
 an Algorithmic Dropper, directly feeding into another Queue), are
 prohibited.

8.2. An Example TCB

 A SLS is presumed to have been negotiated between the customer and
 the provider which specifies the handling of the customer’s traffic,
 as defined by a TCS) by the provider’s network. The agreement might
 be of the following form:

Bernet, et. al. Informational [Page 37]

RFC 3290 Diffserv Informal Management Model May 2002

 DSCP PHB Profile Treatment
 ---- --- ------- ----------------------
 001001 EF Profile4 Discard non-conforming.
 001100 AF11 Profile5 Shape to profile, tail-drop when full.
 001101 AF21 Profile3 Re-mark non-conforming to DSCP 001000,
 tail-drop when full.
 other BE none Apply RED-like dropping.

 This SLS specifies that the customer may submit packets marked for
 DSCP 001001 which will get EF treatment so long as they remain
 conforming to Profile4, which will be discarded if they exceed this
 profile. The discarded packets are counted in this example, perhaps
 for use by the provider’s sales department in convincing the customer
 to buy a larger SLS. Packets marked for DSCP 001100 will be shaped
 to Profile5 before forwarding. Packets marked for DSCP 001101 will
 be metered to Profile3 with non-conforming packets "downgraded" by
 being re-marked with a DSCP of 001000. It is implicit in this
 agreement that conforming packets are given the PHB originally
 indicated by the packets’ DSCP field.

 Figures 6 and 7 illustrates a TCB that might be used to handle this
 SLS at an ingress interface at the customer/provider boundary.

 The Classification stage of this example consists of a single BA
 classifier. The BA classifier is used to separate traffic based on
 the Diffserv service level requested by the customer (as indicated by
 the DSCP in each submitted packet’s IP header). We illustrate three
 DSCP filter values: A, B, and C. The ’X’ in the BA classifier is a
 wildcard filter that matches every packet not otherwise matched.

 The path for DSCP 001100 proceeds directly to Dropper1 whilst the
 paths for DSCP 001001 and 001101 include a metering stage. All other
 traffic is passed directly on to Dropper3. There is a separate meter
 for each set of packets corresponding to classifier outputs A and C.
 Each meter uses a specific profile, as specified in the TCS, for the
 corresponding Diffserv service level. The meters in this example
 each indicate one of two conformance levels: conforming or non-
 conforming.

 Following the Metering stage is an Action stage in some of the
 branches. Packets submitted for DSCP 001001 (Classifier output A)
 that are deemed non-conforming by Meter1 are counted and discarded
 while packets that are conforming are passed on to Queue1. Packets
 submitted for DSCP 001101 (Classifier output C) that are deemed non-
 conforming by Meter2 are re-marked and then both conforming and non-
 conforming packets are multiplexed together before being passed on to
 Dropper2/Queue3.

Bernet, et. al. Informational [Page 38]

RFC 3290 Diffserv Informal Management Model May 2002

 The Algorithmic Dropping, Queuing and Scheduling stages are realized
 as follows, illustrated in figure 7. Note that the figure does not
 show any of the implicit control linkages between elements that allow
 e.g., an Algorithmic Dropper to sense the current state of a
 succeeding Queue.

 +-----+
 | A|---------------------------> to Queue1
 +->| |
 | | B|--+ +-----+ +-----+
 | +-----+ | | | | |
 | Meter1 +->| |--->| |
 | | | | |
 | +-----+ +-----+
 | Counter1 Absolute
submitted +-----+ | Dropper1
traffic | A|-----+
--------->| B|--------------------------------------> to AlgDropper1
 | C|-----+
 | X|--+ |
 +-----+ | | +-----+ +-----+
 Classifier1| | | A|--------------->|A |
 (BA) | +->| | | |--> to AlgDrop2
 | | B|--+ +-----+ +->|B |
 | +-----+ | | | | +-----+
 | Meter2 +->| |-+ Mux1
 | | |
 | +-----+
 | Marker1
 +-----------------------------------> to AlgDropper3

 Figure 6: An Example Traffic Conditioning Block (Part 1)

 Conforming DSCP 001001 packets from Meter1 are passed directly to
 Queue1: there is no way, with configuration of the following
 Scheduler to match the metering, for these packets to overflow the
 depth of Queue1, so there is no requirement for dropping at this
 point. Packets marked for DSCP 001100 must be passed through a
 tail-dropper, AlgDropper1, which serves to limit the depth of the
 following queue, Queue2: packets that arrive to a full queue will be
 discarded. This is likely to be an error case: the customer is
 obviously not sticking to its agreed profile. Similarly, all packets
 from the original DSCP 001101 stream (some may have been re-marked by
 this stage) are passed to AlgDropper2 and Queue3. Packets marked for
 all other DSCPs are passed to AlgDropper3 which is a RED-like
 Algorithmic Dropper: based on feedback of the current depth of
 Queue4, this dropper is supposed to discard enough packets from its
 input stream to keep the queue depth under control.

Bernet, et. al. Informational [Page 39]

RFC 3290 Diffserv Informal Management Model May 2002

 These four Queue elements are then serviced by a Scheduler element
 Scheduler1: this must be configured to give each of its inputs an
 appropriate priority and/or bandwidth share. Inputs A and C are
 given guarantees of bandwidth, as appropriate for the contracted
 profiles. Input B is given a limit on the bandwidth it can use
 (i.e., a non-work-conserving discipline) in order to achieve the
 desired shaping of this stream. Input D is given no limits or
 guarantees but a lower priority than the other queues, appropriate
 for its best-effort status. Traffic then exits the Scheduler in a
 single orderly stream.

 The interconnections of the TCB elements illustrated in Figures 6 and
 7 can be represented textually as follows:

 TCB1:

 Classifier1:
 FilterA: Meter1
 FilterB: Dropper1
 FilterC: Meter2
 Default: Dropper3

 from Meter1 +-----+
 ------------------------------->| |----+
 | | |
 +-----+ |
 Queue1 |
 | +-----+
 from Classifier1 +-----+ +-----+ +->|A |
 ---------------->| |------->| |------>|B |------->
 | | | | +--->|C | exiting
 +-----+ +-----+ | +->|D | traffic
 AlgDropper1 Queue2 | | +-----+
 | | Scheduler1
 from Mux1 +-----+ +-----+ | |
 ---------------->| |------->| |--+ |
 | | | | |
 +-----+ +-----+ |
 AlgDropper2 Queue3 |
 |
 from Classifier1 +-----+ +-----+ |
 ---------------->| |------->| |----+
 | | | |
 +-----+ +-----+
 AlgDropper3 Queue4

 Figure 7: An Example Traffic Conditioning Block (Part 2)

Bernet, et. al. Informational [Page 40]

RFC 3290 Diffserv Informal Management Model May 2002

 Meter1:
 Type: AverageRate
 Profile: Profile4
 ConformingOutput: Queue1
 NonConformingOutput: Counter1

 Counter1:
 Output: AbsoluteDropper1

 Meter2:
 Type: AverageRate
 Profile: Profile3
 ConformingOutput: Mux1.InputA
 NonConformingOutput: Marker1

 Marker1:
 Type: DSCPMarker
 Mark: 001000
 Output: Mux1.InputB

 Mux1:
 Output: Dropper2

 AlgDropper1:
 Type: AlgorithmicDropper
 Discipline: Drop-on-threshold
 Trigger: Queue2.Depth > 10kbyte
 Output: Queue2

 AlgDropper2:
 Type: AlgorithmicDropper
 Discipline: Drop-on-threshold
 Trigger: Queue3.Depth > 20kbyte
 Output: Queue3

 AlgDropper3:
 Type: AlgorithmicDropper
 Discipline: RED93
 Trigger: Internal
 Output: Queue3
 MinThresh: Queue3.Depth > 20 kbyte
 MaxThresh: Queue3.Depth > 40 kbyte
 <other RED parms too>

Bernet, et. al. Informational [Page 41]

RFC 3290 Diffserv Informal Management Model May 2002

 Queue1:
 Type: FIFO
 Output: Scheduler1.InputA

 Queue2:
 Type: FIFO
 Output: Scheduler1.InputB

 Queue3:
 Type: FIFO
 Output: Scheduler1.InputC

 Queue4:
 Type: FIFO
 Output: Scheduler1.InputD

 Scheduler1:
 Type: Scheduler4Input
 InputA:
 MaxRateProfile: none
 MinRateProfile: Profile4
 Priority: 20
 InputB:
 MaxRateProfile: Profile5
 MinRateProfile: none
 Priority: 40
 InputC:
 MaxRateProfile: none
 MinRateProfile: Profile3
 Priority: 20
 InputD:
 MaxRateProfile: none
 MinRateProfile: none
 Priority: 10

8.3. An Example TCB to Support Multiple Customers

 The TCB described above can be installed on an ingress interface to
 implement a provider/customer TCS if the interface is dedicated to
 the customer. However, if a single interface is shared between
 multiple customers, then the TCB above will not suffice, since it
 does not differentiate among traffic from different customers. Its
 classification stage uses only BA classifiers.

 The configuration is readily modified to support the case of multiple
 customers per interface, as follows. First, a TCB is defined for
 each customer to reflect the TCS with that customer: TCB1, defined
 above is the TCB for customer 1. Similar elements are created for

Bernet, et. al. Informational [Page 42]

RFC 3290 Diffserv Informal Management Model May 2002

 TCB2 and for TCB3 which reflect the agreements with customers 2 and 3
 respectively. These 3 TCBs may or may not contain similar elements
 and parameters.

 Finally, a classifier is added to the front end to separate the
 traffic from the three different customers. This forms a new TCB,
 TCB4, which is illustrated in Figure 8.

 A representation of this multi-customer TCB might be:

 TCB4:

 Classifier4:
 Filter1: to TCB1
 Filter2: to TCB2
 Filter3: to TCB3
 No Match: AbsoluteDropper4

 AbsoluteDropper4:
 Type: AbsoluteDropper

 TCB1:
 (as defined above)

 TCB2:
 (similar to TCB1, perhaps with different
 elements or numeric parameters)

 TCB3:
 (similar to TCB1, perhaps with different
 elements or numeric parameters)

 and the filters, based on each customer’s source MAC address, could
 be defined as follows:

 Filter1:

 submitted +-----+
 traffic | A|--------> TCB1
 --------->| B|--------> TCB2
 | C|--------> TCB3
 | X|------+ +-----+
 +-----+ +-->| |
 Classifier4 +-----+
 AbsoluteDrop4

 Figure 8: An Example of a Multi-Customer TCB

Bernet, et. al. Informational [Page 43]

RFC 3290 Diffserv Informal Management Model May 2002

 Type: MacAddress
 SrcValue: 01-02-03-04-05-06 (source MAC address of customer 1)
 SrcMask: FF-FF-FF-FF-FF-FF
 DestValue: 00-00-00-00-00-00
 DestMask: 00-00-00-00-00-00

 Filter2:
 (similar to Filter1 but with customer 2’s source MAC address as
 SrcValue)

 Filter3:
 (similar to Filter1 but with customer 3’s source MAC address as
 SrcValue)

 In this example, Classifier4 separates traffic submitted from
 different customers based on the source MAC address in submitted
 packets. Those packets with recognized source MAC addresses are
 passed to the TCB implementing the TCS with the corresponding
 customer. Those packets with unrecognized source MAC addresses are
 passed to a dropper.

 TCB4 has a Classifier stage and an Action element stage performing
 dropping of all unmatched traffic.

8.4. TCBs Supporting Microflow-based Services

 The TCB illustrated above describes a configuration that might be
 suitable for enforcing a SLS at a router’s ingress. It assumes that
 the customer marks its own traffic for the appropriate service level.
 It then limits the rate of aggregate traffic submitted at each
 service level, thereby protecting the resources of the Diffserv
 network. It does not provide any isolation between the customer’s
 individual microflows.

 A more complex example might be a TCB configuration that offers
 additional functionality to the customer. It recognizes individual
 customer microflows and marks each one independently. It also
 isolates the customer’s individual microflows from each other in
 order to prevent a single microflow from seizing an unfair share of
 the resources available to the customer at a certain service level.
 This is illustrated in Figure 9.

 Suppose that the customer has an SLS which specifies 2 service
 levels, to be identified to the provider by DSCP A and DSCP B.
 Traffic is first directed to a MF classifier which classifies traffic
 based on miscellaneous classification criteria, to a granularity
 sufficient to identify individual customer microflows. Each
 microflow can then be marked for a specific DSCP The metering

Bernet, et. al. Informational [Page 44]

RFC 3290 Diffserv Informal Management Model May 2002

 elements limit the contribution of each of the customer’s microflows
 to the service level for which it was marked. Packets exceeding the
 allowable limit for the microflow are dropped.

 +-----+ +-----+
 Classifier1 | | | |---------------+
 (MF) +->| |-->| | +-----+ |
 +-----+ | | | | |---->| | |
 | A|------ +-----+ +-----+ +-----+ |
 -->| B|-----+ Marker1 Meter1 Absolute |
 | C|---+ | Dropper1 | +-----+
 | X|-+ | | +-----+ +-----+ +-->|A |
 +-----+ | | | | | | |------------------>|B |--->
 | | +->| |-->| | +-----+ +-->|C | to TCB2
 | | | | | |---->| | | +-----+
 | | +-----+ +-----+ +-----+ | Mux1
 | | Marker2 Meter2 Absolute |
 | | Dropper2 |
 | | +-----+ +-----+ |
 | | | | | |---------------+
 | |--->| |-->| | +-----+
 | | | | |---->| |
 | +-----+ +-----+ +-----+
 | Marker3 Meter3 Absolute
 | Dropper3
 V etc.

 Figure 9: An Example of a Marking and Traffic Isolation TCB

 This TCB could be formally specified as follows:

 TCB1:
 Classifier1: (MF)
 FilterA: Marker1
 FilterB: Marker2
 FilterC: Marker3
 etc.

 Marker1:
 Output: Meter1

 Marker2:
 Output: Meter2

 Marker3:
 Output: Meter3

Bernet, et. al. Informational [Page 45]

RFC 3290 Diffserv Informal Management Model May 2002

 Meter1:
 ConformingOutput: Mux1.InputA
 NonConformingOutput: AbsoluteDropper1

 Meter2:
 ConformingOutput: Mux1.InputB
 NonConformingOutput: AbsoluteDropper2

 Meter3:
 ConformingOutput: Mux1.InputC
 NonConformingOutput: AbsoluteDropper3

 etc.

 Mux1:
 Output: to TCB2

 Note that the detailed traffic element declarations are not shown
 here. Traffic is either dropped by TCB1 or emerges marked for one of
 two DSCPs. This traffic is then passed to TCB2 which is illustrated
 in Figure 10.

 TCB2 could then be specified as follows:

 Classifier2: (BA)
 FilterA: Meter5
 FilterB: Meter6

 +-----+
 | |---------------> to Queue1
 +->| | +-----+
 +-----+ | | |---->| |
 | A|---+ +-----+ +-----+
 ->| | Meter5 AbsoluteDropper4
 | B|---+ +-----+
 +-----+ | | |---------------> to Queue2
 Classifier2 +->| | +-----+
 (BA) | |---->| |
 +-----+ +-----+
 Meter6 AbsoluteDropper5

 Figure 10: Additional Example: TCB2

 Meter5:
 ConformingOutput: Queue1
 NonConformingOutput: AbsoluteDropper4

Bernet, et. al. Informational [Page 46]

RFC 3290 Diffserv Informal Management Model May 2002

 Meter6:
 ConformingOutput: Queue2
 NonConformingOutput: AbsoluteDropper5

8.5. Cascaded TCBs

 Nothing in this model prevents more complex scenarios in which one
 microflow TCB precedes another (e.g., for TCBs implementing separate
 TCSs for the source and for a set of destinations).

9. Security Considerations

 Security vulnerabilities of Diffserv network operation are discussed
 in [DSARCH]. This document describes an abstract functional model of
 Diffserv router elements. Certain denial-of-service attacks such as
 those resulting from resource starvation may be mitigated by
 appropriate configuration of these router elements; for example, by
 rate limiting certain traffic streams or by authenticating traffic
 marked for higher quality-of-service.

 There may be theft-of-service scenarios where a malicious host can
 exploit a loose token bucket policer to obtain slightly better QoS
 than that committed in the TCS.

10. Acknowledgments

 Concepts, terminology, and text have been borrowed liberally from
 [POLTERM], as well as from other IETF work on MIBs and policy-
 management. We wish to thank the authors of some of those documents:
 Fred Baker, Michael Fine, Keith McCloghrie, John Seligson, Kwok Chan,
 Scott Hahn, and Andrea Westerinen for their contributions.

 This document has benefited from the comments and suggestions of
 several participants of the Diffserv working group, particularly
 Shahram Davari, John Strassner, and Walter Weiss. This document
 could never have reached this level of rough consensus without the
 relentless pressure of the co-chairs Brian Carpenter and Kathie
 Nichols, for which the authors are grateful.

11. References

 [AF-PHB] Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597, June 1999.

 [DSARCH] Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D.
 and E. Davies, "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

Bernet, et. al. Informational [Page 47]

RFC 3290 Diffserv Informal Management Model May 2002

 [DSFIELD] Nichols, K., Blake, S., Baker, F. and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474, December
 1998.

 [DSMIB] Baker, F., Smith, A., and K. Chan, "Management
 Information Base for the Differentiated Services
 Architecture", RFC 3289, May 2002.

 [E2E] Bernet, Y., Yavatkar, R., Ford, P., Baker, F., Zhang, L.,
 Speer, M., Nichols, K., Braden, R., Davie, B.,
 Wroclawski, J. and E. Felstaine, "A Framework for
 Integrated Services Operation over Diffserv Networks",
 RFC 2998, November 2000.

 [EF-PHB] Davie, B., Charny, A., Bennett, J.C.R., Benson, K., Le
 Boudec, J.Y., Courtney, W., Davari, S., Firoiu, V. and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, March 2002.

 [FJ95] Floyd, S. and V. Jacobson, "Link Sharing and Resource
 Management Models for Packet Networks", IEEE/ACM
 Transactions on Networking, Vol. 3 No. 4, August 1995l.

 [INTSERV] Braden, R., Clark, D. and S. Shenker, "Integrated
 Services in the Internet Architecture: an Overview", RFC
 1633, June 1994.

 [NEWTERMS] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, April, 2002

 [PDBDEF] K. Nichols and B. Carpenter, "Definition of
 Differentiated Services Per Domain Behaviors and Rules
 for Their Specification", RFC 3086, April 2001.

 [POLTERM] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
 M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
 J. and S. Waldbusser, "Policy Terminology", RFC 3198,
 November 2001.

 [QOSDEVMOD] Strassner, J., Westerinen, A. and B. Moore, "Information
 Model for Describing Network Device QoS Mechanisms", Work
 in Progress.

Bernet, et. al. Informational [Page 48]

RFC 3290 Diffserv Informal Management Model May 2002

 [QUEUEMGMT] Braden, R., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, C.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J. and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, April 1998.

 [SRTCM] Heinanen, J. and R. Guerin, "A Single Rate Three Color
 Marker", RFC 2697, September 1999.

 [TRTCM] Heinanen, J. and R. Guerin, "A Two Rate Three Color
 Marker", RFC 2698, September 1999.

 [VIC] McCanne, S. and Jacobson, V., "vic: A Flexible Framework
 for Packet Video", ACM Multimedia ’95, November 1995, San
 Francisco, CA, pp. 511-522.
 <ftp://ftp.ee.lbl.gov/papers/vic-mm95.ps.Z>

 [802.1D] "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Common specifications - Part
 3: Media Access Control (MAC) Bridges: Revision. This
 is a revision of ISO/IEC 10038: 1993, 802.1j-1992 and
 802.6k-1992. It incorporates P802.11c, P802.1p and
 P802.12e.", ISO/IEC 15802-3: 1998.

Bernet, et. al. Informational [Page 49]

RFC 3290 Diffserv Informal Management Model May 2002

Appendix A. Discussion of Token Buckets and Leaky Buckets

 "Leaky bucket" and/or "Token Bucket" models are used to describe rate
 control in several architectures, including Frame Relay, ATM,
 Integrated Services and Differentiated Services. Both of these
 models are, by definition, theoretical relationships between some
 defined burst size, B, a rate, R, and a time interval, t:

 R = B/t

 Thus, a token bucket or leaky bucket might specify an information
 rate of 1.2 Mbps with a burst size of 1500 bytes. In this case, the
 token rate is 1,200,000 bits per second, the token burst is 12,000
 bits and the token interval is 10 milliseconds. The specification
 says that conforming traffic will, in the worst case, come in 100
 bursts per second of 1500 bytes each and at an average rate not
 exceeding 1.2 Mbps.

A.1 Leaky Buckets

 A leaky bucket algorithm is primarily used for shaping traffic as it
 leaves an interface onto the network (handled under Queues and
 Schedulers in this model). Traffic theoretically departs from an
 interface at a rate of one bit every so many time units (in the
 example, one bit every 0.83 microseconds) but, in fact, departs in
 multi-bit units (packets) at a rate approximating the theoretical, as
 measured over a longer interval. In the example, it might send one
 1500 byte packet every 10 ms or perhaps one 500 byte packet every 3.3
 ms. It is also possible to build multi-rate leaky buckets in which
 traffic departs from the interface at varying rates depending on
 recent activity or inactivity.

 Implementations generally seek as constant a transmission rate as
 achievable. In theory, a 10 Mbps shaped transmission stream from an
 algorithmic implementation and a stream which is running at 10 Mbps
 because its bottleneck link has been a 10 Mbps Ethernet link should
 be indistinguishable. Depending on configuration, the approximation
 to theoretical smoothness may vary by moving as much as an MTU from
 one token interval to another. Traffic may also be jostled by other
 traffic competing for the same transmission resources.

A.2 Token Buckets

 A token bucket, on the other hand, measures the arrival rate of
 traffic from another device. This traffic may originally have been
 shaped using a leaky bucket shaper or its equivalent. The token
 bucket determines whether the traffic (still) conforms to the
 specification. Multi-rate token buckets (e.g., token buckets with

Bernet, et. al. Informational [Page 50]

RFC 3290 Diffserv Informal Management Model May 2002

 both a peak rate and a mean rate, and sometimes more) are commonly
 used, such as those described in [SRTCM] and [TRTCM]. In this case,
 absolute smoothness is not expected, but conformance to one or more
 of the specified rates is.

 Simplistically, a data stream is said to conform to a simple token
 bucket parameterized by a {R, B} if the system receives in any time
 interval, t, at most, an amount of data not exceeding (R * t) + B.

 For a multi-rate token bucket case, the data stream is said to
 conform if, for each of the rates, the stream conforms to the token-
 bucket profile appropriate for traffic of that class. For example,
 received traffic that arrives pre-classified as one of the "excess"
 rates (e.g., AF12 or AF13 traffic for a device implementing the AF1x
 PHB) is only compared to the relevant "excess" token bucket profile.

A.3 Some Consequences

 The fact that Internet Protocol data is organized into variable
 length packets introduces some uncertainty in the conformance
 decision made by any downstream Meter that is attempting to determine
 conformance to a traffic profile that is theoretically designed for
 fixed-length units of data.

 When used as a leaky bucket shaper, the above definition interacts
 with clock granularity in ways one might not expect. A leaky bucket
 releases a packet only when all of its bits would have been allowed:
 it does not borrow from future capacity. If the clock is very fine
 grain, on the order of the bit rate or faster, this is not an issue.
 But if the clock is relatively slow (and millisecond or multi-
 millisecond clocks are not unusual in networking equipment), this can
 introduce jitter to the shaped stream.

 This leaves an implementor of a token bucket Meter with a dilemma.
 When the number of bandwidth tokens, b, left in the token bucket is
 positive but less than the size of the packet being operated on, L,
 one of three actions can be performed:

 (1) The whole size of the packet can be subtracted from the
 bucket, leaving it negative, remembering that, when new
 tokens are next added to the bucket, the new token
 allocation, B, must be added to b rather than simply setting
 the bucket to "full". This option potentially puts more
 than the desired burst size of data into this token bucket
 interval and correspondingly less into the next. It does,
 however, keep the average amount accepted per token bucket
 interval equal to the token burst. This approach accepts
 traffic if any one bit in the packet would have been

Bernet, et. al. Informational [Page 51]

RFC 3290 Diffserv Informal Management Model May 2002

 accepted and borrows up to one MTU of capacity from one or
 more subsequent intervals when necessary. Such a token
 bucket meter implementation is said to offer "loose"
 conformance to the token bucket.

 (2) Alternatively, the packet can be rejected and the amount of
 tokens in the bucket left unchanged (and maybe an attempt
 could be made to accept the packet under another threshold
 in another bucket), remembering that, when new tokens are
 next added to the bucket, the new token allocation, B, must
 be added to b rather than simply setting the bucket to
 "full". This potentially puts less than the permissible
 burst size of data into this token bucket interval and
 correspondingly more into the next. Like the first option,
 it keeps the average amount accepted per token bucket
 interval equal to the token burst. This approach accepts
 traffic only if every bit in the packet would have been
 accepted and borrows up to one MTU of capacity from one or
 more previous intervals when necessary. Such a token bucket
 meter implementation is said to offer "strict" (or perhaps
 "stricter") conformance to the token bucket. This option is
 consistent with [SRTCM] and [TRTCM] and is often used in ATM
 and frame-relay implementations.

 (3) The TB variable can be set to zero to account for the first
 part of the packet and the remainder of the packet size can
 be taken out of the next-colored bucket. This, of course,
 has another bug: the same packet cannot have both
 conforming and non-conforming components in the Diffserv
 architecture and so is not really appropriate here and we do
 not discuss this option further here.

 Unfortunately, the thing that cannot be done is exactly to
 fit the token burst specification with random sized packets:
 therefore token buckets in a variable length packet
 environment always have a some variance from theoretical
 reality. This has also been observed in the ATM Guaranteed
 Frame Rate (GFR) service category specification and Frame
 Relay. A number of observations may be made:

 o Operationally, a token bucket meter is reasonable for traffic
 which has been shaped by a leaky bucket shaper or a serial line.
 However, traffic in the Internet is rarely shaped in that way: TCP
 applies no shaping to its traffic, but rather depends on longer-
 range ACK-clocking behavior to help it approximate a certain rate
 and explicitly sends traffic bursts during slow start,
 retransmission, and fast recovery. Video-on-IP implementations
 such as [VIC] may have a leaky bucket shaper available to them,

Bernet, et. al. Informational [Page 52]

RFC 3290 Diffserv Informal Management Model May 2002

 but often do not, and simply enqueue the output of their codec for
 transmission on the appropriate interface. As a result, in each
 of these cases, a token bucket meter may reject traffic in the
 short term (over a single token interval) which it would have
 accepted if it had a longer time in view and which it needs to
 accept for the application to work properly. To work around this,
 the token interval, B/R, must approximate or exceed the RTT of the
 session(s) in question and the burst size, B, must accommodate the
 largest burst that the originator might send.

 o The behavior of a loose token bucket is significantly different
 from the token bucket description for ATM and for Frame Relay.

 o A loose token bucket does not accept packets while the token count
 is negative. This means that, when a large packet has just
 borrowed tokens from the future, even a small incoming packet
 (e.g., a 40-byte TCP ACK/SYN) will not be accepted. Therefore, if
 such a loose token bucket is configured with a burst size close to
 the MTU, some discrimination against smaller packets can take
 place: use of a larger burst size avoids this problem.

 o The converse of the above is that a strict token bucket sometimes
 does not accept large packets when a loose one would do so.
 Therefore, if such a strict token bucket is configured with a
 burst size close to the MTU, some discrimination against larger
 packets can take place: use of a larger burst size avoids this
 problem.

 o In real-world deployments, MTUs are often larger than the burst
 size offered by a link-layer network service provider. If so then
 it is possible that a strict token bucket meter would find that
 traffic never matches the specified profile: this may be avoided
 by not allowing such a specification to be used. This situation
 cannot arise with a loose token bucket since the smallest burst
 size that can be configured is 1 bit, by definition limiting a
 loose token bucket to having a burst size of greater than one MTU.

 o Both strict token bucket specifications, as specified in [SRTCM]
 and [TRTCM], and loose ones, are subject to a persistent under-
 run. These accumulate burst capacity over time, up to the maximum
 burst size. Suppose that the maximum burst size is exactly the
 size of the packets being sent - which one might call the
 "strictest" token bucket implementation. In such a case, when one
 packet has been accepted, the token depth becomes zero and starts
 to accumulate again. If the next packet is received any time
 earlier than a token interval later, it will not be accepted. If
 the next packet arrives exactly on time, it will be accepted and
 the token depth again set to zero. If it arrives later, however,

Bernet, et. al. Informational [Page 53]

RFC 3290 Diffserv Informal Management Model May 2002

 accumulation of tokens will have stopped because it is capped by
 the maximum burst size: during the interval between the bucket
 becoming full and the actual arrival of the packet, no new tokens
 are added. As a result, jitter that accumulates across multiple
 hops in the network conspires against the algorithm to reduce the
 actual acceptance rate. Thus it usually makes sense to set the
 maximum token bucket size somewhat greater than the MTU in order
 to absorb some of the jitter and allow a practical acceptance rate
 more in line with the desired theoretical rate.

A.4 Mathematical Definition of Strict Token Bucket Conformance

 The strict token bucket conformance behavior defined in [SRTCM] and
 [TRTCM] is not mandatory for compliance with any current Diffserv
 standards, but we give here a mathematical definition of two-
 parameter token bucket operation which is consistent with those
 documents and which can also be used to define a shaping profile.

 Define a token bucket with bucket size B, token accumulation rate R
 and instantaneous token occupancy b(t). Assume that b(0) = B. Then
 after an arbitrary interval with no packet arrivals, b(t) will not
 change since the bucket is already full of tokens.

 Assume a packet of size L bytes arrives at time t’. The bucket
 occupancy is still B. Then, as long as L <= B, the packet conforms
 to the meter, and afterwards

 b(t’) = B - L.

 Assume now an interval delta_t = t - t’ elapses before the next
 packet arrives, of size L’ <= B. Just before this, at time t-, the
 bucket has accumulated delta_t*R tokens over the interval, up to a
 maximum of B tokens so that:

 b(t-) = min{ B, b(t’) + delta_t*R }

 For a strict token bucket, the conformance test is as follows:

 if (b(t-) - L’ >= 0) {
 /* the packet conforms */
 b(t) = b(t-) - L’;
 }
 else {
 /* the packet does not conform */
 b(t) = b(t-);
 }

Bernet, et. al. Informational [Page 54]

RFC 3290 Diffserv Informal Management Model May 2002

 This function can also be used to define a shaping profile. If a
 packet of size L arrives at time t, it will be eligible for
 transmission at time te given as follows (we still assume L <= B):

 te = max{ t, t" }

 where t" = (L - b(t’) + t’*R) / R and b(t") = L, the time when L
 credits have accumulated in the bucket, and when the packet would
 conform if the token bucket were a meter. te != t" only if t > t".

 A mathematical definition along these lines for loose token bucket
 conformance is left as an exercise for the reader.

Authors’ Addresses

 Yoram Bernet
 Microsoft
 One Microsoft Way
 Redmond, WA 98052

 Phone: +1 425 936 9568
 EMail: ybernet@msn.com

 Steven Blake
 Ericsson
 920 Main Campus Drive, Suite 500
 Raleigh, NC 27606

 Phone: +1 919 472 9913
 EMail: steven.blake@ericsson.com

 Daniel Grossman
 Motorola Inc.
 20 Cabot Blvd.
 Mansfield, MA 02048

 Phone: +1 508 261 5312
 EMail: dan@dma.isg.mot.com

 Andrew Smith (editor)
 Harbour Networks
 Jiuling Building
 21 North Xisanhuan Ave.
 Beijing, 100089
 PRC

 Fax: +1 415 345 1827
 EMail: ah_smith@acm.org

Bernet, et. al. Informational [Page 55]

RFC 3290 Diffserv Informal Management Model May 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Bernet, et. al. Informational [Page 56]

