Net wor k Wor ki ng Group H. Hannu
Request for Comments: 3321 J. Christoffersson
Cat egory: | nformational Eri csson
S. Forsgren

K.-C. Leung

Texas Tech University

Z. Liu

Noki a

R Price

Si enens/ Roke Manor

January 2003

Si gnal i ng Conpression (SigConp) - Extended Operations
Status of this Meno

This neno provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
Abstract

Thi s docunent describes how to i nplenment certain mechanisns in

Si gnal i ng Conpression (SigConp), RFC 3320, which can significantly
i mprove the conpression efficiency conpared to using sinple per-
nessage conpressi on.

Si gConp uses a Universal Deconpressor Virtual Machine (UDVM for
deconpressi on, and the nmechani sns described in this docunent are
possible to inplenment using the UDVMinstructions defined in RFC
3320.

Hannu, et. al. I nf or mat i onal [Page 1]

RFC 3321 Si gConmp - Extended Operations January 2003

Tabl e of Contents

1. IntroduCti ON. e 2
2. Termnol Ogy.o 3
3. Architectural View of Feedback............. 4
4, State Reference Model i e 5
5. Extended Mechani SImB. i 6
6. Inmplications on SigComp.ttt 13
7. Security Considerati ONS. 17
8. TANA Considerati ONS.t e e e e e 17
9. Acknow edgement S. 17
10. Intellectual Property Right Considerations................... 17
11, Ref BreNCeS. . oo e 17
12. Aut hors’ AddreSSEeS.t 18
13. Full Copyright Statement.......... 19
1. Introduction

Thi s docunent describes how to inplenent nechanisns with [SIGCOW] to
significantly inprove the conpression efficiency conpared to per-
nessage conpression

One such nechanismis to use previously sent nmessages in the SigConp
conpressi on process, referred to as dynam c conpression. In order to
utilize information frompreviously sent nessages, it is necessary
for a conpressor to gain know edge about the reception of these
nmessages. For a reliable transport, such as TCP, this is guaranteed.
For an unreliable transport however, the SigConp protocol can be used
to provide such a functionality itself. That functionality is
described in this docunent and is referred to as explicit

acknow edgenent .

Anot her mechanismthat will inprove the conpression efficiency of

Si gConp, especially when SigConp is applied to protocols that are of
request/response type, is shared conpression. This involves using
recei ved nessages in the SigConp conpression process. |n particular
the conpression of the first few nessages will gain from shared
conpression. Shared conpression is described in this docunent.

For better understanding of this docunent the reader should be
famliar with the concept of [SI GCOWP].

Hannu, et. al. I nf or mat i onal [Page 2]

RFC 3321 Si gConmp - Extended Operations January 2003

2. Term nol ogy
The reader should consult [SIGCOW] for definitions of termninol ogy,
since this docunment uses the same term nol ogy. Further termn nol ogy
i s defined bel ow
Conpr essor
Entity that encodes application nessages using a certain
conpression al gorithm and keeps track of state that can be used
for conpression. The conpressor is responsible for ensuring that
the nmessages it generates can be deconpressed by the renote UDVM
Deconpr essor
The deconpressor is responsible for converting a SigConp nmessage
i nto unconpressed data. Deconpression functionality is provided
by the UDVM
Dynani ¢ conpressi on

Conpression relative to messages sent prior to the current
conpr essed nmessage

Explicit acknow edgenent
Acknowl edgenment for a state. The acknow edgnment is explicitly
sent froma deconpressor to its renote conpressor. The
acknow edgenment shoul d be pi ggybacked onto a Si gConp nessage in
order not to create additional security risks.

Shar ed conpression

Conpression relative to messages received by the | ocal endpoint
prior to the current conpressed nmessage

Shared state
A state used for shared conpression consists only of an

unconpressed nmessage. This nakes the state independent of the
conpression al gorithm

Hannu, et. al. I nf or mat i onal [Page 3]

RFC 3321 Si gConmp - Extended Operations January 2003

State identifier
Ref erence used to access a previously created itemof state.
- shared_state id
State identifier of a shared state.
- acked_state_id

State identifier of a state that is acknow edged as
successfully saved by the deconpressor

3. Architectural View of Feedback

Si gConp has a request/response nmechanismto provide feedback between
endpoi nts, see Figure 1. This particular functionality of SigConp is
used in this docunent to provide support for the nechani sns descri bed
in this docunent.

oo ee oo + oo ee oo +
Endpoint 1		Endpoi nt 2			
[+		[+			
	Conpressor 1				Deconpressor 2

| | [----------- AR R Ho-te-] |
R EEEEEEE Nemm-t | Rl R R +
l	-t] e e e v					
l SRS aREEEEEEEEPELE oo]						
	Deconpressor 1				Conpressor 2	

| tmmm e me e + | tmmm e me e +

o m e e e e e oo + o m e e e e e oo +

Figure 1. Architectural view

The feedback functionality of SigConp is used in this docunent to
provi de a mechanismfor a SigConp endpoint to confirmwhich states
have been established by its renmpte SigConp endpoint during the
lifetime of a SigConp conpartment. The established state
confirmations are referred to as acknowl edgnents. Depending on the
established states this particular type of feedback nmay or may not be
used to increase the conpression efficiency.

Hannu, et. al. I nf or mat i onal [Page 4]

RFC 3321 Si gConmp - Extended Operations January 2003

The follow ng sections describe how the SigConp functionality of
provi ding feedback information is used to support the mechani sms
described in this docunent. Section 4 describes the state reference
nmodel of SigConp. Section 5 continues with a general description of
t he mechani sms and Section 6 describes the inplications of sone of

t he mechani sns on basi c Si gConp.

4, State Reference Model

A UDVM may want to save the status of its nenory, and this status is
referred to as a state. As explained in [SIGCOW] a state save
request may or nay not be granted by the application. For l|ater
reference to a saved state, e.g., if the UDVMis to be |oaded with
this state, a reference is needed to |ocate the specific state. This
reference is called a state identifier.

4.1. Overview of State Reference with Dynam c Conpression

When conpressor 1 conpresses a nessage mit uses the infornation
corresponding to a SigConp state that its renote deconpressor 2 has
est abli shed and acknow edged. |f conpressor 1 wi shes to use the new
state for conpression of later nmessages it nust save the new state.
The new state contains information fromthe former state and fromm
When an acknow edgenent is received for this new state, conpressor 1
can utilize the new state in the conpression process. Belowis an
overvi ew of the nodel together with an exanple of a nmessage fl ow.

Saved state(s)

A state which is expected to be used for conpression/ deconpression
of later nessages.

Acked state(s)

An acked state is a saved state for which the conpressor has

recei ved an acknow edgenent, i.e., the state has been established
at the renote deconpressor. The conpressor mnmust only use states
that are established at the renote deconpressor, otherw se a
deconpression failure will occur. For this reason,

acknow edgenments are necessary, at |least for unreliable transport.

Hannu, et. al. I nf or mat i onal [Page 5]

RFC 3321 Si gConmp - Extended Operations January 2003

Conpressor 1 Deconpr essor 2
+---+ +---+
| C| | DI
+-- -+ +-- -+
Saved Acked | | Saved
State(s) State(s) | | State(s)
_______________________ U
s0 s0O | | s0O
s1=s0+ml | --mL(s0)-->|
| <--ack(sl) | sO,s1
s0, sl s0, sl | |
| |
s0, sl s0, sl | --nm2(sl)--> (m2 Lost)
s2=sl+ml |
| |
s0-s2 s0, sl | |
s3=s1+n8B | --nB(sl)-->| s0, s1
| |
| |
| <--ack(s3) | s0, s1, s3=s1+nB
s0-s3 s0, s1, s3 | |

Figure 2. Exanple of nessage flow for dynanmi c conpression

Legend: Message 1 conpressed naki ng use of state sO is denoted
mL(s0). The notation sl=s0+nl neans that state sl is created using
information fromstate sO and nmessage ml. ack(sl) nmeans that the
creation of state sl1 is acknow edged through pi ggybacking on a
message traveling in the reverse direction (which is not shown in the
figure).

5. Extended Mechani sns

The foll owi ng subsections give a general description of the extended
nmechani sns.

5.1. Explicit Acknow edgenent Schene

For a conpressor to be able to utilize a certain state it must know
that the renote deconpressor has access to this state.

In the case where conpressed nessages can be | ost or misordered on
t he path between conpressor and deconpressor, an acknow edgenent
schene nust be used to notify the renpte conpressor that a certain
state has been established.

Hannu, et. al. I nf or mat i onal [Page 6]

RFC 3321 Si gConmp - Extended Operations January 2003

Explicit acknow edgenments can be initiated either by UDVM code
upl oaded to the deconpressor by the renote conpressor or by the
endpoi nt where the states have been established. These two cases
will be explained in nore detail in the following two sections.

5.1.1. Renote Conpressor |nitiated Acknow edgenents

This is the case when e.g., conpressor 1 has upl oaded UDVM byt ecode
to deconpressor 2. The UDVM bytecode will use the requested feedback
field in the announcenent information and the returned feedback field
in the SigConp header to obtain know edge about established states at
endpoi nt 2.

Hannu, et. al. I nf or mat i onal [Page 7]

RFC 3321 Si gConmp - Extended Operations January 2003

Consider Figure 3. An event flow for successful use of renote
conpressor initiated acknow edgenents can be as foll ows:

(1): Conpressor 1 saves e.g., state(A).

(2): The UDVM bytecode to initiate a state save for state(A) is
either carried in the conpressed nessage, or can be retrieved by
deconpressor 2 froma state already saved at endpoint 2.

(3): As conpressor 1 is the initiator of this acknow edgenent it can
use an arbitrary identifier to be returned to indicate that
state(A) has been established. The identifier needs to consist
of enough bits to avoid acknow edgenent of wrong state.

To avoid paddi ng of the feedback itens and for sinplicity a

m ni rum of 1 octet should be used for the identifier.

The identifier is placed at the |ocation of the

request ed_f eedback_item [SI GCOW] .

The END- MESSAGE instruction is used to indicate the |ocation of
the requested_feedback _itemto the state handl er.

(4): The requested feedback data is now called returned feedback data
as it is placed into the SigConp nessage at conpressor 2.

(5): The returned feedback itemis carried in the Si gConp nessage
according to Figure 4: see Section 6.1 and [SI GCOWP] .

(6): The returned feedback itemis handled according to: Section 7

of [SI GCOWP]
S + (2) S +
| Compressor 1 |--------------------------- >| Deconpr essor 2|
R ZA VSR + Fom oo e A VSR +
| (1) (3) |
+---V---+ +---V---+
| State | | State |
| handl er | | handl er |
+---Noo o+ +---Noo o+
| (6) (4) |
[V--====- + (5) [S, V-=-=-==-- +
| Deconpressor 1| <--------------------------- | Conpressor 2 |
[+ [+

Figure 3. Sinplified SigConp endpoints

Hannu, et. al. I nf or mat i onal [Page 8]

RFC 3321 Si gConmp - Extended Operations January 2003

5.1.2. Local Endpoint Initiated Acknow edgenents

When explicit acknow edgenents are provided by an endpoint, the

Si gConmp nessage will also carry acknow edgenents, so-called
acked_state id: see Section 2. Consider Figure 3, an event flow for
successful use of explicit endpoint initiated acknow edgenents can be
as follows:

(1): Conpressor 1 saves e.g., state(A).

(2): The UDVM bytecode to initiate a state save for state(A) is
either carried in the conpressed nessage, or can be retrieved by
deconpressor 2 froma state already saved at endpoint 2.

(3): A save state request for state(A) is passed to the state handl er
usi ng the END- MESSACGE instruction. The application may then
grant the state handler perm ssion to save state(A): see
[SI GCOwP] .

(4): Endpoint 2 decides to acknow edge state(A) to endpoint 1. The
state identifier (acked state id) for state(A) is placed in
the SigConp nessage sent from conpressor 2 to deconpressor 1

(5): The UDVM bytecode to initiate (pass) the explicit
acknow edgenment to endpoint 1 is either carried in the
conpressed nmessage, or can be retrieved by deconpressor 1 froma
state already saved at endpoint 1

(6): The acked state id for state(A) is passed to the state handl er
by placing the acked _state id at the | ocation of the
"returned SigConp paraneters” [SI GCOW], whose |location is given
to the state handl er using the END MESSAGE instruction

Not e: When t he requested feedback | ength is non-zero endpoint
initiated acknow edgenents should not be used, due to possible waste
of bandwi dth. Wen deciding to inplenent this mechani smone shoul d
consi der whether this is worth the effort as all SigConp

i mpl ementations will support the feedback mechani sm and thus have the
possibility to inplenent the mechani smof Section 5.1.1.

5.2. Shared Conpression

To nmake use of shared conpression a conpressing endpoi nt saves the
unconpressed version of the conpressed nessage as a state (shared
state). As described in Section 2 the reference to a shared state is
referred to as shared_state_id. The shared state’s paraneters
state_address and state_instruction nust be set to zero. The

state retention_priority nust be set to 65535, and the other state
paraneters are set according to [SIGCOW]. This is because different
conpression algorithnms may be used to conpress application nessages
traveling in different directions. The shared state is also created
on a per-conpartnment basis, i.e., the shared state is stored in the
sanme nenory as the states created by the particular renote

Hannu, et. al. I nf or mat i onal [Page 9]

RFC 3321 Si gConmp - Extended Operations January 2003

conpressor. The choice of how to divide the state nenory between
"ordi nary" states and shared states is an inplenentation decision at
the conpressor. Note that new shared state itens nust not be created
unl ess the conpressor has made enough state nenory avail able (as
deconpression failure could occur if the shared state pushed existing
state out of the state nmenory buffer).

A conpressing endpoint nust also indicate to the renote conpressor
that the shared state is available, but only if the |oca
deconpressor can retrieve the shared state. The retrieval of the
shared state is done according to the state retrieval instruction of
t he UDVM

Consider Figure 3. An event flow for successful use of shared
conpression can be as foll ows:

(1): Conpressor 1 saves e.g., state(M, which is the unconpressed
version of the current application nmessage to be conpressed and
sent.

(2): The UDVM bytecode to indicate the presence of state(M at
endpoint 1 is either carried in the conpressed nessage, or can
be retrieved by deconpressor 2 froma state already saved at
endpoi nt 2.

(3): The SHA-1 instruction is used at endpoint 2 to calculate the
shared_state id for state(M. The indication is passed to the
state handler, by placing the shared identifier at the location
of the "returned SigConp paraneters” [SIGCOWP]. The |ocation of
the "returned SigConp paraneters"” is given to the state handl er
usi ng the END- MESSACE instruction

(4): If endpoint 2 uses shared conpression, it conpares the state
identifier values in the "returned SigConp paraneters"
information with the value it has calculated for the current
deconpressed nessage received fromendpoint 1. |If there is a
mat ch then endpoint 2 uses the shared state together with the
state it would normally use if shared conpression is not
supported to conpress the next nessage.

(5): The UDVM bytecode that will use the shared state (state(M) in
t he deconpression process at deconpressor 1 is either carried
in the conpressed nessage, or can be retrieved by deconpressor 1
froma state already saved at endpoint 1

5.3. Miintaining State Data Across Application Sessions

Usual |y, signaling protocols (e.g., SIP) enploy the concept of
sessions. However, fromthe conpression point of view the nessages
sent by the sane source contain redundanci es beyond the session
boundary. Consequently, it is natural to maintain the state data
fromthe sane source across sessions so that high perfornmance can be

Hannu, et. al. I nf or mat i onal [Page 10]

RFC 3321 Si gConmp - Extended Operations January 2003

achi eved and nmmi ntai ned, with the overhead anorti zed over a nuch
| onger period of tine than one application session

Mai nt ai ni ng states across application sessions can be achi eved sinply
by making the lifetine of a conpartnment |onger than the tinme duration
of a single application session. Note that the states here are
referring to those stored on a per-conpartnment basis, not the locally
avail abl e states that are stored on a global basis (i.e., not
conpartment specific).

5.4. Use of User-Specific Dictionary

The concept of the user-specific dictionary is based on the
observation that for protocols such as SIP, a given user/device
conmbi nation will produce sone nessages containing fields that are
al ways popul ated with the sanme data.

Take SIP as an exanple. Capabilities of the SIP endpoints are
communi cated during session initiation, and tend not to change unl ess
the capabilities of the device change. Similarly, user-specific
information such as the user’s URL, name, and e-mail address wll

i kely not change on a frequent basis, and will appear regularly in
SI P signaling exchanges involving a specific user

Therefore, a SigConp conpressor could include the user-specific
dictionary as part of the initial nessages to the deconpressor, even
before any tinme critical signaling nmessages are generated froma
particul ar application. This enables an increase in conpression
efficiency once the messages start to flow

Qobviously, the user-specific dictionary is a state itemthat would be
good to have as a cross-session state: see Section 5. 3.

5.5. Checkpoint State

The foll owi ng nmechani smcan be used to avoid deconpression failure
due to reference to a non-existent state. This may occur in three
cases: a) a state is not established at the renpte SigConp endpoint
due to the loss of a SigConp nessage; b) a state is not established
due to insufficient menory; c) a state has been established but was
deleted later due to insufficient nmenory.

When a conpressor sends a SigConp nessage that will create a new
state on the deconpressor side, it can indicate that the newy
created state will be a checkpoint state by setting
state_retention_priority [SIGCOW] to the highest value sent by the
same conpressor. In addition, a checkpoint state nmust be explicitly
acknow edged by the receiving deconpressor to the sendi ng conpressor.

Hannu, et. al. I nf or mat i onal [Page 11]

RFC 3321 Si gConmp - Extended Operations January 2003

Consider Figure 3. An event flow for this kind of state nmanagenent
can be as follows:

(1): Conpressor 1 saves e.g., state(A), which it would like to have
as a checkpoint state at deconpressor 2.

(2): The UDVM bytecode to indicate the state priority ([Sl GCOW]
state retention priority) of state(A) and initiate a state save
for state(A) is either carried in the conpressed nessage, or can
be retrieved by deconpressor 2 froma state already saved at
endpoi nt 2.

(3): A save state request for state(A) is passed to the state handl er
usi ng the END- MESSAGE instruction, including the indication of
the state priority. The application grants the saving of
state(A): see [SI GCOW].

(4): An acknow edgenent for state(A) (the checkpoint state) is
returned to endpoint 2 using one of the mechani snms described in
Section 5. 1.

Note: To avoid using a state that has been del eted due to

i nsufficient menory a conpressor nust keep track of the nmenory

avail abl e for saving states at the renote endpoint. The SigConp
paraneter state_menory_size which is announced by the SigConp

f eedback mechani sm can be used to infer if a previous checkpoint
state has been deleted (by a later checkpoint state creation request)
due to lack of nmenory.

5.6. Inplicit Deletion for Dictionary Update

Usually a state consists of two parts: UDVM bytecode and dictionary.
When dynani c conpression is applied, new content needs to be added to
the dictionary. To keep an upper bound of the nenory consunption
such as in the case for a low end nobile term nal, existing content
of the dictionary nust be deleted to make room for the new content.

Instead of explicitly signaling which parts of the dictionary need to
be deleted on a per nessage basis, an inplicit deletion approach may
be applied. Specifically, sone parts of the dictionary are chosen to
be del eted according to a well-defined algorithmthat is known and
applied in the sane way at both conpressor and deconpressor. For

i nstance, the algorithmcan be part of the predefined UDVM byt ecode
that is agreed between the two SigConp endpoints. As input to the

al gorithm one provides the total nunber of bytes to be deleted. The
al gorithmthen specifies which parts of the dictionary are to be
deleted. Since the sane algorithmis applied at both SigConp
endpoints, there is no need for explicit signaling on a per nessage
basis. This may |lead to higher conpression efficiency due to the
avoi dance of

Hannu, et. al. I nf or mat i onal [Page 12]

RFC 3321 Si gConmp - Extended Operations January 2003

signaling overhead. It also neans nore robustness as there are no
signaling bits on the wire that are subject to possible transm ssion
errors/ |l osses.

6. Inplications on SigConp

The extended features will have inplications on the SigConp nessages
sent between the conpressor and its renote deconpressor, and on how
to interpret e.g., returned SigConp paraneters [SI GCOW]. However,
except for the mandatory bytes of the SigConp nessages [SI GCOW], the
final nessage formats used are inplenentation issues. Note that an

i npl enentation that does not nmake use of explicit acknow edgenents
and/ or shared conpression is not affected, even if it receives this
ki nd of feedback.

6.1. Inplications on SigConp Messages
To support the extended features, SigConp nessages nust carry the
i ndi cations and informati on addressed in Section 5. For exanple to
support shared conpression and explicit acknow edgenents the SigConp
nmessages need to convey the follow ng information

- The acked state id as described in Sections 2 and 5. 1.
- The shared _state id as described in Sections 2 and 5. 2.

Hannu, et. al. I nf or mat i onal [Page 13]

RFC 3321

Si gConmp - Extended Operations

January 2003

Figure 4 depicts the format of a SigConp nessage according to

[S| GCOMP

0 1 2 3 4 5 6 7
B T S S T e o
| 1 1 1 1 1| T| len
B T T T Rt S
| |
: returned feedback item :
| |
B T S S T e o
| |
: partial state identifier :
| |
B T T T R S S S
| |
: remai ni ng Si gConp nessage
| |

g S S SRS

Fi gure 4.

The format of the field "remaining SigConp nessage"

0 1 2 3 4 5 6 7
B T S S T e o
| 1 1 1 1 1| T 0
B T T T Rt S
| |
: returned feedback item :
| |
B T S S T e o
| code_| en |
B T T T Rt S
| code_len | destination
B T T T R S S S
| |
: upl oaded UDVM byt ecode :
| |
B T T T Rt S
| |
: remai ni ng Si gConp nessage
| |

S

Format of a SigConp nessage

is an

i mpl enent ati on deci sion by the conpressor which supplies the UDVM
byt ecode. Therefore there is no need to specify a nessage format to
carry the informati on necessary for the extended features described
in this docunent.

Hannu, et. al. I nf or mat i onal [Page 14]

RFC 3321 Si gConmp - Extended Operations January 2003

6.

2.

Fi gure 5 depicts an exanple of what the "renmining SigConp nessage"
with support for shared conpression and explicit acknow edgenents,
could look Iike. Note that this is only an exanple; the format is an
i mpl enent ati on deci si on

o 1 2 3 4 5 6 7
B T T T Rt S
| Format according to Figure 4

except for the field called

| "remai ni ng Si gConp nessage" | "remai ni ng Si gConp nmessage" field
B T ST T T T -1
| s | a| r | Reserved

B T T T Rt S
! shared_state_id* ! Present if 's’ is set
L—---+---+---+---+---+---+---+---L—
! acked state id* ! Present if 'a’
L---+---+---+---+---+---+---+---L
% Rest of the SigConp nessage :

L

(72}
(72}
D
—

< —————

Figure 5. Exanple of SigConp nessage for sonme of the extended
feat ures.

If set, then a state corresponding to the deconpressed
version of this conpressed nessage (shared state) was saved at
t he conpressor.

* : The length of the shared_state_id and acked_state_id fields
are of the same length as the partial state identifier.

Ext ended Si gConp Announcenent/ Feedback For mat

This section describes how the "returned_Si gConp_par anet ers”
[SIGCOWP] information is interpreted to provide feedback according to
Section 5.1 and 5. 2.

The partial _state identifiers correspond to the hash _value for states
that have been established at the renpte endpoint after the reception
of SigConp nessages, i.e., these are acknow edgenments for established
states and may be used for conpression. The

partial _state_ identifiers may al so announce "gl obal state" that is
not mapped to any particular conpartnent and is not established upon
the recei pt of a SigConp nessage

Hannu, et. al. I nf or mat i onal [Page 15]

RFC 3321 Si gConmp - Extended Operations January 2003

It is up to the inplenentation to deduce what kind of state each
partial _state_identifier refers to, e.g., an acknow edged state or a
shared state. 1In case a SigConp nessage that includes state
identifiers for shared states and/or acknow edged states is received
by a basic SigConmp inplenmentation, these identifiers will be ignored.

The 1-bit of the requested feedback format is provided to switch off
the list of locally available state itenms. An endpoint that w shes
to receive shared_state_id nust not set the I-bit to 1. The endpoint
storing shared states and sending the list of locally avail able
states to its renote endpoi nt nust be careful when taking the
deci si on whet her to exclude or include different types of the locally
avail abl e states (i.e., shared states or states of e.g., well-known
algorithnms) fromto the list.

6.3. Acknow edgenent Optim zation

I f shared conpression is used between two endpoints (see Figure 1)
then there exists an optimzation, which, if inplenented, nakes an
acked state id in the SigConp nessage unnecessary:

Conmpressor 1 saves a shared state(M, which is the unconpressed
version of the current conpressed nessage (nmessage nm to be sent.
Conpressor 1 also sets bit 'r’ (see Figure 5), to signal that
state(M can be used by endpoint 2 in the conpression process. The
acked state id for state(S), which was created at endpoint 2 upon the
deconpression of message m may not have to be explicitly placed in
the conpressed nessages from conpressor 2 if the shared state(M is
used in the conpression process.

When endpoint 1 notices that shared state(M is requested by
deconpressor 1, it inplicitly knows that state(S) was created at
endpoint 2. This follows since:

* Conmpressor 1 has instructed deconpressor 2 to save state(S)

* The indication of shared state(M would never have been received by
conpressor 2 if state(S) had not been successfully saved, because
if a state save request is denied then the correspondi ng
announcenent information is discarded by the state handl er

Not e: Endpoint 1's state handler nmust maintain a mappi ng between
state(M and state(S) for this optimzation to work.

Note: The only state that is acknowl edged by this feature is the
state that was created by conbining the state used for conpression of
the message and the nessage itself. For any other case the

acked state id has to be used.

Hannu, et. al. I nf or mat i onal [Page 16]

RFC 3321 Si gConmp - Extended Operations January 2003

10.

11.

Note: There is a possibility that state(S) is discarded due to |ack
of state nenory even though the announcenent information is
successfully forwarded. This possibility rmust be taken into account
(otherwi se a deconpression failure may occur); this can be done by
using the SigConp paraneter state_menory_size which is announced by
the Si gConp feedback nechanism The endpoi nt can use this paraneter
toinfer if a state creation request has failed due to | ack of
nenory.

Security Considerations

The features in this docunent are believed not to add any security
risks to the ones nentioned in [SI GCOW].

| ANA Consi derati ons
Thi s docunent does not require any | ANA invol venent.
Acknowl edgenent s

Thanks to Carsten Bormann, Christopher danton, Mguel Garcia, Lars-
Eri k Jonsson, Khiem Le, Mats Nordberg, Jonathan Rosenberg and Krister
Svanbro for val uable input.

Intellectual Property Ri ght Considerations

The | ETF has been notified of intellectual property rights clainmed in
regard to sone or all of the specification contained in this
docunment. For nore information consult the online Iist of clained
rights.

Ref er ences

[SI P] Rosenberg, J., Schul zrinne, H, Canarillo, G, Johnston
A., Peterson, J., Sparks, R, Handley, M and E
Schooler, "SIP: Session Initiation Protocol"”, RFC 3261
June 2002.

[SI GCOWP] Price R, Bormann, C., Christoffersson, J., Hannu, H
Liu, Z. and J. Rosenberg, "Signaling Conpression
(SigConp)", RFC 3320, January 2003

Hannu, et. al. I nf or mat i onal [Page 17]

RFC 3321

12.

Aut hors’ Addr esses

Hans Hannu

Box 920

Eri csson AB

SE-971 28 Lul ea, Sweden

Phone: +46 920 20 21 84
EMai | : hans. hannu@pl . eri csson. se

Jan Christoffersson

Box 920

Eri csson AB

SE-971 28 Lul ea, Sweden

Phone: +46 920 20 28 40
EMai | : jan.christoffersson@pl.ericsson. se

St ef an Forsgren
EMai | : St ef anFor sgren@l vi shaggl unds. se

Ka- Cheong Leung

Department of Conputer Science
Texas Tech University

Lubbock, TX 79409-3104

United States of Anerica

Phone: +1 806 742-3527
EMai | : kcl eung@s. ttu. edu

Zhi gang Liu

Noki a Research Center
6000 Connection Drive
Irving, TX 75039, USA

Phone: +1 972 894-5935
EMai | : zhi gang. c.|iu@okia. com

Ri chard Price
Roke Manor Research Ltd
Ronsey, Hants, S0b1 0ZN, United Ki ngdom

Phone: +44 1794 833681
EMai | : richard. price@ oke. co. uk

Hannu, et. al. I nf or mat i ona

Si gConmp - Extended Operations

January 2003

[Page 18]

RFC 3321 Si gConmp - Extended Operations January 2003

13. Full Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Hannu, et. al. I nf or mat i onal [Page 19]

