Net wor k Wor ki ng Group

Request for Comments: 333

NI C # 9926

Cat egory: C9 (experinentation)
bsol etes: 62

Updat es: none

A PROPCSED EXPERI MENT W TH A MESSACE

CONTENTS

Introduction
Some Background,
References i,
MSP Specification
I SSUE ...
Message Header
Exanples
TELNET ..
The Information Operator
Uni que Port Numbers
Flow Chart
MSP Variations

Appendi X ...

| NTRODUCTI ON

Bob Bressl er

M T/ Dynani ¢ Model i ng
Dan Mir phy

BBN/ TENEX

Dave Wal den

BBN | MP

15 May 1972

SW TCHI NG PROTOCCL

A nmessage switching protocol (MSP) is a systemwhose function is to

swi tch nessages anobng its ports

For exanple, there is an inplenentation of an MSP in each Interface
Message Processor. W believe that the effective utilization of
communi cati ons networks by conputer operating systems will require a
better understanding of MSPs. In particular, we feel that Network
Control Prograns (NCPs), as they have been inplenented on the ARPA
Conmput er Network (ARPANET), do not adequately enphasize the

conmuni cati ons aspects of networking --

.e., they reflect a certain

reluctance on the part of systens people to nove away from what we
term"the streamorientation". W propose, as an aside the network
devel opnent using the current NCPs, to rethink the design of NCP-

| evel software beginning with a consideration of NMSPs.

The thrust of this note is to sketch how one woul d organi ze the
| owest | evel host-host protocol in the ARPANET around MSPs and how
this organi zati on would affect the inplenmentation of host software.

Bressler, et al. Experi mentati on

[Page 1]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

SOVE BACKGROUND

Over the past several weeks there has been considerable inform

di scussi on about the possibility of inplenmenting, on an experinenta
basis, in several of the ARPA Network Host Computers, NCPs which
follow a protocol based on the concept of nessage sw tching rather
than the concept of line switching (see the parenthetical sentence in
the first paragraph of page 6 of N C docunent 8246, Host/ Host

Protocol for the ARPA Network). Party to this discussion have been
Bob Bressler (M T/ Dynanic Mdeling) Steve Crocker (ARPA), WII

Crowt her (BBN I MP), Tom Knight (MT/Al), A ex MKenzie (BBNIM), Bob
Metcal fe (M T/ Dynam ¢ Model i ng), Dan Murphy (BBN TENEX), Jon Post el
(UCLA/ NMC), and Dave Wal den (BBN | MP) .

Several interesting points and concl usi ons have been made during this
di scussi on:

1. Bressler has inplenmented a nessage sw tched interprocess
communi cati on system for the Dynanm c Moddel ing PDP-10 and has
extended it so it could be used for interprocess conmunication
bet ween processes in the Dynanic Mdeling PDP-10 and the Al
PDP-10. He reports that it is something |like an order of
magni t ude smal l er than his NCP

2. Murphy has noted that a Host/Host protocol based on nessage
switching could be inplenmented experinentally and run in
parallel with the real Host/Host protocol using some of the
links set aside for experinmentation. Further, Mirphy has noted
that if this experinental nessage sw tching protocol were
i npl emented in TENEX, a nunber of (TENEX) sites could easily
participate in the experinent.

3. It is the consensus of the discussants that Bressler should
take a crack at specifying a nessage sw tching protocol* and
that if this specification |ooked relatively easy to inplenent,
a serious attenpt should be nmade by Murphy and Bressler to find
the resources to inplenent the experinental protocol on the two
BBN TENEX and the M T Dynani c Mddeling and Al machi nes.

4. MSP was chosen as the acronym for Message Swi tching Protocol
and |inks 192-195 were reserved for use in an MSP experinent.

*This note fulfills any obligation Bressler may have incurred to
produce an MSP specification

Bressler, et al. Experi ment ati on [Page 2]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

We solicit coments and suggestions fromthe Network Wrking G oup
with regard to this experinent. However, although we will very nuch
appreci ate comments and suggestions, because this is a linted
experiment and not an attenpt to specify a protocol to supersede the
present Host/Host protocol for the ARPA Network, we may arbitrarily
reject suggestions.

REFERENCES

Familiarly with the followi ng references will be helpful to the
readi ng of the rest of this note.

1) NI C docunent 8246, HOST/ HOST PROTOCOL FOR THE ARPA NETWORK
2) NI C docunent 9348 on the Tel net Protoco

3) NI C docunent 7101, OFFICIAL I NI TI AL CONNECTI ON PROTOCOL,
DOCUMENT # 2

4) a systemof interprocess comrunication in a resource sharing
conputer network, CACM April, 1972.

Reference 4 is a revision of RFC 62. W strongly suggest the reader

be famliar with reference 4 before he attenpts to read the present
RFC, a reprint of reference 4 is attached as an appendi Xx.

Bressler, et al. Experi ment ati on [Page 3]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

MSP SPECI FI CATI ON

Qur MSP is essentially a generalization of the interprocess

communi cati on systemoutlined in Section 3 of the fourth reference.
(Henceforth, if we are required to nmention the interprocess

conmuni cati on system presented in Section 3 of reference 4, we shal
call it "the IPC'.) For two processes to communi cate using the MSP
the process desiring to send nust in some sense execute a SEND and
the process desiring to receive nust in sone sense execute a RECEIl VE.
The SEND and RECEI VE, in effect, rendezvous somewhere and
transmssion is allowed to take place. Wth the RECEI VE are
specified (anobng other things) a FROMTO PORT-1D, a TO-PORT-1D, and a
RENDEZVOUS HOST. Wth SEND are specified a fromport-id, a to-port-
id, a rendezvous Host, and (possibly) sonme data to be transmitted.
Usi ng SEND and RECEI VE, sending a nmessage from a SENDER PROCESS to a
RECEI VER PROCESS t akes place as follows. The sender process executes
a SEND whi ch causes an OUT- MESSAGE plus the specified data to be
transmitted to the Host specified as the rendezvous Host in the SEND.
Concurrently (al though not necessarily sinultaneously)the receiver
process executes a RECElI VE whi ch causes an | N-MESSAGE to be sent to
the Host specified as the rendezvous Host in the RECEIVE. At the
rendezvous Host, OUT-nmessages and | N-nessages are entered in a table
call ed t he RENDEZVOUS TABLE. When an QUT-nessage and an | N-nmessage
are detected with matching to-port-id, fromport-id, and rendezvous
Host, three things are done: 1) the OUT-nessage plus the data is
forwarded to the Host which was the source of the IN-nessage, 2) the
I N-message is forwarded to the Host which was the source of the OUT-
message, and 3) the IN-nmessage and OQUT-nessage plus the data are

del eted fromthe rendezvous table in the rendezvous Host.

The process is greatly sinplified if the rendezvous Host is al so
either the send Host or receive Host. Specific algorithmns
enuner ating these sequences appear later in this note.

To clarify the basic concepts, let us | ook at a case involving three
Hosts, to which we shall give the nanmes SND, RCV, and RNDZ. At Host
SND, process S is doing a send, and at Host RCV, process R is doing a
receive. Both specify rendezvous at Host RNDZ

Bressler, et al. Experi ment ati on [Page 4]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

o e e e e ae e + S SRR + o e e e e ae e +
HOST SND				HOST RCV
(PROCESS)	- +			
(s)	HOST			
I \	RNDZ	(PROCESS)		
[DATA]		(R)		
- + - +

Process S now executes a SEND with
fromport-id =S, to-port-id = R, and rendezvous- Host = RNDZ.

Host SND then creates a table entry in its rendezvous table.

o e e m e e e e e e e e e e e e e e e +

| HOST SND MSP |

| e G2

| / A | | <-|------- RENDEZVQUS
| / | |] | TABLE

| (PROCESS) | |

| (S) +-- SEND (froneS to=R, rend=RNDZ)

| \ |

| [DATA] |

o m e e e e e e e e e ee s +

HOST SND HOST RNDZ

T e + e +
MBP	"QUT" + DATA	MSP RENDEZVOUS	
[----mmmm e	-->1]_ _ _	TABLE	
	fromeS; to=R I S		
		\	
R + | \ |

| | I > | DATA |

| | | BUFFER |

e |

Concurrently process R at Host RCV executes a RECEIVE with from
port-id = S, to-port-id = R and rendezvous-Host = RNDZ. As above,
Host RCV creates a table entry in its rendezvous table and sends an
"IN' message to Host RNDZ (see follow ng figure).

Bressler, et al. Experi ment ati on [Page 5]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

(Don’t panic now about buffering in an internedi ate Host. The tine
to panic is afer you ve read and understood the rest of our
argunents.)

HOST RNDZ HOST RCV
o e e e e e e e e oo - o + o e e e e e e oo +
| MSP | | MSP |
| TABLE I I TABLE
| +__ | | "IN || _]
| | |_ B RS R |] <\ | RECEIl VE
| [- — I | | 1_ _ _| \ <--| (fronmeS
| | | | \ | to=R
| V_ | | \ | rend=RNDZ)
| BUFFER | | | | (PROCESS) |
| | | | | (R)|
o e e e e e e e e m o + o e e e e e e e e oo +

Host RNDZ now notices that the "OUT" from Host SND and the "IN' from
R at RCV match one anot her and thus Host RNDZ takes three actions:

1. Sends an "IN to Host SND (fromport-id =S, to-port-id = R
rendezvous- Host = RNDZ).

2. Sends an "OUT" and the buffered data to Host RCV (fromport-id
=S, to-port-id = R rendezvous- Host =RNDZ)

3. Cears the entry fromits table.

HOST SND HOST RCV

oo e oo + e e oo + Fom e e oo +
		TABLE							
TABLE	"IN -	"our TABLE]							
	___				___		+ DATA		_ _

| SR EREPRRTE [CRRY D EEPEY EEPEPERES |->~] |
| [___| | | [___| | | 1_ _l

| (S) | Hoomooooooe + (R)I
| | HOST RNDZ | |
oo + oo +

Host RCV gets the "OUT" and DATA and finds the matching entry inits
table. It gives the DATA to process R and clears the entry fromits
tabl e.

Host SND gets an "IN' which matches an entry in his table and clears
that entry. This nmessage serves as a conbi ned acknow edgenent and go
ahead whi ch can be passed along to process S.

The transnission is now conpl ete.

Bressler, et al. Experi ment ati on [Page 6]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

By both, one, or neither of the sender and receiver processes
specifying a renote rendezvous Host, four inportant different kinds
of transmi ssions can be made to take place. These are illustrated in
the following four figures. |In the figures crossed or parallel
dotted lines are used to indicate rendezvous. The site of the
"crossed rendezvous" is the inportant difference between types of
transmission illustrated in figures. Circles indicate processes.

Rect angl es are rendezvous tabl es.

The figures also show "(IN" and "(OQUT)" nessages being passed into
the processes. The parentheses are used to indicate that the "IN
and "OQUT" are only CONCEPTUALLY passed into the processes. Wat
actual |y happens is inplenentation dependent. The process night be
awakened and be given no further infornmation if it blocked when

i ssuing the SEND or RECElIVE. The process might be interrupted and
passed some information such as the to-port-id fromthe IN or the
fromport-id of the OQUT. The process mght actually be passed the
conplete IN or QUT nessage.

() | |)
() SEND | | RECEI VE ()
() R ()
() | \/ |)
() (1IN |/ | (aJn) ()
()< ----- R R >)
(___) | | +DATA (______)
| <-------em---- Host K ------------------ >

A Rendezvous at the Sender’s Host
(T | T)
() SEND | | I N | | RECEI VE()
()------ R R |- | <------- ()
() |\ | | ()
() (IN | /\ | OUT+DATA | | (aJn) ()
O R R R R >)
() | | |l | +DATA (___)
| <---- Host K------ > <-- Network-->|<----- Host L ----- >|

A Rendezvous at the Sender’'s Host

Bressler, et al. Experi ment ati on [Page 7]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

(| T |)

() SEND | | OUT+DATA | | RECEI VE()

O > e R A EEE R ESRREEE ()

() | | | \/ |)

() (IN) | | I'N A | (aJr) ()

()<----- |- | <o R EEEEE. >)

() | | | | +DATA ()

() [| [| ()

| <---- Host K ----- >| <-- Network-->| <----- Host L ----- >|

A Rendezvous at the Receiver’'s Host
«C)y | | | | ()
() SEND | | OUT+DATA | | IN | | RECEI VE()
()------ > - [EEEEEEEES S EEAUR Rl R EREEE |- | <------ ()
() | | | \/ | | | ()
() (IN) | | I N | 7\ | QUT+DATA | | (auJT) ()
O |- RREEEEEE ERSR SR EEEEREEE R R >)
() | | | | | | +DATA ()
() | | | | | | ()
| <---- Host K ----- > <--Net-->| <-Host->|<--Net--><----- Host L ----- >|
M
A Rendezvous at an |nternedi ate Host

| SSUES
Ti meout s.

The issue of tinmeouts is a very sticky one.

many Hosts are unwilling or unable to use tineouts,
ti meouts whose duration is specified.

Wthout these tineouts there is probably a need for

A coherent system of
tinmeouts sinplifies everything and does away with races.

However,
especially

a negative

acknow edgnment which goes back to the source of an IN or OUT when one

is tined out. However, this now | eads to races.

A negative acknow edgnent (which we will
could be enployed by a Host to nean

Bressler, et al. Experi ment ati on

refer to as a FLUSH nessage)

[Page 8]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

Bl ocki

1. | have no roomin ny table
2. | have no nore avail abl e buffer space or
3. 1 nolonger wish to retain the table entry/buffer

In general, we believe that a Host should be allowed to throw away
an | N or QUT+data whenever it is no | onger convenient for the Host
to hold the messages. This can be imediately on the arrival of a
message; for instance, if the Host does not want to buffer traffic
for which it does not have a user buffer. In lieu of timeouts,
any tine a process issues a SEND or RECEIVE, it can take it back
by issuing the natching RECEI VE or SEND.

ng the Process After a Send or Receive.

This is a question which is left inplementation dependent. In
general, we do not think it is a good idea to block the process
after a SEND since it nay want to do another to another port or
even do a RECEIVE. |In fact, we see nothing inherently wong with
a process doing two or more SENDs to the sane port as long as the
communi cati ng processes know what they are doing. O course, sone
communi cati ng processes will prohibit several sinultaneous
nmessages being in transit between the sane ports, for instance the
TELNETs may well prohibit this. However, for reasons of

i ncreasing bandwi dth, etc., two processes may well want severa

si nul taneous nmessages. In this case we think it is up to the
processes to worry about the sequencing of messages; however, we
refer users desiring their processes to take a care of message
sequencing to the nmethod used in the | MP/ Very Di stant Host
interface which is docunented in Appendi x F of BBN Report 1822.

Message Buffering

Br essl

A few points are worth nmentioning with regard to nmessage
buffering. First, nost OUTs will probably be acconpani ed by data.
Therefore, in general, since the receiver process nay be swapped
out, the receiver Host nonitor nust be prepared to buffer sone
data sonmewhere. To minimze the anount of buffering needed, the
moni tor could refuse further traffic fromthe IMP until the
earlier traffic fromthe | MP has been witten on a disk or drum

O the nonitor could have a small nunber of buffers in the nonitor
area of nmenory which it fills as traffic cones fromthe | MP, and
whi ch are swapped with buffers clainmed earlier by the receiver
processes as the receiver processes are swapped in. Note that the
buffers may be | ess than the maxi num subnet nmessage size in length
i f the RECEI VEs never specify a |onger nmessage |length -- of

course, this can be enforced. Finally note that the nessage size

er, et al. Experi ment ati on [Page 9]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

receive-port-id, etc. are available in the first 144 bits which
come in fromthe IMP. It might be useful to read this before
deciding into which buffer to read the rest of the nmessage.

Positi ve Acknow edgment s
Built into the systemis a certain formof acknow edgnent. The
information is always avail able as to when the receiving process
has done a RECEIVE. The sending Host is assured of receiving an
"I'N' when the receive call is issued.
Furt her forns of acknow edgnent and validation can be inpl enented
at the first user level, and advanced protocols wll probably
develop a library of such routines.

MESSAGE HEADER
The following section deals with the specific format of Host to
Host nessages and al gorithns describing the proper response to a
gi ven nessage.

Each nessage begins with a 144 bit header containing the follow ng
fields:

1. HOST-TO I MP | eader (32 bits) as specified in BBN Reports 1822

2. to port ID(i.e., the id of the port receiving the nessage) (24
bi ts)

3. MSG TYPE (8 bits) IN, QUT, FLUSH, etc.

4, fromport ID (i.e., id or the port sending the nessage) (24
bits)

5. initiating Host's table position (8 bits) see bel ow

6. HOST "sourcing" this nessage (8 bits) see bel ow

7. RENDEZVOUS HOST (8 bits)

8. bit count of data (16 bits)
The header fornmat has been arranged so that no data itemw Il cross a
word boundary on nachines with 16, 32, and 36-bit words, except where
the size of the itemis greater than the word size. The actua
arrangenent of bytes within words is shown in the follow ng figures

for these three word sizes. For the benefit of 36-bit Hosts, bytes 4
and 13 (nunbering fromO0) are unused. The 2 and 3-byte itens do not

Bressler, et al. Experi ment ati on [Page 10]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

cross word boundaries except for the port IDs on the 16 bit

machi nes. This attention to packing and unpacki ng ease was given
both for general convenience, and in particul ar because Hosts may

wi sh to exam ne the header at interrupt level to determ ne where the
rest of the nessage shoul d go.

R R +
0 | HOST/ | WP | DESTI NATI ON
| FLAGS | |
S S +
1 | LINK | 11110101
| | 7171110
R R +
2 | I |
| 711710 |
B TS + |
3 | TO PORT I D
S e L
4 | MESSAGE |
| TYPE | |
B TS + |
5 FROM PORT I D |
R o L
6 | TABLE | 7117111
| POSITION | [/11111111] |
S S +
7 | SOURCE | RENDEZVOUS
| HOST | HOST |
R R +
8 | BI T COUNT
L e L
| |
9 | DATA |
/1 /1
| |
Fomm e e Fomm e e +

| | [11111111] = unused
| | IITIITTTT]

Bressler, et al. Experi ment ati on [Page 11]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972
0 8 16 24 32 36
T T T T Fommm - +

0 | HOST/IMP | FOREI GN | LI NK | 710000 iirrrro|
| FLAGS | HOST | | 7100 rrrrirrrirrr o
Hom - - Hom - - B S B S Fomm - L Hom - - +

1 | /117 TO PCRT I D | MESSAGE |
| 7111 | | TYPE |
Fommm - Fommm - T T om e Fommm - +

2 | FROM PORT | D | TABLE | 717171 |
| | POSITION | /111 |
Hom - - B S B S Hom - - B S Hom - - +

3 | /11 SOURCE | RENDEZVOUS | BI T COUNT |
| 7111 | HOST | HOST | |
Fommm - e e T +
I I

4 | I
/1 DATA /1
I I
I I
e T T T Fommm - +

36-bit Host Format
oo oo oo oo +

0 | HOST/IMP | FOREI GN | LI NK | 717110
| FLAGS | HOST | | 7111100t
Fom e e e e e o oo Fom e e e e e o oo Fom e e e e e o oo Fom e e e e e o oo +

1 | 110 TO PCRT I D |
I I I
emm e emm e oo oo +

2 | MESSAGE | FROM PORT | D |
| TYPE | |
Fom e e e e e o oo Fom e e e e e o oo Fom e e e e e o oo Fom e e e e e o oo +

3 | TABLE | 71711171117 SOURCE | RENDEZVOUS |
| POSITION | /111111117 HOST | HOST |
emm e emm e emm e emm e +
| BI T COUNT | |
I I I
B TS B TS + |
I I
/1 DATA /1
I I
e T T T +

32-bit Host Format

Bressler, et al. Experi ment ati on [Page 12]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

The fields within the Host/IMP | eader are already famliar to NCP
programers however, two points about these fields are worth
mentioning. First, the destination field originally contains the
nunber of the rendezvous Host. After rendezvous at a internediate
site, the destination field contains the source of the nessage
rendezvous with. Second, the link field for the MSP experinent can
only contain link nunber 192-195. W have not taken the tine to
figure out a sensible allocation of these four |inks anmong all the
nmessages whi ch m ght be sent using the MSP. One alternative is to
cycle over the links to increase the bandwi dth of the "pipe" between
any two Hosts. For the tine being, until further consideration is
given to this issue, we suggest each Host at a site using one
(unique) link for all its conmunication

The message types we have to represent in the nmessage type field are
few now we suggest nessage type 2 for SEND or OUT messages and
message 3 for RECEIVE or IN nessages. Message type 4 is the FLUSH
message, if FLUSH is used.

The rendezvous Host field needs no comment. Except that the field is
unnecessary after the rendezvous has taken place and could then be
used for sonething el se

The bit count is a count of data bits in an OUT nessage or the size
of the input buffer (not including the header) in an I N nessage.
Thus the sender process can tell fromthe I N nessage bit count when
it receives the I N nessage how nuch of the data in the OUT nessage
was accepted by the receiver process and can use this know edge to
retransmt the remai nder of the nessage if so desired. After the
rendezvous, we recommend that all of the data in the nessage be sent
on the source of the IN nessage even if the QUT bit count was greater
than the IN bit count. Thus, at the receiver Host the nonitor has
the option (if it wants to take it) of discarding the nessage for
being too I ong, sending the number of bits the receiver process has
done an IN for into the receiver process and discarding the rest, or
queui ng the rest of the bits and sonehow notify the receiver process
that there are nore bits which the receiver process can ask for

The to- and fromport-id fields are 24-bit nunbers. This size was
chosen to help the TIPs. The first eight bits of a port Id should be
the nunber of the Host at which this port id was created. Note well,
that this is not necessarily the Host at which the port is being
used. This is necessary since rendezvous take place at internediate
sites and because ports may nove fromsite to site. W suggest that
all port ids with the first eight bits all zero be reserved for
networ k-wi de use. |In particular, a port id with all 24 bits zero
will be used to nean "ANY". This gives us the options of:

Bressler, et al. Experi ment ati on [Page 13]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

RECEI VE from ANY to SPECI FI C
RECEI VE from SPECI FI C to SPECI FI C
SEND from SPECI FI C to ANY
and SEND from SPECI FI C to SPECI FI C
Exanpl es of the use of these options will be given bel ow

The ot her options (RECEIVE to ANY) and (SEND from ANY) we feel are
ki nd of useless but would not prohibit them W believe that in the
absence of explicit specification of rendezvous Host, the use of an
ANY port id in the user’s systemcall should affect the default
rendezvous site as follows:

RECEI VE from ANY--rendezvous in receiver
RECEI VE from SPECI FI C--rendezvous in sender
SEND t o ANY--rendezvous in sender

SEND to SPECI FI C--rendezvous in sender

The less significant 16 bits of the id can be used however a Host
wants to. For instance, eight bits mght be used as a process id and
eight bits mght be used as a channel specification within the

speci fied process. W suggest that each Host reserve the port ids
with the mddle eight bits all zero for special uses as well known
ports.

The table position field is included to help prevent costly table
searches at interrupt level. Hosts sending INs and QUTs, put in the
table position field the rendezvous table position of the SEND or
RECEI VE associated with the IN or QUI. At an intermnmedi ate Host
rendezvous, the table position fields in the matching IN and OUT are
swapped so that when the nessages arrive at the opposite end, the
mat chi ng SEND and RECEI VE can be found quickly. The MSP nust do the
swap at the rendezvous, but of course the MSPs need not fill in the
table position field when first transmtting an IN or OUT in which
case the information arriving in an IN or OUT will be neaningless.
The general algorithm then, is to check the table position as
specified in this field and if that fails, search the whole table.

The source field is filled in INs and QUTs by the MSP which
originally sends these nessages. At the rendezvous the source of
each nmessage is preserved in the nessage being forwarded to the fina
Host. When an IN or QUT arrives at a process, the process can use

Bressler, et al. Experi ment ati on [Page 14]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

the source information to update its understanding of the rendezvous
Host (e.g., when the destination Host and rendezvous Host are
different).

EXAMPLES
The typical exanple.

We envi sion conmuni cati on nornmal ly taking place using specifications
to and fromports and rendezvous at the sender. For instance, the
TIP woul d probably send to other Hosts using this nethod and woul d
certainly receive fromother Host until the TIP asks for it. 1In this
"normal " method a nonitor could even look at the bit count in the
arriving | Nnmessage, use that as an allocation and then sinulate an
QUT- nessage of the exact correct |ength.

The | oggi ng exanpl e

Consi der an exanple of SEND to SPECI FI C and RECEI VE from ANY with the
rendezvous at the receiver. This nmethod m ght be used by sone

| oggi ng receiver process with a well-known to-port. For instance, a
measurenents programto which statistics are sent from many processes
t hr oughout the net.

The program library exanple

Suppose within a given tine-sharing systemthere is a particul ar
library routine which is available for use by any process in the
network. The library process has a RECElI VE from ANY al ways pendi ng
at a well-known port. Eventually, some process sends a nessage to
the library process’ well-known-port. This nmessage includes the data
to be processed, a port to use for sending the answer, and the nobney.
The library process takes sonme of the noney and sends it to the

wel | - known port of the accounting process which itself has a RECElI VE
from ANY pending. The library process then processes the data and
sends the answer back to the process which requested the service
using a SEND to SPECI FI C nessage which rendezvous at the destination
where there is already a RECEI VE from SPECI FI C pending. O course,
in this nmessage besides the answer, any change the requesting process
has coming is returned

A comment
As can be seen from our exanples, we think rendezvousing at an
internedi ate Host will sel dom be done as the chief benefit of this

comes when it is desirable to nove a port (see reference 4 for a
di scussion of this). W would like to see all Hosts provide sone

Bressler, et al. Experi ment ati on [Page 15]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

(rmeager) anount of buffering for this purpose but would not require

it. It shouldn't be too painful to provide a little of this kind of
buf feri ng-especially since a Host can throw away any nessage it can't
handl e.

(TH'S PAGE WLL BE REPLACED W TH A BETTER DESCRI PTI ON OF TELNET UNDER
MSP I N A FEW DAYS- - DCW

TELNET

Let us postulate a pair of Telnet programs that maintain two
bi di recti onal conmuni cati on paths, one for data and one for control
Let us also assune, for convenience that the port IDs are as follows:

If the WRITE-CONTROL-ID is N, then --
READ- CONTRCL- | D=N+1
VRl TE- DATA=N+2,
READ- DATA=N+3.

The initial state is the server Telnet sitting with a READ- FROM ANY
pendi ng.

The user Tel net now i ssues a SEND-TO-SPECIFIC with the data field
contai ning the PORT-1D of the SERVER s WRI TE- CONTROL- | D. Thi s nessage
is sent fromthe user-Telnet’'s WRl TE- CONTROL- | D

Thus all port IDs are specified by the user Telnet, so, if desired,
he need only renenber one nunber and derive the rest. Uniqueness is
preserved since the port IDs supplied by the user Telnet contain his
Host 1D and other information nmaking the ID unique to him

Now t hat these communication paths are established, the two processes
can exchange data and control information according to established
Tel net protocols.

THE | NFORMATI ON OPERATOR

The Message Switching Protocol itself inpose no fixed requirenments on
the use of the port IDs, and the problem of process identification

i s sonewhat separated fromthe neans used to effect communi cation

It is, however, very nmuch a part of the overall issue of interprocess
communi cati on, and so we here specify a facility for handling process
identification, the information operator.

Bressler, et al. Experi ment ati on [Page 16]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

One goal in a process identification schenme is to provide a neans by
whi ch processes can select their own identifiers which can be

guar ant eed uni que and can contain information neani ngful to the user
Probl ems of efficiency prevent nmaking the port ID s thenselves |arge
enough to acconplish this aim Efficiency questions aside, it would
appear to be ideal to allow processes to use character strings of
arbitrary length to identify thensel ves. Uni queness can then be
easily ensured if, for exanple, users follow the convention of
including their names in the process identification string. Further,
the remai nder of the nanme can be chosen to have sone neaning rel ated
to its use with obvious advantages and conveni ence for users.

One solution is to establish a convention whereby the synbolic
identifiers are used only during sone initial phase of conmunication
and not in every nessage. That is, processes identify each other
initially using synbolic identifiers, but exchange |ocal port
identifiers at the same tinme which are used for all ensuing nessages.

The means of providing this facility is to establish a process at
each of a nunber of Hosts (e.g., all server Hosts) called the
"information operator”. The function of this process is to associate
synbolic identification strings and port IDs. A process can
identify itself and/or a foreign process to the information operator
and nay request the port ID of the foreign process. The synbolic
identification strings are chosen by the processes and are | ong
enough to contain neaningful information, e.g., LOGGER, MJRPHY-
TESTPROG

Conmmuni cation with the information operator, whether by |ocal or
renote processes, is via the regular MSP functions. The infornation
operator will always have a RECEI VE ANY out standing on a well-known
port. This could in general be the only well-known port in

exi stence. A nessage received on this port contains the follow ng
par anmeters

1. String identifying the foreign process with which conmmunication
i s desired.

2. String identifying the calling process.
3. Calling process’ port nunber

4. A delay specification

Bressler, et al. Experi ment ati on [Page 17]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

The format of these paraneters is shown in Fig. 4. |n sone cases
one or nore of the argunments would be null. Follow ng receipt of a
nmessage, the information operator will, in sonme cases, do a SEND

SPECIFIC to the calling process’ port number providing the desired
information or notice of failure.

The following two cases would appear to cover all functions of the
i nformation operator. They correspond to the SEND/ RECElI VE SPECI FI C
ANY cases of the MSP.

1. Two processes each knowi ng the specific identify of the other w sh
to comuni cate. Each does a SEND SPECIFIC to the information
operator, giving paraneters 1-2, the default delay spec in this
case being WAIT. \When the information operator receives the
second of these and notes that a match exists, it sends to each
process the port ID of the other process and del etes both strings
and both port IDs fromits tables. The two processes, which have
each done a RECEIVE SPECIFIC in anticipation of the foreign port
nunber, can then comunicate using just the port nunbers and basic
MSP functi ons.

2. A process is set up to provide some sort of general service or
information, and its nane and protocol advertised. This process
intends to nmintain an outstandi ng SEND or RECEI VE ANY for the
first (and perhaps only) nessage transaction, e.g., the library
process di scussed earlier. Mst such processes would be receivers
initially, but there nmight be a few cases where a SEND coul d be
| eft outstanding, and a forcing process could cone al ong and pick
up the information. 1In either case, the service process will do
SEND SPECI FIC to the infornmation operator giving the |oca
synbolic ID and local port ID. The foreign synbolic ID would be
null, and the default delay spec is NOWAIT. That is

INFO (-, local ID 1local port)

The information operator will enter this information in its tables
but return nothing to the caller. The caller would proceed to do
its SEND/ RECEI VE ANY to wait for business. Wen another process
wi shes to use the advertised service, it asks the |l ogger for the
port 1D of the service process, i.e.

I NFO (service ID, -, local port)
The | ocal synbolic ID need not be specified, and the default del ay
spec is NOWAIT. The information operator would SEND the port ID

of the service process to the local port of the caller, and retain
the table entry for future callers. Only the service process

Bressler, et al. Experi ment ati on [Page 18]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

could request the entry be deleted. |f the service |ID was unknown
to the information operator at the tine of this call, it would
i Mmediately return a failure indication, i.e., zero.

Commruni cati ng processes would normally use the information operator
local to one or the other, and |like the rendezvous Host in the MSP
this would be agreed upon in advance. Service processes would
normally use the information operator at their local site, and
correspondi ngly, user processes would call the information operator
at the site where the service process was expected to be avail abl e.
There is no restriction on using an information operator at sone
other site of course, and sone snall and/or |azy servers could use a
different Host for their service process IDs. It presents no
problem for two or nore information operators to have entries for the
sane service process, and in fact, this may be very desirable for
speci al types of service processes which exist only one place on the
net and may nove around fromtine to tine.

Processes woul d specify their own |ocal port nunbers, and each system
woul d have to provide sone way to help user processes do this. In
TENEX for exanple, one would probably use the job nunber concatenated
wi th anot her nunmber assigned within the job. The information
operator cannot supply port nunbers because it will be running on a
di fferent Host than one or both of the comunicants and cannot know
what is a uni que nunber for that Host. |In sone cases, processes
woul d ask the "uni que nunber process" (described below) for their
local port ID, and would nmake it known via the information operator

In actual practice, a few exceptions would be nmade to the rule that
the only "well-known" port in the world is the information operator
Such exceptions woul d be processes combn to many Hosts, e.g.
LOGGER, or those in particularly frequent use. 1In such cases the
uni que port nunbers woul d be assigned by administrative fiat and
recorded and published to all users.

The synbolic identification strings are specified to be from1l to 39
(an arbitrary maxi nun) ASCI| characters terminated by a null (byte of
all zeroes). The characters will be 7-bit ASCIl in 8-bit bytes with
the high order bit set to zero. A null string (first byte is null)
is used where no argunent is required.

Bressler, et al. Experi ment ati on [Page 19]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

Format of Information Operator Messages

To Informati on Operator: A streamof 8-bit bytes

[R By RS Y —— [R By RS Y —— [[S [S +
|[char O] 1// n | null |char O] 12// n | null | port | nunber| delay
| |/ | |/ | | | spec |
S Ry Ly S Ry Ly S S e S e +
\ /\ /\ /\ /
\ [\ [\ [\ /
PARAMETER 1 PARAMETER 2 PARAMETER 3 PARAMETER
4

Par anet ers gi ven:

1. String identifying the foreign process with which communication
is desired. (1 to 39 characters, or null)

2. String identifying the calling process. (1 to 39 characters, or
nul 1)

3. Calling process’ port nunber
4. Del ay specification

O=def aul t
1=wait for match
2=don’t wait for match

From Information Operator: 3 8-bit bytes.

Port number (24 bits) of requested foreign port if successful, O if
unsuccessf ul

UNI QUE PORT NUMBERS

The existence of unique port numbers is essential to the operation of
the MSP. For instance, when two conmuni cating processes specify
message rendezvous at an internediate site, the processes nust be
able to specify to- and fromports which are not being used by other
processes which have specified nessage rendezvous at the sane site or
el se nessages may be delivered to incorrect destinations. W have

al luded to a nmethod of providing unique port nunbers earlier in this
note. This nethod is to partition the 24-bit port nunber space into
di sjoi nted segnents and give one segnent to each Host in the network

Bressler, et al. Experi ment ati on [Page 20]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

to distribute when it is called upon to "create" a unique port id.
Thus each 24-bit Host number will consist of two nmajor parts. The
first 8 bits will be the nunber of the Host "creating" the port id
and the next 16 bits can be used in any manner the creating Host
desires. This gives each Host 27"16 port nunbers to distribute, and
each Host will have the burden of distributing its segnent of the
port nunber space in a unique nmanner. W recommend the convention
that the port numbers with the niddle 8 bits equal to zero be
reserved for well-known ports in the creating Host's system W

al ready reconmend in an earlier section that port numbers with the
first 8 bits equal to zero be reserved for network-w de use and in
particular the port nunmber with all 24 bits equal to zero be used to
mean ANY.

Since each Host only has 2-16- port nunbers to distribute, in genera
port nunbers will not be able to be held and used by processes for

I ong periods of tinme (e.g., weeks and nonths). More typically, Hosts
will probably inplicitly "take back’ all port nunbers the Host has
di stributed each tinme the Host’'s system goes down and wil |
redistribute the port nunbers as required when the system conmes back
up. In other words, port nunbers will not in general remain unique
over the going down of the creating Hosts. O course, a given Host
may see to give the same port nunbers to a nunber of standard
processes (such as the FORTRAN conpiler) each tinme it conmes up port
nunbers registered with an infornmation operator will frequently
remai n constant over system ups and downs.

In spite of the fact that each Host will probably not in general be
able to distribute port nunbers to arbitrary user processes which ca
be guaranteed to renmin unique over a long period of time, there wll

still be demand for provision of long-termunique port nunbers. To
sonme, the procedure of going through the infornmation operator smacks
much too nmuch of making a connection. These people will insist that

for a variety of reasons their processes be allowed to comunicate
via ports whose identifiers remain constant for |ong periods of tine.
Therefore, it would be nice if at one or two places in the network, a
| ong-term uni que nunber service was provided. We'Ill call a process
providing this service the Uni que Nunber Process. The Uni que Number
Process woul d have assigned to it one segnent of the unique port
nunber space-all those port numbers, for instance, with the first 8-
bits equal to 377-8. This process would have a SEND-to- ANY pendi ng
froma well-known port with |Iocal rendezvous specified. Wen any
process wanted a uni que nunber which it could depend on not to be
used for all tine or until the nunmber is given back, it wuld send a
RECEI VE- f r om SPECI FI C specifying the well-known port of the Unique
Number Process and rendezvous at the Uni que Number Process’ Host.

The Uni que Number Process’ pendi ng SEND-to- ANY woul d contain a uni que
nunber. Also, the Unique Nunber Process would have a RECEl VE-from

Bressler, et al. Experi ment ati on [Page 21]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

ANY al ways pendi ng at another well-known port with | ocal rendezvous
specified. At this port the Unique Nunber Process would receive
uni que numbers whi ch processes are giving back. The Uni que Nunber
Process would maintain a bit table 2-16- bits long indicating the
state of each of its unique nunbers (free or in use) in sone |ong-
term storage nediumsuch as in the file system The Uni que Nunber
Process night also maintain sone information about each process to
which it gives a unique nunber so that when the supply of unique
nunber gets depl eted, processes can be asked to return them

It has al ready been nentioned that sonme of the process ID s

regi stered along with their synbolic names at the infornmation
operator m ght be | ong-term uni que nunbers gotten fromthe Uni que
Nunmber Process. It should also be nmentioned that there would seemto
be no reason, other than scarcity of storage space, that in addition
to the port nunber through which primary access is gained to a
process and which was called the process IDin the previous section
arbitrary port nunbers along with their synbolic identified could not
be registered with an information operator. For instance, rather
than regi stering the name BBN- FORTRAN and a single port nunber, one
coul d perhaps register the port nunbers whose synbolic identifiers
wer e BBN- FORTRAN- CONTROL- TELETYPE, BBN- FORTRAN- | NPUT- FI LE, BBN-
FORTRAN- LI STI NG FI LE, and BBN- FORTRAN- Bl NARY- QUTPUT-FILE. This is
perhaps at odds with standard practice within operating systens, but
is consistent with the phil osophy of reference 4 that comrunication
is done with ports and not processes.

Let us now address an issue which has been ignored up to now and
which was only alluded to in reference 4, the issue of port
protection. W have not given this natter a great deal of thought;
however, one mechani smfor port protection seens quite
straightforward. The heart of this mechanismis a process at each
Host which we shall call (alliteratively) the Port Protection Process
(PPP). The PPP maintains a list of all processes which exist at the
Host and for each process the nunbers of all ports which the process
has "legal ly" obtained. Every tine a process does a SEND or RECEI VE,
the nonitor checks with the PPP to see if the process has specified
port nunbers it has the right to use; i.e., those |legally obtained.
The PPP has sonme RECElI VEs al ways pending at well-known ports. Wen
one process wants to pass a port to sone other process, the first
process sends a message to the PPP specifying the nunber of the port
to be sent, the Host nunber at which the second process resides, a
port at which the second process is expecting to receive the port,
etc. The PPP looks up in its tables whether the first process has
the port it wants to send. |If it does, it sends a nessage to the PPP
at the destination site. The nessage contains the nunber of the port
to be transferred and the RECEIVE port for the destination process.
The destination PPP checks in its table whether the process has the

Bressler, et al. Experi ment ati on [Page 22]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

RECEI VE port, and if so, passes the new port to the process and
updates its tables to indicate the process now possesses the new
port. The nessages to a PPP will optionally be able to specify that
a copy of a port be sent, a port be deleted, etc. The PPPs woul d
probably have some built-in | egal ports for each process,
particularly the port’s processes used to conmunicate with the PPP
The exact specification requires devel opnent but that should not be
hard (see (3),(6), and (7) in reference 4). The main difficulty we
see is efficient checking of the PPP's tables by the nonitor for
every RECEIVE or SEND wi thout entirely supplanting the nonitor’s
current protection system

FLOW CHART
The follow ng section describes a flow chart for nost of the MSP. A
distinction is made between calls nmade by | ocal processes called SEND
and RECEI VE, and nessages conming in over the NET called IN and OUT

An additional distinction is nade between calls (or nessages) with a
| ocal rendezvous and those with a foreign rendezvous Host.

Since the code is quite sinmlar, the distinction need not be made,
but will be included for the sake of clarity.

It is assuned that the MSP has table provisions for the foll ow ng
itens:

source of nessage
rendezvous Host
FROW PORT-1 D
TO PORT- I D
tabl e position
type of nessage
data size and | ocation
dat a about the user process
User does a SEND or RECEI VE
A. Rendezvous is at a foreign host
1. Store the appropriate table data
2. Send a nessage to the rendezvous host
a. SEND: OUT + DATA
b. RECEIVE: IN

B. Rendezvous is local - look for entry in table

Bressler, et al. Experi ment ati on [Page 23]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

1. Entry NOT found: create entry with appropriate data
2. A matching entry exists in table:
a. RECEIVE: give user the data

b. Send a nessage to the other host (as specified by the source
field of the original nsg)

1) SEND: OUT+DATA
2) RECEI VE: I N

c. Alert user to the fact that transaction is conplete

d. Clear table entry
An IN is received over the NET-search table for matching entry.
A. No natching entry create an entry with appropriate data.
B. A match exists

1. Entry was cause by a | ocal SEND

a. Send "OQUT _ DATA" to source of IN

b. Informuser of transaction

c. Clear table entry

2. Entry was caused by an OUT received over net-acting as third
host .

a. Send INto site that created table entry
b. Send OQUT + DATA (previously buffered) to site sending the IN
c. Clear table entry

An QUT + DATA is received over the NET -search table for matching
entry

A. No match is found
1. buffer data

2. create appropriate table information

Bressler, et al. Experi ment ati on [Page 24]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

B. Amtch is found
1. Table entry was caused by | ocally executed RECElI VE
a. give data to the user and alert himto its existence.
b. send a natching "IN' to the source of the "QOUT"
c. renove entry fromtable

2. Table entry was caused by the receipt of an "IN' over the NET
thus we are acting as a third party host

a. send the "OQUT + DATA" to the host stored in the table

b. send an "IN' to the host fromwhich the "OQUT" had j ust
arrived.

MSP VARI ATl ONS

It may of interest to the reader to know of sonme of the other MSPs we
have considered while arriving at the present one.

The sinplest we considered is an MSP based on all rendezvous being
done at the destination Host. The sender process sends an OUT-
message plus the data to the destination Host. The receiver process
does an I N which stays at the receivers Host. The OQUT and RECEl VE
rendezvous and the data is passed to the receiver process. The
transm ssion is now conpl ete, except in sone variations of this MP
an acknow edgenent is sent to the sender process. This MSP has
coupl e of disadvantages: In the sinplest fornulation, the RECElIVE had
to be waiting when the QUT+data arrived, otherw se the out data were
thrown away. This puts too tight a constraint on the tining of the
SEND and RECEI VE, especially since the sender and receiver processes
can be a continent apart. However, if the INis allowed to arrive
first and nust be held until matched by a RECEI VE, the nonitor nust
buf fer an indeterm nate anount of data in all cases including the
normal one. Further, basing everything on rendezvous at the
destinati on makes the process of noving a port difficult.

The next sinplest MSP we considered was the | PC of reference 4. This
wor ks just the opposite of the above described MSP in that it is
based on al nost all rendezvous being done at the source Host with two
speci al nessages to handl e the relatively unconmon cases when a
rendezvous nust be done at the destination or an internedi ate Host.
This system its advantages, and di sadvantages is discussed at very
great length in the reference.

Bressler, et al. Experi ment ati on [Page 25]

RFC 333 MESSAGE SW TCHI NG PROTOCOL EXPERI MENT May 1972

A third variation on the MSP, suggested by Crowher, is the sane as
the present MSP in that the OUT and I N rendezvous at a process

speci fied rendezvous Host and the OQUT is sent to the source of the IN
and the INto the source of the QUT, but the data is not sent al ong
with the QUT. Instead, when the OUT finally reaches the source of
the I'N, another nessage is sent fromthe receiver Host to the source
Host requesting the data to be sent. The data finally is transnitted
to the destination in response to this data request nessage. CQur
mai n objection to this systemis its lack of symetry, but we do
recogni ze that it does not require any Host to buffer data for which
a process has not set up an input buffer and perhaps for that reason
it is a better systemthan the MSP we are presenting.

In the last MSP variation we considered, the difference between SEND
or RECEIVE and OQUT or IN was discarded. 1In this case only one
message i s used which we will call TRANSFER \When a process executes
a TRANSFER it can specify an input buffer, an output buffer, both, or
neither. Two processes w shing to conmuni cate both execute TRANSFERs
specifying the sane to and fromport ids and the sane rendezvous
Host. The TRANSFERs result in TRANSFER- nessages plus data in the
case that an output buffer was specified which rendezvous at the
rendezvous Host. When the rendezvous occurs, the TRANSFER- nessages
plus their data cross and each is sent to the source of the other

The system al |l ows processes not to know whether they nust do a SEND
or RECEIVE and is (perhaps) a nice generalization of the MSP
presented in this note. For instance, two processes can exchange
data using this system or two processes can kind of interrupt each
ot her by sendi ng datal ess TRANSFERs. This variation of the MSP is a
devel opment of a suggestion of Steve Crocker. |Its disadvantages are:
(1) unintentional matches are nore likely to occur, (2) rendezvous
selection site is nore conplex, and (3) it's hard to think about.

APPENDI X

A system for Interprocess Comunication in a Resource Sharing
Conput er Network. Communications of the ACM April, 1972.
Pernission to reprint this paper was granted by pernission of the
Associ ation for Conputing Machinery. [Qritted in republished version
of RFC 333.]

N. B. The ideas of section 4 of the follow ng paper are in no way
critical to the ideas devel oped in section 3--DCW

[This RFC was put into nmachine readable formfor entry]
[into the online RFC archives by Via Genie 3/00]

Bressler, et al. Experi ment ati on [Page 26]

