
Network Working Group S. Lee
Request for Comments: 3338 M-K. Shin
Category: Experimental Y-J. Kim
 ETRI
 E. Nordmark
 A. Durand
 Sun Microsystems
 October 2002

 Dual Stack Hosts Using "Bump-in-the-API" (BIA)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document specifies a mechanism of dual stack hosts using a
 technique called "Bump-in-the-API"(BIA) which allows for the hosts to
 communicate with other IPv6 hosts using existing IPv4 applications.
 The goal of this mechanism is the same as that of the Bump-in-the-
 stack mechanism, but this mechanism provides the translation method
 between the IPv4 APIs and IPv6 APIs. Thus, the goal is simply
 achieved without IP header translation.

Lee, et al. Experimental [Page 1]

RFC 3338 Dual Stack Hosts Using BIA October 2002

Table of Contents:

 1. Introduction .. 2
 2. Applicability and Disclaimer 3
 2.1 Applicability ... 3
 2.2 Disclaimer .. 4
 3. Dual Stack Host Architecture Using BIA 4
 3.1 Function Mapper ... 4
 3.2 Name Resolver ... 5
 3.3 Address Mapper .. 5
 4. Behavior Example .. 6
 4.1 Originator Behavior ... 6
 4.2 Recipient Behavior .. 8
 5. Considerations ... 10
 5.1 Socket API Conversion 10
 5.2 ICMP Messages Handling 10
 5.3 IPv4 Address Pool and Mapping Table 10
 5.4 Internally Assigned IPv4 Addresses 10
 5.5 Mismatch Between DNS Result and Peer Application Version 11
 5.6 Implementation Issues 11
 6. Limitations ... 12
 7. Security Considerations 12
 8. Acknowledgments ... 12
 9. References .. 12
 Appendix: API list intercepted by BIA 14
 Authors Addresses ... 16
 Full Copyright Statement .. 17

1. Introduction

 RFC2767 [BIS] specifies a host translation mechanism using a
 technique called "Bump-in-the-Stack". It translates IPv4 into IPv6,
 and vice versa using the IP conversion mechanism defined in [SIIT].
 BIS allows hosts to communicate with other IPv6 hosts using existing
 IPv4 applications. However, this approach is to use an API
 translator which is inserted between the TCP/IP module and network
 card driver, so that it has the same limitations as the [SIIT] based
 IP header translation methods. In addition, its implementation is
 dependent upon the network interface driver.

 This document specifies a new mechanism of dual stack hosts called
 Bump-in-the-API(BIA) technique. The BIA technique inserts an API
 translator between the socket API module and the TCP/IP module in the
 dual stack hosts, so that it translates the IPv4 socket API function
 into IPv6 socket API function and vice versa. With this mechanism,
 the translation can be simplified without IP header translation.

Lee, et al. Experimental [Page 2]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 Using BIA, the dual stack host assumes that there exists both
 TCP(UDP)/IPv4 and TCP(UDP)/IPv6 stacks on the local node.

 When IPv4 applications on the dual stack communicate with other IPv6
 hosts, the API translator detects the socket API functions from IPv4
 applications and invokes the IPv6 socket API functions to communicate
 with the IPv6 hosts, and vice versa. In order to support
 communication between IPv4 applications and the target IPv6 hosts,
 pooled IPv4 addresses will be assigned through the name resolver in
 the API translator.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC 2119].

 This document uses terms defined in [IPv6],[TRANS-MECH] and [BIS].

2. Applicability and Disclaimer

2.1 Applicability

 The main purposes of BIA are the same as BIS [BIS]. It makes IPv4
 applications communicate with IPv6 hosts without any modification of
 those IPv4 applications. However, while BIS is for systems with no
 IPv6 stack, BIA is for systems with an IPv6 stack, but on which some
 applications are not yet available on IPv6 and source code is not
 available preventing the application from being ported. It’s good
 for early adopters who do not have all applications handy, but not
 for mainstream production usage.

 There is an issue about a client node running BIA trying to contact a
 dual stack node on a port number that is only associated with an IPv4
 application (see section 5.5). There are 2 approaches.

 - The client application SHOULD cycle through all the addresses and
 end up trying the IPv4 one.

 - BIA SHOULD do the work.

 It is not clear at this time which behavior is desirable (it may very
 well be application dependent), so we need to get feedback from
 experimentation.

Lee, et al. Experimental [Page 3]

RFC 3338 Dual Stack Hosts Using BIA October 2002

2.2 Disclaimer

 BIA SHOULD NOT be used for an IPv4 application for which source code
 is available. We strongly recommend that application programmers
 SHOULD NOT use this mechanism when application source code is
 available. As well, it SHOULD NOT be used as an excuse not to port
 software or delay porting.

3. Dual Stack Host Architecture Using BIA

 Figure 1 shows the architecture of the host in which BIA is
 installed.

 +--+
 | +--+ |
 | | | |
 | | IPv4 applications | |
 | | | |
 | +--+ |
 | +--+ |
 | | Socket API (IPv4, IPv6) | |
 | +--+ |
 | +-[API translator]------------------------+ |
 | | +-----------+ +---------+ +------------+ | | | | | | | |
 | | | Name | | Address | | Function | | |
 | | | Resolver | | Mapper | | Mapper | | |
 | | +-----------+ +---------+ +------------+ | |
 | +--+ |
 | +--------------------+ +-------------------+ |
 | | | | | |
 | | TCP(UDP)/IPv4 | | TCP(UDP)/IPv6 | |
 | | | | | |
 | +--------------------+ +-------------------+ |
 +--+

 Figure 1 Architecture of the dual stack host using BIA

 Dual stack hosts defined in RFC2893 [TRANS-MECH] need applications,
 TCP/IP modules and addresses for both IPv4 and IPv6. The proposed
 hosts in this document have an API translator to communicate with
 other IPv6 hosts using existing IPv4 applications. The API
 translator consists of 3 modules, a name resolver, an address mapper
 and a function mapper.

3.1 Function Mapper

 It translates an IPv4 socket API function into an IPv6 socket API
 function, and vice versa.

Lee, et al. Experimental [Page 4]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 When detecting the IPv4 socket API functions from IPv4 applications,
 it intercepts the function call and invokes new IPv6 socket API
 functions which correspond to the IPv4 socket API functions. Those
 IPv6 API functions are used to communicate with the target IPv6
 hosts. When detecting the IPv6 socket API functions from the data
 received from the IPv6 hosts, it works symmetrically in relation to
 the previous case.

3.2 Name Resolver

 It returns a proper answer in response to the IPv4 application’s
 request.

 When an IPv4 application tries to resolve names via the resolver
 library (e.g. gethostbyname()), BIA intercept the function call and
 instead call the IPv6 equivalent functions (e.g. getnameinfo()) that
 will resolve both A and AAAA records.

 If the AAAA record is available, it requests the address mapper to
 assign an IPv4 address corresponding to the IPv6 address, then
 creates the A record for the assigned IPv4 address, and returns the A
 record to the application.

3.3 Address Mapper

 It internally maintains a table of the pairs of an IPv4 address and
 an IPv6 address. The IPv4 addresses are assigned from an IPv4
 address pool. It uses the unassigned IPv4 addresses
 (e.g., 0.0.0.1 ˜ 0.0.0.255).

 When the name resolver or the function mapper requests it to assign
 an IPv4 address corresponding to an IPv6 address, it selects and
 returns an IPv4 address out of the pool, and registers a new entry
 into the table dynamically. The registration occurs in the following
 2 cases:

 (1) When the name resolver gets only an ’AAAA’ record for the target
 host name and there is not a mapping entry for the IPv6 address.

 (2) When the function mapper gets a socket API function call from the
 data received and there is not a mapping entry for the IPv6
 source address.

 NOTE: This is the same as that of the Address Mapper in [BIS].

Lee, et al. Experimental [Page 5]

RFC 3338 Dual Stack Hosts Using BIA October 2002

4. Behavior Examples

 This section describes behaviors of the proposed dual stack host
 called "dual stack", which communicates with an IPv6 host called
 "host6" using an IPv4 application.

 In this section, the meanings of arrows are as follows:

 ---> A DNS message for name resolving created by the applications
 and the name resolver in the API translator.
 +++> An IPv4 address request to and reply from the address mapper
 for the name resolver and the function mapper.
 ===> Data flow by socket API functions created by the
 applications and the function mapper in the API translator.

4.1 Originator Behavior

 This sub-section describes the behavior when the "dual stack" sends
 data to "host6".

 When an IPv4 application sends a DNS query to its name server, the
 name resolver intercepts the query and then creates a new query to
 resolve both A and AAAA records. When only the AAAA record is
 resolved, the name resolver requests the address mapper to assign an
 IPv4 address corresponding to the IPv6 address.

 The name resolver creates an A record for the assigned IPv4 address
 and returns it to the IPv4 applications.

 In order for the IPv4 application to send IPv4 packets to host6, it
 calls the IPv4 socket API function.

 The function mapper detects the socket API function from the
 application. If the result is from IPv6 applications, it skips the
 translation. In the case of IPv4 applications, it requires an IPv6
 address to invoke the IPv6 socket API function, thus the function
 mapper requests an IPv6 address to the address mapper. The address
 mapper selects an IPv4 address from the table and returns the
 destination IPv6 address. Using this IPv6 address, the function
 mapper invokes an IPv6 socket API function corresponding to the IPv4
 socket API function.

 When the function mapper receives an IPv6 function call,it requests
 the IPv4 address to the address mapper in order to translate the IPv6
 socket API function into an IPv4 socket API function. Then, the
 function mapper invokes the socket API function for the IPv4
 applications.

Lee, et al. Experimental [Page 6]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 Figure 2 illustrates the behavior described above:

"dual stack" "host6"
IPv4 Socket | [API Translator] | TCP(UDP)/IP Name
appli- API |Name Address Function| (v6/v4) Server
cation |Resolver Mapper Mapper |
 | | | | | | | |
<<Resolve an IPv4 address for "host6".>> | | |
--------	------->	Query of ’A’ records for host6.				
		--------	--------	---------	--------------	------>
		Query of ’A’ records and ’AAAA’ for host6				
		<-------	--------	---------	--------------	-------
		Reply with the ’AAAA’ record.				
		<<The ’AAAA’ record is resolved.>>				
		+++++++>	Request one IPv4 address			
			corresponding to the IPv6 address.			
			<<Assign one IPv4 address.>>			
		<+++++++	Reply with the IPv4 address.			
		<<Create ’A’ record for the IPv4 address.>>				
<-------	--------	Reply with the ’A’ record.				

 Figure 2 Behavior of the originator (1/2)

Lee, et al. Experimental [Page 7]

RFC 3338 Dual Stack Hosts Using BIA October 2002

"dual stack" "host6"
IPv4 Socket | [API Translator] | TCP(UDP)/IP
appli- API |Name Address Function| (v6/v4)
cation |Resolver Mapper Mapper |
 | | | | | | |
<<Call IPv4 Socket API function >> | | |
 | | | | | | |
 |========|========|========|=======>|An IPv4 Socket API function Call
			<+++++++	Request IPv6 addresses	
				corresponding to the	
				IPv4 addresses.	
			+++++++>	Reply with the IPv6 addresses.	
				<<Translate IPv4 into IPv6.>>	
An IPv6 Socket API function call.	=========	=============>			
				<<Reply an IPv6 data	
				to dual stack.>>	
An IPv6 Socket API function call.	<========	==============			
				<<Translate IPv6 into IPv4.>>	
			<+++++++	Request IPv4 addresses	
				corresponding to the	
				IPv6 addresses.	
			+++++++>	Reply with the IPv4 addresses.	
<=======	========	========	========	An IPv4 Socket function call.	

 Figure 2 Behavior of the originator (2/2)

4.2 Recipient Behavior

 This subsection describes the recipient behavior of "dual stack".
 The communication is triggered by "host6".

 "host6" resolves the address of "dual stack" with ’AAAA’ records
 through its name server, and then sends an IPv6 packet to the "dual
 stack".

 The IPv6 packet reaches the "dual stack" and the function mapper
 detects it.

Lee, et al. Experimental [Page 8]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 The function mapper requests the IPv4 address to the address mapper
 in order to invoke the IPv4 socket API function to communicate with
 the IPv4 application. Then the function mapper invokes the
 corresponding IPv4 socket API function for the IPv4 applications
 corresponding to the IPv6 functions.

 Figure 3 illustrates the behavior described above:

 "dual stack" "host6"
 IPv4 Socket | [API Translator] | TCP(UDP)/IP
 appli- API |Name Address Function| (v6/v4)
 cation |Resolver Mapper Mapper |
 | | | | | | |
 <<Receive data from "host6".>> | | |
 | | | | | | |
 | An IPv6 Socket function call.|<========|==============|
 | | | | | | |
 | | | |<+++++++| Request IPv4 addresses|
 | | | | | corresponding to the IPv6
 | | | | | addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv4 addresses.
 | | | | | | |
 | | | | |<<Translate IPv6 into IPv4.>>
 | | | | | | |
 |<=======|========|========|========| An IPv4 function call |
 | | | | | | |
 <<Reply an IPv4 data to "host6".>> | | |
 | | | | | | |
 |========|========|========|=======>| An IPv4 function call |
 | | | | | | |
 | | | | |<<Translate IPv4 into IPv6.>>
 | | | | | | |
 | | | |<+++++++| Request IPv6 addresses|
 | | | | | corresponding to the IPv4
 | | | | | addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv6 addresses.
 | | | | | | |
 | An IPv6 Socket function call.|=========|=============>|
 | | | | | | |

 Figure 3 Behavior of Receiving data from IPv6 host

Lee, et al. Experimental [Page 9]

RFC 3338 Dual Stack Hosts Using BIA October 2002

5. Considerations

5.1 Socket API Conversion

 IPv4 socket API functions are translated into semantically the same
 IPv6 socket API functions and vice versa. See Appendix A for the API
 list intercepted by BIA. IP addresses embedded in application layer
 protocols (e.g., FTP) can be translated in API functions. Its
 implementation depends on operating systems.

 NOTE: Basically, IPv4 socket API functions are not fully compatible
 with IPv6 since the IPv6 has new advanced features.

5.2 ICMP Message Handling

 When an application needs ICMP messages values (e.g., Type, Code,
 etc.) sent from a network layer, ICMPv4 message values MAY be
 translated into ICMPv6 message values based on [SIIT], and vice
 versa. It can be implemented using raw socket.

5.3 IPv4 Address Pool and Mapping Table

 The address pool consists of the unassigned IPv4 addresses. This
 pool can be implemented at different granularity in the node e.g., a
 single pool per node, or at some finer granularity such as per user
 or per process. However, if a number of IPv4 applications
 communicate with IPv6 hosts, the available address spaces will be
 exhausted. As a result, it will be impossible for IPv4 applications
 to communicate with IPv6 nodes. It requires smart management
 techniques for address pool. For example, it is desirable for the
 mapper to free the oldest entry and reuse the IPv4 address for
 creating a new entry. This issues is the same as [BIS]. In case of
 a per-node address mapping table, it MAY cause a larger risk of
 running out of address.

5.4 Internally Assigned IPv4 Addresses

 The IPv4 addresses, which are internally assigned to IPv6 target
 hosts out of the pool, are the unassigned IPv4 addresses (e.g.,
 0.0.0.1 ˜ 0.0.0.255). There is no potential collision with another
 use of the private address space when the IPv4 address flows out from
 the host.

Lee, et al. Experimental [Page 10]

RFC 3338 Dual Stack Hosts Using BIA October 2002

5.5 Mismatch between DNS result(AAAA) and Peer Application
 Version(v4)

 If a server application you are using does not support IPv6 yet, but
 runs on a machine that supports other IPv6 services and this is
 listed with a AAAA record in the DNS, a client IPv4 application using
 BIA might fail to connect to the server application, because there is
 a mismatch between DNS query result (i.e., AAAA) and a server
 application version(i.e., IPv4). A solution is to try all the
 addresses listed in the DNS and just not fail after the first
 attempt. We have two approaches: the client application itself
 SHOULD cycle through all the addresses and end up trying the IPv4
 one. Or it SHOULD be done by some extensions of name resolver and
 API translator in BIA. For this, BIA SHOULD do iterated jobs for
 finding the working address used by the other application out of
 addresses returned by the extended name resolver. It may very well
 be application dependent. Note that BIA might be able to do the
 iteraction over all addresses for TCP sockets, since BIA can observe
 when the connect call fails. But for UDP sockets it is hard if not
 impossible for BIA to know which address worked, hence the
 application must do the iteraction over all addresses until it finds
 a working address.

 Another way to avoid this type of problems is to make BIA only come
 into effect when no A records exist for the peer. Thus traffic from
 an application using BIA on a dual-stack host to a dual-stack host
 would use IPv4.

5.6 Implementation Issues

 Some operating systems support the preload library functions, so it
 is easy to implement the API translator by using it. For example,
 the user can replace all existing socket API functions with user-
 defined socket API functions which translate the socket API function.
 In this case, every IPv4 application has its own translation library
 using a preloaded library which will be bound into the application
 before executing it dynamically.

 Some other operating systems support the user-defined layered
 protocol allowing a user to develop some additional protocols and put
 them in the existing protocol stack. In this case, the API
 translator can be implemented as a layered protocol module.

 In the above two approaches, it is assumed that there exists both
 TCP(UDP)/IPv4 and TCP(UDP)/IPv6 stacks and there is no need to modify
 or to add a new TCP-UDP/IPv6 stack.

Lee, et al. Experimental [Page 11]

RFC 3338 Dual Stack Hosts Using BIA October 2002

6. Limitations

 In common with [NAT-PT], BIA needs to translate IP addresses embedded
 in application layer protocols, e.g., FTP. So it may not work for
 new applications which embed addresses in payloads.

 This mechanism supports unicast communications only. In order to
 support multicast functions, some other additional functionalities
 must be considered in the function mapper module.

 Since the IPv6 API has new advanced features, it is difficult to
 translate such kinds of IPv6 APIs into IPv4 APIs. Thus, IPv6 inbound
 communication with advanced features may be discarded.

7. Security Considerations

 The security consideration of BIA mostly relies on that of [NAT-PT].
 The differences are due to the address translation occurring at the
 API and not in the network layer. That is, since the mechanism uses
 the API translator at the socket API level, hosts can utilize the
 security of the network layer (e.g., IPsec) when they communicate
 with IPv6 hosts using IPv4 applications via the mechanism. As well,
 there isn’t a DNS ALG as in NAT-PT, so there is no interference with
 DNSSEC.

 The use of address pooling may open a denial of service attack
 vulnerability. So BIA should employ the same sort of protection
 techniques as [NAT-PT] does.

8. Acknowledgments

 We would like to acknowledge the implementation contributions by
 Wanjik Lee (wjlee@arang.miryang.ac.kr) and i2soft Corporation
 (www.i2soft.net).

9. References

 [TRANS-MECH] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 2893, August 2000.

 [SIIT] Nordmark, E., "Stateless IP/ICMP Translator (SIIT)", RFC
 2765, February 2000.

 [FTP] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

Lee, et al. Experimental [Page 12]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 [NAT] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022, January
 2001.

 [IPV4] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [IPV6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [NAT-PT] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [BIS] Tsuchiya, K., Higuchi, H. and Y. Atarashi, "Dual Stack
 Hosts using the "Bump-In-the-Stack" Technique (BIS)",
 RFC 2767, February 2000.

 [SOCK-EXT] Gilligan, R., Thomson, S., Bound, J. and W. Stevens,
 "Basic Socket Interface Extensions for IPv6", RFC 2553,
 March 1999.

 [RFC 2119] Bradner S., "Key words for use in RFCs to indicate
 Requirement Levels", RFC 2119, March 1997.

Lee, et al. Experimental [Page 13]

RFC 3338 Dual Stack Hosts Using BIA October 2002

Appendix A : API list intercepted by BIA

 The following functions are the API list which SHOULD be intercepted
 by BIA module.

 The functions that the application uses to pass addresses into the
 system are:

 bind()
 connect()
 sendmsg()
 sendto()

 The functions that return an address from the system to an
 application are:

 accept()
 recvfrom()
 recvmsg()
 getpeername()
 getsockname()

 The functions that are related to socket options are:

 getsocketopt()
 setsocketopt()

 The functions that are used for conversion of IP addresses embedded
 in application layer protocol (e.g., FTP, DNS, etc.) are:

 recv()
 send()
 read()
 write()

 As well, raw sockets for IPv4 and IPv6 MAY be intercepted.

 Most of the socket functions require a pointer to the socket address
 structure as an argument. Each IPv4 argument is mapped into
 corresponding an IPv6 argument, and vice versa.

 According to [SOCK-EXT], the following new IPv6 basic APIs and
 structures are required.

Lee, et al. Experimental [Page 14]

RFC 3338 Dual Stack Hosts Using BIA October 2002

 IPv4 new IPv6
 --
 AF_INET AF_INET6
 sockaddr_in sockaddr_in6
 gethostbyname() getaddrinfo()
 gethostbyaddr() getnameinfo()
 inet_ntoa()/inet_addr() inet_pton()/inet_ntop()
 INADDR_ANY in6addr_any

 BIA MAY intercept inet_ntoa() and inet_addr() and use the address
 mapper for those. Doing that enables BIA to support literal IP
 addresses.

 The gethostbyname() call return a list of addresses. When the name
 resolver function invokes getaddrinfo() and getaddrinfo() returns
 multiple IP addresses, whether IPv4 or IPv6, they SHOULD all be
 represented in the addresses returned by gethostbyname(). Thus if
 getaddrinfo() returns multiple IPv6 addresses, this implies that
 multiple address mappings will be created; one for each IPv6 address.

Lee, et al. Experimental [Page 15]

RFC 3338 Dual Stack Hosts Using BIA October 2002

Authors’ Addresses

 Seungyun Lee
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
 Tel: +82 42 860 5508
 Fax: +82 42 861 5404
 EMail: syl@pec.etri.re.kr

 Myung-Ki Shin
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
 Tel: +82 42 860 4847
 Fax: +82 42 861 5404
 EMail: mkshin@pec.etri.re.kr

 Yong-Jin Kim
 ETRI
 161 Kajong-Dong, Yusong-Gu, Taejon 305-350, Korea
 Tel: +82 42 860 6564
 Fax: +82 42 861 1033
 EMail: yjkim@pec.etri.re.kr

 Alain Durand
 Sun Microsystems, inc.
 25 Network circle
 Menlo Park, CA 94025, USA
 Fax: +1 650 786 5896
 EMail: Alain.Durand@sun.com

 Erik Nordmark
 Sun Microsystems Laboratories
 180, avenue de l’Europe
 38334 SAINT ISMIER Cedex, France
 Tel: +33 (0)4 76 18 88 03
 Fax: +33 (0)4 76 18 88 88
 EMail: erik.nordmark@sun.com

Lee, et al. Experimental [Page 16]

RFC 3338 Dual Stack Hosts Using BIA October 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Lee, et al. Experimental [Page 17]

