
Network Working Group D. Levi
Request for Comments: 3413 Nortel Networks
STD: 62 P. Meyer
Obsoletes: 2573 Secure Computing Corporation
Category: Standards Track B. Stewart
 Retired
 December 2002

 Simple Network Management Protocol (SNMP) Applications

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes five types of Simple Network Management
 Protocol (SNMP) applications which make use of an SNMP engine as
 described in STD 62, RFC 3411. The types of application described
 are Command Generators, Command Responders, Notification Originators,
 Notification Receivers, and Proxy Forwarders.

 This document also defines Management Information Base (MIB) modules
 for specifying targets of management operations, for notification
 filtering, and for proxy forwarding. This document obsoletes RFC
 2573.

Table of Contents

 1 Overview ... 2
 1.1 Command Generator Applications 3
 1.2 Command Responder Applications 3
 1.3 Notification Originator Applications 3
 1.4 Notification Receiver Applications 3
 1.5 Proxy Forwarder Applications 4
 2 Management Targets 5
 3 Elements Of Procedure 6
 3.1 Command Generator Applications 6
 3.2 Command Responder Applications 9
 3.3 Notification Originator Applications 14
 3.4 Notification Receiver Applications 17
 3.5 Proxy Forwarder Applications 19
 3.5.1 Request Forwarding 21

Levi, et. al. Standards Track [Page 1]

RFC 3413 SNMP Applications December 2002

 3.5.1.1 Processing an Incoming Request 21
 3.5.1.2 Processing an Incoming Response 24
 3.5.1.3 Processing an Incoming Internal-Class PDU 25
 3.5.2 Notification Forwarding 26
 4 The Structure of the MIB Modules 29
 4.1 The Management Target MIB Module 29
 4.1.1 Tag Lists,........................ 29
 4.1.2 Definitions,......................... 30
 4.2 The Notification MIB Module 44
 4.2.1 Definitions .. 44
 4.3 The Proxy MIB Module 56
 4.3.1 Definitions .. 57
 5 Identification of Management Targets in
 Notification Originators 63
 6 Notification Filtering 64
 7 Management Target Translation in
 Proxy Forwarder Applications 65
 7.1 Management Target Translation for
 Request Forwarding 65
 7.2 Management Target Translation for
 Notification Forwarding 66
 8 Intellectual Property 67
 9 Acknowledgments .. 67
 10 Security Considerations 69
 11 References ... 69
 A. Trap Configuration Example 71
 Editors’ Addresses 73
 Full Copyright Statement 74

1. Overview

 This document describes five types of SNMP applications:

 - Applications which initiate SNMP Read-Class, and/or Write-Class
 requests, called ’command generators.’

 - Applications which respond to SNMP Read-Class, and/or Write-Class
 requests, called ’command responders.’

 - Applications which generate SNMP Notification-Class PDUs, called
 ’notification originators.’

 - Applications which receive SNMP Notification-Class PDUs, called
 ’notification receivers.’

 - Applications which forward SNMP messages, called ’proxy
 forwarders.’

Levi, et. al. Standards Track [Page 2]

RFC 3413 SNMP Applications December 2002

 Note that there are no restrictions on which types of applications
 may be associated with a particular SNMP engine. For example, a
 single SNMP engine may, in fact, be associated with both command
 generator and command responder applications.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1. Command Generator Applications

 A command generator application initiates SNMP Read-Class and/or
 Write-Class requests, and processes responses to requests which it
 generated.

1.2. Command Responder Applications

 A command responder application receives SNMP Read-Class and/or
 Write-Class requests destined for the local system as indicated by
 the fact that the contextEngineID in the received request is equal to
 that of the local engine through which the request was received. The
 command responder application will perform the appropriate protocol
 operation, using access control, and will generate a response message
 to be sent to the request’s originator.

1.3. Notification Originator Applications

 A notification originator application conceptually monitors a system
 for particular events or conditions, and generates Notification-Class
 messages based on these events or conditions. A notification
 originator must have a mechanism for determining where to send
 messages, and what SNMP version and security parameters to use when
 sending messages. A mechanism and MIB module for this purpose is
 provided in this document. Note that Notification-Class PDUs
 generated by a notification originator may be either Confirmed-Class
 or Unconfirmed-Class PDU types.

1.4. Notification Receiver Applications

 A notification receiver application listens for notification
 messages, and generates response messages when a message containing a
 Confirmed-Class PDU is received.

Levi, et. al. Standards Track [Page 3]

RFC 3413 SNMP Applications December 2002

1.5. Proxy Forwarder Applications

 A proxy forwarder application forwards SNMP messages. Note that
 implementation of a proxy forwarder application is optional. The
 sections describing proxy (3.5, 4.3, and 7) may be skipped for
 implementations that do not include a proxy forwarder application.

 The term "proxy" has historically been used very loosely, with
 multiple different meanings. These different meanings include (among
 others):

 (1) the forwarding of SNMP requests to other SNMP entities without
 regard for what managed object types are being accessed; for
 example, in order to forward an SNMP request from one transport
 domain to another, or to translate SNMP requests of one version
 into SNMP requests of another version;

 (2) the translation of SNMP requests into operations of some non-SNMP
 management protocol; and

 (3) support for aggregated managed objects where the value of one
 managed object instance depends upon the values of multiple other
 (remote) items of management information.

 Each of these scenarios can be advantageous; for example, support for
 aggregation of management information can significantly reduce the
 bandwidth requirements of large-scale management activities.

 However, using a single term to cover multiple different scenarios
 causes confusion.

 To avoid such confusion, this document uses the term "proxy" with a
 much more tightly defined meaning. The term "proxy" is used in this
 document to refer to a proxy forwarder application which forwards
 either SNMP messages without regard for what managed objects are
 contained within those messages. This definition is most closely
 related to the first definition above. Note, however, that in the
 SNMP architecture [RFC3411], a proxy forwarder is actually an
 application, and need not be associated with what is traditionally
 thought of as an SNMP agent.

 Specifically, the distinction between a traditional SNMP agent and a
 proxy forwarder application is simple:

Levi, et. al. Standards Track [Page 4]

RFC 3413 SNMP Applications December 2002

 - a proxy forwarder application forwards SNMP messages to other SNMP
 engines according to the context, and irrespective of the specific
 managed object types being accessed, and forwards the response to
 such previously forwarded messages back to the SNMP engine from
 which the original message was received;

 - in contrast, the command responder application that is part of what
 is traditionally thought of as an SNMP agent, and which processes
 SNMP requests according to the (names of the) individual managed
 object types and instances being accessed, is NOT a proxy forwarder
 application from the perspective of this document.

 Thus, when a proxy forwarder application forwards a request or
 notification for a particular contextEngineID / contextName pair, not
 only is the information on how to forward the request specifically
 associated with that context, but the proxy forwarder application has
 no need of a detailed definition of a MIB view (since the proxy
 forwarder application forwards the request irrespective of the
 managed object types).

 In contrast, a command responder application must have the detailed
 definition of the MIB view, and even if it needs to issue requests to
 other entities, via SNMP or otherwise, that need is dependent on the
 individual managed object instances being accessed (i.e., not only on
 the context).

 Note that it is a design goal of a proxy forwarder application to act
 as an intermediary between the endpoints of a transaction. In
 particular, when forwarding Confirmed Notification-Class messages,
 the associated response is forwarded when it is received from the
 target to which the Notification-Class message was forwarded, rather
 than generating a response immediately when the Notification-Class
 message is received.

2. Management Targets

 Some types of applications (notification generators and proxy
 forwarders in particular) require a mechanism for determining where
 and how to send generated messages. This document provides a
 mechanism and MIB module for this purpose. The set of information
 that describes where and how to send a message is called a
 ’Management Target’, and consists of two kinds of information:

 - Destination information, consisting of a transport domain and a
 transport address. This is also termed a transport endpoint.

 - SNMP parameters, consisting of message processing model, security
 model, security level, and security name information.

Levi, et. al. Standards Track [Page 5]

RFC 3413 SNMP Applications December 2002

 The SNMP-TARGET-MIB module described later in this document contains
 one table for each of these types of information. There can be a
 many-to-many relationship in the MIB between these two types of
 information. That is, there may be multiple transport endpoints
 associated with a particular set of SNMP parameters, or a particular
 transport endpoint may be associated with several sets of SNMP
 parameters.

3. Elements Of Procedure

 The following sections describe the procedures followed by each type
 of application when generating messages for transmission or when
 processing received messages. Applications communicate with the
 Dispatcher using the abstract service interfaces defined in
 [RFC3411].

3.1. Command Generator Applications

 A command generator initiates an SNMP request by calling the
 Dispatcher using the following abstract service interface:

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

 Where:

 - The transportDomain is that of the destination of the message.

 - The transportAddress is that of the destination of the message.

 - The messageProcessingModel indicates which Message Processing Model
 the application wishes to use.

 - The securityModel is the security model that the application wishes
 to use.

Levi, et. al. Standards Track [Page 6]

RFC 3413 SNMP Applications December 2002

 - The securityName is the security model independent name for the
 principal on whose behalf the application wishes the message to be
 generated.

 - The securityLevel is the security level that the application wishes
 to use.

 - The contextEngineID specifies the location of the management
 information it is requesting. Note that unless the request is
 being sent to a proxy, this value will usually be equal to the
 snmpEngineID value of the engine to which the request is being
 sent.

 - The contextName specifies the local context name for the management
 information it is requesting.

 - The pduVersion indicates the version of the PDU to be sent.

 - The PDU is a value constructed by the command generator containing
 the management operation that the command generator wishes to
 perform.

 - The expectResponse argument indicates that a response is expected.

 The result of the sendPdu interface indicates whether the PDU was
 successfully sent. If it was successfully sent, the returned value
 will be a sendPduHandle. The command generator should store the
 sendPduHandle so that it can correlate a response to the original
 request.

 The Dispatcher is responsible for delivering the response to a
 particular request to the correct command generator application. The
 abstract service interface used is:

 processResponsePdu(-- process Response PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN statusInformation -- success or errorIndication
 IN sendPduHandle -- handle from sendPdu
)

Levi, et. al. Standards Track [Page 7]

RFC 3413 SNMP Applications December 2002

 Where:

 - The messageProcessingModel is the value from the received response.

 - The securityModel is the value from the received response.

 - The securityName is the value from the received response.

 - The securityLevel is the value from the received response.

 - The contextEngineID is the value from the received response.

 - The contextName is the value from the received response.

 - The pduVersion indicates the version of the PDU in the received
 response.

 - The PDU is the value from the received response.

 - The statusInformation indicates success or failure in receiving the
 response.

 - The sendPduHandle is the value returned by the sendPdu call which
 generated the original request to which this is a response.

 The procedure when a command generator receives a message is as
 follows:

 (1) If the received values of messageProcessingModel, securityModel,
 securityName, contextEngineID, contextName, and pduVersion are
 not all equal to the values used in the original request, the
 response is discarded.

 (2) The operation type, request-id, error-status, error-index, and
 variable-bindings are extracted from the PDU and saved. If the
 request-id is not equal to the value used in the original
 request, the response is discarded.

 (3) At this point, it is up to the application to take an appropriate
 action. The specific action is implementation dependent. If the
 statusInformation indicates that the request failed, an
 appropriate action might be to attempt to transmit the request
 again, or to notify the person operating the application that a
 failure occurred.

Levi, et. al. Standards Track [Page 8]

RFC 3413 SNMP Applications December 2002

3.2. Command Responder Applications

 Before a command responder application can process messages, it must
 first associate itself with an SNMP engine. The abstract service
 interface used for this purpose is:

 statusInformation = -- success or errorIndication
 registerContextEngineID(
 IN contextEngineID -- take responsibility for this one
 IN pduType -- the pduType(s) to be registered
)

 Where:

 - The statusInformation indicates success or failure of the
 registration attempt.

 - The contextEngineID is equal to the snmpEngineID of the SNMP engine
 with which the command responder is registering.

 - The pduType indicates a Read-Class and/or Write-Class PDU.

 Note that if another command responder application is already
 registered with an SNMP engine, any further attempts to register with
 the same contextEngineID and pduType will be denied. This implies
 that separate command responder applications could register
 separately for the various pdu types. However, in practice this is
 undesirable, and only a single command responder application should
 be registered with an SNMP engine at any given time.

 A command responder application can disassociate with an SNMP engine
 using the following abstract service interface:

 unregisterContextEngineID(
 IN contextEngineID -- give up responsibility for this one
 IN pduType -- the pduType(s) to be unregistered
)

 Where:

 - The contextEngineID is equal to the snmpEngineID of the SNMP engine
 with which the command responder is cancelling the registration.

 - The pduType indicates a Read-Class and/or Write-Class PDU.

Levi, et. al. Standards Track [Page 9]

RFC 3413 SNMP Applications December 2002

 Once the command responder has registered with the SNMP engine, it
 waits to receive SNMP messages. The abstract service interface used
 for receiving messages is:

 processPdu(-- process Request/Notification PDU
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
) -- needed when sending a response

 Where:

 - The messageProcessingModel indicates which Message Processing Model
 received and processed the message.

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The contextEngineID is the value from the received message.

 - The contextName is the value from the received message.

 - The pduVersion indicates the version of the PDU in the received
 message.

 - The PDU is the value from the received message.

 - The maxSizeResponseScopedPDU is the maximum allowable size of a
 ScopedPDU containing a Response PDU (based on the maximum message
 size that the originator of the message can accept).

 - The stateReference is a value which references cached information
 about each received request message. This value must be returned
 to the Dispatcher in order to generate a response.

Levi, et. al. Standards Track [Page 10]

RFC 3413 SNMP Applications December 2002

 The procedure when a message is received is as follows:

 (1) The operation type is determined from the ASN.1 tag value
 associated with the PDU parameter. The operation type should
 always be one of the types previously registered by the
 application.

 (2) The request-id is extracted from the PDU and saved.

 (3) Any PDU type specific parameters are extracted from the PDU and
 saved (for example, if the PDU type is an SNMPv2 GetBulk PDU, the
 non-repeaters and max-repetitions values are extracted).

 (4) The variable-bindings are extracted from the PDU and saved.

 (5) The management operation represented by the PDU type is performed
 with respect to the relevant MIB view within the context named by
 the contextName (for an SNMPv2 PDU type, the operation is
 performed according to the procedures set forth in [RFC1905]).
 The relevant MIB view is determined by the securityLevel,
 securityModel, contextName, securityName, and the class of the
 PDU type. To determine whether a particular object instance is
 within the relevant MIB view, the following abstract service
 interface is called:

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context containing variableName
 IN variableName -- OID for the managed object
)

 Where:

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The viewType indicates whether the PDU type is a Read-Class or
 Write-Class operation.

 - The contextName is the value from the received message.

Levi, et. al. Standards Track [Page 11]

RFC 3413 SNMP Applications December 2002

 - The variableName is the object instance of the variable for
 which access rights are to be checked.

 Normally, the result of the management operation will be a new
 PDU value, and processing will continue in step (6) below.
 However, at any time during the processing of the management
 operation:

 - If the isAccessAllowed ASI returns a noSuchView, noAccessEntry,
 or noGroupName error, processing of the management operation is
 halted, a PDU value is constructed using the values from the
 originally received PDU, but replacing the error-status with an
 authorizationError code, and error-index value of 0, and
 control is passed to step (6) below.

 - If the isAccessAllowed ASI returns an otherError, processing of
 the management operation is halted, a different PDU value is
 constructed using the values from the originally received PDU,
 but replacing the error-status with a genError code and the
 error-index with the index of the failed variable binding, and
 control is passed to step (6) below.

 - If the isAccessAllowed ASI returns a noSuchContext error,
 processing of the management operation is halted, no result PDU
 is generated, the snmpUnknownContexts counter is incremented,
 and control is passed to step (6) below for generation of a
 report message.

 - If the context named by the contextName parameter is
 unavailable, processing of the management operation is halted,
 no result PDU is generated, the snmpUnavailableContexts counter
 is incremented, and control is passed to step (6) below for
 generation of a report message.

 (6) The Dispatcher is called to generate a response or report
 message. The abstract service interface is:

Levi, et. al. Standards Track [Page 12]

RFC 3413 SNMP Applications December 2002

returnResponsePdu(
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model in use
 IN securityName -- on behalf of this principal
 IN securityLevel -- same as on incoming request
 IN contextEngineID -- data from/at this SNMP entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
 IN stateReference -- reference to state information
 -- as presented with the request
 IN statusInformation -- success or errorIndication
) -- error counter OID/value if error

 Where:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU to be returned.
 If no result PDU was generated, the pduVersion is an undefined
 value.

 - The PDU is the result generated in step (5) above. If no
 result PDU was generated, the PDU is an undefined value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation either contains an indication that no
 error occurred and that a response should be generated, or
 contains an indication that an error occurred along with the
 OID and counter value of the appropriate error counter object.

Levi, et. al. Standards Track [Page 13]

RFC 3413 SNMP Applications December 2002

 Note that a command responder application should always call the
 returnResponsePdu abstract service interface, even in the event of an
 error such as a resource allocation error. In the event of such an
 error, the PDU value passed to returnResponsePdu should contain
 appropriate values for errorStatus and errorIndex.

 Note that the text above describes situations where the
 snmpUnknownContexts counter is incremented, and where the
 snmpUnavailableContexts counter is incremented. The difference
 between these is that the snmpUnknownContexts counter is incremented
 when a request is received for a context which is unknown to the SNMP
 entity. The snmpUnavailableContexts counter is incremented when a
 request is received for a context which is known to the SNMP entity,
 but is currently unavailable. Determining when a context is
 unavailable is implementation specific, and some implementations may
 never encounter this situation, and so may never increment the
 snmpUnavailableContexts counter.

3.3. Notification Originator Applications

 A notification originator application generates SNMP messages
 containing Notification-Class PDUs (for example, SNMPv2-Trap PDUs or
 Inform PDUs). There is no requirement as to what specific types of
 Notification-Class PDUs a particular implementation must be capable
 of generating.

 Notification originator applications require a mechanism for
 identifying the management targets to which notifications should be
 sent. The particular mechanism used is implementation dependent.
 However, if an implementation makes the configuration of management
 targets SNMP manageable, it MUST use the SNMP-TARGET-MIB module
 described in this document.

 When a notification originator wishes to generate a notification, it
 must first determine in which context the information to be conveyed
 in the notification exists, i.e., it must determine the
 contextEngineID and contextName. It must then determine the set of
 management targets to which the notification should be sent. The
 application must also determine, for each management target, what
 specific PDU type the notification message should contain, and if it
 is to contain a Confirmed-Class PDU, the number of retries and
 retransmission algorithm.

Levi, et. al. Standards Track [Page 14]

RFC 3413 SNMP Applications December 2002

 The mechanism by which a notification originator determines this
 information is implementation dependent. Once the application has
 determined this information, the following procedure is performed for
 each management target:

 (1) Any appropriate filtering mechanisms are applied to determine
 whether the notification should be sent to the management target.
 If such filtering mechanisms determine that the notification
 should not be sent, processing continues with the next management
 target. Otherwise,

 (2) The appropriate set of variable-bindings is retrieved from local
 MIB instrumentation within the relevant MIB view. The relevant
 MIB view is determined by the securityLevel, securityModel,
 contextName, and securityName of the management target. To
 determine whether a particular object instance is within the
 relevant MIB view, the isAccessAllowed abstract service interface
 is used, in the same manner as described in the preceding
 section, except that the viewType indicates a Notification-Class
 operation. If the statusInformation returned by isAccessAllowed
 does not indicate accessAllowed, the notification is not sent to
 the management target.

 (3) The NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
 is the value of the element of the variable bindings whose name
 is snmpTrapOID.0, i.e., the second variable binding) is checked
 using the isAccessAllowed abstract service interface, using the
 same parameters used in the preceding step. If the
 statusInformation returned by isAccessAllowed does not indicate
 accessAllowed, the notification is not sent to the management
 target.

 (4) A PDU is constructed using a locally unique request-id value, a
 PDU type as determined by the implementation, an error-status and
 error-index value of 0, and the variable-bindings supplied
 previously in step (2).

 (5) If the notification contains an Unconfirmed-Class PDU, the
 Dispatcher is called using the following abstract service
 interface:

Levi, et. al. Standards Track [Page 15]

RFC 3413 SNMP Applications December 2002

 statusInformation = -- sendPduHandle if success
 -- errorIndication if failure
 sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

 Where:

 - The transportDomain is that of the management target.

 - The transportAddress is that of the management target.

 - The messageProcessingModel is that of the management target.

 - The securityModel is that of the management target.

 - The securityName is that of the management target.

 - The securityLevel is that of the management target.

 - The contextEngineID is the value originally determined for the
 notification.

 - The contextName is the value originally determined for the
 notification.

 - The pduVersion is the version of the PDU to be sent.

 - The PDU is the value constructed in step (4) above.

 - The expectResponse argument indicates that no response is
 expected.

 Otherwise,

Levi, et. al. Standards Track [Page 16]

RFC 3413 SNMP Applications December 2002

 (6) If the notification contains a Confirmed-Class PDU, then:

 a) The Dispatcher is called using the sendPdu abstract service
 interface as described in step (5) above, except that the
 expectResponse argument indicates that a response is expected.

 b) The application caches information about the management
 target.

 c) If a response is received within an appropriate time interval
 from the transport endpoint of the management target, the
 notification is considered acknowledged and the cached
 information is deleted. Otherwise,

 d) If a response is not received within an appropriate time
 period, or if a report indication is received, information
 about the management target is retrieved from the cache, and
 steps a) through d) are repeated. The number of times these
 steps are repeated is equal to the previously determined retry
 count. If this retry count is exceeded, the acknowledgement
 of the notification is considered to have failed, and
 processing of the notification for this management target is
 halted. Note that some report indications might be considered
 a failure. Such report indications should be interpreted to
 mean that the acknowledgement of the notification has failed,
 and that steps a) through d) need not be repeated.

 Responses to Confirmed-Class PDU notifications will be received via
 the processResponsePdu abstract service interface.

 To summarize, the steps that a notification originator follows when
 determining where to send a notification are:

 - Determine the targets to which the notification should be sent.

 - Apply any required filtering to the list of targets.

 - Determine which targets are authorized to receive the notification.

3.4. Notification Receiver Applications

 Notification receiver applications receive SNMP Notification messages
 from the Dispatcher. Before any messages can be received, the
 notification receiver must register with the Dispatcher using the
 registerContextEngineID abstract service interface. The parameters
 used are:

Levi, et. al. Standards Track [Page 17]

RFC 3413 SNMP Applications December 2002

 - The contextEngineID is an undefined ’wildcard’ value.
 Notifications are delivered to a registered notification receiver
 regardless of the contextEngineID contained in the notification
 message.

 - The pduType indicates the type of notifications that the
 application wishes to receive (for example, SNMPv2-Trap PDUs or
 Inform PDUs).

 Once the notification receiver has registered with the Dispatcher,
 messages are received using the processPdu abstract service
 interface. Parameters are:

 - The messageProcessingModel indicates which Message Processing Model
 received and processed the message.

 - The securityModel is the value from the received message.

 - The securityName is the value from the received message.

 - The securityLevel is the value from the received message.

 - The contextEngineID is the value from the received message.

 - The contextName is the value from the received message.

 - The pduVersion indicates the version of the PDU in the received
 message.

 - The PDU is the value from the received message.

 - The maxSizeResponseScopedPDU is the maximum allowable size of a
 ScopedPDU containing a Response PDU (based on the maximum message
 size that the originator of the message can accept).

 - If the message contains an Unconfirmed-Class PDU, the
 stateReference is undefined and unused. Otherwise, the
 stateReference is a value which references cached information about
 the notification. This value must be returned to the Dispatcher in
 order to generate a response.

 When an Unconfirmed-Class PDU is delivered to a notification receiver
 application, it first extracts the SNMP operation type, request-id,
 error-status, error-index, and variable-bindings from the PDU. After
 this, processing depends on the particular implementation.

Levi, et. al. Standards Track [Page 18]

RFC 3413 SNMP Applications December 2002

 When a Confirmed-Class PDU is received, the notification receiver
 application follows the following procedure:

 (1) The PDU type, request-id, error-status, error-index, and
 variable-bindings are extracted from the PDU.

 (2) A Response-Class PDU is constructed using the extracted
 request-id and variable-bindings, and with error-status and
 error-index both set to 0.

 (3) The Dispatcher is called to generate a response message using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU to be returned.

 - The PDU is the result generated in step (2) above.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that no error occurred and that
 a response should be generated.

 (4) After this, processing depends on the particular implementation.

3.5. Proxy Forwarder Applications

 A proxy forwarder application deals with forwarding SNMP messages.
 There are four basic types of messages which a proxy forwarder
 application may need to forward. These are grouped according to the
 class of PDU type contained in a message. The four basic types of
 messages are:

Levi, et. al. Standards Track [Page 19]

RFC 3413 SNMP Applications December 2002

 - Those containing Read-Class or Write-Class PDU types (for example,
 Get, GetNext, GetBulk, and Set PDU types). These deal with
 requesting or modifying information located within a particular
 context.

 - Those containing Notification-Class PDU types (for example,
 SNMPv2-Trap and Inform PDU types). These deal with notifications
 concerning information located within a particular context.

 - Those containing a Response-Class PDU type. Forwarding of
 Response-Class PDUs always occurs as a result of receiving a
 response to a previously forwarded message.

 - Those containing Internal-Class PDU types (for example, a Report
 PDU). Forwarding of Internal-Class PDU types always occurs as a
 result of receiving an Internal-Class PDU in response to a
 previously forwarded message.

 For the first type, the proxy forwarder’s role is to deliver a
 request for management information to an SNMP engine which is
 "closer" or "downstream in the path" to the SNMP engine which has
 access to that information, and to deliver the response containing
 the information back to the SNMP engine from which the request was
 received. The context information in a request is used to determine
 which SNMP engine has access to the requested information, and this
 is used to determine where and how to forward the request.

 For the second type, the proxy forwarder’s role is to determine which
 SNMP engines should receive notifications about management
 information from a particular location. The context information in a
 notification message determines the location to which the information
 contained in the notification applies. This is used to determine
 which SNMP engines should receive notification about this
 information.

 For the third type, the proxy forwarder’s role is to determine which
 previously forwarded request or notification (if any) the response
 matches, and to forward the response back to the initiator of the
 request or notification.

 For the fourth type, the proxy forwarder’s role is to determine which
 previously forwarded request or notification (if any) the Internal-
 Class PDU matches, and to forward the Internal-Class PDU back to the
 initiator of the request or notification.

Levi, et. al. Standards Track [Page 20]

RFC 3413 SNMP Applications December 2002

 When forwarding messages, a proxy forwarder application must perform
 a translation of incoming management target information into outgoing
 management target information. How this translation is performed is
 implementation specific. In many cases, this will be driven by a
 preconfigured translation table. If a proxy forwarder application
 makes the contents of this table SNMP manageable, it MUST use the
 SNMP-PROXY-MIB module defined in this document.

3.5.1. Request Forwarding

 There are two phases for request forwarding. First, the incoming
 request needs to be passed through the proxy application. Then, the
 resulting response needs to be passed back. These phases are
 described in the following two sections.

3.5.1.1. Processing an Incoming Request

 A proxy forwarder application that wishes to forward request messages
 must first register with the Dispatcher using the
 registerContextEngineID abstract service interface. The proxy
 forwarder must register each contextEngineID for which it wishes to
 forward messages, as well as for each pduType. Note that as the
 configuration of a proxy forwarder is changed, the particular
 contextEngineID values for which it is forwarding may change. The
 proxy forwarder should call the registerContextEngineID and
 unregisterContextEngineID abstract service interfaces as needed to
 reflect its current configuration.

 A proxy forwarder application should never attempt to register a
 value of contextEngineID which is equal to the snmpEngineID of the
 SNMP engine to which the proxy forwarder is associated.

 Once the proxy forwarder has registered for the appropriate
 contextEngineID values, it can start processing messages. The
 following procedure is used:

 (1) A message is received using the processPdu abstract service
 interface. The incoming management target information received
 from the processPdu interface is translated into outgoing
 management target information. Note that this translation may
 vary for different values of contextEngineID and/or contextName.
 The translation should result in a single management target.

 (2) If appropriate outgoing management target information cannot be
 found, the proxy forwarder increments the snmpProxyDrops counter
 [RFC1907], and then calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

Levi, et. al. Standards Track [Page 21]

RFC 3413 SNMP Applications December 2002

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion is the value from the processPdu call.

 - The PDU is an undefined value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that an error occurred and
 includes the OID and value of the snmpProxyDrops object.

 Processing of the message stops at this point. Otherwise,

 (3) A new PDU is constructed. A unique value of request-id should be
 used in the new PDU (this value will enable a subsequent response
 message to be correlated with this request). The remainder of
 the new PDU is identical to the received PDU, unless the incoming
 SNMP version and the outgoing SNMP version support different PDU
 versions, in which case the proxy forwarder may need to perform a
 translation on the PDU. (A method for performing such a
 translation is described in [RFC2576].)

 (4) The proxy forwarder calls the Dispatcher to generate the
 forwarded message, using the sendPdu abstract service interface.
 The parameters are:

 - The transportDomain is that of the outgoing management target.

 - The transportAddress is that of the outgoing management target.

 - The messageProcessingModel is that of the outgoing management
 target.

 - The securityModel is that of the outgoing management target.

Levi, et. al. Standards Track [Page 22]

RFC 3413 SNMP Applications December 2002

 - The securityName is that of the outgoing management target.

 - The securityLevel is that of the outgoing management target.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion is the version of the PDU to be sent.

 - The PDU is the value constructed in step (3) above.

 - The expectResponse argument indicates that a response is
 expected. If the sendPdu call is unsuccessful, the proxy
 forwarder performs the steps described in (2) above.
 Otherwise:

 (5) The proxy forwarder caches the following information in order to
 match an incoming response to the forwarded request:

 - The sendPduHandle returned from the call to sendPdu,

 - The request-id from the received PDU.

 - The contextEngineID,

 - The contextName,

 - The stateReference,

 - The incoming management target information,

 - The outgoing management information,

 - Any other information needed to match an incoming response to
 the forwarded request.

 If this information cannot be cached (possibly due to a lack of
 resources), the proxy forwarder performs the steps described in
 (2) above. Otherwise:

 (6) Processing of the request stops until a response to the forwarded
 request is received, or until an appropriate time interval has
 expired. If this time interval expires before a response has
 been received, the cached information about this request is
 removed.

Levi, et. al. Standards Track [Page 23]

RFC 3413 SNMP Applications December 2002

3.5.1.2. Processing an Incoming Response

 A proxy forwarder follows the following procedure when an
 incoming response is received:

 (1) The incoming response is received using the processResponsePdu
 interface. The proxy forwarder uses the received parameters to
 locate an entry in its cache of pending forwarded requests. This
 is done by matching the received parameters with the cached
 values of sendPduHandle, contextEngineID, contextName, outgoing
 management target information, and the request-id contained in
 the received PDU (the proxy forwarder must extract the request-id
 for this purpose). If an appropriate cache entry cannot be
 found, processing of the response is halted. Otherwise:

 (2) The cache information is extracted, and removed from the cache.

 (3) A new Response-Class PDU is constructed, using the request-id
 value from the original forwarded request (as extracted from the
 cache). All other values are identical to those in the received
 Response-Class PDU, unless the incoming SNMP version and the
 outgoing SNMP version support different PDU versions, in which
 case the proxy forwarder may need to perform a translation on the
 PDU. (A method for performing such a translation is described in
 [RFC2576].)

 (4) The proxy forwarder calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel indicates the Message Processing
 Model by which the original incoming message was processed.

 - The securityModel is that of the original incoming management
 target extracted from the cache.

 - The securityName is that of the original incoming management
 target extracted from the cache.

 - The securityLevel is that of the original incoming management
 target extracted from the cache.

 - The contextEngineID is the value extracted from the cache.

 - The contextName is the value extracted from the cache.

 - The pduVersion indicates the version of the PDU to be returned.

 - The PDU is the (possibly translated) Response PDU.

Levi, et. al. Standards Track [Page 24]

RFC 3413 SNMP Applications December 2002

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value extracted from the cache.

 - The statusInformation indicates that no error occurred and that
 a Response PDU message should be generated.

3.5.1.3. Processing an Incoming Internal-Class PDU

 A proxy forwarder follows the following procedure when an incoming
 Internal-Class PDU is received:

 (1) The incoming Internal-Class PDU is received using the
 processResponsePdu interface. The proxy forwarder uses the
 received parameters to locate an entry in its cache of pending
 forwarded requests. This is done by matching the received
 parameters with the cached values of sendPduHandle. If an
 appropriate cache entry cannot be found, processing of the
 Internal-Class PDU is halted. Otherwise:

 (2) The cache information is extracted, and removed from the cache.

 (3) If the original incoming management target information indicates
 an SNMP version which does not support Report PDUs, processing of
 the Internal-Class PDU is halted.

 (4) The proxy forwarder calls the Dispatcher using the
 returnResponsePdu abstract service interface. Parameters are:

 - The messageProcessingModel indicates the Message Processing
 Model by which the original incoming message was processed.

 - The securityModel is that of the original incoming management
 target extracted from the cache.

 - The securityName is that of the original incoming management
 target extracted from the cache.

 - The securityLevel is that of the original incoming management
 target extracted from the cache.

 - The contextEngineID is the value extracted from the cache.

 - The contextName is the value extracted from the cache.

 - The pduVersion indicates the version of the PDU to be returned.

Levi, et. al. Standards Track [Page 25]

RFC 3413 SNMP Applications December 2002

 - The PDU is unused.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value extracted from the cache.

 - The statusInformation contains values specific to the
 Internal-Class PDU type (for example, for a Report PDU, the
 statusInformation contains the contextEngineID, contextName,
 counter OID, and counter value received in the incoming Report
 PDU).

3.5.2. Notification Forwarding

 A proxy forwarder receives notifications in the same manner as a
 notification receiver application, using the processPdu abstract
 service interface. The following procedure is used when a
 notification is received:

 (1) The incoming management target information received from the
 processPdu interface is translated into outgoing management
 target information. Note that this translation may vary for
 different values of contextEngineID and/or contextName. The
 translation may result in multiple management targets.

 (2) If appropriate outgoing management target information cannot be
 found and the notification was an Unconfirmed-Class PDU,
 processing of the notification is halted. If appropriate
 outgoing management target information cannot be found and the
 notification was a Confirmed-Class PDU, the proxy forwarder
 increments the snmpProxyDrops object, and calls the Dispatcher
 using the returnResponsePdu abstract service interface. The
 parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

Levi, et. al. Standards Track [Page 26]

RFC 3413 SNMP Applications December 2002

 - The pduVersion is the value from the processPdu call.

 - The PDU is an undefined and unused value.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that an error occurred and that
 a Report message should be generated.

 Processing of the message stops at this point. Otherwise,

 (3) The proxy forwarder generates a notification using the procedures
 described in the preceding section on Notification Originators,
 with the following exceptions:

 - The contextEngineID and contextName values from the original
 received notification are used.

 - The outgoing management targets previously determined are used.

 - No filtering mechanisms are applied.

 - The variable-bindings from the original received notification
 are used, rather than retrieving variable-bindings from local
 MIB instrumentation. In particular, no access-control is
 applied to these variable-bindings, nor to the value of the
 variable-binding containing snmpTrapOID.0.

 - If the original notification contains a Confirmed-Class PDU,
 then any outgoing management targets for which the outgoing
 SNMP version does not support any PDU types that are both
 Notification-Class and Confirmed-Class PDUs will not be used
 when generating the forwarded notifications.

 - If, for any of the outgoing management targets, the incoming
 SNMP version and the outgoing SNMP version support different
 PDU versions, the proxy forwarder may need to perform a
 translation on the PDU. (A method for performing such a
 translation is described in [RFC2576].)

 (4) If the original received notification contains an
 Unconfirmed-Class PDU, processing of the notification is now
 completed. Otherwise, the original received notification must
 contain Confirmed-Class PDU, and processing continues.

Levi, et. al. Standards Track [Page 27]

RFC 3413 SNMP Applications December 2002

 (5) If the forwarded notifications included any Confirmed-Class PDUs,
 processing continues when the procedures described in the section
 for Notification Originators determine that either:

 - None of the generated notifications containing Confirmed-Class
 PDUs have been successfully acknowledged within the longest of
 the time intervals, in which case processing of the original
 notification is halted, or,

 - At least one of the generated notifications containing
 Confirmed-Class PDUs is successfully acknowledged, in which
 case a response to the original received notification
 containing an Confirmed-Class PDU is generated as described in
 the following steps.

 (6) A Response-Class PDU is constructed, using the values of
 request-id and variable-bindings from the original received
 Notification-Class PDU, and error-status and error-index values
 of 0.

 (7) The Dispatcher is called using the returnResponsePdu abstract
 service interface. Parameters are:

 - The messageProcessingModel is the value from the processPdu
 call.

 - The securityModel is the value from the processPdu call.

 - The securityName is the value from the processPdu call.

 - The securityLevel is the value from the processPdu call.

 - The contextEngineID is the value from the processPdu call.

 - The contextName is the value from the processPdu call.

 - The pduVersion indicates the version of the PDU constructed in
 step (6) above.

 - The PDU is the value constructed in step (6) above.

 - The maxSizeResponseScopedPDU is a local value indicating the
 maximum size of a ScopedPDU that the application can accept.

 - The stateReference is the value from the processPdu call.

 - The statusInformation indicates that no error occurred and that
 a Response-Class PDU message should be generated.

Levi, et. al. Standards Track [Page 28]

RFC 3413 SNMP Applications December 2002

4. The Structure of the MIB Modules

 There are three separate MIB modules described in this document, the
 management target MIB, the notification MIB, and the proxy MIB. The
 following sections describe the structure of these three MIB modules.

 The use of these MIBs by particular types of applications is
 described later in this document:

 - The use of the management target MIB and the notification MIB in
 notification originator applications is described in section 5.

 - The use of the notification MIB for filtering notifications in
 notification originator applications is described in section 6.

 - The use of the management target MIB and the proxy MIB in proxy
 forwarding applications is described in section 7.

4.1. The Management Target MIB Module

 The SNMP-TARGET-MIB module contains objects for defining management
 targets. It consists of two tables and conformance/compliance
 statements.

 The first table, the snmpTargetAddrTable, contains information about
 transport domains and addresses. It also contains an object,
 snmpTargetAddrTagList, which provides a mechanism for grouping
 entries.

 The second table, the snmpTargetParamsTable, contains information
 about SNMP version and security information to be used when sending
 messages to particular transport domains and addresses.

 The Management Target MIB is intended to provide a general-purpose
 mechanism for specifying transport address, and for specifying
 parameters of SNMP messages generated by an SNMP entity. It is used
 within this document for generation of notifications and for proxy
 forwarding. However, it may be used for other purposes. If another
 document makes use of this MIB, that document is responsible for
 specifying how it is used. For example, [RFC2576] uses this MIB for
 source address validation of SNMPv1 messages.

4.1.1. Tag Lists

 The snmpTargetAddrTagList object is used for grouping entries in the
 snmpTargetAddrTable. The value of this object contains a list of tag
 values which are used to select target addresses to be used for a
 particular operation.

Levi, et. al. Standards Track [Page 29]

RFC 3413 SNMP Applications December 2002

 A tag value, which may also be used in MIB objects other than
 snmpTargetAddrTagList, is an arbitrary string of octets, but may not
 contain a delimiter character. Delimiter characters are defined to
 be one of the following characters:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 In addition, a tag value within a tag list may not have a zero
 length. Generally, a particular MIB object may contain either

 - a zero-length octet string representing an empty list, or

 - a single tag value, in which case the value of the MIB object may
 not contain a delimiter character, or

 - a list of tag values, separated by single delimiter characters.

 For a list of tag values, these constraints imply certain
 restrictions on the value of a MIB object:

 - There cannot be a leading or trailing delimiter character.

 - There cannot be multiple adjacent delimiter characters.

4.1.2. Definitions

 SNMP-TARGET-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules,
 Counter32,
 Integer32
 FROM SNMPv2-SMI

 TEXTUAL-CONVENTION,
 TDomain,
 TAddress,
 TimeInterval,
 RowStatus,
 StorageType,

Levi, et. al. Standards Track [Page 30]

RFC 3413 SNMP Applications December 2002

 TestAndIncr
 FROM SNMPv2-TC

 SnmpSecurityModel,
 SnmpMessageProcessingModel,
 SnmpSecurityLevel,
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpTargetMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road

Levi, et. al. Standards Track [Page 31]

RFC 3413 SNMP Applications December 2002

 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"
 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters used
 by an SNMP entity for the generation of SNMP messages.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Fixed DISPLAY-HINTS for UTF-8 strings, fixed hex
 value of LF characters, clarified meaning of zero
 length tag values, improved tag list examples.
 Published as RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 12 }

 snmpTargetObjects OBJECT IDENTIFIER ::= { snmpTargetMIB 1 }
 snmpTargetConformance OBJECT IDENTIFIER ::= { snmpTargetMIB 3 }

 SnmpTagValue ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255t"
 STATUS current
 DESCRIPTION
 "An octet string containing a tag value.
 Tag values are preferably in human-readable form.

 To facilitate internationalization, this information
 is represented using the ISO/IEC IS 10646-1 character
 set, encoded as an octet string using the UTF-8
 character encoding scheme described in RFC 2279.

 Since additional code points are added by amendments
 to the 10646 standard from time to time,
 implementations must be prepared to encounter any code
 point from 0x00000000 to 0x7fffffff.

 The use of control codes should be avoided, and certain

Levi, et. al. Standards Track [Page 32]

RFC 3413 SNMP Applications December 2002

 control codes are not allowed as described below.

 For code points not directly supported by user
 interface hardware or software, an alternative means
 of entry and display, such as hexadecimal, may be
 provided.

 For information encoded in 7-bit US-ASCII, the UTF-8
 representation is identical to the US-ASCII encoding.

 Note that when this TC is used for an object that
 is used or envisioned to be used as an index, then a
 SIZE restriction must be specified so that the number
 of sub-identifiers for any object instance does not
 exceed the limit of 128, as defined by [RFC1905].

 An object of this type contains a single tag value
 which is used to select a set of entries in a table.

 A tag value is an arbitrary string of octets, but
 may not contain a delimiter character. Delimiter
 characters are defined to be one of the following:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 Delimiter characters are used to separate tag values
 in a tag list. An object of this type may only
 contain a single tag value, and so delimiter
 characters are not allowed in a value of this type.

 Note that a tag value of 0 length means that no tag is
 defined. In other words, a tag value of 0 length would
 never match anything in a tag list, and would never
 select any table entries.

 Some examples of valid tag values are:

 - ’acme’

 - ’router’

 - ’host’

Levi, et. al. Standards Track [Page 33]

RFC 3413 SNMP Applications December 2002

 The use of a tag value to select table entries is
 application and MIB specific."
 SYNTAX OCTET STRING (SIZE (0..255))

 SnmpTagList ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255t"
 STATUS current
 DESCRIPTION
 "An octet string containing a list of tag values.
 Tag values are preferably in human-readable form.

 To facilitate internationalization, this information
 is represented using the ISO/IEC IS 10646-1 character
 set, encoded as an octet string using the UTF-8
 character encoding scheme described in RFC 2279.

 Since additional code points are added by amendments
 to the 10646 standard from time to time,
 implementations must be prepared to encounter any code
 point from 0x00000000 to 0x7fffffff.

 The use of control codes should be avoided, except as
 described below.

 For code points not directly supported by user
 interface hardware or software, an alternative means
 of entry and display, such as hexadecimal, may be
 provided.

 For information encoded in 7-bit US-ASCII, the UTF-8
 representation is identical to the US-ASCII encoding.

 An object of this type contains a list of tag values
 which are used to select a set of entries in a table.

 A tag value is an arbitrary string of octets, but
 may not contain a delimiter character. Delimiter
 characters are defined to be one of the following:

 - An ASCII space character (0x20).

 - An ASCII TAB character (0x09).

 - An ASCII carriage return (CR) character (0x0D).

 - An ASCII line feed (LF) character (0x0A).

 Delimiter characters are used to separate tag values

Levi, et. al. Standards Track [Page 34]

RFC 3413 SNMP Applications December 2002

 in a tag list. Only a single delimiter character may
 occur between two tag values. A tag value may not
 have a zero length. These constraints imply certain
 restrictions on the contents of this object:

 - There cannot be a leading or trailing delimiter
 character.

 - There cannot be multiple adjacent delimiter
 characters.

 Some examples of valid tag lists are:

 - ’’ -- an empty list

 - ’acme’ -- list of one tag

 - ’host router bridge’ -- list of several tags

 Note that although a tag value may not have a length of
 zero, an empty string is still valid. This indicates
 an empty list (i.e. there are no tag values in the list).

 The use of the tag list to select table entries is
 application and MIB specific. Typically, an application
 will provide one or more tag values, and any entry
 which contains some combination of these tag values
 will be selected."
 SYNTAX OCTET STRING (SIZE (0..255))

 --
 --
 -- The snmpTargetObjects group
 --
 --

 snmpTargetSpinLock OBJECT-TYPE
 SYNTAX TestAndIncr
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is used to facilitate modification of table
 entries in the SNMP-TARGET-MIB module by multiple
 managers. In particular, it is useful when modifying
 the value of the snmpTargetAddrTagList object.

 The procedure for modifying the snmpTargetAddrTagList
 object is as follows:

Levi, et. al. Standards Track [Page 35]

RFC 3413 SNMP Applications December 2002

 1. Retrieve the value of snmpTargetSpinLock and
 of snmpTargetAddrTagList.

 2. Generate a new value for snmpTargetAddrTagList.

 3. Set the value of snmpTargetSpinLock to the
 retrieved value, and the value of
 snmpTargetAddrTagList to the new value. If
 the set fails for the snmpTargetSpinLock
 object, go back to step 1."
 ::= { snmpTargetObjects 1 }

 snmpTargetAddrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpTargetAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of transport addresses to be used in the generation
 of SNMP messages."
 ::= { snmpTargetObjects 2 }

 snmpTargetAddrEntry OBJECT-TYPE
 SYNTAX SnmpTargetAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A transport address to be used in the generation
 of SNMP operations.

 Entries in the snmpTargetAddrTable are created and
 deleted using the snmpTargetAddrRowStatus object."
 INDEX { IMPLIED snmpTargetAddrName }
 ::= { snmpTargetAddrTable 1 }

 SnmpTargetAddrEntry ::= SEQUENCE {
 snmpTargetAddrName SnmpAdminString,
 snmpTargetAddrTDomain TDomain,
 snmpTargetAddrTAddress TAddress,
 snmpTargetAddrTimeout TimeInterval,
 snmpTargetAddrRetryCount Integer32,
 snmpTargetAddrTagList SnmpTagList,
 snmpTargetAddrParams SnmpAdminString,
 snmpTargetAddrStorageType StorageType,
 snmpTargetAddrRowStatus RowStatus
 }

 snmpTargetAddrName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))

Levi, et. al. Standards Track [Page 36]

RFC 3413 SNMP Applications December 2002

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpTargetAddrEntry."
 ::= { snmpTargetAddrEntry 1 }

 snmpTargetAddrTDomain OBJECT-TYPE
 SYNTAX TDomain
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates the transport type of the address
 contained in the snmpTargetAddrTAddress object."
 ::= { snmpTargetAddrEntry 2 }

 snmpTargetAddrTAddress OBJECT-TYPE
 SYNTAX TAddress
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a transport address. The format of
 this address depends on the value of the
 snmpTargetAddrTDomain object."
 ::= { snmpTargetAddrEntry 3 }

 snmpTargetAddrTimeout OBJECT-TYPE
 SYNTAX TimeInterval
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object should reflect the expected maximum round
 trip time for communicating with the transport address
 defined by this row. When a message is sent to this
 address, and a response (if one is expected) is not
 received within this time period, an implementation
 may assume that the response will not be delivered.

 Note that the time interval that an application waits
 for a response may actually be derived from the value
 of this object. The method for deriving the actual time
 interval is implementation dependent. One such method
 is to derive the expected round trip time based on a
 particular retransmission algorithm and on the number
 of timeouts which have occurred. The type of message may
 also be considered when deriving expected round trip
 times for retransmissions. For example, if a message is
 being sent with a securityLevel that indicates both

Levi, et. al. Standards Track [Page 37]

RFC 3413 SNMP Applications December 2002

 authentication and privacy, the derived value may be
 increased to compensate for extra processing time spent
 during authentication and encryption processing."
 DEFVAL { 1500 }
 ::= { snmpTargetAddrEntry 4 }

 snmpTargetAddrRetryCount OBJECT-TYPE
 SYNTAX Integer32 (0..255)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object specifies a default number of retries to be
 attempted when a response is not received for a generated
 message. An application may provide its own retry count,
 in which case the value of this object is ignored."
 DEFVAL { 3 }
 ::= { snmpTargetAddrEntry 5 }

 snmpTargetAddrTagList OBJECT-TYPE
 SYNTAX SnmpTagList
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a list of tag values which are
 used to select target addresses for a particular
 operation."
 DEFVAL { "" }
 ::= { snmpTargetAddrEntry 6 }

 snmpTargetAddrParams OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The value of this object identifies an entry in the
 snmpTargetParamsTable. The identified entry
 contains SNMP parameters to be used when generating
 messages to be sent to this transport address."
 ::= { snmpTargetAddrEntry 7 }

 snmpTargetAddrStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."

Levi, et. al. Standards Track [Page 38]

RFC 3413 SNMP Applications December 2002

 DEFVAL { nonVolatile }
 ::= { snmpTargetAddrEntry 8 }

 snmpTargetAddrRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the snmpTargetAddrRowStatus
 column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding instances of
 snmpTargetAddrTDomain, snmpTargetAddrTAddress, and
 snmpTargetAddrParams have all been set.

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpTargetAddrTDomain
 - snmpTargetAddrTAddress
 An attempt to set these objects while the value of
 snmpTargetAddrRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { snmpTargetAddrEntry 9 }

 snmpTargetParamsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpTargetParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of SNMP target information to be used
 in the generation of SNMP messages."
 ::= { snmpTargetObjects 3 }

 snmpTargetParamsEntry OBJECT-TYPE
 SYNTAX SnmpTargetParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A set of SNMP target information.

Levi, et. al. Standards Track [Page 39]

RFC 3413 SNMP Applications December 2002

 Entries in the snmpTargetParamsTable are created and
 deleted using the snmpTargetParamsRowStatus object."
 INDEX { IMPLIED snmpTargetParamsName }
 ::= { snmpTargetParamsTable 1 }

 SnmpTargetParamsEntry ::= SEQUENCE {
 snmpTargetParamsName SnmpAdminString,
 snmpTargetParamsMPModel SnmpMessageProcessingModel,
 snmpTargetParamsSecurityModel SnmpSecurityModel,
 snmpTargetParamsSecurityName SnmpAdminString,
 snmpTargetParamsSecurityLevel SnmpSecurityLevel,
 snmpTargetParamsStorageType StorageType,
 snmpTargetParamsRowStatus RowStatus
 }

 snmpTargetParamsName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpTargetParamsEntry."
 ::= { snmpTargetParamsEntry 1 }

 snmpTargetParamsMPModel OBJECT-TYPE
 SYNTAX SnmpMessageProcessingModel
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Message Processing Model to be used when generating
 SNMP messages using this entry."
 ::= { snmpTargetParamsEntry 2 }

 snmpTargetParamsSecurityModel OBJECT-TYPE
 SYNTAX SnmpSecurityModel (1..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Security Model to be used when generating SNMP
 messages using this entry. An implementation may
 choose to return an inconsistentValue error if an
 attempt is made to set this variable to a value
 for a security model which the implementation does
 not support."
 ::= { snmpTargetParamsEntry 3 }

 snmpTargetParamsSecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString

Levi, et. al. Standards Track [Page 40]

RFC 3413 SNMP Applications December 2002

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The securityName which identifies the Principal on
 whose behalf SNMP messages will be generated using
 this entry."
 ::= { snmpTargetParamsEntry 4 }

 snmpTargetParamsSecurityLevel OBJECT-TYPE
 SYNTAX SnmpSecurityLevel
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The Level of Security to be used when generating
 SNMP messages using this entry."
 ::= { snmpTargetParamsEntry 5 }

 snmpTargetParamsStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpTargetParamsEntry 6 }

 snmpTargetParamsRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the snmpTargetParamsRowStatus
 column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding
 snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel,

Levi, et. al. Standards Track [Page 41]

RFC 3413 SNMP Applications December 2002

 snmpTargetParamsSecurityName,
 and snmpTargetParamsSecurityLevel have all been set.

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpTargetParamsMPModel
 - snmpTargetParamsSecurityModel
 - snmpTargetParamsSecurityName
 - snmpTargetParamsSecurityLevel
 An attempt to set these objects while the value of
 snmpTargetParamsRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { snmpTargetParamsEntry 7 }

 snmpUnavailableContexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of packets received by the SNMP
 engine which were dropped because the context
 contained in the message was unavailable."
 ::= { snmpTargetObjects 4 }

 snmpUnknownContexts OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of packets received by the SNMP
 engine which were dropped because the context
 contained in the message was unknown."
 ::= { snmpTargetObjects 5 }

 --
 --
 -- Conformance information
 --
 --

 snmpTargetCompliances OBJECT IDENTIFIER ::=
 { snmpTargetConformance 1 }
 snmpTargetGroups OBJECT IDENTIFIER ::=
 { snmpTargetConformance 2 }

 --
 --
 -- Compliance statements

Levi, et. al. Standards Track [Page 42]

RFC 3413 SNMP Applications December 2002

 --
 --

 snmpTargetCommandResponderCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which include
 a command responder application."
 MODULE -- This Module
 MANDATORY-GROUPS { snmpTargetCommandResponderGroup }
 ::= { snmpTargetCompliances 1 }

 snmpTargetBasicGroup OBJECT-GROUP
 OBJECTS {
 snmpTargetSpinLock,
 snmpTargetAddrTDomain,
 snmpTargetAddrTAddress,
 snmpTargetAddrTagList,
 snmpTargetAddrParams,
 snmpTargetAddrStorageType,
 snmpTargetAddrRowStatus,
 snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName,
 snmpTargetParamsSecurityLevel,
 snmpTargetParamsStorageType,
 snmpTargetParamsRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing basic remote
 configuration of management targets."
 ::= { snmpTargetGroups 1 }

 snmpTargetResponseGroup OBJECT-GROUP
 OBJECTS {
 snmpTargetAddrTimeout,
 snmpTargetAddrRetryCount
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration
 of management targets for applications which generate
 SNMP messages for which a response message would be
 expected."
 ::= { snmpTargetGroups 2 }

 snmpTargetCommandResponderGroup OBJECT-GROUP

Levi, et. al. Standards Track [Page 43]

RFC 3413 SNMP Applications December 2002

 OBJECTS {
 snmpUnavailableContexts,
 snmpUnknownContexts
 }
 STATUS current
 DESCRIPTION
 "A collection of objects required for command responder
 applications, used for counting error conditions."
 ::= { snmpTargetGroups 3 }

 END

4.2. The Notification MIB Module

 The SNMP-NOTIFICATION-MIB module contains objects for the remote
 configuration of the parameters used by an SNMP entity for the
 generation of notifications. It consists of three tables and
 conformance/compliance statements. The first table, the
 snmpNotifyTable, contains entries which select which entries in the
 snmpTargetAddrTable should be used for generating notifications, and
 the type of notifications to be generated.

 The second table, the snmpNotifyFilterProfileTable, sparsely augments
 the snmpTargetParamsTable with an object which is used to associate a
 set of filters with a particular management target.

 The third table, the snmpNotifyFilterTable, defines filters which are
 used to limit the number of notifications which are generated using
 particular management targets.

4.2.1. Definitions

 SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules
 FROM SNMPv2-SMI

 RowStatus,
 StorageType
 FROM SNMPv2-TC

 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 SnmpTagValue,

Levi, et. al. Standards Track [Page 44]

RFC 3413 SNMP Applications December 2002

 snmpTargetParamsName
 FROM SNMP-TARGET-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpNotificationMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road
 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"

Levi, et. al. Standards Track [Page 45]

RFC 3413 SNMP Applications December 2002

 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters
 used by an SNMP entity for the generation of
 notifications.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Clarifications, published as
 RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 13 }

 snmpNotifyObjects OBJECT IDENTIFIER ::=
 { snmpNotificationMIB 1 }
 snmpNotifyConformance OBJECT IDENTIFIER ::=
 { snmpNotificationMIB 3 }

 --
 --
 -- The snmpNotifyObjects group
 --
 --

 snmpNotifyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table is used to select management targets which should
 receive notifications, as well as the type of notification
 which should be sent to each selected management target."
 ::= { snmpNotifyObjects 1 }

 snmpNotifyEntry OBJECT-TYPE
 SYNTAX SnmpNotifyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table selects a set of management targets
 which should receive notifications, as well as the type of

Levi, et. al. Standards Track [Page 46]

RFC 3413 SNMP Applications December 2002

 notification which should be sent to each selected
 management target.

 Entries in the snmpNotifyTable are created and
 deleted using the snmpNotifyRowStatus object."
 INDEX { IMPLIED snmpNotifyName }
 ::= { snmpNotifyTable 1 }

 SnmpNotifyEntry ::= SEQUENCE {
 snmpNotifyName SnmpAdminString,
 snmpNotifyTag SnmpTagValue,
 snmpNotifyType INTEGER,
 snmpNotifyStorageType StorageType,
 snmpNotifyRowStatus RowStatus
 }

 snmpNotifyName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpNotifyEntry."
 ::= { snmpNotifyEntry 1 }

 snmpNotifyTag OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object contains a single tag value which is used
 to select entries in the snmpTargetAddrTable. Any entry
 in the snmpTargetAddrTable which contains a tag value
 which is equal to the value of an instance of this
 object is selected. If this object contains a value
 of zero length, no entries are selected."
 DEFVAL { "" }
 ::= { snmpNotifyEntry 2 }

 snmpNotifyType OBJECT-TYPE
 SYNTAX INTEGER {
 trap(1),
 inform(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object determines the type of notification to

Levi, et. al. Standards Track [Page 47]

RFC 3413 SNMP Applications December 2002

 be generated for entries in the snmpTargetAddrTable
 selected by the corresponding instance of
 snmpNotifyTag. This value is only used when
 generating notifications, and is ignored when
 using the snmpTargetAddrTable for other purposes.

 If the value of this object is trap(1), then any
 messages generated for selected rows will contain
 Unconfirmed-Class PDUs.

 If the value of this object is inform(2), then any
 messages generated for selected rows will contain
 Confirmed-Class PDUs.

 Note that if an SNMP entity only supports
 generation of Unconfirmed-Class PDUs (and not
 Confirmed-Class PDUs), then this object may be
 read-only."
 DEFVAL { trap }
 ::= { snmpNotifyEntry 3 }

 snmpNotifyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyEntry 4 }

 snmpNotifyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5)."
 ::= { snmpNotifyEntry 5 }

 snmpNotifyFilterProfileTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyFilterProfileEntry
 MAX-ACCESS not-accessible
 STATUS current

Levi, et. al. Standards Track [Page 48]

RFC 3413 SNMP Applications December 2002

 DESCRIPTION
 "This table is used to associate a notification filter
 profile with a particular set of target parameters."
 ::= { snmpNotifyObjects 2 }

 snmpNotifyFilterProfileEntry OBJECT-TYPE
 SYNTAX SnmpNotifyFilterProfileEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table indicates the name of the filter
 profile to be used when generating notifications using
 the corresponding entry in the snmpTargetParamsTable.

 Entries in the snmpNotifyFilterProfileTable are created
 and deleted using the snmpNotifyFilterProfileRowStatus
 object."
 INDEX { IMPLIED snmpTargetParamsName }
 ::= { snmpNotifyFilterProfileTable 1 }

 SnmpNotifyFilterProfileEntry ::= SEQUENCE {
 snmpNotifyFilterProfileName SnmpAdminString,
 snmpNotifyFilterProfileStorType StorageType,
 snmpNotifyFilterProfileRowStatus RowStatus
 }

 snmpNotifyFilterProfileName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The name of the filter profile to be used when generating
 notifications using the corresponding entry in the
 snmpTargetAddrTable."
 ::= { snmpNotifyFilterProfileEntry 1 }

 snmpNotifyFilterProfileStorType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyFilterProfileEntry 2 }

 snmpNotifyFilterProfileRowStatus OBJECT-TYPE

Levi, et. al. Standards Track [Page 49]

RFC 3413 SNMP Applications December 2002

 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the
 snmpNotifyFilterProfileRowStatus column is ’notReady’.

 In particular, a newly created row cannot be made
 active until the corresponding instance of
 snmpNotifyFilterProfileName has been set."
 ::= { snmpNotifyFilterProfileEntry 3 }

 snmpNotifyFilterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpNotifyFilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of filter profiles. Filter profiles are used
 to determine whether particular management targets should
 receive particular notifications.

 When a notification is generated, it must be compared
 with the filters associated with each management target
 which is configured to receive notifications, in order to
 determine whether it may be sent to each such management
 target.

 A more complete discussion of notification filtering
 can be found in section 6. of [SNMP-APPL]."
 ::= { snmpNotifyObjects 3 }

 snmpNotifyFilterEntry OBJECT-TYPE
 SYNTAX SnmpNotifyFilterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An element of a filter profile.

 Entries in the snmpNotifyFilterTable are created and
 deleted using the snmpNotifyFilterRowStatus object."

Levi, et. al. Standards Track [Page 50]

RFC 3413 SNMP Applications December 2002

 INDEX { snmpNotifyFilterProfileName,
 IMPLIED snmpNotifyFilterSubtree }
 ::= { snmpNotifyFilterTable 1 }

 SnmpNotifyFilterEntry ::= SEQUENCE {
 snmpNotifyFilterSubtree OBJECT IDENTIFIER,
 snmpNotifyFilterMask OCTET STRING,
 snmpNotifyFilterType INTEGER,
 snmpNotifyFilterStorageType StorageType,
 snmpNotifyFilterRowStatus RowStatus
 }

 snmpNotifyFilterSubtree OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The MIB subtree which, when combined with the corresponding
 instance of snmpNotifyFilterMask, defines a family of
 subtrees which are included in or excluded from the
 filter profile."
 ::= { snmpNotifyFilterEntry 1 }

 snmpNotifyFilterMask OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..16))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The bit mask which, in combination with the corresponding
 instance of snmpNotifyFilterSubtree, defines a family of
 subtrees which are included in or excluded from the
 filter profile.

 Each bit of this bit mask corresponds to a
 sub-identifier of snmpNotifyFilterSubtree, with the
 most significant bit of the i-th octet of this octet
 string value (extended if necessary, see below)
 corresponding to the (8*i - 7)-th sub-identifier, and
 the least significant bit of the i-th octet of this
 octet string corresponding to the (8*i)-th
 sub-identifier, where i is in the range 1 through 16.

 Each bit of this bit mask specifies whether or not
 the corresponding sub-identifiers must match when
 determining if an OBJECT IDENTIFIER matches this
 family of filter subtrees; a ’1’ indicates that an
 exact match must occur; a ’0’ indicates ’wild card’,
 i.e., any sub-identifier value matches.

Levi, et. al. Standards Track [Page 51]

RFC 3413 SNMP Applications December 2002

 Thus, the OBJECT IDENTIFIER X of an object instance
 is contained in a family of filter subtrees if, for
 each sub-identifier of the value of
 snmpNotifyFilterSubtree, either:

 the i-th bit of snmpNotifyFilterMask is 0, or

 the i-th sub-identifier of X is equal to the i-th
 sub-identifier of the value of
 snmpNotifyFilterSubtree.

 If the value of this bit mask is M bits long and
 there are more than M sub-identifiers in the
 corresponding instance of snmpNotifyFilterSubtree,
 then the bit mask is extended with 1’s to be the
 required length.

 Note that when the value of this object is the
 zero-length string, this extension rule results in
 a mask of all-1’s being used (i.e., no ’wild card’),
 and the family of filter subtrees is the one
 subtree uniquely identified by the corresponding
 instance of snmpNotifyFilterSubtree."
 DEFVAL { ’’H }
 ::= { snmpNotifyFilterEntry 2 }

 snmpNotifyFilterType OBJECT-TYPE
 SYNTAX INTEGER {
 included(1),
 excluded(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates whether the family of filter subtrees
 defined by this entry are included in or excluded from a
 filter. A more detailed discussion of the use of this
 object can be found in section 6. of [SNMP-APPL]."
 DEFVAL { included }
 ::= { snmpNotifyFilterEntry 3 }

 snmpNotifyFilterStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row.
 Conceptual rows having the value ’permanent’ need not

Levi, et. al. Standards Track [Page 52]

RFC 3413 SNMP Applications December 2002

 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpNotifyFilterEntry 4 }

 snmpNotifyFilterRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5)."
 ::= { snmpNotifyFilterEntry 5 }

 --
 --
 -- Conformance information
 --
 --

 snmpNotifyCompliances OBJECT IDENTIFIER ::=
 { snmpNotifyConformance 1 }
 snmpNotifyGroups OBJECT IDENTIFIER ::=
 { snmpNotifyConformance 2 }

 --
 --
 -- Compliance statements
 --
 --

 snmpNotifyBasicCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for minimal SNMP entities which
 implement only SNMP Unconfirmed-Class notifications and
 read-create operations on only the snmpTargetAddrTable."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup }

 OBJECT snmpTargetParamsMPModel
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityModel

Levi, et. al. Standards Track [Page 53]

RFC 3413 SNMP Applications December 2002

 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityName
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsSecurityLevel
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpTargetParamsStorageType
 SYNTAX INTEGER {
 readOnly(5)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the values other(1), volatile(2),
 nonVolatile(3), and permanent(4) is not required."

 OBJECT snmpTargetParamsRowStatus
 SYNTAX INTEGER {
 active(1)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access to the
 snmpTargetParamsTable is not required.
 Support of the values notInService(2), notReady(3),
 createAndGo(4), createAndWait(5), and destroy(6) is
 not required."

 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup }

 OBJECT snmpNotifyTag
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required."

 OBJECT snmpNotifyType
 SYNTAX INTEGER {
 trap(1)
 }

Levi, et. al. Standards Track [Page 54]

RFC 3413 SNMP Applications December 2002

 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the value notify(2) is not required."

 OBJECT snmpNotifyStorageType
 SYNTAX INTEGER {
 readOnly(5)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access is not required.
 Support of the values other(1), volatile(2),
 nonVolatile(3), and permanent(4) is not required."

 OBJECT snmpNotifyRowStatus
 SYNTAX INTEGER {
 active(1)
 }
 MIN-ACCESS read-only
 DESCRIPTION
 "Create/delete/modify access to the
 snmpNotifyTable is not required.
 Support of the values notInService(2), notReady(3),
 createAndGo(4), createAndWait(5), and destroy(6) is
 not required."

 ::= { snmpNotifyCompliances 1 }

 snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which implement
 SNMP Unconfirmed-Class notifications with filtering, and
 read-create operations on all related tables."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup,
 snmpNotifyFilterGroup }
 ::= { snmpNotifyCompliances 2 }

 snmpNotifyFullCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which either
 implement only SNMP Confirmed-Class notifications, or both
 SNMP Unconfirmed-Class and Confirmed-Class notifications,

Levi, et. al. Standards Track [Page 55]

RFC 3413 SNMP Applications December 2002

 plus filtering and read-create operations on all related
 tables."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup,
 snmpTargetResponseGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpNotifyGroup,
 snmpNotifyFilterGroup }
 ::= { snmpNotifyCompliances 3 }

 snmpNotifyGroup OBJECT-GROUP
 OBJECTS {
 snmpNotifyTag,
 snmpNotifyType,
 snmpNotifyStorageType,
 snmpNotifyRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for selecting which management
 targets are used for generating notifications, and the
 type of notification to be generated for each selected
 management target."
 ::= { snmpNotifyGroups 1 }

 snmpNotifyFilterGroup OBJECT-GROUP
 OBJECTS {
 snmpNotifyFilterProfileName,
 snmpNotifyFilterProfileStorType,
 snmpNotifyFilterProfileRowStatus,
 snmpNotifyFilterMask,
 snmpNotifyFilterType,
 snmpNotifyFilterStorageType,
 snmpNotifyFilterRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration
 of notification filters."
 ::= { snmpNotifyGroups 2 }

 END

Levi, et. al. Standards Track [Page 56]

RFC 3413 SNMP Applications December 2002

4.3. The Proxy MIB Module

 The SNMP-PROXY-MIB module, which defines MIB objects that provide
 mechanisms to remotely configure the parameters used by an SNMP
 entity for proxy forwarding operations, contains a single table.
 This table, snmpProxyTable, is used to define translations between
 management targets for use when forwarding messages.

4.3.1. Definitions

 SNMP-PROXY-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 snmpModules
 FROM SNMPv2-SMI

 RowStatus,
 StorageType
 FROM SNMPv2-TC

 SnmpEngineID,
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB

 SnmpTagValue
 FROM SNMP-TARGET-MIB

 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpProxyMIB MODULE-IDENTITY
 LAST-UPDATED "200210140000Z"
 ORGANIZATION "IETF SNMPv3 Working Group"
 CONTACT-INFO
 "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In message body: subscribe snmpv3

 Co-Chair: Russ Mundy
 Network Associates Laboratories
 Postal: 15204 Omega Drive, Suite 300
 Rockville, MD 20850-4601
 USA
 EMail: mundy@tislabs.com
 Phone: +1 301-947-7107

Levi, et. al. Standards Track [Page 57]

RFC 3413 SNMP Applications December 2002

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5004
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 EMail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Paul Meyer
 Secure Computing Corporation
 Postal: 2675 Long Lake Road
 Roseville, Minnesota 55113
 EMail: paul_meyer@securecomputing.com
 Phone: +1 651 628 1592

 Co-editor: Bob Stewart
 Retired"
 DESCRIPTION
 "This MIB module defines MIB objects which provide
 mechanisms to remotely configure the parameters
 used by a proxy forwarding application.

 Copyright (C) The Internet Society (2002). This
 version of this MIB module is part of RFC 3413;
 see the RFC itself for full legal notices.
 "
 REVISION "200210140000Z" -- 14 October 2002
 DESCRIPTION "Clarifications, published as
 RFC 3413."
 REVISION "199808040000Z" -- 4 August 1998
 DESCRIPTION "Clarifications, published as
 RFC 2573."
 REVISION "199707140000Z" -- 14 July 1997
 DESCRIPTION "The initial revision, published as RFC2273."
 ::= { snmpModules 14 }

 snmpProxyObjects OBJECT IDENTIFIER ::= { snmpProxyMIB 1 }
 snmpProxyConformance OBJECT IDENTIFIER ::= { snmpProxyMIB 3 }

 --

Levi, et. al. Standards Track [Page 58]

RFC 3413 SNMP Applications December 2002

 --
 -- The snmpProxyObjects group
 --
 --

 snmpProxyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpProxyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of translation parameters used by proxy forwarder
 applications for forwarding SNMP messages."
 ::= { snmpProxyObjects 2 }

 snmpProxyEntry OBJECT-TYPE
 SYNTAX SnmpProxyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A set of translation parameters used by a proxy forwarder
 application for forwarding SNMP messages.

 Entries in the snmpProxyTable are created and deleted
 using the snmpProxyRowStatus object."
 INDEX { IMPLIED snmpProxyName }
 ::= { snmpProxyTable 1 }

 SnmpProxyEntry ::= SEQUENCE {
 snmpProxyName SnmpAdminString,
 snmpProxyType INTEGER,
 snmpProxyContextEngineID SnmpEngineID,
 snmpProxyContextName SnmpAdminString,
 snmpProxyTargetParamsIn SnmpAdminString,
 snmpProxySingleTargetOut SnmpAdminString,
 snmpProxyMultipleTargetOut SnmpTagValue,
 snmpProxyStorageType StorageType,
 snmpProxyRowStatus RowStatus
 }

 snmpProxyName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally arbitrary, but unique identifier associated
 with this snmpProxyEntry."
 ::= { snmpProxyEntry 1 }

Levi, et. al. Standards Track [Page 59]

RFC 3413 SNMP Applications December 2002

 snmpProxyType OBJECT-TYPE
 SYNTAX INTEGER {
 read(1),
 write(2),
 trap(3),
 inform(4)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The type of message that may be forwarded using
 the translation parameters defined by this entry."
 ::= { snmpProxyEntry 2 }

 snmpProxyContextEngineID OBJECT-TYPE
 SYNTAX SnmpEngineID
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The contextEngineID contained in messages that
 may be forwarded using the translation parameters
 defined by this entry."
 ::= { snmpProxyEntry 3 }

 snmpProxyContextName OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The contextName contained in messages that may be
 forwarded using the translation parameters defined
 by this entry.

 This object is optional, and if not supported, the
 contextName contained in a message is ignored when
 selecting an entry in the snmpProxyTable."
 ::= { snmpProxyEntry 4 }

 snmpProxyTargetParamsIn OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects an entry in the snmpTargetParamsTable.
 The selected entry is used to determine which row of the
 snmpProxyTable to use for forwarding received messages."
 ::= { snmpProxyEntry 5 }

Levi, et. al. Standards Track [Page 60]

RFC 3413 SNMP Applications December 2002

 snmpProxySingleTargetOut OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects a management target defined in the
 snmpTargetAddrTable (in the SNMP-TARGET-MIB). The
 selected target is defined by an entry in the
 snmpTargetAddrTable whose index value (snmpTargetAddrName)
 is equal to this object.

 This object is only used when selection of a single
 target is required (i.e. when forwarding an incoming
 read or write request)."
 ::= { snmpProxyEntry 6 }

 snmpProxyMultipleTargetOut OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object selects a set of management targets defined
 in the snmpTargetAddrTable (in the SNMP-TARGET-MIB).

 This object is only used when selection of multiple
 targets is required (i.e. when forwarding an incoming
 notification)."
 ::= { snmpProxyEntry 7 }

 snmpProxyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type of this conceptual row.
 Conceptual rows having the value ’permanent’ need not
 allow write-access to any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { snmpProxyEntry 8 }

 snmpProxyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row.

 To create a row in this table, a manager must

Levi, et. al. Standards Track [Page 61]

RFC 3413 SNMP Applications December 2002

 set this object to either createAndGo(4) or
 createAndWait(5).

 The following objects may not be modified while the
 value of this object is active(1):
 - snmpProxyType
 - snmpProxyContextEngineID
 - snmpProxyContextName
 - snmpProxyTargetParamsIn
 - snmpProxySingleTargetOut
 - snmpProxyMultipleTargetOut"
 ::= { snmpProxyEntry 9 }

 --
 --
 -- Conformance information
 --
 --

 snmpProxyCompliances OBJECT IDENTIFIER ::=
 { snmpProxyConformance 1 }
 snmpProxyGroups OBJECT IDENTIFIER ::=
 { snmpProxyConformance 2 }

 --
 --
 -- Compliance statements
 --
 --

 snmpProxyCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP entities which include
 a proxy forwarding application."
 MODULE SNMP-TARGET-MIB
 MANDATORY-GROUPS { snmpTargetBasicGroup,
 snmpTargetResponseGroup }
 MODULE -- This Module
 MANDATORY-GROUPS { snmpProxyGroup }
 ::= { snmpProxyCompliances 1 }

 snmpProxyGroup OBJECT-GROUP
 OBJECTS {
 snmpProxyType,
 snmpProxyContextEngineID,
 snmpProxyContextName,
 snmpProxyTargetParamsIn,

Levi, et. al. Standards Track [Page 62]

RFC 3413 SNMP Applications December 2002

 snmpProxySingleTargetOut,
 snmpProxyMultipleTargetOut,
 snmpProxyStorageType,
 snmpProxyRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing remote configuration of
 management target translation parameters for use by
 proxy forwarder applications."
 ::= { snmpProxyGroups 3 }

 END

5. Identification of Management Targets in Notification Originators

 This section describes the mechanisms used by a notification
 originator application when using the MIB module described in this
 document to determine the set of management targets to be used when
 generating a notification.

 A notification originator uses all active entries in the
 snmpNotifyTable to find the management targets to be used for
 generating notifications. Each active entry in this table selects
 zero or more entries in the snmpTargetAddrTable. When a notification
 is generated, it is sent to all of the targets specified by the
 selected snmpTargetAddrTable entries (subject to the application of
 access control and notification filtering).

 Any entry in the snmpTargetAddrTable whose snmpTargetAddrTagList
 object contains a tag value which is equal to a value of
 snmpNotifyTag is selected by the snmpNotifyEntry which contains that
 instance of snmpNotifyTag. Note that a particular
 snmpTargetAddrEntry may be selected by multiple entries in the
 snmpNotifyTable, resulting in multiple notifications being generated
 using that snmpTargetAddrEntry (this allows, for example, both traps
 and informs to be sent to the same target).

 Each snmpTargetAddrEntry contains a pointer to the
 snmpTargetParamsTable (snmpTargetAddrParams). This pointer selects a
 set of SNMP parameters to be used for generating notifications. If
 the selected entry in the snmpTargetParamsTable does not exist, the
 management target is not used to generate notifications.

 The decision as to whether a notification should contain an
 Unconfirmed-Class or a Confirmed-Class PDU is determined by the value
 of the snmpNotifyType object. If the value of this object is
 trap(1), the notification should contain an Unconfirmed-Class PDU.

Levi, et. al. Standards Track [Page 63]

RFC 3413 SNMP Applications December 2002

 If the value of this object is inform(2), then the notification
 should contain a Confirmed-Class PDU, and the timeout time and number
 of retries for the notification are the value of
 snmpTargetAddrTimeout and snmpTargetAddrRetryCount. Note that the
 exception to these rules is when the snmpTargetParamsMPModel object
 indicates an SNMP version which supports a different PDU version. In
 this case, the notification may be sent using a different PDU type
 ([RFC2576] defines the PDU type in the case where the outgoing SNMP
 version is SNMPv1).

6. Notification Filtering

 This section describes the mechanisms used by a notification
 originator application when using the MIB module described in this
 document to filter generation of notifications.

 A notification originator uses the snmpNotifyFilterTable to filter
 notifications. A notification filter profile may be associated with
 a particular entry in the snmpTargetParamsTable. The associated
 filter profile is identified by an entry in the
 snmpNotifyFilterProfileTable whose index is equal to the index of the
 entry in the snmpTargetParamsTable. If no such entry exists in the
 snmpNotifyFilterProfileTable, no filtering is performed for that
 management target.

 If such an entry does exist, the value of snmpNotifyFilterProfileName
 of the entry is compared with the corresponding portion of the index
 of all active entries in the snmpNotifyFilterTable. All such entries
 for which this comparison results in an exact match are used for
 filtering a notification generated using the associated
 snmpTargetParamsEntry. If no such entries exist, no filtering is
 performed, and a notification may be sent to the management target.

 Otherwise, if matching entries do exist, a notification may be sent
 if the NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
 is the value of the element of the variable bindings whose name is
 snmpTrapOID.0, i.e., the second variable binding) is specifically
 included, and none of the object instances to be included in the
 variable-bindings of the notification are specifically excluded by
 the matching entries.

 Each set of snmpNotifyFilterTable entries is divided into two
 collections of filter subtrees: the included filter subtrees, and
 the excluded filter subtrees. The snmpNotifyFilterType object
 defines the collection to which each matching entry belongs.

 To determine whether a particular notification name or object
 instance is excluded by the set of matching entries, compare the

Levi, et. al. Standards Track [Page 64]

RFC 3413 SNMP Applications December 2002

 notification name’s or object instance’s OBJECT IDENTIFIER with each
 of the matching entries. For a notification name, if none match,
 then the notification name is considered excluded, and the
 notification should not be sent to this management target. For an
 object instance, if none match, the object instance is considered
 included, and the notification may be sent to this management target.
 If one or more match, then the notification name or object instance
 is included or excluded, according to the value of
 snmpNotifyFilterType in the entry whose value of
 snmpNotifyFilterSubtree has the most sub-identifiers. If multiple
 entries match and have the same number of sub-identifiers, then the
 value of snmpNotifyFilterType, in the entry among those which match,
 and whose instance is lexicographically the largest, determines the
 inclusion or exclusion.

 A notification name or object instance’s OBJECT IDENTIFIER X matches
 an entry in the snmpNotifyFilterTable when the number of sub-
 identifiers in X is at least as many as in the value of
 snmpNotifyFilterSubtree for the entry, and each sub-identifier in the
 value of snmpNotifyFilterSubtree matches its corresponding sub-
 identifier in X. Two sub-identifiers match either if the
 corresponding bit of snmpNotifyFilterMask is zero (the ’wild card’
 value), or if the two sub-identifiers are equal.

7. Management Target Translation in Proxy Forwarder Applications

 This section describes the mechanisms used by a proxy forwarder
 application when using the MIB module described in this document to
 translate incoming management target information into outgoing
 management target information for the purpose of forwarding messages.
 There are actually two mechanisms a proxy forwarder may use, one for
 forwarding request messages, and one for forwarding notification
 messages.

7.1. Management Target Translation for Request Forwarding

 When forwarding request messages, the proxy forwarder will select a
 single entry in the snmpProxyTable. To select this entry, it will
 perform the following comparisons:

 - The snmpProxyType must be read(1) if the request is a Read-Class
 PDU. The snmpProxyType must be write(2) if the request is a
 Write-Class PDU.

 - The contextEngineID must equal the snmpProxyContextEngineID object.

 - If the snmpProxyContextName object is supported, it must equal the
 contextName.

Levi, et. al. Standards Track [Page 65]

RFC 3413 SNMP Applications December 2002

 - The snmpProxyTargetParamsIn object identifies an entry in the
 snmpTargetParamsTable. The messageProcessingModel, security model,
 securityName, and securityLevel must match the values of
 snmpTargetParamsMPModel, snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel of
 the identified entry in the snmpTargetParamsTable.

 There may be multiple entries in the snmpProxyTable for which these
 comparisons succeed. The entry whose snmpProxyName has the
 lexicographically smallest value and for which the comparisons
 succeed will be selected by the proxy forwarder.

 The outgoing management target information is identified by the value
 of the snmpProxySingleTargetOut object of the selected entry. This
 object identifies an entry in the snmpTargetAddrTable. The
 identified entry in the snmpTargetAddrTable also contains a reference
 to the snmpTargetParamsTable (snmpTargetAddrParams). If either the
 identified entry in the snmpTargetAddrTable does not exist, or the
 identified entry in the snmpTargetParamsTable does not exist, then
 this snmpProxyEntry does not identify valid forwarding information,
 and the proxy forwarder should attempt to identify another row.

 If there is no entry in the snmpProxyTable for which all of the
 conditions above may be met, then there is no appropriate forwarding
 information, and the proxy forwarder should take appropriate actions.

 Otherwise, The snmpTargetAddrTDomain, snmpTargetAddrTAddress,
 snmpTargetAddrTimeout, and snmpTargetRetryCount of the identified
 snmpTargetAddrEntry, and the snmpTargetParamsMPModel,
 snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
 snmpTargetParamsSecurityLevel of the identified snmpTargetParamsEntry
 are used as the destination management target.

7.2. Management Target Translation for Notification Forwarding

 When forwarding notification messages, the proxy forwarder will
 select multiple entries in the snmpProxyTable. To select these
 entries, it will perform the following comparisons:

 - The snmpProxyType must be trap(3) if the notification is an
 Unconfirmed-Class PDU. The snmpProxyType must be inform(4) if the
 request is a Confirmed-Class PDU.

 - The contextEngineID must equal the snmpProxyContextEngineID object.

 - If the snmpProxyContextName object is supported, it must equal the
 contextName.

Levi, et. al. Standards Track [Page 66]

RFC 3413 SNMP Applications December 2002

 - The snmpProxyTargetParamsIn object identifies an entry in the
 snmpTargetParamsTable. The messageProcessingModel, security model,
 securityName, and securityLevel must match the values of
 snmpTargetParamsMPModel, snmpTargetParamsSecurityModel,
 snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel of
 the identified entry in the snmpTargetParamsTable.

 All entries for which these conditions are met are selected. The
 snmpProxyMultipleTargetOut object of each such entry is used to
 select a set of entries in the snmpTargetAddrTable. Any
 snmpTargetAddrEntry whose snmpTargetAddrTagList object contains a tag
 value equal to the value of snmpProxyMultipleTargetOut, and whose
 snmpTargetAddrParams object references an existing entry in the
 snmpTargetParamsTable, is selected as a destination for the forwarded
 notification.

8. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

9. Acknowledgments

 This document is the result of the efforts of the SNMPv3 Working
 Group. Some special thanks are in order to the following SNMPv3 WG
 members:

 Harald Tveit Alvestrand (Maxware)
 Dave Battle (SNMP Research, Inc.)
 Alan Beard (Disney Worldwide Services)
 Paul Berrevoets (SWI Systemware/Halcyon Inc.)

Levi, et. al. Standards Track [Page 67]

RFC 3413 SNMP Applications December 2002

 Martin Bjorklund (Ericsson)
 Uri Blumenthal (IBM T.J. Watson Research Center)
 Jeff Case (SNMP Research, Inc.)
 John Curran (BBN)
 Mike Daniele (Compaq Computer Corporation)
 T. Max Devlin (Eltrax Systems)
 John Flick (Hewlett Packard)
 Rob Frye (MCI)
 Wes Hardaker (U.C.Davis, Information Technology - D.C.A.S.)
 David Harrington (Enterasys Networks)
 Lauren Heintz (BMC Software, Inc.)
 N.C. Hien (IBM T.J. Watson Research Center)
 Michael Kirkham (InterWorking Labs, Inc.)
 Dave Levi (Nortel Networks)
 Louis A Mamakos (UUNET Technologies Inc.)
 Joe Marzot (Nortel Networks)
 Paul Meyer (Secure Computing Corporation)
 Keith McCloghrie (Cisco Systems)
 Bob Moore (IBM)
 Russ Mundy (TIS Labs at Network Associates)
 Bob Natale (ACE*COMM Corporation)
 Mike O’Dell (UUNET Technologies Inc.)
 Dave Perkins (DeskTalk)
 Peter Polkinghorne (Brunel University)
 Randy Presuhn (BMC Software, Inc.)
 David Reeder (TIS Labs at Network Associates)
 David Reid (SNMP Research, Inc.)
 Aleksey Romanov (Quality Quorum)
 Shawn Routhier (Epilogue)
 Juergen Schoenwaelder (TU Braunschweig)
 Bob Stewart (Cisco Systems)
 Mike Thatcher (Independent Consultant)
 Bert Wijnen (Lucent Technologies)

 The document is based on recommendations of the IETF Security and
 Administrative Framework Evolution for SNMP Advisory Team. Members of
 that Advisory Team were:

 David Harrington (Enterasys Networks)
 Jeff Johnson (Cisco Systems)
 David Levi (Nortel Networks)
 John Linn (Openvision)
 Russ Mundy (Trusted Information Systems) chair
 Shawn Routhier (Epilogue)
 Glenn Waters (Nortel)
 Bert Wijnen (Lucent Technologies)

Levi, et. al. Standards Track [Page 68]

RFC 3413 SNMP Applications December 2002

 As recommended by the Advisory Team and the SNMPv3 Working Group
 Charter, the design incorporates as much as practical from previous
 RFCs and drafts. As a result, special thanks are due to the authors
 of previous designs known as SNMPv2u and SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Enterasys Networks)
 David Levi (Nortel Networks)
 Keith McCloghrie (Cisco Systems)
 Brian O’Keefe (Hewlett Packard)
 Marshall T. Rose (Dover Beach Consulting)
 Jon Saperia (BGS Systems Inc.)
 Steve Waldbusser (International Network Services)
 Glenn W. Waters (Bell-Northern Research Ltd.)

10. Security Considerations

 The SNMP applications described in this document typically have
 direct access to MIB instrumentation. Thus, it is very important
 that these applications be strict in their application of access
 control as described in this document.

 In addition, there may be some types of notification generator
 applications which, rather than accessing MIB instrumentation using
 access control, will obtain MIB information through other means (such
 as from a command line). The implementors and users of such
 applications must be responsible for not divulging MIB information
 that normally would be inaccessible due to access control.

 Finally, the MIBs described in this document contain potentially
 sensitive information. A security administrator may wish to limit
 access to these MIBs.

11. References

11.1 Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Structure of Management
 Information Version 2 (SMIv2)", STD 58, RFC 2578, April
 1999.

 [RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Textual Conventions for
 SMIv2", STD 58, RFC 2579, April 1999.

Levi, et. al. Standards Track [Page 69]

RFC 3413 SNMP Applications December 2002

 [RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
 Rose, M. and S. Waldbusser, "Conformance Statements for
 SMIv2", STD 58, RFC 2580, April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

 [RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Protocol Operations for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3416, December
 2002.

 [RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
 Waldbusser, "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC
 3418, December 2002.

11.2 Informative References

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin,
 "Simple Network Management Protocol", STD 15, RFC 1157,
 May 1990.

 [RFC1213] McCloghrie, K. and M. Rose, Editors, "Management
 Information Base for Network Management of TCP/IP-based
 internets: MIB-II", STD 17, RFC 1213, March 1991.

 [RFC2576] Frye, R.,Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",
 RFC 2576, February 1999.

Levi, et. al. Standards Track [Page 70]

RFC 3413 SNMP Applications December 2002

Appendix A - Trap Configuration Example

 This section describes an example configuration for a Notification
 Generator application which implements the snmpNotifyBasicCompliance
 level. The example configuration specifies that the Notification
 Generator should send notifications to 3 separate managers, using
 authentication and no privacy for the first 2 managers, and using
 both authentication and privacy for the third manager.

 The configuration consists of three rows in the snmpTargetAddrTable,
 two rows in the snmpTargetTable, and two rows in the snmpNotifyTable.

 * snmpTargetAddrName = "addr1"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.1.2.3/162
 snmpTargetAddrTagList = "group1"
 snmpTargetAddrParams = "AuthNoPriv-joe"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetAddrName = "addr2"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.2.4.6/162
 snmpTargetAddrTagList = "group1"
 snmpTargetAddrParams = "AuthNoPriv-joe"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetAddrName = "addr3"
 snmpTargetAddrTDomain = snmpUDPDomain
 snmpTargetAddrTAddress = 128.1.5.9/162
 snmpTargetAddrTagList = "group2"
 snmpTargetAddrParams = "AuthPriv-bob"
 snmpTargetAddrStorageType = readOnly(5)
 snmpTargetAddrRowStatus = active(1)

 * snmpTargetParamsName = "AuthNoPriv-joe"
 snmpTargetParamsMPModel = 3
 snmpTargetParamsSecurityModel = 3 (USM)
 snmpTargetParamsSecurityName = "joe"
 snmpTargetParamsSecurityLevel = authNoPriv(2)
 snmpTargetParamsStorageType = readOnly(5)
 snmpTargetParamsRowStatus = active(1)

Levi, et. al. Standards Track [Page 71]

RFC 3413 SNMP Applications December 2002

 * snmpTargetParamsName = "AuthPriv-bob"
 snmpTargetParamsMPModel = 3
 snmpTargetParamsSecurityModel = 3 (USM)
 snmpTargetParamsSecurityName = "bob"
 snmpTargetParamsSecurityLevel = authPriv(3)
 snmpTargetParamsStorageType = readOnly(5)
 snmpTargetParamsRowStatus = active(1)

 * snmpNotifyName = "group1"
 snmpNotifyTag = "group1"
 snmpNotifyType = trap(1)
 snmpNotifyStorageType = readOnly(5)
 snmpNotifyRowStatus = active(1)

 * snmpNotifyName = "group2"
 snmpNotifyTag = "group2"
 snmpNotifyType = trap(1)
 snmpNotifyStorageType = readOnly(5)
 snmpNotifyRowStatus = active(1)

 These entries define two groups of management targets. The first
 group contains two management targets:

 first target second target
 ------------ -------------
 messageProcessingModel SNMPv3 SNMPv3
 securityModel 3 (USM) 3 (USM)
 securityName "joe" "joe"
 securityLevel authNoPriv(2) authNoPriv(2)
 transportDomain snmpUDPDomain snmpUDPDomain
 transportAddress 128.1.2.3/162 128.2.4.6/162

 And the second group contains a single management target:

 messageProcessingModel SNMPv3
 securityLevel authPriv(3)
 securityModel 3 (USM)
 securityName "bob"
 transportDomain snmpUDPDomain
 transportAddress 128.1.5.9/162

Levi, et. al. Standards Track [Page 72]

RFC 3413 SNMP Applications December 2002

Editors’ Addresses

 David B. Levi
 Nortel Networks
 3505 Kesterwood Drive
 Knoxville, TN 37918
 U.S.A.

 Phone: +1 865 686 0432
 EMail: dlevi@nortelnetworks.com

 Paul Meyer
 Secure Computing Corporation
 2675 Long Lake Road
 Roseville, MN 55113
 U.S.A.

 Phone: +1 651 628 1592
 EMail: paul_meyer@securecomputing.com

 Bob Stewart
 Retired

Levi, et. al. Standards Track [Page 73]

RFC 3413 SNMP Applications December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Levi, et. al. Standards Track [Page 74]

