
Network Working Group M. Allman
Request for Comments: 3465 BBN/NASA GRC
Category: Experimental February 2003

 TCP Congestion Control with Appropriate Byte Counting (ABC)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document proposes a small modification to the way TCP increases
 its congestion window. Rather than the traditional method of
 increasing the congestion window by a constant amount for each
 arriving acknowledgment, the document suggests basing the increase on
 the number of previously unacknowledged bytes each ACK covers. This
 change improves the performance of TCP, as well as closes a security
 hole TCP receivers can use to induce the sender into increasing the
 sending rate too rapidly.

Terminology

 Much of the language in this document is taken from [RFC2581].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1 Introduction

 This document proposes a modification to the algorithm for increasing
 TCP’s congestion window (cwnd) that improves both performance and
 security. Rather than increasing a TCP’s congestion window based on
 the number of acknowledgments (ACKs) that arrive at the data sender
 (per the current specification [RFC2581]), the congestion window is
 increased based on the number of bytes acknowledged by the arriving
 ACKs. The algorithm improves performance by mitigating the impact of
 delayed ACKs on the growth of cwnd. At the same time, the algorithm
 provides cwnd growth in direct relation to the probed capacity of a

Allman Experimental [Page 1]

RFC 3465 TCP Congestion Control with ABC February 2003

 network path, therefore providing a more measured response to ACKs
 that cover only small amounts of data (less than a full segment size)
 than ACK counting. This more appropriate cwnd growth can improve
 both performance and can prevent inappropriate cwnd growth in
 response to a misbehaving receiver. On the other hand, in some cases
 the modified cwnd growth algorithm causes larger bursts of segments
 to be sent into the network. In some cases this can lead to a non-
 negligible increase in the drop rate and reduced performance (see
 section 4 for a larger discussion of the issues).

 This document is organized as follows. Section 2 outlines the
 modified algorithm for increasing TCP’s congestion window. Section 3
 discusses the advantages of using the modified algorithm. Section 4
 discusses the disadvantages of the approach outlined in this
 document. Section 5 outlines some of the fairness issues that must
 be considered for the modified algorithm. Section 6 discusses
 security considerations.

 Statement of Intent

 This specification contains an algorithm improving the performance
 of TCP which is understood to be effective and safe, but which has
 not been widely deployed. One goal of publication as an
 Experimental RFC is to be prudent, and encourage use and
 deployment prior to publication in the standards track. It is the
 intent of the Transport Area to re-submit this specification as an
 IETF Proposed Standard in the future, after more experience has
 been gained.

2 A Modified Algorithm for Increasing the Congestion Window

 As originally outlined in [Jac88] and specified in [RFC2581], TCP
 uses two algorithms for increasing the congestion window. During
 steady-state, TCP uses the Congestion Avoidance algorithm to linearly
 increase the value of cwnd. At the beginning of a transfer, after a
 retransmission timeout or after a long idle period (in some
 implementations), TCP uses the Slow Start algorithm to increase cwnd
 exponentially. According to RFC 2581, slow start bases the cwnd
 increase on the number of incoming acknowledgments. During
 congestion avoidance RFC 2581 allows more latitude in increasing
 cwnd, but traditionally implementations have based the increase on
 the number of arriving ACKs. In the following two subsections, we
 detail modifications to these algorithms to increase cwnd based on
 the number of bytes being acknowledged by each arriving ACK, rather
 than by the number of ACKs that arrive. We call these changes
 "Appropriate Byte Counting" (ABC) [All99].

Allman Experimental [Page 2]

RFC 3465 TCP Congestion Control with ABC February 2003

2.1 Congestion Avoidance

 RFC 2581 specifies that cwnd should be increased by 1 segment per
 round-trip time (RTT) during the congestion avoidance phase of a
 transfer. Traditionally, TCPs have approximated this increase by
 increasing cwnd by 1/cwnd for each arriving ACK. This algorithm
 opens cwnd by roughly 1 segment per RTT if the receiver ACKs each
 incoming segment and no ACK loss occurs. However, if the receiver
 implements delayed ACKs [Bra89], the receiver returns roughly half as
 many ACKs, which causes the sender to open cwnd more conservatively
 (by approximately 1 segment every second RTT). The approach that
 this document suggests is to store the number of bytes that have been
 ACKed in a "bytes_acked" variable in the TCP control block. When
 bytes_acked becomes greater than or equal to the value of the
 congestion window, bytes_acked is reduced by the value of cwnd.
 Next, cwnd is incremented by a full-sized segment (SMSS). The
 algorithm suggested above is specifically allowed by RFC 2581 during
 congestion avoidance because it opens the window by at most 1 segment
 per RTT.

2.2 Slow Start

 RFC 2581 states that the sender increments the congestion window by
 at most, 1*SMSS bytes for each arriving acknowledgment during slow
 start. This document proposes that a TCP sender SHOULD increase cwnd
 by the number of previously unacknowledged bytes ACKed by each
 incoming acknowledgment, provided the increase is not more than L
 bytes. Choosing the limit on the increase, L, is discussed in the
 next subsection. When the number of previously unacknowledged bytes
 ACKed is less than or equal to 1*SMSS bytes, or L is less than or
 equal to 1*SMSS bytes, this proposal is no more aggressive (and
 possibly less aggressive) than allowed by RFC 2581. However,
 increasing cwnd by more than 1*SMSS bytes in response to a single ACK
 is more aggressive than allowed by RFC 2581. The more aggressive
 version of the slow start algorithm still falls within the spirit of
 the principles outlined in [Jac88] (i.e., of no more than doubling
 the cwnd per RTT), and this document proposes ABC for experimentation
 in shared networks, provided an appropriate limit is applied (see
 next section).

2.3 Choosing the Limit

 The limit, L, chosen for the cwnd increase during slow start,
 controls the aggressiveness of the algorithm. Choosing L=1*SMSS
 bytes provides behavior that is no more aggressive than allowed by
 RFC 2581. However, ABC with L=1*SMSS bytes is more conservative in a

Allman Experimental [Page 3]

RFC 3465 TCP Congestion Control with ABC February 2003

 number of key ways (as discussed in the next section) and therefore,
 this document suggests that even though with L=1*SMSS bytes TCP
 stacks will see little performance change, ABC SHOULD be used.

 A very large L could potentially lead to large line-rate bursts of
 traffic in the face of a large amount of ACK loss or in the case when
 the receiver sends "stretch ACKs" (ACKs for more than the two full-
 sized segments allowed by the delayed ACK algorithm) [Pax97].

 This document specifies that TCP implementations MAY use L=2*SMSS
 bytes and MUST NOT use L > 2*SMSS bytes. This choice balances
 between being conservative (L=1*SMSS bytes) and being potentially
 very aggressive. In addition, L=2*SMSS bytes exactly balances the
 negative impact of the delayed ACK algorithm (as discussed in more
 detail in section 3.2). Note that when L=2*SMSS bytes cwnd growth is
 roughly the same as the case when the standard algorithms are used in
 conjunction with a receiver that transmits an ACK for each incoming
 segment [All98] (assuming no or small amounts of ACK loss in both
 cases).

 The exception to the above suggestion is during a slow start phase
 that follows a retransmission timeout (RTO). In this situation, a
 TCP MUST use L=1*SMSS as specified in RFC 2581 since ACKs for large
 amounts of previously unacknowledged data are common during this
 phase of a transfer. These ACKs do not necessarily indicate how much
 data has left the network in the last RTT, and therefore ABC cannot
 accurately determine how much to increase cwnd. As an example, say
 segment N is dropped by the network, and segments N+1 and N+2 arrive
 successfully at the receiver. The sender will receive only two
 duplicate ACKs and therefore must rely on the retransmission timer
 (RTO) to detect the loss. When the RTO expires, segment N is
 retransmitted. The ACK sent in response to the retransmission will
 be for segment N+2. However, this ACK does not indicate that three
 segments have left the network in the last RTT, but rather only a
 single segment left the network. Therefore, the appropriate cwnd
 increment is at most 1*SMSS bytes.

2.4 RTO Implications

 [Jac88] shows that increases in cwnd of more than a factor of two in
 succeeding RTTs can cause spurious retransmissions on slow links
 where the bandwidth dominates the RTT, assuming the RTO estimator
 given in [Jac88] and [RFC2988]. ABC stays within this limit of no
 more than doubling cwnd in successive RTTs by capping the increase
 (no matter what L is employed) by the number of previously
 unacknowledged bytes covered by each incoming ACK.

Allman Experimental [Page 4]

RFC 3465 TCP Congestion Control with ABC February 2003

3 Advantages

 This section outlines several advantages of using the ABC algorithm
 to increase cwnd, rather than the standard ACK counting algorithm
 given in [RFC2581].

3.1 More Appropriate Congestion Window Increase

 The ABC algorithm outlined in section 2 increases TCP’s cwnd in
 proportion to the amount of data actually sent into the network. ACK
 counting, on the other hand, increments cwnd by a constant upon the
 arrival of each ACK. For instance, consider an interactive telnet
 connection (e.g., ssh or telnet) in which ACKs generally cover only a
 few bytes of data, but cwnd is increased by 1*SMSS bytes for each ACK
 received. When a large amount of data needs to be transmitted (e.g.,
 displaying a large file) the data is sent in one large burst because
 the cwnd grows by 1*SMSS bytes per ACK rather than based on the
 actual amount of capacity used. Such a line-rate burst of data can
 potentially cause a large amount of segment loss.

 Congestion Window Validation (CWV) [RFC2861] addresses the above
 problem as well. CWV limits the amount of unused cwnd a TCP
 connection can accumulate. ABC can be used in conjunction with CWV
 to obtain an accurate measure of the network path.

3.2 Mitigate the Impact of Delayed ACKs and Lost ACKs

 Delayed ACKs [RFC1122,RFC2581] allow a TCP receiver to refrain from
 sending an ACK for each incoming segment. However, a receiver SHOULD
 send an ACK for every second full-sized segment that arrives.
 Furthermore, a receiver MUST NOT withhold an ACK for more than 500
 ms. By reducing the number of ACKs sent to the data originator the
 receiver is slowing the growth of the congestion window under an ACK
 counting system. Using ABC with L=2*SMSS bytes can roughly negate
 the negative impact imposed by delayed ACKs by allowing cwnd to be
 increased for ACKs that are withheld by the receiver. This allows
 the congestion window to grow in a manner similar to the case when
 the receiver ACKs each incoming segment, but without adding extra
 traffic to the network. Simulation studies have shown increased
 throughput when a TCP sender uses ABC when compared to the standard
 ACK counting algorithm [All99], especially for short transfers that
 never leave the initial slow start period.

 Note that delayed ACKs should not be an issue during slow start-based
 loss recovery, as RFC 2581 recommends that receivers should not delay
 ACKs that cover out-of-order segments. Therefore, as discussed
 above, ABC with L > 1*SMSS bytes is inappropriate for such slow start
 based loss recovery and MUST NOT be used.

Allman Experimental [Page 5]

RFC 3465 TCP Congestion Control with ABC February 2003

 Note: In the case when an entire window of data is lost, a TCP
 receiver will likely generate delayed ACKs and an L > 1*SMSS bytes
 would be safe. However, detecting this scenario is difficult.
 Therefore to keep ABC conservative, this document mandates that L
 MUST NOT be > 1*SMSS bytes in any slow start-based loss recovery.

 ACK loss can also retard the growth of a congestion window that
 increases based on the number of ACKs that arrive. When counting
 ACKs, dropped ACKs represent forever-missed opportunities to increase
 cwnd. Using ABC with L > 1*SMSS bytes allows the sender to mitigate
 the effect of lost ACKs.

3.3 Prevents Attacks from Misbehaving Receivers

 [SCWA99] outlines several methods for a receiver to induce a TCP
 sender into violating congestion control and transmitting data at a
 potentially inappropriate rate. One of the outlined attacks is "ACK
 Division". This scheme involves the receiver sending multiple ACKs
 for each incoming data segment, each ACKing only a small portion of
 the original TCP data segment. Since TCP senders have traditionally
 used ACK counting to increase cwnd, ACK division causes
 inappropriately rapid cwnd growth and, in turn, a potentially
 inappropriate sending rate. A TCP sender that uses ABC can prevent
 this attack from being used to undermine standard congestion control
 because the cwnd increase is based on the number of bytes ACKed,
 rather than the number of ACKs received.

 To prevent misbehaving receivers from inducing inappropriate sender
 behavior, this document suggests TCP implementations use ABC, even if
 L=1*SMSS bytes (i.e., not allowing ABC to provide more aggressive
 cwnd growth than allowed by RFC 2581).

4 Disadvantages

 The main disadvantages of using ABC with L=2*SMSS bytes are an
 increase in the burstiness of TCP and a small increase in the overall
 loss rate. [All98] discusses the two ways that ABC increases the
 burstiness of the TCP sender. First, the "micro burstiness" of the
 connection is increased. In other words, the number of segments sent
 in response to each incoming ACK is increased by at most 1 segment
 when using ABC with L=2*SMSS bytes in conjunction with a receiver
 that is sending delayed ACKs. During slow start this translates into
 an increase from sending 2 back-to-back segments to sending 3 back-
 to-back packets in response to an ACK for a single packet. Or, an
 increase from 3 packets to 4 packets when receiving a delayed ACK for
 two outstanding packets. Note that ACK loss can cause larger bursts.
 However, ABC only increases the burst size by at most 1*SMSS bytes
 per ACK received when compared to the standard behavior. This slight

Allman Experimental [Page 6]

RFC 3465 TCP Congestion Control with ABC February 2003

 increase in the burstiness should only cause problems for devices
 that have very small buffers. In addition, ABC increases the "macro
 burstiness" of the TCP sender in response to delayed ACKs in slow
 start. Rather than increasing cwnd by roughly 1.5 times per RTT, ABC
 roughly doubles the congestion window every RTT. However, doubling
 cwnd every RTT fits within the spirit of slow start, as originally
 outlined [Jac88].

 With the increased burstiness comes a modest increase in the loss
 rate for a TCP connection employing ABC (see the next section for a
 short discussion on the fairness of ABC to non-ABC flows). The
 additional loss can be directly attributable to the increased
 aggressiveness of ABC. During slow start cwnd is increased more
 rapidly. Therefore when loss occurs cwnd is larger and more drops
 are likely. Similarly, a congestion avoidance cycle takes roughly
 half, as long when using ABC and delayed ACKs when compared to an ACK
 counting implementation. In other words, a TCP sender reaches the
 capacity of the network path, drops a packet and reduces the
 congestion window by half roughly twice as often when using ABC.
 However, as discussed above, in spite of the additional loss an ABC
 TCP sender generally obtains better overall performance than a non-
 ABC TCP [All99].

 Due to the increase in the packet drop rate we suggest ABC be
 implemented in conjunction with selective acknowledgments [RFC2018].

5 Fairness Considerations

 [All99] presents several simple simulations conducted to measure the
 impact of ABC on competing traffic (both ABC and non-ABC). The
 experiments show that while ABC increases the drop rate for the
 connection using ABC, competing traffic is not greatly effected. The
 experiments show that standard TCP and ABC both obtain roughly the
 same throughput, regardless of the variant of the competing traffic.
 The simulations also reaffirm that ABC outperforms non-ABC TCP in an
 environment with varying types of TCP connections. On the other
 hand, the simulations presented in [All99] are not necessarily
 realistic. Therefore we are encouraging more experimentation in the
 Internet.

6 Security Considerations

 As discussed in section 3.3, ABC protects a TCP sender from a
 misbehaving receiver that induces the sender into transmitting at an
 inappropriate rate with an "ACK division" attack. This, in turn,
 protects the network from an overly aggressive sender.

Allman Experimental [Page 7]

RFC 3465 TCP Congestion Control with ABC February 2003

7 Conclusions

 This document RECOMMENDS that all TCP stacks be modified to use ABC
 with L=1*SMSS bytes. This change does not increase the
 aggressiveness of TCP. Furthermore, simulations of ABC with L=2*SMSS
 bytes show a promising performance improvement that we encourage
 researchers to experiment with in the Internet.

Acknowledgments

 This document has benefited from discussions with and encouragement
 from Sally Floyd. Van Jacobson and Reiner Ludwig provided valuable
 input on the implications of byte counting on the RTO. Reiner Ludwig
 and Kostas Pentikousis provided valuable feedback on a draft of this
 document.

Normative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

Informative References

 [All98] Mark Allman. On the Generation and Use of TCP
 Acknowledgments. ACM Computer Communication Review, 29(3),
 July 1998.

 [All99] Mark Allman. TCP Byte Counting Refinements. ACM Computer
 Communication Review, 29(3), July 1999.

 [Jac88] Van Jacobson. Congestion Avoidance and Control. ACM
 SIGCOMM 1988.

 [Pax97] Vern Paxson. Automated Packet Trace Analysis of TCP
 Implementations. ACM SIGCOMM, September 1997.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2861] Handley, M., Padhye, J. and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

Allman Experimental [Page 8]

RFC 3465 TCP Congestion Control with ABC February 2003

 [SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, Tom
 Anderson. TCP Congestion Control with a Misbehaving
 Receiver. ACM Computer Communication Review, 29(5),
 October 1999.

Author’s Address

 Mark Allman
 BBN Technologies/NASA Glenn Research Center
 Lewis Field
 21000 Brookpark Rd. MS 54-5
 Cleveland, OH 44135

 Fax: 216-433-8705
 Phone: 216-433-6586
 EMail: mallman@bbn.com
 http://roland.grc.nasa.gov/˜mallman

Allman Experimental [Page 9]

RFC 3465 TCP Congestion Control with ABC February 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Allman Experimental [Page 10]

