
Network Working Group J. Rosenberg
Request for Comments: 3489 J. Weinberger
Category: Standards Track dynamicsoft
 C. Huitema
 Microsoft
 R. Mahy
 Cisco
 March 2003

 STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 Simple Traversal of User Datagram Protocol (UDP) Through Network
 Address Translators (NATs) (STUN) is a lightweight protocol that
 allows applications to discover the presence and types of NATs and
 firewalls between them and the public Internet. It also provides the
 ability for applications to determine the public Internet Protocol
 (IP) addresses allocated to them by the NAT. STUN works with many
 existing NATs, and does not require any special behavior from them.
 As a result, it allows a wide variety of applications to work through
 existing NAT infrastructure.

Table of Contents

 1. Applicability Statement 3
 2. Introduction .. 3
 3. Terminology ... 4
 4. Definitions ... 5
 5. NAT Variations .. 5
 6. Overview of Operation 6
 7. Message Overview .. 8
 8. Server Behavior ... 10
 8.1 Binding Requests 10

Rosenberg, et al. Standards Track [Page 1]

RFC 3489 STUN March 2003

 8.2 Shared Secret Requests 13
 9. Client Behavior ... 14
 9.1 Discovery ... 15
 9.2 Obtaining a Shared Secret 15
 9.3 Formulating the Binding Request 17
 9.4 Processing Binding Responses 17
 10. Use Cases ... 19
 10.1 Discovery Process 19
 10.2 Binding Lifetime Discovery 21
 10.3 Binding Acquisition 23
 11. Protocol Details .. 24
 11.1 Message Header 25
 11.2 Message Attributes 26
 11.2.1 MAPPED-ADDRESS 27
 11.2.2 RESPONSE-ADDRESS 27
 11.2.3 CHANGED-ADDRESS 28
 11.2.4 CHANGE-REQUEST 28
 11.2.5 SOURCE-ADDRESS 28
 11.2.6 USERNAME 28
 11.2.7 PASSWORD 29
 11.2.8 MESSAGE-INTEGRITY 29
 11.2.9 ERROR-CODE 29
 11.2.10 UNKNOWN-ATTRIBUTES 31
 11.2.11 REFLECTED-FROM 31
 12. Security Considerations 31
 12.1 Attacks on STUN 31
 12.1.1 Attack I: DDOS Against a Target 32
 12.1.2 Attack II: Silencing a Client 32
 12.1.3 Attack III: Assuming the Identity of a Client 32
 12.1.4 Attack IV: Eavesdropping 33
 12.2 Launching the Attacks 33
 12.2.1 Approach I: Compromise a Legitimate
 STUN Server 33
 12.2.2 Approach II: DNS Attacks 34
 12.2.3 Approach III: Rogue Router or NAT 34
 12.2.4 Approach IV: MITM 35
 12.2.5 Approach V: Response Injection Plus DoS 35
 12.2.6 Approach VI: Duplication 35
 12.3 Countermeasures 36
 12.4 Residual Threats 37
 13. IANA Considerations 38
 14. IAB Considerations .. 38
 14.1 Problem Definition 38
 14.2 Exit Strategy 39
 14.3 Brittleness Introduced by STUN 40
 14.4 Requirements for a Long Term Solution 42
 14.5 Issues with Existing NAPT Boxes 43
 14.6 In Closing .. 43

Rosenberg, et al. Standards Track [Page 2]

RFC 3489 STUN March 2003

 15. Acknowledgments ... 44
 16. Normative References 44
 17. Informative References 44
 18. Authors’ Addresses .. 46
 19. Full Copyright Statement................................... 47

1. Applicability Statement

 This protocol is not a cure-all for the problems associated with NAT.
 It does not enable incoming TCP connections through NAT. It allows
 incoming UDP packets through NAT, but only through a subset of
 existing NAT types. In particular, STUN does not enable incoming UDP
 packets through symmetric NATs (defined below), which are common in
 large enterprises. STUN’s discovery procedures are based on
 assumptions on NAT treatment of UDP; such assumptions may prove
 invalid down the road as new NAT devices are deployed. STUN does not
 work when it is used to obtain an address to communicate with a peer
 which happens to be behind the same NAT. STUN does not work when the
 STUN server is not in a common shared address realm. For a more
 complete discussion of the limitations of STUN, see Section 14.

2. Introduction

 Network Address Translators (NATs), while providing many benefits,
 also come with many drawbacks. The most troublesome of those
 drawbacks is the fact that they break many existing IP applications,
 and make it difficult to deploy new ones. Guidelines have been
 developed [8] that describe how to build "NAT friendly" protocols,
 but many protocols simply cannot be constructed according to those
 guidelines. Examples of such protocols include almost all peer-to-
 peer protocols, such as multimedia communications, file sharing and
 games.

 To combat this problem, Application Layer Gateways (ALGs) have been
 embedded in NATs. ALGs perform the application layer functions
 required for a particular protocol to traverse a NAT. Typically,
 this involves rewriting application layer messages to contain
 translated addresses, rather than the ones inserted by the sender of
 the message. ALGs have serious limitations, including scalability,
 reliability, and speed of deploying new applications. To resolve
 these problems, the Middlebox Communications (MIDCOM) protocol is
 being developed [9]. MIDCOM allows an application entity, such as an
 end client or network server of some sort (like a Session Initiation
 Protocol (SIP) proxy [10]) to control a NAT (or firewall), in order
 to obtain NAT bindings and open or close pinholes. In this way, NATs
 and applications can be separated once more, eliminating the need for
 embedding ALGs in NATs, and resolving the limitations imposed by
 current architectures.

Rosenberg, et al. Standards Track [Page 3]

RFC 3489 STUN March 2003

 Unfortunately, MIDCOM requires upgrades to existing NAT and
 firewalls, in addition to application components. Complete upgrades
 of these NAT and firewall products will take a long time, potentially
 years. This is due, in part, to the fact that the deployers of NAT
 and firewalls are not the same people who are deploying and using
 applications. As a result, the incentive to upgrade these devices
 will be low in many cases. Consider, for example, an airport
 Internet lounge that provides access with a NAT. A user connecting
 to the NATed network may wish to use a peer-to-peer service, but
 cannot, because the NAT doesn’t support it. Since the administrators
 of the lounge are not the ones providing the service, they are not
 motivated to upgrade their NAT equipment to support it, using either
 an ALG, or MIDCOM.

 Another problem is that the MIDCOM protocol requires that the agent
 controlling the middleboxes know the identity of those middleboxes,
 and have a relationship with them which permits control. In many
 configurations, this will not be possible. For example, many cable
 access providers use NAT in front of their entire access network.
 This NAT could be in addition to a residential NAT purchased and
 operated by the end user. The end user will probably not have a
 control relationship with the NAT in the cable access network, and
 may not even know of its existence.

 Many existing proprietary protocols, such as those for online games
 (such as the games described in RFC 3027 [11]) and Voice over IP,
 have developed tricks that allow them to operate through NATs without
 changing those NATs. This document is an attempt to take some of
 those ideas, and codify them into an interoperable protocol that can
 meet the needs of many applications.

 The protocol described here, Simple Traversal of UDP Through NAT
 (STUN), allows entities behind a NAT to first discover the presence
 of a NAT and the type of NAT, and then to learn the addresses
 bindings allocated by the NAT. STUN requires no changes to NATs, and
 works with an arbitrary number of NATs in tandem between the
 application entity and the public Internet.

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [1] and indicate requirement levels for compliant STUN
 implementations.

Rosenberg, et al. Standards Track [Page 4]

RFC 3489 STUN March 2003

4. Definitions

 STUN Client: A STUN client (also just referred to as a client)
 is an entity that generates STUN requests. A STUN client can
 execute on an end system, such as a user’s PC, or can run in a
 network element, such as a conferencing server.

 STUN Server: A STUN Server (also just referred to as a server)
 is an entity that receives STUN requests, and sends STUN
 responses. STUN servers are generally attached to the public
 Internet.

5. NAT Variations

 It is assumed that the reader is familiar with NATs. It has been
 observed that NAT treatment of UDP varies among implementations. The
 four treatments observed in implementations are:

 Full Cone: A full cone NAT is one where all requests from the
 same internal IP address and port are mapped to the same external
 IP address and port. Furthermore, any external host can send a
 packet to the internal host, by sending a packet to the mapped
 external address.

 Restricted Cone: A restricted cone NAT is one where all requests
 from the same internal IP address and port are mapped to the same
 external IP address and port. Unlike a full cone NAT, an external
 host (with IP address X) can send a packet to the internal host
 only if the internal host had previously sent a packet to IP
 address X.

 Port Restricted Cone: A port restricted cone NAT is like a
 restricted cone NAT, but the restriction includes port numbers.
 Specifically, an external host can send a packet, with source IP
 address X and source port P, to the internal host only if the
 internal host had previously sent a packet to IP address X and
 port P.

 Symmetric: A symmetric NAT is one where all requests from the
 same internal IP address and port, to a specific destination IP
 address and port, are mapped to the same external IP address and
 port. If the same host sends a packet with the same source
 address and port, but to a different destination, a different
 mapping is used. Furthermore, only the external host that
 receives a packet can send a UDP packet back to the internal host.

Rosenberg, et al. Standards Track [Page 5]

RFC 3489 STUN March 2003

 Determining the type of NAT is important in many cases. Depending on
 what the application wants to do, it may need to take the particular
 behavior into account.

6. Overview of Operation

 This section is descriptive only. Normative behavior is described in
 Sections 8 and 9.

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1: STUN Configuration

 The typical STUN configuration is shown in Figure 1. A STUN client
 is connected to private network 1. This network connects to private
 network 2 through NAT 1. Private network 2 connects to the public
 Internet through NAT 2. The STUN server resides on the public
 Internet.

 STUN is a simple client-server protocol. A client sends a request to
 a server, and the server returns a response. There are two types of
 requests - Binding Requests, sent over UDP, and Shared Secret
 Requests, sent over TLS [2] over TCP. Shared Secret Requests ask the
 server to return a temporary username and password. This username
 and password are used in a subsequent Binding Request and Binding
 Response, for the purposes of authentication and message integrity.

Rosenberg, et al. Standards Track [Page 6]

RFC 3489 STUN March 2003

 Binding requests are used to determine the bindings allocated by
 NATs. The client sends a Binding Request to the server, over UDP.
 The server examines the source IP address and port of the request,
 and copies them into a response that is sent back to the client.
 There are some parameters in the request that allow the client to ask
 that the response be sent elsewhere, or that the server send the
 response from a different address and port. There are attributes for
 providing message integrity and authentication.

 The trick is using STUN to discover the presence of NAT, and to learn
 and use the bindings they allocate.

 The STUN client is typically embedded in an application which needs
 to obtain a public IP address and port that can be used to receive
 data. For example, it might need to obtain an IP address and port to
 receive Real Time Transport Protocol (RTP) [12] traffic. When the
 application starts, the STUN client within the application sends a
 STUN Shared Secret Request to its server, obtains a username and
 password, and then sends it a Binding Request. STUN servers can be
 discovered through DNS SRV records [3], and it is generally assumed
 that the client is configured with the domain to use to find the STUN
 server. Generally, this will be the domain of the provider of the
 service the application is using (such a provider is incented to
 deploy STUN servers in order to allow its customers to use its
 application through NAT). Of course, a client can determine the
 address or domain name of a STUN server through other means. A STUN
 server can even be embedded within an end system.

 The STUN Binding Request is used to discover the presence of a NAT,
 and to discover the public IP address and port mappings generated by
 the NAT. Binding Requests are sent to the STUN server using UDP.
 When a Binding Request arrives at the STUN server, it may have passed
 through one or more NATs between the STUN client and the STUN server.
 As a result, the source address of the request received by the server
 will be the mapped address created by the NAT closest to the server.
 The STUN server copies that source IP address and port into a STUN
 Binding Response, and sends it back to the source IP address and port
 of the STUN request. For all of the NAT types above, this response
 will arrive at the STUN client.

 When the STUN client receives the STUN Binding Response, it compares
 the IP address and port in the packet with the local IP address and
 port it bound to when the request was sent. If these do not match,
 the STUN client is behind one or more NATs. In the case of a full-
 cone NAT, the IP address and port in the body of the STUN response
 are public, and can be used by any host on the public Internet to
 send packets to the application that sent the STUN request. An
 application need only listen on the IP address and port from which

Rosenberg, et al. Standards Track [Page 7]

RFC 3489 STUN March 2003

 the STUN request was sent. Any packets sent by a host on the public
 Internet to the public address and port learned by STUN will be
 received by the application.

 Of course, the host may not be behind a full-cone NAT. Indeed, it
 doesn’t yet know what type of NAT it is behind. To determine that,
 the client uses additional STUN Binding Requests. The exact
 procedure is flexible, but would generally work as follows. The
 client would send a second STUN Binding Request, this time to a
 different IP address, but from the same source IP address and port.
 If the IP address and port in the response are different from those
 in the first response, the client knows it is behind a symmetric NAT.
 To determine if it’s behind a full-cone NAT, the client can send a
 STUN Binding Request with flags that tell the STUN server to send a
 response from a different IP address and port than the request was
 received on. In other words, if the client sent a Binding Request to
 IP address/port A/B using a source IP address/port of X/Y, the STUN
 server would send the Binding Response to X/Y using source IP
 address/port C/D. If the client receives this response, it knows it
 is behind a full cone NAT.

 STUN also allows the client to ask the server to send the Binding
 Response from the same IP address the request was received on, but
 with a different port. This can be used to detect whether the client
 is behind a port restricted cone NAT or just a restricted cone NAT.

 It should be noted that the configuration in Figure 1 is not the only
 permissible configuration. The STUN server can be located anywhere,
 including within another client. The only requirement is that the
 STUN server is reachable by the client, and if the client is trying
 to obtain a publicly routable address, that the server reside on the
 public Internet.

7. Message Overview

 STUN messages are TLV (type-length-value) encoded using big endian
 (network ordered) binary. All STUN messages start with a STUN
 header, followed by a STUN payload. The payload is a series of STUN
 attributes, the set of which depends on the message type. The STUN
 header contains a STUN message type, transaction ID, and length. The
 message type can be Binding Request, Binding Response, Binding Error
 Response, Shared Secret Request, Shared Secret Response, or Shared
 Secret Error Response. The transaction ID is used to correlate
 requests and responses. The length indicates the total length of the
 STUN payload, not including the header. This allows STUN to run over
 TCP. Shared Secret Requests are always sent over TCP (indeed, using
 TLS over TCP).

Rosenberg, et al. Standards Track [Page 8]

RFC 3489 STUN March 2003

 Several STUN attributes are defined. The first is a MAPPED-ADDRESS
 attribute, which is an IP address and port. It is always placed in
 the Binding Response, and it indicates the source IP address and port
 the server saw in the Binding Request. There is also a RESPONSE-
 ADDRESS attribute, which contains an IP address and port. The
 RESPONSE-ADDRESS attribute can be present in the Binding Request, and
 indicates where the Binding Response is to be sent. It’s optional,
 and when not present, the Binding Response is sent to the source IP
 address and port of the Binding Request.

 The third attribute is the CHANGE-REQUEST attribute, and it contains
 two flags to control the IP address and port used to send the
 response. These flags are called "change IP" and "change port"
 flags. The CHANGE-REQUEST attribute is allowed only in the Binding
 Request. The "change IP" and "change port" flags are useful for
 determining whether the client is behind a restricted cone NAT or
 restricted port cone NAT. They instruct the server to send the
 Binding Responses from a different source IP address and port. The
 CHANGE-REQUEST attribute is optional in the Binding Request.

 The fourth attribute is the CHANGED-ADDRESS attribute. It is present
 in Binding Responses. It informs the client of the source IP address
 and port that would be used if the client requested the "change IP"
 and "change port" behavior.

 The fifth attribute is the SOURCE-ADDRESS attribute. It is only
 present in Binding Responses. It indicates the source IP address and
 port where the response was sent from. It is useful for detecting
 twice NAT configurations.

 The sixth attribute is the USERNAME attribute. It is present in a
 Shared Secret Response, which provides the client with a temporary
 username and password (encoded in the PASSWORD attribute). The
 USERNAME is also present in Binding Requests, serving as an index to
 the shared secret used for the integrity protection of the Binding
 Request. The seventh attribute, PASSWORD, is only found in Shared
 Secret Response messages. The eight attribute is the MESSAGE-
 INTEGRITY attribute, which contains a message integrity check over
 the Binding Request or Binding Response.

 The ninth attribute is the ERROR-CODE attribute. This is present in
 the Binding Error Response and Shared Secret Error Response. It
 indicates the error that has occurred. The tenth attribute is the
 UNKNOWN-ATTRIBUTES attribute, which is present in either the Binding
 Error Response or Shared Secret Error Response. It indicates the
 mandatory attributes from the request which were unknown. The
 eleventh attribute is the REFLECTED-FROM attribute, which is present
 in Binding Responses. It indicates the IP address and port of the

Rosenberg, et al. Standards Track [Page 9]

RFC 3489 STUN March 2003

 sender of a Binding Request, used for traceability purposes to
 prevent certain denial-of-service attacks.

8. Server Behavior

 The server behavior depends on whether the request is a Binding
 Request or a Shared Secret Request.

8.1 Binding Requests

 A STUN server MUST be prepared to receive Binding Requests on four
 address/port combinations - (A1, P1), (A2, P1), (A1, P2), and (A2,
 P2). (A1, P1) represent the primary address and port, and these are
 the ones obtained through the client discovery procedures below.
 Typically, P1 will be port 3478, the default STUN port. A2 and P2
 are arbitrary. A2 and P2 are advertised by the server through the
 CHANGED-ADDRESS attribute, as described below.

 It is RECOMMENDED that the server check the Binding Request for a
 MESSAGE-INTEGRITY attribute. If not present, and the server requires
 integrity checks on the request, it generates a Binding Error
 Response with an ERROR-CODE attribute with response code 401. If the
 MESSAGE-INTEGRITY attribute was present, the server computes the HMAC
 over the request as described in Section 11.2.8. The key to use
 depends on the shared secret mechanism. If the STUN Shared Secret
 Request was used, the key MUST be the one associated with the
 USERNAME attribute present in the request. If the USERNAME attribute
 was not present, the server MUST generate a Binding Error Response.
 The Binding Error Response MUST include an ERROR-CODE attribute with
 response code 432. If the USERNAME is present, but the server
 doesn’t remember the shared secret for that USERNAME (because it
 timed out, for example), the server MUST generate a Binding Error
 Response. The Binding Error Response MUST include an ERROR-CODE
 attribute with response code 430. If the server does know the shared
 secret, but the computed HMAC differs from the one in the request,
 the server MUST generate a Binding Error Response with an ERROR-CODE
 attribute with response code 431. The Binding Error Response is sent
 to the IP address and port the Binding Request came from, and sent
 from the IP address and port the Binding Request was sent to.

 Assuming the message integrity check passed, processing continues.
 The server MUST check for any attributes in the request with values
 less than or equal to 0x7fff which it does not understand. If it
 encounters any, the server MUST generate a Binding Error Response,
 and it MUST include an ERROR-CODE attribute with a 420 response code.

Rosenberg, et al. Standards Track [Page 10]

RFC 3489 STUN March 2003

 That response MUST contain an UNKNOWN-ATTRIBUTES attribute listing
 the attributes with values less than or equal to 0x7fff which were
 not understood. The Binding Error Response is sent to the IP address
 and port the Binding Request came from, and sent from the IP address
 and port the Binding Request was sent to.

 Assuming the request was correctly formed, the server MUST generate a
 single Binding Response. The Binding Response MUST contain the same
 transaction ID contained in the Binding Request. The length in the
 message header MUST contain the total length of the message in bytes,
 excluding the header. The Binding Response MUST have a message type
 of "Binding Response".

 The server MUST add a MAPPED-ADDRESS attribute to the Binding
 Response. The IP address component of this attribute MUST be set to
 the source IP address observed in the Binding Request. The port
 component of this attribute MUST be set to the source port observed
 in the Binding Request.

 If the RESPONSE-ADDRESS attribute was absent from the Binding
 Request, the destination address and port of the Binding Response
 MUST be the same as the source address and port of the Binding
 Request. Otherwise, the destination address and port of the Binding
 Response MUST be the value of the IP address and port in the
 RESPONSE-ADDRESS attribute.

 The source address and port of the Binding Response depend on the
 value of the CHANGE-REQUEST attribute and on the address and port the
 Binding Request was received on, and are summarized in Table 1.

 Let Da represent the destination IP address of the Binding Request
 (which will be either A1 or A2), and Dp represent the destination
 port of the Binding Request (which will be either P1 or P2). Let Ca
 represent the other address, so that if Da is A1, Ca is A2. If Da is
 A2, Ca is A1. Similarly, let Cp represent the other port, so that if
 Dp is P1, Cp is P2. If Dp is P2, Cp is P1. If the "change port"
 flag was set in CHANGE-REQUEST attribute of the Binding Request, and
 the "change IP" flag was not set, the source IP address of the
 Binding Response MUST be Da and the source port of the Binding
 Response MUST be Cp. If the "change IP" flag was set in the Binding
 Request, and the "change port" flag was not set, the source IP
 address of the Binding Response MUST be Ca and the source port of the
 Binding Response MUST be Dp. When both flags are set, the source IP
 address of the Binding Response MUST be Ca and the source port of the
 Binding Response MUST be Cp. If neither flag is set, or if the
 CHANGE-REQUEST attribute is absent entirely, the source IP address of
 the Binding Response MUST be Da and the source port of the Binding
 Response MUST be Dp.

Rosenberg, et al. Standards Track [Page 11]

RFC 3489 STUN March 2003

 Flags Source Address Source Port CHANGED-ADDRESS
 none Da Dp Ca:Cp
 Change IP Ca Dp Ca:Cp
 Change port Da Cp Ca:Cp
 Change IP and
 Change port Ca Cp Ca:Cp

 Table 1: Impact of Flags on Packet Source and CHANGED-ADDRESS

 The server MUST add a SOURCE-ADDRESS attribute to the Binding
 Response, containing the source address and port used to send the
 Binding Response.

 The server MUST add a CHANGED-ADDRESS attribute to the Binding
 Response. This contains the source IP address and port that would be
 used if the client had set the "change IP" and "change port" flags in
 the Binding Request. As summarized in Table 1, these are Ca and Cp,
 respectively, regardless of the value of the CHANGE-REQUEST flags.

 If the Binding Request contained both the USERNAME and MESSAGE-
 INTEGRITY attributes, the server MUST add a MESSAGE-INTEGRITY
 attribute to the Binding Response. The attribute contains an HMAC
 [13] over the response, as described in Section 11.2.8. The key to
 use depends on the shared secret mechanism. If the STUN Shared
 Secret Request was used, the key MUST be the one associated with the
 USERNAME attribute present in the Binding Request.

 If the Binding Request contained a RESPONSE-ADDRESS attribute, the
 server MUST add a REFLECTED-FROM attribute to the response. If the
 Binding Request was authenticated using a username obtained from a
 Shared Secret Request, the REFLECTED-FROM attribute MUST contain the
 source IP address and port where that Shared Secret Request came
 from. If the username present in the request was not allocated using
 a Shared Secret Request, the REFLECTED-FROM attribute MUST contain
 the source address and port of the entity which obtained the
 username, as best can be verified with the mechanism used to allocate
 the username. If the username was not present in the request, and
 the server was willing to process the request, the REFLECTED-FROM
 attribute SHOULD contain the source IP address and port where the
 request came from.

 The server SHOULD NOT retransmit the response. Reliability is
 achieved by having the client periodically resend the request, each
 of which triggers a response from the server.

Rosenberg, et al. Standards Track [Page 12]

RFC 3489 STUN March 2003

8.2 Shared Secret Requests

 Shared Secret Requests are always received on TLS connections. When
 the server receives a request from the client to establish a TLS
 connection, it MUST proceed with TLS, and SHOULD present a site
 certificate. The TLS ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA [4]
 SHOULD be used. Client TLS authentication MUST NOT be done, since
 the server is not allocating any resources to clients, and the
 computational burden can be a source of attacks.

 If the server receives a Shared Secret Request, it MUST verify that
 the request arrived on a TLS connection. If it did not receive the
 request over TLS, it MUST generate a Shared Secret Error Response,
 and it MUST include an ERROR-CODE attribute with a 433 response code.
 The destination for the error response depends on the transport on
 which the request was received. If the Shared Secret Request was
 received over TCP, the Shared Secret Error Response is sent over the
 same connection the request was received on. If the Shared Secret
 Request was receive over UDP, the Shared Secret Error Response is
 sent to the source IP address and port that the request came from.

 The server MUST check for any attributes in the request with values
 less than or equal to 0x7fff which it does not understand. If it
 encounters any, the server MUST generate a Shared Secret Error
 Response, and it MUST include an ERROR-CODE attribute with a 420
 response code. That response MUST contain an UNKNOWN-ATTRIBUTES
 attribute listing the attributes with values less than or equal to
 0x7fff which were not understood. The Shared Secret Error Response
 is sent over the TLS connection.

 All Shared Secret Error Responses MUST contain the same transaction
 ID contained in the Shared Secret Request. The length in the message
 header MUST contain the total length of the message in bytes,
 excluding the header. The Shared Secret Error Response MUST have a
 message type of "Shared Secret Error Response" (0x0112).

 Assuming the request was properly constructed, the server creates a
 Shared Secret Response. The Shared Secret Response MUST contain the
 same transaction ID contained in the Shared Secret Request. The
 length in the message header MUST contain the total length of the
 message in bytes, excluding the header. The Shared Secret Response
 MUST have a message type of "Shared Secret Response". The Shared
 Secret Response MUST contain a USERNAME attribute and a PASSWORD
 attribute. The USERNAME attribute serves as an index to the
 password, which is contained in the PASSWORD attribute. The server
 can use any mechanism it chooses to generate the username. However,
 the username MUST be valid for a period of at least 10 minutes.
 Validity means that the server can compute the password for that

Rosenberg, et al. Standards Track [Page 13]

RFC 3489 STUN March 2003

 username. There MUST be a single password for each username. In
 other words, the server cannot, 10 minutes later, assign a different
 password to the same username. The server MUST hand out a different
 username for each distinct Shared Secret Request. Distinct, in this
 case, implies a different transaction ID. It is RECOMMENDED that the
 server explicitly invalidate the username after ten minutes. It MUST
 invalidate the username after 30 minutes. The PASSWORD contains the
 password bound to that username. The password MUST have at least 128
 bits. The likelihood that the server assigns the same password for
 two different usernames MUST be vanishingly small, and the passwords
 MUST be unguessable. In other words, they MUST be a
 cryptographically random function of the username.

 These requirements can still be met using a stateless server, by
 intelligently computing the USERNAME and PASSWORD. One approach is
 to construct the USERNAME as:

 USERNAME = <prefix,rounded-time,clientIP,hmac>

 Where prefix is some random text string (different for each shared
 secret request), rounded-time is the current time modulo 20 minutes,
 clientIP is the source IP address where the Shared Secret Request
 came from, and hmac is an HMAC [13] over the prefix, rounded-time,
 and client IP, using a server private key.

 The password is then computed as:

 password = <hmac(USERNAME,anotherprivatekey)>

 With this structure, the username itself, which will be present in
 the Binding Request, contains the source IP address where the Shared
 Secret Request came from. That allows the server to meet the
 requirements specified in Section 8.1 for constructing the
 REFLECTED-FROM attribute. The server can verify that the username
 was not tampered with, using the hmac present in the username.

 The Shared Secret Response is sent over the same TLS connection the
 request was received on. The server SHOULD keep the connection open,
 and let the client close it.

9. Client Behavior

 The behavior of the client is very straightforward. Its task is to
 discover the STUN server, obtain a shared secret, formulate the
 Binding Request, handle request reliability, and process the Binding
 Responses.

Rosenberg, et al. Standards Track [Page 14]

RFC 3489 STUN March 2003

9.1 Discovery

 Generally, the client will be configured with a domain name of the
 provider of the STUN servers. This domain name is resolved to an IP
 address and port using the SRV procedures specified in RFC 2782 [3].

 Specifically, the service name is "stun". The protocol is "udp" for
 sending Binding Requests, or "tcp" for sending Shared Secret
 Requests. The procedures of RFC 2782 are followed to determine the
 server to contact. RFC 2782 spells out the details of how a set of
 SRV records are sorted and then tried. However, it only states that
 the client should "try to connect to the (protocol, address,
 service)" without giving any details on what happens in the event of
 failure. Those details are described here for STUN.

 For STUN requests, failure occurs if there is a transport failure of
 some sort (generally, due to fatal ICMP errors in UDP or connection
 failures in TCP). Failure also occurs if the transaction fails due
 to timeout. This occurs 9.5 seconds after the first request is sent,
 for both Shared Secret Requests and Binding Requests. See Section
 9.3 for details on transaction timeouts for Binding Requests. If a
 failure occurs, the client SHOULD create a new request, which is
 identical to the previous, but has a different transaction ID and
 MESSAGE INTEGRITY attribute (the HMAC will change because the
 transaction ID has changed). That request is sent to the next
 element in the list as specified by RFC 2782.

 The default port for STUN requests is 3478, for both TCP and UDP.
 Administrators SHOULD use this port in their SRV records, but MAY use
 others.

 If no SRV records were found, the client performs an A record lookup
 of the domain name. The result will be a list of IP addresses, each
 of which can be contacted at the default port.

 This would allow a firewall admin to open the STUN port, so hosts
 within the enterprise could access new applications. Whether they
 will or won’t do this is a good question.

9.2 Obtaining a Shared Secret

 As discussed in Section 12, there are several attacks possible on
 STUN systems. Many of these are prevented through integrity of
 requests and responses. To provide that integrity, STUN makes use of
 a shared secret between client and server, used as the keying
 material for an HMAC used in both the Binding Request and Binding
 Response. STUN allows for the shared secret to be obtained in any
 way (for example, Kerberos [14]). However, it MUST have at least 128

Rosenberg, et al. Standards Track [Page 15]

RFC 3489 STUN March 2003

 bits of randomness. In order to ensure interoperability, this
 specification describes a TLS-based mechanism. This mechanism,
 described in this section, MUST be implemented by clients and
 servers.

 First, the client determines the IP address and port that it will
 open a TCP connection to. This is done using the discovery
 procedures in Section 9.1. The client opens up the connection to
 that address and port, and immediately begins TLS negotiation [2].
 The client MUST verify the identity of the server. To do that, it
 follows the identification procedures defined in Section 3.1 of RFC
 2818 [5]. Those procedures assume the client is dereferencing a URI.
 For purposes of usage with this specification, the client treats the
 domain name or IP address used in Section 9.1 as the host portion of
 the URI that has been dereferenced.

 Once the connection is opened, the client sends a Shared Secret
 request. This request has no attributes, just the header. The
 transaction ID in the header MUST meet the requirements outlined for
 the transaction ID in a binding request, described in Section 9.3
 below. The server generates a response, which can either be a Shared
 Secret Response or a Shared Secret Error Response.

 If the response was a Shared Secret Error Response, the client checks
 the response code in the ERROR-CODE attribute. Interpretation of
 those response codes is identical to the processing of Section 9.4
 for the Binding Error Response.

 If a client receives a Shared Secret Response with an attribute whose
 type is greater than 0x7fff, the attribute MUST be ignored. If the
 client receives a Shared Secret Response with an attribute whose type
 is less than or equal to 0x7fff, the response is ignored.

 If the response was a Shared Secret Response, it will contain a short
 lived username and password, encoded in the USERNAME and PASSWORD
 attributes, respectively.

 The client MAY generate multiple Shared Secret Requests on the
 connection, and it MAY do so before receiving Shared Secret Responses
 to previous Shared Secret Requests. The client SHOULD close the
 connection as soon as it has finished obtaining usernames and
 passwords.

 Section 9.3 describes how these passwords are used to provide
 integrity protection over Binding Requests, and Section 8.1 describes
 how it is used in Binding Responses.

Rosenberg, et al. Standards Track [Page 16]

RFC 3489 STUN March 2003

9.3 Formulating the Binding Request

 A Binding Request formulated by the client follows the syntax rules
 defined in Section 11. Any two requests that are not bit-wise
 identical, and not sent to the same server from the same IP address
 and port, MUST carry different transaction IDs. The transaction ID
 MUST be uniformly and randomly distributed between 0 and 2**128 - 1.
 The large range is needed because the transaction ID serves as a form
 of randomization, helping to prevent replays of previously signed
 responses from the server. The message type of the request MUST be
 "Binding Request".

 The RESPONSE-ADDRESS attribute is optional in the Binding Request.
 It is used if the client wishes the response to be sent to a
 different IP address and port than the one the request was sent from.
 This is useful for determining whether the client is behind a
 firewall, and for applications that have separated control and data
 components. See Section 10.3 for more details. The CHANGE-REQUEST
 attribute is also optional. Whether it is present depends on what
 the application is trying to accomplish. See Section 10 for some
 example uses.

 The client SHOULD add a MESSAGE-INTEGRITY and USERNAME attribute to
 the Binding Request. This MESSAGE-INTEGRITY attribute contains an
 HMAC [13]. The value of the username, and the key to use in the
 MESSAGE-INTEGRITY attribute depend on the shared secret mechanism.
 If the STUN Shared Secret Request was used, the USERNAME must be a
 valid username obtained from a Shared Secret Response within the last
 nine minutes. The shared secret for the HMAC is the value of the
 PASSWORD attribute obtained from the same Shared Secret Response.

 Once formulated, the client sends the Binding Request. Reliability
 is accomplished through client retransmissions. Clients SHOULD
 retransmit the request starting with an interval of 100ms, doubling
 every retransmit until the interval reaches 1.6s. Retransmissions
 continue with intervals of 1.6s until a response is received, or a
 total of 9 requests have been sent. If no response is received by 1.6
 seconds after the last request has been sent, the client SHOULD
 consider the transaction to have failed. In other words, requests
 would be sent at times 0ms, 100ms, 300ms, 700ms, 1500ms, 3100ms,
 4700ms, 6300ms, and 7900ms. At 9500ms, the client considers the
 transaction to have failed if no response has been received.

9.4 Processing Binding Responses

 The response can either be a Binding Response or Binding Error
 Response. Binding Error Responses are always received on the source
 address and port the request was sent from. A Binding Response will

Rosenberg, et al. Standards Track [Page 17]

RFC 3489 STUN March 2003

 be received on the address and port placed in the RESPONSE-ADDRESS
 attribute of the request. If none was present, the Binding Responses
 will be received on the source address and port the request was sent
 from.

 If the response is a Binding Error Response, the client checks the
 response code from the ERROR-CODE attribute of the response. For a
 400 response code, the client SHOULD display the reason phrase to the
 user. For a 420 response code, the client SHOULD retry the request,
 this time omitting any attributes listed in the UNKNOWN-ATTRIBUTES
 attribute of the response. For a 430 response code, the client
 SHOULD obtain a new shared secret, and retry the Binding Request with
 a new transaction. For 401 and 432 response codes, if the client had
 omitted the USERNAME or MESSAGE-INTEGRITY attribute as indicated by
 the error, it SHOULD try again with those attributes. For a 431
 response code, the client SHOULD alert the user, and MAY try the
 request again after obtaining a new username and password. For a 500
 response code, the client MAY wait several seconds and then retry the
 request. For a 600 response code, the client MUST NOT retry the
 request, and SHOULD display the reason phrase to the user. Unknown
 attributes between 400 and 499 are treated like a 400, unknown
 attributes between 500 and 599 are treated like a 500, and unknown
 attributes between 600 and 699 are treated like a 600. Any response
 between 100 and 399 MUST result in the cessation of request
 retransmissions, but otherwise is discarded.

 If a client receives a response with an attribute whose type is
 greater than 0x7fff, the attribute MUST be ignored. If the client
 receives a response with an attribute whose type is less than or
 equal to 0x7fff, request retransmissions MUST cease, but the entire
 response is otherwise ignored.

 If the response is a Binding Response, the client SHOULD check the
 response for a MESSAGE-INTEGRITY attribute. If not present, and the
 client placed a MESSAGE-INTEGRITY attribute into the request, it MUST
 discard the response. If present, the client computes the HMAC over
 the response as described in Section 11.2.8. The key to use depends
 on the shared secret mechanism. If the STUN Shared Secret Request
 was used, the key MUST be same as used to compute the MESSAGE-
 INTEGRITY attribute in the request. If the computed HMAC differs
 from the one in the response, the client MUST discard the response,
 and SHOULD alert the user about a possible attack. If the computed
 HMAC matches the one from the response, processing continues.

 Reception of a response (either Binding Error Response or Binding
 Response) to a Binding Request will terminate retransmissions of that
 request. However, clients MUST continue to listen for responses to a
 Binding Request for 10 seconds after the first response. If it

Rosenberg, et al. Standards Track [Page 18]

RFC 3489 STUN March 2003

 receives any responses in this interval with different message types
 (Binding Responses and Binding Error Responses, for example) or
 different MAPPED-ADDRESSes, it is an indication of a possible attack.
 The client MUST NOT use the MAPPED-ADDRESS from any of the responses
 it received (either the first or the additional ones), and SHOULD
 alert the user.

 Furthermore, if a client receives more than twice as many Binding
 Responses as the number of Binding Requests it sent, it MUST NOT use
 the MAPPED-ADDRESS from any of those responses, and SHOULD alert the
 user about a potential attack.

 If the Binding Response is authenticated, and the MAPPED-ADDRESS was
 not discarded because of a potential attack, the CLIENT MAY use the
 MAPPED-ADDRESS and SOURCE-ADDRESS attributes.

10. Use Cases

 The rules of Sections 8 and 9 describe exactly how a client and
 server interact to send requests and get responses. However, they do
 not dictate how the STUN protocol is used to accomplish useful tasks.
 That is at the discretion of the client. Here, we provide some
 useful scenarios for applying STUN.

10.1 Discovery Process

 In this scenario, a user is running a multimedia application which
 needs to determine which of the following scenarios applies to it:

 o On the open Internet

 o Firewall that blocks UDP

 o Firewall that allows UDP out, and responses have to come back to
 the source of the request (like a symmetric NAT, but no
 translation. We call this a symmetric UDP Firewall)

 o Full-cone NAT

 o Symmetric NAT

 o Restricted cone or restricted port cone NAT

 Which of the six scenarios applies can be determined through the flow
 chart described in Figure 2. The chart refers only to the sequence
 of Binding Requests; Shared Secret Requests will, of course, be
 needed to authenticate each Binding Request used in the sequence.

Rosenberg, et al. Standards Track [Page 19]

RFC 3489 STUN March 2003

 The flow makes use of three tests. In test I, the client sends a
 STUN Binding Request to a server, without any flags set in the
 CHANGE-REQUEST attribute, and without the RESPONSE-ADDRESS attribute.
 This causes the server to send the response back to the address and
 port that the request came from. In test II, the client sends a
 Binding Request with both the "change IP" and "change port" flags
 from the CHANGE-REQUEST attribute set. In test III, the client sends
 a Binding Request with only the "change port" flag set.

 The client begins by initiating test I. If this test yields no
 response, the client knows right away that it is not capable of UDP
 connectivity. If the test produces a response, the client examines
 the MAPPED-ADDRESS attribute. If this address and port are the same
 as the local IP address and port of the socket used to send the
 request, the client knows that it is not natted. It executes test
 II.

 If a response is received, the client knows that it has open access
 to the Internet (or, at least, its behind a firewall that behaves
 like a full-cone NAT, but without the translation). If no response
 is received, the client knows its behind a symmetric UDP firewall.

 In the event that the IP address and port of the socket did not match
 the MAPPED-ADDRESS attribute in the response to test I, the client
 knows that it is behind a NAT. It performs test II. If a response
 is received, the client knows that it is behind a full-cone NAT. If
 no response is received, it performs test I again, but this time,
 does so to the address and port from the CHANGED-ADDRESS attribute
 from the response to test I. If the IP address and port returned in
 the MAPPED-ADDRESS attribute are not the same as the ones from the
 first test I, the client knows its behind a symmetric NAT. If the
 address and port are the same, the client is either behind a
 restricted or port restricted NAT. To make a determination about
 which one it is behind, the client initiates test III. If a response
 is received, its behind a restricted NAT, and if no response is
 received, its behind a port restricted NAT.

 This procedure yields substantial information about the operating
 condition of the client application. In the event of multiple NATs
 between the client and the Internet, the type that is discovered will
 be the type of the most restrictive NAT between the client and the
 Internet. The types of NAT, in order of restrictiveness, from most
 to least, are symmetric, port restricted cone, restricted cone, and
 full cone.

 Typically, a client will re-do this discovery process periodically to
 detect changes, or look for inconsistent results. It is important to
 note that when the discovery process is redone, it should not

Rosenberg, et al. Standards Track [Page 20]

RFC 3489 STUN March 2003

 generally be done from the same local address and port used in the
 previous discovery process. If the same local address and port are
 reused, bindings from the previous test may still be in existence,
 and these will invalidate the results of the test. Using a different
 local address and port for subsequent tests resolves this problem.
 An alternative is to wait sufficiently long to be confident that the
 old bindings have expired (half an hour should more than suffice).

10.2 Binding Lifetime Discovery

 STUN can also be used to discover the lifetimes of the bindings
 created by the NAT. In many cases, the client will need to refresh
 the binding, either through a new STUN request, or an application
 packet, in order for the application to continue to use the binding.
 By discovering the binding lifetime, the client can determine how
 frequently it needs to refresh.

Rosenberg, et al. Standards Track [Page 21]

RFC 3489 STUN March 2003

 +--------+
 | Test |
 | I |
 +--------+
 |
 |
 V
 /\ /\
 N / \ Y / \ Y +--------+
 UDP <-------/Resp\--------->/ IP \------------->| Test |
 Blocked \ ? / \Same/ | II |
 \ / \? / +--------+
 \/ \/ |
 | N |
 | V
 V /\
 +--------+ Sym. N / \
 | Test | UDP <---/Resp\
 | II | Firewall \ ? /
 +--------+ \ /
 | \/
 V |Y
 /\ /\ |
 Symmetric N / \ +--------+ N / \ V
 NAT <--- / IP \<-----| Test |<--- /Resp\ Open
 \Same/ | I | \ ? / Internet
 \? / +--------+ \ /
 \/ \/
 | |Y
 | |
 | V
 | Full
 | Cone
 V /\
 +--------+ / \ Y
 | Test |------>/Resp\---->Restricted
 | III | \ ? /
 +--------+ \ /
 \/
 |N
 | Port
 +------>Restricted

 Figure 2: Flow for type discovery process

Rosenberg, et al. Standards Track [Page 22]

RFC 3489 STUN March 2003

 To determine the binding lifetime, the client first sends a Binding
 Request to the server from a particular socket, X. This creates a
 binding in the NAT. The response from the server contains a MAPPED-
 ADDRESS attribute, providing the public address and port on the NAT.
 Call this Pa and Pp, respectively. The client then starts a timer
 with a value of T seconds. When this timer fires, the client sends
 another Binding Request to the server, using the same destination
 address and port, but from a different socket, Y. This request
 contains a RESPONSE-ADDRESS address attribute, set to (Pa,Pp). This
 will create a new binding on the NAT, and cause the STUN server to
 send a Binding Response that would match the old binding, if it still
 exists. If the client receives the Binding Response on socket X, it
 knows that the binding has not expired. If the client receives the
 Binding Response on socket Y (which is possible if the old binding
 expired, and the NAT allocated the same public address and port to
 the new binding), or receives no response at all, it knows that the
 binding has expired.

 The client can find the value of the binding lifetime by doing a
 binary search through T, arriving eventually at the value where the
 response is not received for any timer greater than T, but is
 received for any timer less than T.

 This discovery process takes quite a bit of time, and is something
 that will typically be run in the background on a device once it
 boots.

 It is possible that the client can get inconsistent results each time
 this process is run. For example, if the NAT should reboot, or be
 reset for some reason, the process may discover a lifetime than is
 shorter than the actual one. For this reason, implementations are
 encouraged to run the test numerous times, and be prepared to get
 inconsistent results.

10.3 Binding Acquisition

 Consider once more the case of a VoIP phone. It used the discovery
 process above when it started up, to discover its environment. Now,
 it wants to make a call. As part of the discovery process, it
 determined that it was behind a full-cone NAT.

 Consider further that this phone consists of two logically separated
 components - a control component that handles signaling, and a media
 component that handles the audio, video, and RTP [12]. Both are
 behind the same NAT. Because of this separation of control and
 media, we wish to minimize the communication required between them.
 In fact, they may not even run on the same host.

Rosenberg, et al. Standards Track [Page 23]

RFC 3489 STUN March 2003

 In order to make a voice call, the phone needs to obtain an IP
 address and port that it can place in the call setup message as the
 destination for receiving audio.

 To obtain an address, the control component sends a Shared Secret
 Request to the server, obtains a shared secret, and then sends a
 Binding Request to the server. No CHANGE-REQUEST attribute is
 present in the Binding Request, and neither is the RESPONSE-ADDRESS
 attribute. The Binding Response contains a mapped address. The
 control component then formulates a second Binding Request. This
 request contains a RESPONSE-ADDRESS, which is set to the mapped
 address learned from the previous Binding Response. This Binding
 Request is passed to the media component, along with the IP address
 and port of the STUN server. The media component sends the Binding
 Request. The request goes to the STUN server, which sends the
 Binding Response back to the control component. The control
 component receives this, and now has learned an IP address and port
 that will be routed back to the media component that sent the
 request.

 The client will be able to receive media from anywhere on this mapped
 address.

 In the case of silence suppression, there may be periods where the
 client receives no media. In this case, the UDP bindings could
 timeout (UDP bindings in NATs are typically short; 30 seconds is
 common). To deal with this, the application can periodically
 retransmit the query in order to keep the binding fresh.

 It is possible that both participants in the multimedia session are
 behind the same NAT. In that case, both will repeat this procedure
 above, and both will obtain public address bindings. When one sends
 media to the other, the media is routed to the NAT, and then turns
 right back around to come back into the enterprise, where it is
 translated to the private address of the recipient. This is not
 particularly efficient, and unfortunately, does not work in many
 commercial NATs. In such cases, the clients may need to retry using
 private addresses.

11. Protocol Details

 This section presents the detailed encoding of a STUN message.

 STUN is a request-response protocol. Clients send a request, and the
 server sends a response. There are two requests, Binding Request,
 and Shared Secret Request. The response to a Binding Request can

Rosenberg, et al. Standards Track [Page 24]

RFC 3489 STUN March 2003

 either be the Binding Response or Binding Error Response. The
 response to a Shared Secret Request can either be a Shared Secret
 Response or a Shared Secret Error Response.

 STUN messages are encoded using binary fields. All integer fields
 are carried in network byte order, that is, most significant byte
 (octet) first. This byte order is commonly known as big-endian. The
 transmission order is described in detail in Appendix B of RFC 791
 [6]. Unless otherwise noted, numeric constants are in decimal (base
 10).

11.1 Message Header

 All STUN messages consist of a 20 byte header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | STUN Message Type | Message Length |
 +-+
 |
 +-+

 +-+
 Transaction ID
 +-+
 |
 +-+

 The Message Types can take on the following values:

 0x0001 : Binding Request
 0x0101 : Binding Response
 0x0111 : Binding Error Response
 0x0002 : Shared Secret Request
 0x0102 : Shared Secret Response
 0x0112 : Shared Secret Error Response

 The message length is the count, in bytes, of the size of the
 message, not including the 20 byte header.

 The transaction ID is a 128 bit identifier. It also serves as salt
 to randomize the request and the response. All responses carry the
 same identifier as the request they correspond to.

Rosenberg, et al. Standards Track [Page 25]

RFC 3489 STUN March 2003

11.2 Message Attributes

 After the header are 0 or more attributes. Each attribute is TLV
 encoded, with a 16 bit type, 16 bit length, and variable value:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value
 +-+

 The following types are defined:

 0x0001: MAPPED-ADDRESS
 0x0002: RESPONSE-ADDRESS
 0x0003: CHANGE-REQUEST
 0x0004: SOURCE-ADDRESS
 0x0005: CHANGED-ADDRESS
 0x0006: USERNAME
 0x0007: PASSWORD
 0x0008: MESSAGE-INTEGRITY
 0x0009: ERROR-CODE
 0x000a: UNKNOWN-ATTRIBUTES
 0x000b: REFLECTED-FROM

 To allow future revisions of this specification to add new attributes
 if needed, the attribute space is divided into optional and mandatory
 ones. Attributes with values greater than 0x7fff are optional, which
 means that the message can be processed by the client or server even
 though the attribute is not understood. Attributes with values less
 than or equal to 0x7fff are mandatory to understand, which means that
 the client or server cannot process the message unless it understands
 the attribute.

 The MESSAGE-INTEGRITY attribute MUST be the last attribute within a
 message. Any attributes that are known, but are not supposed to be
 present in a message (MAPPED-ADDRESS in a request, for example) MUST
 be ignored.

 Table 2 indicates which attributes are present in which messages. An
 M indicates that inclusion of the attribute in the message is
 mandatory, O means its optional, C means it’s conditional based on
 some other aspect of the message, and N/A means that the attribute is
 not applicable to that message type.

Rosenberg, et al. Standards Track [Page 26]

RFC 3489 STUN March 2003

 Binding Shared Shared Shared
 Binding Binding Error Secret Secret Secret
 Att. Req. Resp. Resp. Req. Resp. Error
 Resp.

 MAPPED-ADDRESS N/A M N/A N/A N/A N/A
 RESPONSE-ADDRESS O N/A N/A N/A N/A N/A
 CHANGE-REQUEST O N/A N/A N/A N/A N/A
 SOURCE-ADDRESS N/A M N/A N/A N/A N/A
 CHANGED-ADDRESS N/A M N/A N/A N/A N/A
 USERNAME O N/A N/A N/A M N/A
 PASSWORD N/A N/A N/A N/A M N/A
 MESSAGE-INTEGRITY O O N/A N/A N/A N/A
 ERROR-CODE N/A N/A M N/A N/A M
 UNKNOWN-ATTRIBUTES N/A N/A C N/A N/A C
 REFLECTED-FROM N/A C N/A N/A N/A N/A

 Table 2: Summary of Attributes

 The length refers to the length of the value element, expressed as an
 unsigned integral number of bytes.

11.2.1 MAPPED-ADDRESS

 The MAPPED-ADDRESS attribute indicates the mapped IP address and
 port. It consists of an eight bit address family, and a sixteen bit
 port, followed by a fixed length value representing the IP address.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |x x x x x x x x| Family | Port |
 +-+
 | Address |
 +-+

 The port is a network byte ordered representation of the mapped port.
 The address family is always 0x01, corresponding to IPv4. The first
 8 bits of the MAPPED-ADDRESS are ignored, for the purposes of
 aligning parameters on natural boundaries. The IPv4 address is 32
 bits.

11.2.2 RESPONSE-ADDRESS

 The RESPONSE-ADDRESS attribute indicates where the response to a
 Binding Request should be sent. Its syntax is identical to MAPPED-
 ADDRESS.

Rosenberg, et al. Standards Track [Page 27]

RFC 3489 STUN March 2003

11.2.3 CHANGED-ADDRESS

 The CHANGED-ADDRESS attribute indicates the IP address and port where
 responses would have been sent from if the "change IP" and "change
 port" flags had been set in the CHANGE-REQUEST attribute of the
 Binding Request. The attribute is always present in a Binding
 Response, independent of the value of the flags. Its syntax is
 identical to MAPPED-ADDRESS.

11.2.4 CHANGE-REQUEST

 The CHANGE-REQUEST attribute is used by the client to request that
 the server use a different address and/or port when sending the
 response. The attribute is 32 bits long, although only two bits (A
 and B) are used:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 A B 0|
 +-+

 The meaning of the flags is:

 A: This is the "change IP" flag. If true, it requests the server
 to send the Binding Response with a different IP address than the
 one the Binding Request was received on.

 B: This is the "change port" flag. If true, it requests the
 server to send the Binding Response with a different port than the
 one the Binding Request was received on.

11.2.5 SOURCE-ADDRESS

 The SOURCE-ADDRESS attribute is present in Binding Responses. It
 indicates the source IP address and port that the server is sending
 the response from. Its syntax is identical to that of MAPPED-
 ADDRESS.

11.2.6 USERNAME

 The USERNAME attribute is used for message integrity. It serves as a
 means to identify the shared secret used in the message integrity
 check. The USERNAME is always present in a Shared Secret Response,
 along with the PASSWORD. It is optionally present in a Binding
 Request when message integrity is used.

Rosenberg, et al. Standards Track [Page 28]

RFC 3489 STUN March 2003

 The value of USERNAME is a variable length opaque value. Its length
 MUST be a multiple of 4 (measured in bytes) in order to guarantee
 alignment of attributes on word boundaries.

11.2.7 PASSWORD

 The PASSWORD attribute is used in Shared Secret Responses. It is
 always present in a Shared Secret Response, along with the USERNAME.

 The value of PASSWORD is a variable length value that is to be used
 as a shared secret. Its length MUST be a multiple of 4 (measured in
 bytes) in order to guarantee alignment of attributes on word
 boundaries.

11.2.8 MESSAGE-INTEGRITY

 The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 [13] of the
 STUN message. It can be present in Binding Requests or Binding
 Responses. Since it uses the SHA1 hash, the HMAC will be 20 bytes.
 The text used as input to HMAC is the STUN message, including the
 header, up to and including the attribute preceding the MESSAGE-
 INTEGRITY attribute. That text is then padded with zeroes so as to be
 a multiple of 64 bytes. As a result, the MESSAGE-INTEGRITY attribute
 MUST be the last attribute in any STUN message. The key used as
 input to HMAC depends on the context.

11.2.9 ERROR-CODE

 The ERROR-CODE attribute is present in the Binding Error Response and
 Shared Secret Error Response. It is a numeric value in the range of
 100 to 699 plus a textual reason phrase encoded in UTF-8, and is
 consistent in its code assignments and semantics with SIP [10] and
 HTTP [15]. The reason phrase is meant for user consumption, and can
 be anything appropriate for the response code. The lengths of the
 reason phrases MUST be a multiple of 4 (measured in bytes). This can
 be accomplished by added spaces to the end of the text, if necessary.
 Recommended reason phrases for the defined response codes are
 presented below.

 To facilitate processing, the class of the error code (the hundreds
 digit) is encoded separately from the rest of the code.

Rosenberg, et al. Standards Track [Page 29]

RFC 3489 STUN March 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 The class represents the hundreds digit of the response code. The
 value MUST be between 1 and 6. The number represents the response
 code modulo 100, and its value MUST be between 0 and 99.

 The following response codes, along with their recommended reason
 phrases (in brackets) are defined at this time:

 400 (Bad Request): The request was malformed. The client should not
 retry the request without modification from the previous
 attempt.

 401 (Unauthorized): The Binding Request did not contain a MESSAGE-
 INTEGRITY attribute.

 420 (Unknown Attribute): The server did not understand a mandatory
 attribute in the request.

 430 (Stale Credentials): The Binding Request did contain a MESSAGE-
 INTEGRITY attribute, but it used a shared secret that has
 expired. The client should obtain a new shared secret and try
 again.

 431 (Integrity Check Failure): The Binding Request contained a
 MESSAGE-INTEGRITY attribute, but the HMAC failed verification.
 This could be a sign of a potential attack, or client
 implementation error.

 432 (Missing Username): The Binding Request contained a MESSAGE-
 INTEGRITY attribute, but not a USERNAME attribute. Both must be
 present for integrity checks.

 433 (Use TLS): The Shared Secret request has to be sent over TLS, but
 was not received over TLS.

 500 (Server Error): The server has suffered a temporary error. The
 client should try again.

 600 (Global Failure:) The server is refusing to fulfill the request.
 The client should not retry.

Rosenberg, et al. Standards Track [Page 30]

RFC 3489 STUN March 2003

11.2.10 UNKNOWN-ATTRIBUTES

 The UNKNOWN-ATTRIBUTES attribute is present only in a Binding Error
 Response or Shared Secret Error Response when the response code in
 the ERROR-CODE attribute is 420.

 The attribute contains a list of 16 bit values, each of which
 represents an attribute type that was not understood by the server.
 If the number of unknown attributes is an odd number, one of the
 attributes MUST be repeated in the list, so that the total length of
 the list is a multiple of 4 bytes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Attribute 1 Type | Attribute 2 Type |
 +-+
 | Attribute 3 Type | Attribute 4 Type ...
 +-+

11.2.11 REFLECTED-FROM

 The REFLECTED-FROM attribute is present only in Binding Responses,
 when the Binding Request contained a RESPONSE-ADDRESS attribute. The
 attribute contains the identity (in terms of IP address) of the
 source where the request came from. Its purpose is to provide
 traceability, so that a STUN server cannot be used as a reflector for
 denial-of-service attacks.

 Its syntax is identical to the MAPPED-ADDRESS attribute.

12. Security Considerations

12.1 Attacks on STUN

 Generally speaking, attacks on STUN can be classified into denial of
 service attacks and eavesdropping attacks. Denial of service attacks
 can be launched against a STUN server itself, or against other
 elements using the STUN protocol.

 STUN servers create state through the Shared Secret Request
 mechanism. To prevent being swamped with traffic, a STUN server
 SHOULD limit the number of simultaneous TLS connections it will hold
 open by dropping an existing connection when a new connection request
 arrives (based on an Least Recently Used (LRU) policy, for example).
 Similarly, it SHOULD limit the number of shared secrets it will
 store, in the event that the server is storing the shared secrets.

Rosenberg, et al. Standards Track [Page 31]

RFC 3489 STUN March 2003

 The attacks of greater interest are those in which the STUN server
 and client are used to launch DOS attacks against other entities,
 including the client itself.

 Many of the attacks require the attacker to generate a response to a
 legitimate STUN request, in order to provide the client with a faked
 MAPPED-ADDRESS. The attacks that can be launched using such a
 technique include:

12.1.1 Attack I: DDOS Against a Target

 In this case, the attacker provides a large number of clients with
 the same faked MAPPED-ADDRESS that points to the intended target.
 This will trick all the STUN clients into thinking that their
 addresses are equal to that of the target. The clients then hand out
 that address in order to receive traffic on it (for example, in SIP
 or H.323 messages). However, all of that traffic becomes focused at
 the intended target. The attack can provide substantial
 amplification, especially when used with clients that are using STUN
 to enable multimedia applications.

12.1.2 Attack II: Silencing a Client

 In this attack, the attacker seeks to deny a client access to
 services enabled by STUN (for example, a client using STUN to enable
 SIP-based multimedia traffic). To do that, the attacker provides
 that client with a faked MAPPED-ADDRESS. The MAPPED-ADDRESS it
 provides is an IP address that routes to nowhere. As a result, the
 client won’t receive any of the packets it expects to receive when it
 hands out the MAPPED-ADDRESS.

 This exploitation is not very interesting for the attacker. It
 impacts a single client, which is frequently not the desired target.
 Moreover, any attacker that can mount the attack could also deny
 service to the client by other means, such as preventing the client
 from receiving any response from the STUN server, or even a DHCP
 server.

12.1.3 Attack III: Assuming the Identity of a Client

 This attack is similar to attack II. However, the faked MAPPED-
 ADDRESS points to the attacker themself. This allows the attacker to
 receive traffic which was destined for the client.

Rosenberg, et al. Standards Track [Page 32]

RFC 3489 STUN March 2003

12.1.4 Attack IV: Eavesdropping

 In this attack, the attacker forces the client to use a MAPPED-
 ADDRESS that routes to itself. It then forwards any packets it
 receives to the client. This attack would allow the attacker to
 observe all packets sent to the client. However, in order to launch
 the attack, the attacker must have already been able to observe
 packets from the client to the STUN server. In most cases (such as
 when the attack is launched from an access network), this means that
 the attacker could already observe packets sent to the client. This
 attack is, as a result, only useful for observing traffic by
 attackers on the path from the client to the STUN server, but not
 generally on the path of packets being routed towards the client.

12.2 Launching the Attacks

 It is important to note that attacks of this nature (injecting
 responses with fake MAPPED-ADDRESSes) require that the attacker be
 capable of eavesdropping requests sent from the client to the server
 (or to act as a MITM for such attacks). This is because STUN
 requests contain a transaction identifier, selected by the client,
 which is random with 128 bits of entropy. The server echoes this
 value in the response, and the client ignores any responses that
 don’t have a matching transaction ID. Therefore, in order for an
 attacker to provide a faked response that is accepted by the client,
 the attacker needs to know what the transaction ID in the request
 was. The large amount of randomness, combined with the need to know
 when the client sends a request, precludes attacks that involve
 guessing the transaction ID.

 Since all of the above attacks rely on this one primitive - injecting
 a response with a faked MAPPED-ADDRESS - preventing the attacks is
 accomplished by preventing this one operation. To prevent it, we
 need to consider the various ways in which it can be accomplished.
 There are several:

12.2.1 Approach I: Compromise a Legitimate STUN Server

 In this attack, the attacker compromises a legitimate STUN server
 through a virus or Trojan horse. Presumably, this would allow the
 attacker to take over the STUN server, and control the types of
 responses it generates.

 Compromise of a STUN server can also lead to discovery of open ports.
 Knowledge of an open port creates an opportunity for DoS attacks on
 those ports (or DDoS attacks if the traversed NAT is a full cone
 NAT). Discovering open ports is already fairly trivial using port
 probing, so this does not represent a major threat.

Rosenberg, et al. Standards Track [Page 33]

RFC 3489 STUN March 2003

12.2.2 Approach II: DNS Attacks

 STUN servers are discovered using DNS SRV records. If an attacker
 can compromise the DNS, it can inject fake records which map a domain
 name to the IP address of a STUN server run by the attacker. This
 will allow it to inject fake responses to launch any of the attacks
 above.

12.2.3 Approach III: Rogue Router or NAT

 Rather than compromise the STUN server, an attacker can cause a STUN
 server to generate responses with the wrong MAPPED-ADDRESS by
 compromising a router or NAT on the path from the client to the STUN
 server. When the STUN request passes through the rogue router or
 NAT, it rewrites the source address of the packet to be that of the
 desired MAPPED-ADDRESS. This address cannot be arbitrary. If the
 attacker is on the public Internet (that is, there are no NATs
 between it and the STUN server), and the attacker doesn’t modify the
 STUN request, the address has to have the property that packets sent
 from the STUN server to that address would route through the
 compromised router. This is because the STUN server will send the
 responses back to the source address of the request. With a modified
 source address, the only way they can reach the client is if the
 compromised router directs them there. If the attacker is on the
 public Internet, but they can modify the STUN request, they can
 insert a RESPONSE-ADDRESS attribute into the request, containing the
 actual source address of the STUN request. This will cause the
 server to send the response to the client, independent of the source
 address the STUN server sees. This gives the attacker the ability to
 forge an arbitrary source address when it forwards the STUN request.

 If the attacker is on a private network (that is, there are NATs
 between it and the STUN server), the attacker will not be able to
 force the server to generate arbitrary MAPPED-ADRESSes in responses.
 They will only be able force the STUN server to generate MAPPED-
 ADDRESSes which route to the private network. This is because the
 NAT between the attacker and the STUN server will rewrite the source
 address of the STUN request, mapping it to a public address that
 routes to the private network. Because of this, the attacker can
 only force the server to generate faked mapped addresses that route
 to the private network. Unfortunately, it is possible that a low
 quality NAT would be willing to map an allocated public address to
 another public address (as opposed to an internal private address),
 in which case the attacker could forge the source address in a STUN
 request to be an arbitrary public address. This kind of behavior
 from NATs does appear to be rare.

Rosenberg, et al. Standards Track [Page 34]

RFC 3489 STUN March 2003

12.2.4 Approach IV: MITM

 As an alternative to approach III, if the attacker can place an
 element on the path from the client to the server, the element can
 act as a man-in-the-middle. In that case, it can intercept a STUN
 request, and generate a STUN response directly with any desired value
 of the MAPPED-ADDRESS field. Alternatively, it can forward the STUN
 request to the server (after potential modification), receive the
 response, and forward it to the client. When forwarding the request
 and response, this attack is subject to the same limitations on the
 MAPPED-ADDRESS described in Section 12.2.3.

12.2.5 Approach V: Response Injection Plus DoS

 In this approach, the attacker does not need to be a MITM (as in
 approaches III and IV). Rather, it only needs to be able to
 eavesdrop onto a network segment that carries STUN requests. This is
 easily done in multiple access networks such as ethernet or
 unprotected 802.11. To inject the fake response, the attacker
 listens on the network for a STUN request. When it sees one, it
 simultaneously launches a DoS attack on the STUN server, and
 generates its own STUN response with the desired MAPPED-ADDRESS
 value. The STUN response generated by the attacker will reach the
 client, and the DoS attack against the server is aimed at preventing
 the legitimate response from the server from reaching the client.
 Arguably, the attacker can do without the DoS attack on the server,
 so long as the faked response beats the real response back to the
 client, and the client uses the first response, and ignores the
 second (even though it’s different).

12.2.6 Approach VI: Duplication

 This approach is similar to approach V. The attacker listens on the
 network for a STUN request. When it sees it, it generates its own
 STUN request towards the server. This STUN request is identical to
 the one it saw, but with a spoofed source IP address. The spoofed
 address is equal to the one that the attacker desires to have placed
 in the MAPPED-ADDRESS of the STUN response. In fact, the attacker
 generates a flood of such packets. The STUN server will receive the
 one original request, plus a flood of duplicate fake ones. It
 generates responses to all of them. If the flood is sufficiently
 large for the responses to congest routers or some other equipment,
 there is a reasonable probability that the one real response is lost
 (along with many of the faked ones), but the net result is that only
 the faked responses are received by the STUN client. These responses
 are all identical and all contain the MAPPED-ADDRESS that the
 attacker wanted the client to use.

Rosenberg, et al. Standards Track [Page 35]

RFC 3489 STUN March 2003

 The flood of duplicate packets is not needed (that is, only one faked
 request is sent), so long as the faked response beats the real
 response back to the client, and the client uses the first response,
 and ignores the second (even though it’s different).

 Note that, in this approach, launching a DoS attack against the STUN
 server or the IP network, to prevent the valid response from being
 sent or received, is problematic. The attacker needs the STUN server
 to be available to handle its own request. Due to the periodic
 retransmissions of the request from the client, this leaves a very
 tiny window of opportunity. The attacker must start the DoS attack
 immediately after the actual request from the client, causing the
 correct response to be discarded, and then cease the DoS attack in
 order to send its own request, all before the next retransmission
 from the client. Due to the close spacing of the retransmits (100ms
 to a few seconds), this is very difficult to do.

 Besides DoS attacks, there may be other ways to prevent the actual
 request from the client from reaching the server. Layer 2
 manipulations, for example, might be able to accomplish it.

 Fortunately, Approach IV is subject to the same limitations
 documented in Section 12.2.3, which limit the range of MAPPED-
 ADDRESSes the attacker can cause the STUN server to generate.

12.3 Countermeasures

 STUN provides mechanisms to counter the approaches described above,
 and additional, non-STUN techniques can be used as well.

 First off, it is RECOMMENDED that networks with STUN clients
 implement ingress source filtering (RFC 2827 [7]). This is
 particularly important for the NATs themselves. As Section 12.2.3
 explains, NATs which do not perform this check can be used as
 "reflectors" in DDoS attacks. Most NATs do perform this check as a
 default mode of operation. We strongly advise people that purchase
 NATs to ensure that this capability is present and enabled.

 Secondly, it is RECOMMENDED that STUN servers be run on hosts
 dedicated to STUN, with all UDP and TCP ports disabled except for the
 STUN ports. This is to prevent viruses and Trojan horses from
 infecting STUN servers, in order to prevent their compromise. This
 helps mitigate Approach I (Section 12.2.1).

 Thirdly, to prevent the DNS attack of Section 12.2.2, Section 9.2
 recommends that the client verify the credentials provided by the
 server with the name used in the DNS lookup.

Rosenberg, et al. Standards Track [Page 36]

RFC 3489 STUN March 2003

 Finally, all of the attacks above rely on the client taking the
 mapped address it learned from STUN, and using it in application
 layer protocols. If encryption and message integrity are provided
 within those protocols, the eavesdropping and identity assumption
 attacks can be prevented. As such, applications that make use of
 STUN addresses in application protocols SHOULD use integrity and
 encryption, even if a SHOULD level strength is not specified for that
 protocol. For example, multimedia applications using STUN addresses
 to receive RTP traffic would use secure RTP [16].

 The above three techniques are non-STUN mechanisms. STUN itself
 provides several countermeasures.

 Approaches IV (Section 12.2.4), when generating the response locally,
 and V (Section 12.2.5) require an attacker to generate a faked
 response. This attack is prevented using the message integrity
 mechanism provided in STUN, described in Section 8.1.

 Approaches III (Section 12.2.3) IV (Section 12.2.4), when using the
 relaying technique, and VI (12.2.6), however, are not preventable
 through server signatures. Both approaches are most potent when the
 attacker can modify the request, inserting a RESPONSE-ADDRESS that
 routes to the client. Fortunately, such modifications are
 preventable using the message integrity techniques described in
 Section 9.3. However, these three approaches are still functional
 when the attacker modifies nothing but the source address of the STUN
 request. Sadly, this is the one thing that cannot be protected
 through cryptographic means, as this is the change that STUN itself
 is seeking to detect and report. It is therefore an inherent
 weakness in NAT, and not fixable in STUN. To help mitigate these
 attacks, Section 9.4 provides several heuristics for the client to
 follow. The client looks for inconsistent or extra responses, both
 of which are signs of the attacks described above. However, these
 heuristics are just that - heuristics, and cannot be guaranteed to
 prevent attacks. The heuristics appear to prevent the attacks as we
 know how to launch them today. Implementors should stay posted for
 information on new heuristics that might be required in the future.
 Such information will be distributed on the IETF MIDCOM mailing list,
 midcom@ietf.org.

12.4 Residual Threats

 None of the countermeasures listed above can prevent the attacks
 described in Section 12.2.3 if the attacker is in the appropriate
 network paths. Specifically, consider the case in which the attacker
 wishes to convince client C that it has address V. The attacker
 needs to have a network element on the path between A and the server
 (in order to modify the request) and on the path between the server

Rosenberg, et al. Standards Track [Page 37]

RFC 3489 STUN March 2003

 and V so that it can forward the response to C. Furthermore, if
 there is a NAT between the attacker and the server, V must also be
 behind the same NAT. In such a situation, the attacker can either
 gain access to all the application-layer traffic or mount the DDOS
 attack described in Section 12.1.1. Note that any host which exists
 in the correct topological relationship can be DDOSed. It need not
 be using STUN.

13. IANA Considerations

 STUN cannot be extended. Changes to the protocol are made through a
 standards track revision of this specification. As a result, no IANA
 registries are needed. Any future extensions will establish any
 needed registries.

14. IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing",
 which is the general process by which a client attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism (RFC 3424 [17]). STUN is
 an example of a protocol that performs this type of function. The
 IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

14.1 Problem Definition

 From RFC 3424 [17], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not be
 generalized to solve other problems; this is why "short term fixes
 usually aren’t".

 The specific problems being solved by STUN are:

 o Provide a means for a client to detect the presence of one or more
 NATs between it and a server run by a service provider on the
 public Internet. The purpose of such detection is to determine
 additional steps that might be necessary in order to receive
 service from that particular provider.

 o Provide a means for a client to detect the presence of one or more
 NATs between it and another client, where the second client is
 reachable from the first, but it is not known whether the second
 client resides on the public Internet.

Rosenberg, et al. Standards Track [Page 38]

RFC 3489 STUN March 2003

 o Provide a means for a client to obtain an address on the public
 Internet from a non-symmetric NAT, for the express purpose of
 receiving incoming UDP traffic from another host, targeted to that
 address.

 STUN does not address TCP, either incoming or outgoing, and does not
 address outgoing UDP communications.

14.2 Exit Strategy

 From [17], any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 STUN comes with its own built in exit strategy. This strategy is the
 detection operation that is performed as a precursor to the actual
 UNSAF address-fixing operation. This discovery operation, documented
 in Section 10.1, attempts to discover the existence of, and type of,
 any NATS between the client and the service provider network. Whilst
 the detection of the specific type of NAT may be brittle, the
 discovery of the existence of NAT is itself quite robust. As NATs
 are phased out through the deployment of IPv6, the discovery
 operation will return immediately with the result that there is no
 NAT, and no further operations are required. Indeed, the discovery
 operation itself can be used to help motivate deployment of IPv6; if
 a user detects a NAT between themselves and the public Internet, they
 can call up their access provider and complain about it.

 STUN can also help facilitate the introduction of midcom. As
 midcom-capable NATs are deployed, applications will, instead of using
 STUN (which also resides at the application layer), first allocate an
 address binding using midcom. However, it is a well-known limitation
 of midcom that it only works when the agent knows the middleboxes
 through which its traffic will flow. Once bindings have been
 allocated from those middleboxes, a STUN detection procedure can
 validate that there are no additional middleboxes on the path from
 the public Internet to the client. If this is the case, the
 application can continue operation using the address bindings
 allocated from midcom. If it is not the case, STUN provides a
 mechanism for self-address fixing through the remaining midcom-
 unaware middleboxes. Thus, STUN provides a way to help transition to
 full midcom-aware networks.

Rosenberg, et al. Standards Track [Page 39]

RFC 3489 STUN March 2003

14.3 Brittleness Introduced by STUN

 From [17], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 STUN introduces brittleness into the system in several ways:

 o The discovery process assumes a certain classification of devices
 based on their treatment of UDP. There could be other types of
 NATs that are deployed that would not fit into one of these molds.
 Therefore, future NATs may not be properly detected by STUN. STUN
 clients (but not servers) would need to change to accommodate
 that.

 o The binding acquisition usage of STUN does not work for all NAT
 types. It will work for any application for full cone NATs only.
 For restricted cone and port restricted cone NAT, it will work for
 some applications depending on the application. Application
 specific processing will generally be needed. For symmetric NATs,
 the binding acquisition will not yield a usable address. The
 tight dependency on the specific type of NAT makes the protocol
 brittle.

 o STUN assumes that the server exists on the public Internet. If
 the server is located in another private address realm, the user
 may or may not be able to use its discovered address to
 communicate with other users. There is no way to detect such a
 condition.

 o The bindings allocated from the NAT need to be continuously
 refreshed. Since the timeouts for these bindings is very
 implementation specific, the refresh interval cannot easily be
 determined. When the binding is not being actively used to
 receive traffic, but to wait for an incoming message, the binding
 refresh will needlessly consume network bandwidth.

 o The use of the STUN server as an additional network element
 introduces another point of potential security attack. These
 attacks are largely prevented by the security measures provided by
 STUN, but not entirely.

Rosenberg, et al. Standards Track [Page 40]

RFC 3489 STUN March 2003

 o The use of the STUN server as an additional network element
 introduces another point of failure. If the client cannot locate
 a STUN server, or if the server should be unavailable due to
 failure, the application cannot function.

 o The use of STUN to discover address bindings will result in an
 increase in latency for applications. For example, a Voice over
 IP application will see an increase of call setup delays equal to
 at least one RTT to the STUN server.

 o The discovery of binding lifetimes is prone to error. It assumes
 that the same lifetime will exist for all bindings. This may not
 be true if the NAT uses dynamic binding lifetimes to handle
 overload, or if the NAT itself reboots during the discovery
 process.

 o STUN imposes some restrictions on the network topologies for
 proper operation. If client A obtains an address from STUN server
 X, and sends it to client B, B may not be able to send to A using
 that IP address. The address will not work if any of the
 following is true:

 - The STUN server is not in an address realm that is a common
 ancestor (topologically) of both clients A and B. For example,
 consider client A and B, both of which have residential NAT
 devices. Both devices connect them to their cable operators,
 but both clients have different providers. Each provider has a
 NAT in front of their entire network, connecting it to the
 public Internet. If the STUN server used by A is in A’s cable
 operator’s network, an address obtained by it will not be
 usable by B. The STUN server must be in the network which is a
 common ancestor to both - in this case, the public Internet.

 - The STUN server is in an address realm that is a common
 ancestor to both clients, but both clients are behind the same
 NAT connecting to that address realm. For example, if the two
 clients in the previous example had the same cable operator,
 that cable operator had a single NAT connecting their network
 to the public Internet, and the STUN server was on the public
 Internet, the address obtained by A would not be usable by B.
 That is because some NATs will not accept an internal packet
 sent to a public IP address which is mapped back to an internal
 address. To deal with this, additional protocol mechanisms or
 configuration parameters need to be introduced which detect
 this case.

Rosenberg, et al. Standards Track [Page 41]

RFC 3489 STUN March 2003

 o Most significantly, STUN introduces potential security threats
 which cannot be eliminated. This specification describes
 heuristics that can be used to mitigate the problem, but it is
 provably unsolvable given what STUN is trying to accomplish.
 These security problems are described fully in Section 12.

14.4 Requirements for a Long Term Solution

 From [17], any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our experience with STUN has led to the following requirements for a
 long term solution to the NAT problem:

 Requests for bindings and control of other resources in a NAT
 need to be explicit. Much of the brittleness in STUN derives from
 its guessing at the parameters of the NAT, rather than telling the
 NAT what parameters to use.

 Control needs to be "in-band". There are far too many scenarios
 in which the client will not know about the location of
 middleboxes ahead of time. Instead, control of such boxes needs
 to occur in-band, traveling along the same path as the data will
 itself travel. This guarantees that the right set of middleboxes
 are controlled. This is only true for first-party controls;
 third-party controls are best handled using the midcom framework.

 Control needs to be limited. Users will need to communicate
 through NATs which are outside of their administrative control.
 In order for providers to be willing to deploy NATs which can be
 controlled by users in different domains, the scope of such
 controls needs to be extremely limited - typically, allocating a
 binding to reach the address where the control packets are coming
 from.

 Simplicity is Paramount. The control protocol will need to be
 implement in very simple clients. The servers will need to
 support extremely high loads. The protocol will need to be
 extremely robust, being the precursor to a host of application
 protocols. As such, simplicity is key.

Rosenberg, et al. Standards Track [Page 42]

RFC 3489 STUN March 2003

14.5 Issues with Existing NAPT Boxes

 From [17], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 Several of the practical issues with STUN involve future proofing -
 breaking the protocol when new NAT types get deployed. Fortunately,
 this is not an issue at the current time, since most of the deployed
 NATs are of the types assumed by STUN. The primary usage STUN has
 found is in the area of VoIP, to facilitate allocation of addresses
 for receiving RTP [12] traffic. In that application, the periodic
 keepalives are provided by the RTP traffic itself. However, several
 practical problems arise for RTP. First, RTP assumes that RTCP
 traffic is on a port one higher than the RTP traffic. This pairing
 property cannot be guaranteed through NATs that are not directly
 controllable. As a result, RTCP traffic may not be properly
 received. Protocol extensions to SDP have been proposed which
 mitigate this by allowing the client to signal a different port for
 RTCP [18]. However, there will be interoperability problems for some
 time.

 For VoIP, silence suppression can cause a gap in the transmission of
 RTP packets. This could result in the loss of a binding in the
 middle of a call, if that silence period exceeds the binding timeout.
 This can be mitigated by sending occasional silence packets to keep
 the binding alive. However, the result is additional brittleness;
 proper operation depends on the silence suppression algorithm in use,
 the usage of a comfort noise codec, the duration of the silence
 period, and the binding lifetime in the NAT.

14.6 In Closing

 The problems with STUN are not design flaws in STUN. The problems in
 STUN have to do with the lack of standardized behaviors and controls
 in NATs. The result of this lack of standardization has been a
 proliferation of devices whose behavior is highly unpredictable,
 extremely variable, and uncontrollable. STUN does the best it can in
 such a hostile environment. Ultimately, the solution is to make the
 environment less hostile, and to introduce controls and standardized
 behaviors into NAT. However, until such time as that happens, STUN
 provides a good short term solution given the terrible conditions
 under which it is forced to operate.

Rosenberg, et al. Standards Track [Page 43]

RFC 3489 STUN March 2003

15. Acknowledgments

 The authors would like to thank Cedric Aoun, Pete Cordell, Cullen
 Jennings, Bob Penfield and Chris Sullivan for their comments, and
 Baruch Sterman and Alan Hawrylyshen for initial implementations.
 Thanks for Leslie Daigle, Allison Mankin, Eric Rescorla, and Henning
 Schulzrinne for IESG and IAB input on this work.

16. Normative References

 [1] Bradner, S., "Key words for use in RFCs to indicate requirement
 levels", BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and C. Allen, "The TLS protocol Version 1.0", RFC
 2246, January 1999.

 [3] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [5] Rescorla, E., "HTTP over TLS", RFC 2818, May 2000.

 [6] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.

 [7] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating
 Denial of Service Attacks which employ IP Source Address
 Spoofing", BCP 38, RFC 2827, May 2000.

17. Informative References

 [8] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [9] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A. and A.
 Rayhan, "Middlebox Communication Architecture and Framework",
 RFC 3303, August 2002.

 [10] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [11] Holdrege, M. and P. Srisuresh, "Protocol Complications with the
 IP Network Address Translator", RFC 3027, January 2001.

Rosenberg, et al. Standards Track [Page 44]

RFC 3489 STUN March 2003

 [12] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", RFC
 1889, January 1996.

 [13] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [14] Kohl, J. and C. Neuman, "The kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.

 [15] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [16] Baugher M., et al., "The secure real-time transport protocol",
 Work in Progress.

 [17] Daigle, L., Editor, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation", RFC
 3424, November 2002.

 [18] Huitema, C., "RTCP attribute in SDP", Work in Progress.

Rosenberg, et al. Standards Track [Page 45]

RFC 3489 STUN March 2003

18. Authors’ Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936

 EMail: jdrosen@dynamicsoft.com

 Joel Weinberger
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936

 EMail: jweinberger@dynamicsoft.com

 Christian Huitema
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 EMail: huitema@microsoft.com

 Rohan Mahy
 Cisco Systems
 101 Cooper St
 Santa Cruz, CA 95060

 EMail: rohan@cisco.com

Rosenberg, et al. Standards Track [Page 46]

RFC 3489 STUN March 2003

19. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg, et al. Standards Track [Page 47]

