
Network Working Group E. Blanton
Request for Comments: 3517 Purdue University
Category: Standards Track M. Allman
 BBN/NASA GRC
 K. Fall
 Intel Research
 L. Wang
 University of Kentucky
 April 2003

 A Conservative Selective Acknowledgment (SACK)-based
 Loss Recovery Algorithm for TCP

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document presents a conservative loss recovery algorithm for TCP
 that is based on the use of the selective acknowledgment (SACK) TCP
 option. The algorithm presented in this document conforms to the
 spirit of the current congestion control specification (RFC 2581),
 but allows TCP senders to recover more effectively when multiple
 segments are lost from a single flight of data.

Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

Blanton, et al. Standards Track [Page 1]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

1 Introduction

 This document presents a conservative loss recovery algorithm for TCP
 that is based on the use of the selective acknowledgment (SACK) TCP
 option. While the TCP SACK [RFC2018] is being steadily deployed in
 the Internet [All00], there is evidence that hosts are not using the
 SACK information when making retransmission and congestion control
 decisions [PF01]. The goal of this document is to outline one
 straightforward method for TCP implementations to use SACK
 information to increase performance.

 [RFC2581] allows advanced loss recovery algorithms to be used by TCP
 [RFC793] provided that they follow the spirit of TCP’s congestion
 control algorithms [RFC2581, RFC2914]. [RFC2582] outlines one such
 advanced recovery algorithm called NewReno. This document outlines a
 loss recovery algorithm that uses the SACK [RFC2018] TCP option to
 enhance TCP’s loss recovery. The algorithm outlined in this
 document, heavily based on the algorithm detailed in [FF96], is a
 conservative replacement of the fast recovery algorithm [Jac90,
 RFC2581]. The algorithm specified in this document is a
 straightforward SACK-based loss recovery strategy that follows the
 guidelines set in [RFC2581] and can safely be used in TCP
 implementations. Alternate SACK-based loss recovery methods can be
 used in TCP as implementers see fit (as long as the alternate
 algorithms follow the guidelines provided in [RFC2581]). Please
 note, however, that the SACK-based decisions in this document (such
 as what segments are to be sent at what time) are largely decoupled
 from the congestion control algorithms, and as such can be treated as
 separate issues if so desired.

2 Definitions

 The reader is expected to be familiar with the definitions given in
 [RFC2581].

 The reader is assumed to be familiar with selective acknowledgments
 as specified in [RFC2018].

 For the purposes of explaining the SACK-based loss recovery algorithm
 we define four variables that a TCP sender stores:

 "HighACK" is the sequence number of the highest byte of data that
 has been cumulatively ACKed at a given point.

 "HighData" is the highest sequence number transmitted at a given
 point.

Blanton, et al. Standards Track [Page 2]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 "HighRxt" is the highest sequence number which has been
 retransmitted during the current loss recovery phase.

 "Pipe" is a sender’s estimate of the number of bytes outstanding
 in the network. This is used during recovery for limiting the
 sender’s sending rate. The pipe variable allows TCP to use a
 fundamentally different congestion control than specified in
 [RFC2581]. The algorithm is often referred to as the "pipe
 algorithm".

 For the purposes of this specification we define a "duplicate
 acknowledgment" as a segment that arrives with no data and an
 acknowledgment (ACK) number that is equal to the current value of
 HighACK, as described in [RFC2581].

 We define a variable "DupThresh" that holds the number of duplicate
 acknowledgments required to trigger a retransmission. Per [RFC2581]
 this threshold is defined to be 3 duplicate acknowledgments.
 However, implementers should consult any updates to [RFC2581] to
 determine the current value for DupThresh (or method for determining
 its value).

 Finally, a range of sequence numbers [A,B] is said to "cover"
 sequence number S if A <= S <= B.

3 Keeping Track of SACK Information

 For a TCP sender to implement the algorithm defined in the next
 section it must keep a data structure to store incoming selective
 acknowledgment information on a per connection basis. Such a data
 structure is commonly called the "scoreboard". The specifics of the
 scoreboard data structure are out of scope for this document (as long
 as the implementation can perform all functions required by this
 specification).

 Note that this document refers to keeping account of (marking)
 individual octets of data transferred across a TCP connection. A
 real-world implementation of the scoreboard would likely prefer to
 manage this data as sequence number ranges. The algorithms presented
 here allow this, but require arbitrary sequence number ranges to be
 marked as having been selectively acknowledged.

Blanton, et al. Standards Track [Page 3]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

4 Processing and Acting Upon SACK Information

 For the purposes of the algorithm defined in this document the
 scoreboard SHOULD implement the following functions:

 Update ():

 Given the information provided in an ACK, each octet that is
 cumulatively ACKed or SACKed should be marked accordingly in the
 scoreboard data structure, and the total number of octets SACKed
 should be recorded.

 Note: SACK information is advisory and therefore SACKed data MUST
 NOT be removed from TCP’s retransmission buffer until the data is
 cumulatively acknowledged [RFC2018].

 IsLost (SeqNum):

 This routine returns whether the given sequence number is
 considered to be lost. The routine returns true when either
 DupThresh discontiguous SACKed sequences have arrived above
 ’SeqNum’ or (DupThresh * SMSS) bytes with sequence numbers greater
 than ’SeqNum’ have been SACKed. Otherwise, the routine returns
 false.

 SetPipe ():

 This routine traverses the sequence space from HighACK to HighData
 and MUST set the "pipe" variable to an estimate of the number of
 octets that are currently in transit between the TCP sender and
 the TCP receiver. After initializing pipe to zero the following
 steps are taken for each octet ’S1’ in the sequence space between
 HighACK and HighData that has not been SACKed:

 (a) If IsLost (S1) returns false:

 Pipe is incremented by 1 octet.

 The effect of this condition is that pipe is incremented for
 packets that have not been SACKed and have not been determined
 to have been lost (i.e., those segments that are still assumed
 to be in the network).

 (b) If S1 <= HighRxt:

 Pipe is incremented by 1 octet.

Blanton, et al. Standards Track [Page 4]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 The effect of this condition is that pipe is incremented for
 the retransmission of the octet.

 Note that octets retransmitted without being considered lost are
 counted twice by the above mechanism.

 NextSeg ():

 This routine uses the scoreboard data structure maintained by the
 Update() function to determine what to transmit based on the SACK
 information that has arrived from the data receiver (and hence
 been marked in the scoreboard). NextSeg () MUST return the
 sequence number range of the next segment that is to be
 transmitted, per the following rules:

 (1) If there exists a smallest unSACKed sequence number ’S2’ that
 meets the following three criteria for determining loss, the
 sequence range of one segment of up to SMSS octets starting
 with S2 MUST be returned.

 (1.a) S2 is greater than HighRxt.

 (1.b) S2 is less than the highest octet covered by any
 received SACK.

 (1.c) IsLost (S2) returns true.

 (2) If no sequence number ’S2’ per rule (1) exists but there
 exists available unsent data and the receiver’s advertised
 window allows, the sequence range of one segment of up to SMSS
 octets of previously unsent data starting with sequence number
 HighData+1 MUST be returned.

 (3) If the conditions for rules (1) and (2) fail, but there exists
 an unSACKed sequence number ’S3’ that meets the criteria for
 detecting loss given in steps (1.a) and (1.b) above
 (specifically excluding step (1.c)) then one segment of up to
 SMSS octets starting with S3 MAY be returned.

 Note that rule (3) is a sort of retransmission "last resort".
 It allows for retransmission of sequence numbers even when the
 sender has less certainty a segment has been lost than as with
 rule (1). Retransmitting segments via rule (3) will help
 sustain TCP’s ACK clock and therefore can potentially help
 avoid retransmission timeouts. However, in sending these
 segments the sender has two copies of the same data considered
 to be in the network (and also in the Pipe estimate). When an
 ACK or SACK arrives covering this retransmitted segment, the

Blanton, et al. Standards Track [Page 5]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 sender cannot be sure exactly how much data left the network
 (one of the two transmissions of the packet or both
 transmissions of the packet). Therefore the sender may
 underestimate Pipe by considering both segments to have left
 the network when it is possible that only one of the two has.

 We believe that the triggering of rule (3) will be rare and
 that the implications are likely limited to corner cases
 relative to the entire recovery algorithm. Therefore we leave
 the decision of whether or not to use rule (3) to
 implementors.

 (4) If the conditions for each of (1), (2), and (3) are not met,
 then NextSeg () MUST indicate failure, and no segment is
 returned.

 Note: The SACK-based loss recovery algorithm outlined in this
 document requires more computational resources than previous TCP loss
 recovery strategies. However, we believe the scoreboard data
 structure can be implemented in a reasonably efficient manner (both
 in terms of computation complexity and memory usage) in most TCP
 implementations.

5 Algorithm Details

 Upon the receipt of any ACK containing SACK information, the
 scoreboard MUST be updated via the Update () routine.

 Upon the receipt of the first (DupThresh - 1) duplicate ACKs, the
 scoreboard is to be updated as normal. Note: The first and second
 duplicate ACKs can also be used to trigger the transmission of
 previously unsent segments using the Limited Transmit algorithm
 [RFC3042].

 When a TCP sender receives the duplicate ACK corresponding to
 DupThresh ACKs, the scoreboard MUST be updated with the new SACK
 information (via Update ()). If no previous loss event has occurred
 on the connection or the cumulative acknowledgment point is beyond
 the last value of RecoveryPoint, a loss recovery phase SHOULD be
 initiated, per the fast retransmit algorithm outlined in [RFC2581].
 The following steps MUST be taken:

 (1) RecoveryPoint = HighData

 When the TCP sender receives a cumulative ACK for this data octet
 the loss recovery phase is terminated.

Blanton, et al. Standards Track [Page 6]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 (2) ssthresh = cwnd = (FlightSize / 2)

 The congestion window (cwnd) and slow start threshold (ssthresh)
 are reduced to half of FlightSize per [RFC2581].

 (3) Retransmit the first data segment presumed dropped -- the segment
 starting with sequence number HighACK + 1. To prevent repeated
 retransmission of the same data, set HighRxt to the highest
 sequence number in the retransmitted segment.

 (4) Run SetPipe ()

 Set a "pipe" variable to the number of outstanding octets
 currently "in the pipe"; this is the data which has been sent by
 the TCP sender but for which no cumulative or selective
 acknowledgment has been received and the data has not been
 determined to have been dropped in the network. It is assumed
 that the data is still traversing the network path.

 (5) In order to take advantage of potential additional available
 cwnd, proceed to step (C) below.

 Once a TCP is in the loss recovery phase the following procedure MUST
 be used for each arriving ACK:

 (A) An incoming cumulative ACK for a sequence number greater than
 RecoveryPoint signals the end of loss recovery and the loss
 recovery phase MUST be terminated. Any information contained in
 the scoreboard for sequence numbers greater than the new value of
 HighACK SHOULD NOT be cleared when leaving the loss recovery
 phase.

 (B) Upon receipt of an ACK that does not cover RecoveryPoint the
 following actions MUST be taken:

 (B.1) Use Update () to record the new SACK information conveyed
 by the incoming ACK.

 (B.2) Use SetPipe () to re-calculate the number of octets still
 in the network.

 (C) If cwnd - pipe >= 1 SMSS the sender SHOULD transmit one or more
 segments as follows:

 (C.1) The scoreboard MUST be queried via NextSeg () for the
 sequence number range of the next segment to transmit (if any),

Blanton, et al. Standards Track [Page 7]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 and the given segment sent. If NextSeg () returns failure (no
 data to send) return without sending anything (i.e., terminate
 steps C.1 -- C.5).

 (C.2) If any of the data octets sent in (C.1) are below HighData,
 HighRxt MUST be set to the highest sequence number of the
 retransmitted segment.

 (C.3) If any of the data octets sent in (C.1) are above HighData,
 HighData must be updated to reflect the transmission of
 previously unsent data.

 (C.4) The estimate of the amount of data outstanding in the
 network must be updated by incrementing pipe by the number of
 octets transmitted in (C.1).

 (C.5) If cwnd - pipe >= 1 SMSS, return to (C.1)

5.1 Retransmission Timeouts

 In order to avoid memory deadlocks, the TCP receiver is allowed to
 discard data that has already been selectively acknowledged. As a
 result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
 information gathered from a receiver upon a retransmission timeout
 "since the timeout might indicate that the data receiver has
 reneged." Additionally, a TCP sender MUST "ignore prior SACK
 information in determining which data to retransmit." However, a
 SACK TCP sender SHOULD still use all SACK information made available
 during the slow start phase of loss recovery following an RTO.

 If an RTO occurs during loss recovery as specified in this document,
 RecoveryPoint MUST be set to HighData. Further, the new value of
 RecoveryPoint MUST be preserved and the loss recovery algorithm
 outlined in this document MUST be terminated. In addition, a new
 recovery phase (as described in section 5) MUST NOT be initiated
 until HighACK is greater than or equal to the new value of
 RecoveryPoint.

 As described in Sections 4 and 5, Update () SHOULD continue to be
 used appropriately upon receipt of ACKs. This will allow the slow
 start recovery period to benefit from all available information
 provided by the receiver, despite the fact that SACK information was
 expunged due to the RTO.

 If there are segments missing from the receiver’s buffer following
 processing of the retransmitted segment, the corresponding ACK will
 contain SACK information. In this case, a TCP sender SHOULD use this
 SACK information when determining what data should be sent in each

Blanton, et al. Standards Track [Page 8]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 segment of the slow start. The exact algorithm for this selection is
 not specified in this document (specifically NextSeg () is
 inappropriate during slow start after an RTO). A relatively
 straightforward approach to "filling in" the sequence space reported
 as missing should be a reasonable approach.

6 Managing the RTO Timer

 The standard TCP RTO estimator is defined in [RFC2988]. Due to the
 fact that the SACK algorithm in this document can have an impact on
 the behavior of the estimator, implementers may wish to consider how
 the timer is managed. [RFC2988] calls for the RTO timer to be
 re-armed each time an ACK arrives that advances the cumulative ACK
 point. Because the algorithm presented in this document can keep the
 ACK clock going through a fairly significant loss event,
 (comparatively longer than the algorithm described in [RFC2581]), on
 some networks the loss event could last longer than the RTO. In this
 case the RTO timer would expire prematurely and a segment that need
 not be retransmitted would be resent.

 Therefore we give implementers the latitude to use the standard
 [RFC2988] style RTO management or, optionally, a more careful variant
 that re-arms the RTO timer on each retransmission that is sent during
 recovery MAY be used. This provides a more conservative timer than
 specified in [RFC2988], and so may not always be an attractive
 alternative. However, in some cases it may prevent needless
 retransmissions, go-back-N transmission and further reduction of the
 congestion window.

7 Research

 The algorithm specified in this document is analyzed in [FF96], which
 shows that the above algorithm is effective in reducing transfer time
 over standard TCP Reno [RFC2581] when multiple segments are dropped
 from a window of data (especially as the number of drops increases).
 [AHKO97] shows that the algorithm defined in this document can
 greatly improve throughput in connections traversing satellite
 channels.

8 Security Considerations

 The algorithm presented in this paper shares security considerations
 with [RFC2581]. A key difference is that an algorithm based on SACKs
 is more robust against attackers forging duplicate ACKs to force the
 TCP sender to reduce cwnd. With SACKs, TCP senders have an
 additional check on whether or not a particular ACK is legitimate.
 While not fool-proof, SACK does provide some amount of protection in
 this area.

Blanton, et al. Standards Track [Page 9]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

Acknowledgments

 The authors wish to thank Sally Floyd for encouraging this document
 and commenting on early drafts. The algorithm described in this
 document is loosely based on an algorithm outlined by Kevin Fall and
 Sally Floyd in [FF96], although the authors of this document assume
 responsibility for any mistakes in the above text. Murali Bashyam,
 Ken Calvert, Tom Henderson, Reiner Ludwig, Jamshid Mahdavi, Matt
 Mathis, Shawn Ostermann, Vern Paxson and Venkat Venkatsubra provided
 valuable feedback on earlier versions of this document. We thank
 Matt Mathis and Jamshid Mahdavi for implementing the scoreboard in ns
 and hence guiding our thinking in keeping track of SACK state.

 The first author would like to thank Ohio University and the Ohio
 University Internetworking Research Group for supporting the bulk of
 his work on this project.

Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V. and R. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

Informative References

 [AHKO97] Mark Allman, Chris Hayes, Hans Kruse, Shawn Ostermann. TCP
 Performance Over Satellite Links. Proceedings of the Fifth
 International Conference on Telecommunications Systems,
 Nashville, TN, March, 1997.

 [All00] Mark Allman. A Web Server’s View of the Transport Layer.
 ACM Computer Communication Review, 30(5), October 2000.

 [FF96] Kevin Fall and Sally Floyd. Simulation-based Comparisons
 of Tahoe, Reno and SACK TCP. Computer Communication
 Review, July 1996.

Blanton, et al. Standards Track [Page 10]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

 [Jac90] Van Jacobson. Modified TCP Congestion Avoidance Algorithm.
 Technical Report, LBL, April 1990.

 [PF01] Jitendra Padhye, Sally Floyd. Identifying the TCP Behavior
 of Web Servers, ACM SIGCOMM, August 2001.

 [RFC2582] Floyd, S. and T. Henderson, "The NewReno Modification to
 TCP’s Fast Recovery Algorithm", RFC 2582, April 1999.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC
 2914, September 2000.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3042] Allman, M., Balakrishnan, H, and S. Floyd, "Enhancing TCP’s
 Loss Recovery Using Limited Transmit", RFC 3042, January
 2001.

Intellectual Property Rights Notice

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Blanton, et al. Standards Track [Page 11]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

Authors’ Addresses

 Ethan Blanton
 Purdue University Computer Sciences
 1398 Computer Science Building
 West Lafayette, IN 47907

 EMail: eblanton@cs.purdue.edu

 Mark Allman
 BBN Technologies/NASA Glenn Research Center
 Lewis Field
 21000 Brookpark Rd. MS 54-5
 Cleveland, OH 44135

 Phone: 216-433-6586
 Fax: 216-433-8705
 EMail: mallman@bbn.com
 http://roland.grc.nasa.gov/˜mallman

 Kevin Fall
 Intel Research
 2150 Shattuck Ave., PH Suite
 Berkeley, CA 94704

 EMail: kfall@intel-research.net

 Lili Wang
 Laboratory for Advanced Networking
 210 Hardymon Building
 University of Kentucky
 Lexington, KY 40506-0495

 EMail: lwang0@uky.edu

Blanton, et al. Standards Track [Page 12]

RFC 3517 SACK-based Loss Recovery for TCP April 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Blanton, et al. Standards Track [Page 13]

