Net wor k Wor ki ng Group R Ludwi g

Request for Comments: 3522 M Meyer
Cat egory: Experi nental Eri csson Research
April 2003

The Eifel Detection Algorithmfor TCP
Status of this Meno

This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this nenp is unlinited.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
Abstract

The Eifel detection algorithmallows a TCP sender to detect a
posteriori whether it has entered | oss recovery unnecessarily. It
requires that the TCP Tinestanps option defined in RFC 1323 be
enabl ed for a connection. The Eifel detection algorithm nakes use of
the fact that the TCP Ti nestanps option elimnates the retransm ssion
anbiguity in TCP. Based on the tinmestanp of the first acceptable ACK
that arrives during | oss recovery, it decides whether |oss recovery
was entered unnecessarily. The Eifel detection algorithm provides a
basis for future TCP enhancenents. This includes response algorithns
to back out of |oss recovery by restoring a TCP sender’s congestion
control state.

Ter m nol ogy

The keywords MJUST, MJST NOT, REQUI RED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTI ONAL, when they appear in this
docunent, are to be interpreted as described in [RFC2119].

We refer to the first-tine transnission of an octet as the 'origina
transmit’. A subsequent transnission of the same octet is referred
to as a 'retransmt’. |In nost cases, this termni nology can |ikew se
be applied to data segnments as opposed to octets. However, wth
repacketi zation, a segment can contain both first-tinme transni ssions
and retransm ssions of octets. In that case, this ternmnology is
only consistent when applied to octets. For the Eifel detection
algorithm this makes no difference as it al so operates correctly
when repacketization occurs.

Ludwi g & Meyer Experi ment al [Page 1]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

We use the term’acceptable ACK as defined in [RFC793]. That is an
ACK that acknow edges previously unacknow edged data. W use the
term’duplicate ACK', and the variable ’dupacks’ as defined in
[W595]. The variable 'dupacks’ is a counter of duplicate ACKs that
have al ready been received by a TCP sender before the fast retransmt
is sent. W use the variable 'DupThresh’ to refer to the so-called
duplicate acknow edgenent threshold, i.e., the nunber of duplicate
ACKs that need to arrive at a TCP sender to trigger a fast
retransmit. Currently, DupThresh is specified as a fixed val ue of
three [RFC2581]. Future TCPs night inplenment an adaptive DupThresh

1. Introduction

The retransm ssion anbiguity problem[zZh86], [KP87] is a TCP sender’s
inability to distinguish whether the first acceptable ACK that
arrives after a retransmt was sent in response to the origina
transmit or the retransmt. This problemoccurs after a timeout-
based retransmt and after a fast retransmt. The Eifel detection

al gorithmuses the TCP Ti nestanps option defined in [RFCL323] to
elimnate the retransmission anbiguity. It thereby allows a TCP
sender to detect a posteriori whether it has entered | oss recovery
unnecessarily.

This added capability of a TCP sender is useful in environnents where
TCP's | oss recovery and congestion control algorithns may often get
falsely triggered. This can be caused by packet reordering, packet
duplication, or a sudden delay increase in the data or the ACK path
that results in a spurious tineout. For exanple, such sudden del ay

i ncreases can often occur in wide-area wireless access networks due
to handovers, resource preenption due to higher priority traffic
(e.g., voice), or because the nobile transmtter traverses through a
radi o coverage hole (e.g., see [@O01]). In such wreless networks,
the often unnecessary go-back-N retransnmits that typically occur
after a spurious tineout create a serious problem They decrease
end-to-end throughput, are usel ess | oad upon the network, and waste
transm ssion (battery) power. Note that across such networks the use
of tinmestanps is recommended anyway [RFC3481].

Based on the Eifel detection algorithm a TCP sender may then choose
to i mpl enent dedi cated response al gorithns. One goal of such a
response algorithmwould be to alleviate the consequences of a
falsely triggered | oss recovery. This may include restoring the TCP
sender’s congestion control state, and avoi ding the nentioned
unnecessary go-back-N retransnits. Another goal would be to adapt
protocol paraneters such as the duplicate acknow edgenent threshold

[RFC2581], and the RTT estimators [RFC2988]. This is to reduce the
risk of falsely triggering TCP s |oss recovery again as the
connection progresses. However, such response algorithnms are outside

Ludwi g & Meyer Experi ment al [Page 2]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

the scope of this docunent. Note: The original proposal, the "Eife
al gorithnm [LKOO], conprises both a detection and a response
algorithm This docunment only defines the detection part. The
response part is defined in [LQ&03].

A key feature of the Eifel detection algorithmis that it already
detects, upon the first acceptable ACK that arrives during |oss
recovery, whether a fast retransnit or a tineout was spurious. This
is crucial to be able to avoid the nmentioned go-back-N retransnits.
Another feature is that the Eifel detection algorithmis fairly
robust against the |oss of ACKs.

Al so the DSACK option [RFC2883] can be used to detect a posteriori
whet her a TCP sender has entered | oss recovery unnecessarily [BA02].
However, the first ACK carrying a DSACK option usually arrives at a
TCP sender only after |oss recovery has already term nated. Thus,

t he DSACK option cannot be used to elimnate the retransm ssion
anbiguity. Consequently, it cannot be used to avoid the nentioned
unnecessary go-back-N retransnmits. Mreover, a DSACK-based detection
algorithmis | ess robust against ACK | osses. A recent proposal based
on neither the TCP tinmestanps nor the DSACK opti on does not have the
limtation of DSACK-based schenes, but only addresses the case of
spurious timeouts [SKO3].

2. Events that Falsely Trigger TCP Loss Recovery
The following events may falsely trigger a TCP sender’s | 0ss recovery
and congestion control algorithms. This causes a so-called spurious
retransmt, and an unnecessary reduction of the TCP sender’s
congestion wi ndow and slow start threshold [RFC2581].
- Spurious tinmeout
- Packet reordering

- Packet duplication

A spurious tineout is a timeout that would not have occurred had the

sender "waited longer". This nay be caused by increased del ay that
suddenly occurs in the data and/or the ACK path. That in turn m ght
cause an acceptable ACK to arrive too late, i.e., only after a TCP

sender’s retransm ssion tiner has expired. For the purpose of
specifying the algorithmin Section 3, we define this case as SPUR TO
(equal 1).

Not e: There is another case where a tineout would not have

occurred had the sender "waited | onger": the retransm ssion timer
expires, and afterwards the TCP sender receives the duplicate ACK

Ludwi g & Meyer Experi ment al [Page 3]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

that would have triggered a fast retransnit of the ol dest

out standing segment. W call this a 'fast tineout’, since in
conmpetition with the fast retransnit algorithmthe tineout was
faster. However, a fast tineout is not spurious since apparently
a segnment was in fact lost, i.e., loss recovery was initiated
rightfully. 1In this docunent, we do not consider fast tineouts.

Packet reordering in the network may occur because | P [RFC791] does
not guarantee in-order delivery of packets. Additionally, a TCP
recei ver generates a duplicate ACK for each segnment that arrives
out-of-order. This results in a spurious fast retransmt if three or
nore data segnents arrive out-of-order at a TCP receiver, and at

| east three of the resulting duplicate ACKs arrive at the TCP sender
This assunes that the duplicate acknow edgenent threshold is set to
three as defined in [RFC2581].

Packet duplication may occur because a receiving | P does not (cannot)
renove packets that have been duplicated in the network. A TCP
receiver in turn also generates a duplicate ACK for each duplicate
segment. As with packet reordering, this results in a spurious fast
retransmit if duplication of data segnments or ACKs results in three
or nore duplicate ACKs to arrive at a TCP sender. Again, this
assunes that the duplicate acknow edgenent threshold is set to three

The negative inpact on TCP performance caused by packet reordering
and packet duplication is commonly the sanme: a single spurious
retransnmit (the fast retransnmit), and the unnecessary halving of a
TCP sender’s congestion wi ndow as a result of the subsequent fast
recovery phase [RFC2581].

The negative inpact on TCP performance caused by a spurious tineout
is nore severe. First, the tinmeout event itself causes a single
spurious retransmit, and unnecessarily forces a TCP sender into sl ow
start [RFC2581]. Then, as the connection progresses, a chain
reaction gets triggered that further decreases TCP' s perfornmance
Since the tineout was spurious, at |east sone ACKs for origina
transmits typically arrive at the TCP sender before the ACK for the
retransmt arrives. (This is unless severe packet reordering
coincided with the spurious tineout in such a way that the ACK for
the retransmit is the first acceptable ACK to arrive at the TCP
sender.) Those ACKs for original transmts then trigger an inplicit
go-back-N | oss recovery at the TCP sender [LKOO]. Assuming that none
of the outstandi ng segnents and none of the correspondi ng ACKs were

| ost, all outstanding segnents get retransnmitted unnecessarily. In
fact, during this phase, a TCP sender viol ates the packet
conservation principle [Jac88]. This is because the unnecessary go-
back-N retransmits are sent during slow start. Thus, for each packet
that | eaves the network and that belongs to the first half of the

Ludwi g & Meyer Experi ment al [Page 4]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

3.

original flight, two useless retransnits are sent into the network.
In addition, some TCPs suffer froma spurious fast retransnit. This
i s because the unnecessary go-back-N retransnits arrive as duplicates
at the TCP receiver, which in turn triggers a series of duplicate
ACKs. Note that this last spurious fast retransnmit could be avoided
with the careful variant of 'bugfix [RFC2582].

More detail ed explanations, including TCP trace plots that visualize
the effects of spurious timeouts and packet reordering, can be found
in the original proposal [LKOO].

The Eifel Detection Al gorithm

3.1 The |l dea

The goal of the Eifel detection algorithmis to allow a TCP sender to
detect a posteriori whether it has entered | oss recovery
unnecessarily. Furthernore, the TCP sender should be able to nake
this decision upon the first acceptable ACK that arrives after the

ti meout - based retransnit or the fast retransmt has been sent. This
in turn requires extra information in ACKs by which the TCP sender
can unanbi guously di stingui sh whether that first acceptable ACK was
sent in response to the original transmit or the retransmt. Such
extra information is provided by the TCP Ti nestanps option [RFC1323].
Ceneral |y speaking, tinestanps are nonotonously increasing "seria
nunbers" added into every segnment that are then echoed within the
corresponding ACKs. This is exploited by the Eifel detection
algorithmin the followi ng way.

G ven that tinestanps are enabled for a connection, a TCP sender

al ways stores the tinmestanp of the retransmit sent in the beginning
of loss recovery, i.e., the tinestanp of the timeout-based retransmit
or the fast retransmit. |If the tinmestanp of the first acceptable
ACK, that arrives after the retransnt was sent, is snaller then the
stored tinestanp of that retransmt, then that ACK nust have been
sent in response to an original transmit. Hence, the TCP sender nust
have entered | oss recovery unnecessarily.

The fact that the Eifel detection algorithmdecides upon the first
acceptable ACK is crucial to allow future response algorithnms to
avoi d the unnecessary go-back-N retransnmits that typically occur
after a spurious tineout. Also, if |loss recovery was entered
unnecessarily, a wi ndow worth of ACKs are outstanding that all carry
a timestanp that is smaller than the stored tinestanp of the
retransmt. The arrival of any one of those ACKs is sufficient for
the Eifel detection algorithmto work. Hence, the solutionis fairly

Ludwi g & Meyer Experi ment al [Page 5]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

robust agai nst ACK | osses. Even the ACK sent in response to the
retransmt, i.e., the one that carries the stored tinestanp, may get
| ost w thout conpronising the algorithm

3.2 The Al gorithm

G ven that the TCP Tinestanps option [RFC1323] is enabled for a
connection, a TCP sender MAY use the Eifel detection algorithmas
defined in this subsection

If the Eifel detection algorithmis used, the follow ng steps MIST be
taken by a TCP sender, but only upon initiation of |oss recovery,
i.e., when either the timeout-based retransmt or the fast retransmt
is sent. The Eifel detection algorithm MJST NOT be reinitiated after
| oss recovery has already started. |In particular, it nust not be
reinitiated upon subsequent tinmeouts for the same segnent, and not
upon retransmtting segnents other than the ol dest outstanding
segment, e.g., during selective |loss recovery.

(1) Set a "SpuriousRecovery" variable to FALSE (equal 0).

(2) Set a "Retransm tTS" variable to the value of the
Ti mestanp Value field of the Timestanps option included in
the retransmit sent when | oss recovery is initiated. A
TCP sender nust ensure that RetransnitTS does not get
overwritten as | oss recovery progresses, e.dg., in case of
a second timeout and subsequent second retransnit of the
sane octet.

(3) Wait for the arrival of an acceptable ACK. Wen an
acceptabl e ACK has arrived, proceed to step (4).

(4) If the value of the Tinmestanp Echo Reply field of the
acceptable ACK s Ti mestanps option is smaller than the
val ue of RetransmtTS, then proceed to step (5),
el se proceed to step (DONE)

(5) If the acceptable ACK carries a DSACK option [RFC2883],
then proceed to step (DONE)

else if during the lifetine of the TCP connection the TCP
sender has previously received an ACK with a DSACK option
or the acceptabl e ACK does not acknow edge all outstanding
data, then proceed to step (6),

el se proceed to step (DONE)

Ludwi g & Meyer Experi ment al [Page 6]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

(6) If the loss recovery has been initiated with a tinmeout-
based retransnit, then set
Spuri ousRecovery <- SPUR TO (equal 1),

el se set
SpuriousRecovery <- dupacks+1

(RESP) Do nothing (Placeholder for a response algorithnj.
(DONE) No further processing.

The conparison "smaller than" in step (4) is conservative. In
theory, if the timestanp clock is slow or the network is fast,
RetransmitTS could at nost be equal to the timestanp echoed by an ACK
sent in response to an original transmit. |In that case, it is
assuned that the |oss recovery was not falsely triggered.

Note that the condition "if during the lifetime of the TCP connection
the TCP sender has previously received an ACK with a DSACK option" in
step (5) would be true in case the TCP receiver would signal in the
SYN that it is DSACK-enabled. But unfortunately, this is not

requi red by [RFC2883].

3.3 A Corner Case: "Tineout due to loss of all ACKs" (step 5)

Even though the ol dest outstanding segnent arrived at a TCP receiver,
the TCP sender is forced into a tineout if all ACKs are |ost.

Al though the resulting retransmt is unnecessary, such a tinmeout is
unavoi dable. It should therefore not be considered spurious.

Mor eover, the subsequent reduction of the congestion wi ndow is an
appropriate response to the potentially heavy congestion in the ACK
path. The original proposal [LKOO] does not handle this case well.
It effectively disables this inplicit formof congestion control for
the ACK path, which otherwi se does not exist in TCP. This problemis
fixed by step (5) of the Eifel detection algorithmas explained in
the remai nder of this section

If all ACKs are lost while the ol dest outstanding segnent arrived at
the TCP receiver, the retransnit arrives as a duplicate. |In response
to duplicates, RFC 1323 nandates that the timestanp of the |ast
segnment that arrived in-sequence should be echoed. That tinestanp is
carried by the first acceptable ACK that arrives at the TCP sender
after loss recovery was entered, and is commonly smaller than the
timestanp carried by the retransmit. Consequently, the Eife
detection algorithmm sinterprets such a tineout as being spurious,
unl ess the TCP receiver is DSACK-enabled [RFC2883]. |In that case,
the acceptable ACK carries a DSACK option, and the Eifel algorithmis
term nated through the first part of step (5).

Ludwi g & Meyer Experi ment al [Page 7]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

Note: Not all TCP inplenentations strictly follow RFC 1323. In
response to a duplicate data segnent, sonme TCP receivers echo the
timestanp of the duplicate. Wth such TCP receivers, the corner
case discussed in this section does not apply. The tinestanp
carried by the retransmt would be echoed in the first acceptable
ACK, and the Eifel detection algorithmwould be term nated through
step (4). Thus, even though all ACKs were | ost and independent of
whet her the DSACK option was enabl ed for a connection, the Eife
detection algorithmwould have no effect.

Wth TCP receivers that are not DSACK-enabl ed, disabling the
mentioned inplicit congestion control for the ACK path is not a
problem as long as data segnments are lost, in addition to the entire
flight of ACKs. The Eifel detection algorithmmsinterprets such a
ti meout as being spurious, and the Eifel response al gorithm would
reverse the congestion control state. Still, the TCP sender woul d
respond to congestion (in the data path) as soon as it finds out
about the first loss in the outstanding flight. 1.e., the TCP sender
woul d still halve its congestion wi ndow for that flight of packets.
If no data segnent is lost while the entire flight of ACKs is |ost,
the first acceptable ACK that arrives at the TCP sender after |oss
recovery was entered acknow edges all outstanding data. In that
case, the Eifel algorithmis term nated through the second part of
step (5).

Note that there is little concern about violating the packet
conservation principle when entering slow start after an unavoi dabl e
ti meout caused by the loss of an entire flight of ACKs, i.e., when
the Eifel detection algorithmwas term nated through step (5). This
is because in that case, the acceptable ACK corresponds to the
retransmt, which is a strong indication that the pipe has drained
entirely, i.e., that no nore original transnits are in the network.
This is different with spurious tinmeouts as discussed in Section 2.

3.4 Protecting Agai nst M sbehaving TCP Receivers (the Safe Variant)

A TCP receiver can easily make a genuine retransnit appear to the TCP
sender as a spurious retransmt by forging echoed tinestanps. This
My pose a security concern

Fortunately, there is a way to nodify the Eifel detection algorithm
in a way that nmakes it robust against lying TCP receivers. The idea
is to use tinestanps as a segnent’s "secret" that a TCP receiver only
gets to know if it receives the segnent. Conversely, a TCP receiver
will not know the tinmestanp of a segnent that was lost. Hence, to
"prove" that it received the original transnit of a segment that a
TCP sender retransmitted, the TCP receiver would need to return the
tinmestanp of that original transmt. The Eifel detection algorithm

Ludwi g & Meyer Experi ment al [Page 8]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

could then be nodified to only decide that |oss recovery has been
unnecessarily entered if the first acceptable ACK echoes the
timestanp of the original transnit.

Hence, inplenenters may choose to inplenent the algorithmwth the
foll owi ng nodi fications.

Step (2) is replaced with step (2'):

(2") Set a "Retransm tTS" variable to the value of the
Ti mestanp Value field of the Timestanps option that was
included in the original transmt corresponding to the
retransmt. Note: This step requires that the TCP sender
stores the timestanps of all outstanding origina
transmits.

Step (4) is replaced with step (4'):

(4") If the value of the Tinestanp Echo Reply field of the
acceptable ACK s Tinestanps option is equal to the val ue
of the variable RetransmtTS, then proceed to step (5),

el se proceed to step (DONE)

These nodifications cone at a cost: the nodified algorithmis fairly
sensitive against ACK | osses since it relies on the arrival of the
acceptabl e ACK that corresponds to the original transmt.

Note: The first acceptable ACK that arrives after |oss recovery
has been unnecessarily entered should echo the tinestanp of the
original transmt. This assunes that the ACK corresponding to the
original transmt was not |ost, that that ACK was not reordered in
the network, and that the TCP recei ver does not forge tinestanps

but conplies with RFC 1323. In case of a spurious fast
retransmt, this is inplied by the rules for generating ACKs for
data segnents that fill in all or part of a gap in the sequence

space (see section 4.2 of [RFC2581]) and by the rules for echoing
tinmestanps in that case (see rule (C) in section 3.4 of

[RFC1323]). In case of a spurious timeout, it is likely that the
del ay that has caused the spurious timeout has al so caused the TCP
receiver’s delayed ACK tinmer [RFC1122] to expire before the
original transmt arrives. Also, in this case the rules for
generating ACKs and the rules for echoing timestanps (see rule (A
in section 3.4 of [RFC1323]) ensure that the original transmit’s
timestanp i s echoed.

Ludwi g & Meyer Experi ment al [Page 9]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

A remaining problemis that a TCP receiver night guess a | ost
segrment’s tinestanp from observing the tinmestanps of recently

recei ved segnents. For exanple, if segnent N was | ost while segnent
N-1 and N+1 have arrived, a TCP receiver could guess the timestanp
that lies in the mddle of the tinmestanps of segnments N-1 and N+1
and echo it in the ACK sent in response to the retransmt of segnent
N. Especially if the TCP sender inplenents tinmestanps with a coarse
granularity, a nisbehaving TCP receiver is likely to be successfu
with such an approach. In fact, with the 500 nms granularity
suggested in [W595], it even becones quite likely that the tinestanps
of segnents N1, N, N+1 are identical

One way to reduce this risk is to inplenent fine grained tinestanps.
Note that the granularity of the timestanps is independent of the
granularity of the retransmi ssion tinmer. For exanple, sone TCP

i npl ementations run a tinmestanp clock that ticks every mllisecond.
This should make it nore difficult for a TCP receiver to guess the
tinmestanp of a lost segnent. Alternatively, it night be possible to
conbine the tinestanps with a nonce, as is done for the Explicit
Congestion Notification (ECN) [RFC3168]. One would need to take
care, though, that the tinestanps of consecutive segnments renain
nmonot onously increasing and do not interfere with the RTT tining
defined in [RFC1323].

4. | PR Consi derations

The | ETF has been notified of intellectual property rights clainmed in
regard to sone or all of the specification contained in this
docunent. For nore information consult the online list of clained
rights at http://ww.ietf.org/ipr

The I ETF takes no position regarding the validity or scope of any
intellectual property or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; neither does it represent that it
has made any effort to identify any such rights. |Information on the
| ETF's procedures with respect to rights in standards-track and
standards-rel ated docunentati on can be found in BCP-11. Copies of
clains of rights nade avail able for publication and any assurances of
licenses to be nade available, or the result of an attenpt made to
obtain a general |icense or permission for the use of such
proprietary rights by inplenentors or users of this specification can
be obtained fromthe | ETF Secretari at.

Ludwi g & Meyer Experi ment al [Page 10]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

5. Security Considerations

There do not seemto be any security considerations associated with
the Eifel detection algorithm This is because the Eifel detection
al gorithm does not alter the existing protocol state at a TCP sender.
Note that the Eifel detection algorithmonly requires changes to the
i mpl enentati on of a TCP sender.

Moreover, a variant of the Eifel detection algorithmhas been
proposed in Section 3.4 that makes it robust against |ying TCP
receivers. This may becone rel evant when the Eifel detection
algorithmis conbined with a response al gorithm such as the Eifel
response algorithm|[LQ&3].

Acknow edgrent s

Many thanks to Keith Skl ower, Randy Katz, Stephan Baucke, Sally

Fl oyd, Vern Paxson, Mark All man, Ethan Bl anton, Andrei Gurtov, Pasi
Sarol ahti, and Al exey Kuznetsov for useful discussions that
contributed to this work.

Nor mati ve Ref erences

[RFC2581] All man, M, Paxson, V. and W Stevens, "TCP Congestion
Control", RFC 2581, April 1999.

[RFC2119] Bradner, S., "Key words for use in RFCs to |ndicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC2883] Floyd, S., Mahdavi, J., Mathis, M, Podol sky, M and A
Romanow, "An Extension to the Sel ective Acknow edgenent
(SACK) Option for TCP', RFC 2883, July 2000.

[RFC1323] Jacobson, V., Braden, R and D. Borman, "TCP Extensions for

H gh Performance", RFC 1323, May 1992.

[RFC2018] WMathis, M, Mhdavi, J., Floyd, S. and A Ronmanow, "TCP
Sel ective Acknow edgenent Options", RFC 2018, Cctober 1996.

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, Septenber 1981.

Ludwi g & Meyer Experi ment al [Page 11]

RFC 3522

The Eifel Detection Algorithmfor TCP April 2003

I nformati ve References

[BAO2]

[RFC1122]

[RFC2582]

[GuOo1]

[RFC3481]

[Jac88]

[KP87]

[LKOO]

[L&O3]

[RFC2988]

[REC791]

[RFC3168]

[SKO3]

Blanton, E. and M Al lman, "Using TCP DSACKs and SCTP
Duplicate TSNs to Detect Spurious Retransm ssions”, Wrk in
Pr ogr ess.

Braden, R, "Requirenments for Internet Hosts -
Communi cati on Layers", STD 3, RFC 1122, Cctober 1989.

Floyd, S. and T. Henderson, "The NewReno Mbdification to
TCP' s Fast Recovery Al gorithnt, RFC 2582, April 1999.

Qurtov, A, "Effect of Delays on TCP Perfornmance", In
Proceedi ngs of |FIP Personal Wreless Communications,
August 2001.

I nanmura, H., Mntenegro, G, Ludwig, R, Gurtov, A and F.
Khafizov, "TCP over Second (2.5G and Third (3G GCeneration
Wrel ess Networks", RFC 3481, February 2003.

Jacobson, V., "Congestion Avoi dance and Control", In
Proceedi ngs of ACM SI GCOVM 88.

Karn, P. and C. Partridge, "Inproving Round-Trip Tine
Estinmates in Reliable Transport Protocols", In Proceedi ngs
of ACM S| GCOWM 87.

Ludwig, R and R H Katz, "The Eifel A gorithm Mking TCP
Robust Agai nst Spurious Retransm ssions", ACM Conputer
Conmmmuni cati on Review, Vol. 30, No. 1, January 2000.

Ludwig, R and A Gurtov, "The Eifel Response Al gorithm for
TCP', Work in Progress.

Paxson, V. and M Al lman, "Conputing TCP' s Retransm ssion
Timer", RFC 2988, Novenber 2000.

Postel, J., "Internet Protocol", STD 5, RFC 791, Septenber
1981.

Ramakri shnan, K., Floyd, S. and D. Black, "The Addition of
Explicit Congestion Notification (ECN) to IP', RFC 3168,
Sept enber 2001.

Sarolahti, P. and M Kojo, "F-RTO A TCP RTO Recovery
Al gorithm for Avoiding Unnecessary Retransm ssions", Wrk
i n Progress.

Ludwi g & Meyer Experi ment al [Page 12]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

[W595] Wight, G R and W R Stevens, "TCP/IP Illustrated
Vol ume 2 (The I nplenentation)", Addison Wsley, January
1995.

[Zh86] Zhang, L., "Why TCP Tiners Don't Work Well", In Proceedi ngs
of ACM S| GCOWM 86.

Aut hors’ Addr esses
Rei ner Ludwi g
Eri csson Research
Ericsson Allee 1
52134 Herzogenrath, Gernmany
EMai | : Rei ner. Ludwi g@ed. eri csson. se
M chael Meyer
Eri csson Research
Ericsson Allee 1
52134 Her zogenrath, Germany

EMai | : M chael . Meyer @ed. eri csson. se

Ludwi g & Meyer Experi ment al [Page 13]

RFC 3522 The Eifel Detection Algorithmfor TCP April 2003

Ful I Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Ludwi g & Meyer Experi ment al [Page 14]

