
Network Working Group R. Ludwig
Request for Comments: 3522 M. Meyer
Category: Experimental Ericsson Research
 April 2003

 The Eifel Detection Algorithm for TCP

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 The Eifel detection algorithm allows a TCP sender to detect a
 posteriori whether it has entered loss recovery unnecessarily. It
 requires that the TCP Timestamps option defined in RFC 1323 be
 enabled for a connection. The Eifel detection algorithm makes use of
 the fact that the TCP Timestamps option eliminates the retransmission
 ambiguity in TCP. Based on the timestamp of the first acceptable ACK
 that arrives during loss recovery, it decides whether loss recovery
 was entered unnecessarily. The Eifel detection algorithm provides a
 basis for future TCP enhancements. This includes response algorithms
 to back out of loss recovery by restoring a TCP sender’s congestion
 control state.

Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We refer to the first-time transmission of an octet as the ’original
 transmit’. A subsequent transmission of the same octet is referred
 to as a ’retransmit’. In most cases, this terminology can likewise
 be applied to data segments as opposed to octets. However, with
 repacketization, a segment can contain both first-time transmissions
 and retransmissions of octets. In that case, this terminology is
 only consistent when applied to octets. For the Eifel detection
 algorithm, this makes no difference as it also operates correctly
 when repacketization occurs.

Ludwig & Meyer Experimental [Page 1]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 We use the term ’acceptable ACK’ as defined in [RFC793]. That is an
 ACK that acknowledges previously unacknowledged data. We use the
 term ’duplicate ACK’, and the variable ’dupacks’ as defined in
 [WS95]. The variable ’dupacks’ is a counter of duplicate ACKs that
 have already been received by a TCP sender before the fast retransmit
 is sent. We use the variable ’DupThresh’ to refer to the so-called
 duplicate acknowledgement threshold, i.e., the number of duplicate
 ACKs that need to arrive at a TCP sender to trigger a fast
 retransmit. Currently, DupThresh is specified as a fixed value of
 three [RFC2581]. Future TCPs might implement an adaptive DupThresh.

1. Introduction

 The retransmission ambiguity problem [Zh86], [KP87] is a TCP sender’s
 inability to distinguish whether the first acceptable ACK that
 arrives after a retransmit was sent in response to the original
 transmit or the retransmit. This problem occurs after a timeout-
 based retransmit and after a fast retransmit. The Eifel detection
 algorithm uses the TCP Timestamps option defined in [RFC1323] to
 eliminate the retransmission ambiguity. It thereby allows a TCP
 sender to detect a posteriori whether it has entered loss recovery
 unnecessarily.

 This added capability of a TCP sender is useful in environments where
 TCP’s loss recovery and congestion control algorithms may often get
 falsely triggered. This can be caused by packet reordering, packet
 duplication, or a sudden delay increase in the data or the ACK path
 that results in a spurious timeout. For example, such sudden delay
 increases can often occur in wide-area wireless access networks due
 to handovers, resource preemption due to higher priority traffic
 (e.g., voice), or because the mobile transmitter traverses through a
 radio coverage hole (e.g., see [Gu01]). In such wireless networks,
 the often unnecessary go-back-N retransmits that typically occur
 after a spurious timeout create a serious problem. They decrease
 end-to-end throughput, are useless load upon the network, and waste
 transmission (battery) power. Note that across such networks the use
 of timestamps is recommended anyway [RFC3481].

 Based on the Eifel detection algorithm, a TCP sender may then choose
 to implement dedicated response algorithms. One goal of such a
 response algorithm would be to alleviate the consequences of a
 falsely triggered loss recovery. This may include restoring the TCP
 sender’s congestion control state, and avoiding the mentioned
 unnecessary go-back-N retransmits. Another goal would be to adapt
 protocol parameters such as the duplicate acknowledgement threshold
 [RFC2581], and the RTT estimators [RFC2988]. This is to reduce the
 risk of falsely triggering TCP’s loss recovery again as the
 connection progresses. However, such response algorithms are outside

Ludwig & Meyer Experimental [Page 2]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 the scope of this document. Note: The original proposal, the "Eifel
 algorithm" [LK00], comprises both a detection and a response
 algorithm. This document only defines the detection part. The
 response part is defined in [LG03].

 A key feature of the Eifel detection algorithm is that it already
 detects, upon the first acceptable ACK that arrives during loss
 recovery, whether a fast retransmit or a timeout was spurious. This
 is crucial to be able to avoid the mentioned go-back-N retransmits.
 Another feature is that the Eifel detection algorithm is fairly
 robust against the loss of ACKs.

 Also the DSACK option [RFC2883] can be used to detect a posteriori
 whether a TCP sender has entered loss recovery unnecessarily [BA02].
 However, the first ACK carrying a DSACK option usually arrives at a
 TCP sender only after loss recovery has already terminated. Thus,
 the DSACK option cannot be used to eliminate the retransmission
 ambiguity. Consequently, it cannot be used to avoid the mentioned
 unnecessary go-back-N retransmits. Moreover, a DSACK-based detection
 algorithm is less robust against ACK losses. A recent proposal based
 on neither the TCP timestamps nor the DSACK option does not have the
 limitation of DSACK-based schemes, but only addresses the case of
 spurious timeouts [SK03].

2. Events that Falsely Trigger TCP Loss Recovery

 The following events may falsely trigger a TCP sender’s loss recovery
 and congestion control algorithms. This causes a so-called spurious
 retransmit, and an unnecessary reduction of the TCP sender’s
 congestion window and slow start threshold [RFC2581].

 - Spurious timeout

 - Packet reordering

 - Packet duplication

 A spurious timeout is a timeout that would not have occurred had the
 sender "waited longer". This may be caused by increased delay that
 suddenly occurs in the data and/or the ACK path. That in turn might
 cause an acceptable ACK to arrive too late, i.e., only after a TCP
 sender’s retransmission timer has expired. For the purpose of
 specifying the algorithm in Section 3, we define this case as SPUR_TO
 (equal 1).

 Note: There is another case where a timeout would not have
 occurred had the sender "waited longer": the retransmission timer
 expires, and afterwards the TCP sender receives the duplicate ACK

Ludwig & Meyer Experimental [Page 3]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 that would have triggered a fast retransmit of the oldest
 outstanding segment. We call this a ’fast timeout’, since in
 competition with the fast retransmit algorithm the timeout was
 faster. However, a fast timeout is not spurious since apparently
 a segment was in fact lost, i.e., loss recovery was initiated
 rightfully. In this document, we do not consider fast timeouts.

 Packet reordering in the network may occur because IP [RFC791] does
 not guarantee in-order delivery of packets. Additionally, a TCP
 receiver generates a duplicate ACK for each segment that arrives
 out-of-order. This results in a spurious fast retransmit if three or
 more data segments arrive out-of-order at a TCP receiver, and at
 least three of the resulting duplicate ACKs arrive at the TCP sender.
 This assumes that the duplicate acknowledgement threshold is set to
 three as defined in [RFC2581].

 Packet duplication may occur because a receiving IP does not (cannot)
 remove packets that have been duplicated in the network. A TCP
 receiver in turn also generates a duplicate ACK for each duplicate
 segment. As with packet reordering, this results in a spurious fast
 retransmit if duplication of data segments or ACKs results in three
 or more duplicate ACKs to arrive at a TCP sender. Again, this
 assumes that the duplicate acknowledgement threshold is set to three.

 The negative impact on TCP performance caused by packet reordering
 and packet duplication is commonly the same: a single spurious
 retransmit (the fast retransmit), and the unnecessary halving of a
 TCP sender’s congestion window as a result of the subsequent fast
 recovery phase [RFC2581].

 The negative impact on TCP performance caused by a spurious timeout
 is more severe. First, the timeout event itself causes a single
 spurious retransmit, and unnecessarily forces a TCP sender into slow
 start [RFC2581]. Then, as the connection progresses, a chain
 reaction gets triggered that further decreases TCP’s performance.
 Since the timeout was spurious, at least some ACKs for original
 transmits typically arrive at the TCP sender before the ACK for the
 retransmit arrives. (This is unless severe packet reordering
 coincided with the spurious timeout in such a way that the ACK for
 the retransmit is the first acceptable ACK to arrive at the TCP
 sender.) Those ACKs for original transmits then trigger an implicit
 go-back-N loss recovery at the TCP sender [LK00]. Assuming that none
 of the outstanding segments and none of the corresponding ACKs were
 lost, all outstanding segments get retransmitted unnecessarily. In
 fact, during this phase, a TCP sender violates the packet
 conservation principle [Jac88]. This is because the unnecessary go-
 back-N retransmits are sent during slow start. Thus, for each packet
 that leaves the network and that belongs to the first half of the

Ludwig & Meyer Experimental [Page 4]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 original flight, two useless retransmits are sent into the network.
 In addition, some TCPs suffer from a spurious fast retransmit. This
 is because the unnecessary go-back-N retransmits arrive as duplicates
 at the TCP receiver, which in turn triggers a series of duplicate
 ACKs. Note that this last spurious fast retransmit could be avoided
 with the careful variant of ’bugfix’ [RFC2582].

 More detailed explanations, including TCP trace plots that visualize
 the effects of spurious timeouts and packet reordering, can be found
 in the original proposal [LK00].

3. The Eifel Detection Algorithm

3.1 The Idea

 The goal of the Eifel detection algorithm is to allow a TCP sender to
 detect a posteriori whether it has entered loss recovery
 unnecessarily. Furthermore, the TCP sender should be able to make
 this decision upon the first acceptable ACK that arrives after the
 timeout-based retransmit or the fast retransmit has been sent. This
 in turn requires extra information in ACKs by which the TCP sender
 can unambiguously distinguish whether that first acceptable ACK was
 sent in response to the original transmit or the retransmit. Such
 extra information is provided by the TCP Timestamps option [RFC1323].
 Generally speaking, timestamps are monotonously increasing "serial
 numbers" added into every segment that are then echoed within the
 corresponding ACKs. This is exploited by the Eifel detection
 algorithm in the following way.

 Given that timestamps are enabled for a connection, a TCP sender
 always stores the timestamp of the retransmit sent in the beginning
 of loss recovery, i.e., the timestamp of the timeout-based retransmit
 or the fast retransmit. If the timestamp of the first acceptable
 ACK, that arrives after the retransmit was sent, is smaller then the
 stored timestamp of that retransmit, then that ACK must have been
 sent in response to an original transmit. Hence, the TCP sender must
 have entered loss recovery unnecessarily.

 The fact that the Eifel detection algorithm decides upon the first
 acceptable ACK is crucial to allow future response algorithms to
 avoid the unnecessary go-back-N retransmits that typically occur
 after a spurious timeout. Also, if loss recovery was entered
 unnecessarily, a window worth of ACKs are outstanding that all carry
 a timestamp that is smaller than the stored timestamp of the
 retransmit. The arrival of any one of those ACKs is sufficient for
 the Eifel detection algorithm to work. Hence, the solution is fairly

Ludwig & Meyer Experimental [Page 5]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 robust against ACK losses. Even the ACK sent in response to the
 retransmit, i.e., the one that carries the stored timestamp, may get
 lost without compromising the algorithm.

3.2 The Algorithm

 Given that the TCP Timestamps option [RFC1323] is enabled for a
 connection, a TCP sender MAY use the Eifel detection algorithm as
 defined in this subsection.

 If the Eifel detection algorithm is used, the following steps MUST be
 taken by a TCP sender, but only upon initiation of loss recovery,
 i.e., when either the timeout-based retransmit or the fast retransmit
 is sent. The Eifel detection algorithm MUST NOT be reinitiated after
 loss recovery has already started. In particular, it must not be
 reinitiated upon subsequent timeouts for the same segment, and not
 upon retransmitting segments other than the oldest outstanding
 segment, e.g., during selective loss recovery.

 (1) Set a "SpuriousRecovery" variable to FALSE (equal 0).

 (2) Set a "RetransmitTS" variable to the value of the
 Timestamp Value field of the Timestamps option included in
 the retransmit sent when loss recovery is initiated. A
 TCP sender must ensure that RetransmitTS does not get
 overwritten as loss recovery progresses, e.g., in case of
 a second timeout and subsequent second retransmit of the
 same octet.

 (3) Wait for the arrival of an acceptable ACK. When an
 acceptable ACK has arrived, proceed to step (4).

 (4) If the value of the Timestamp Echo Reply field of the
 acceptable ACK’s Timestamps option is smaller than the
 value of RetransmitTS, then proceed to step (5),

 else proceed to step (DONE).

 (5) If the acceptable ACK carries a DSACK option [RFC2883],
 then proceed to step (DONE),

 else if during the lifetime of the TCP connection the TCP
 sender has previously received an ACK with a DSACK option,
 or the acceptable ACK does not acknowledge all outstanding
 data, then proceed to step (6),

 else proceed to step (DONE).

Ludwig & Meyer Experimental [Page 6]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 (6) If the loss recovery has been initiated with a timeout-
 based retransmit, then set
 SpuriousRecovery <- SPUR_TO (equal 1),

 else set
 SpuriousRecovery <- dupacks+1

 (RESP) Do nothing (Placeholder for a response algorithm).

 (DONE) No further processing.

 The comparison "smaller than" in step (4) is conservative. In
 theory, if the timestamp clock is slow or the network is fast,
 RetransmitTS could at most be equal to the timestamp echoed by an ACK
 sent in response to an original transmit. In that case, it is
 assumed that the loss recovery was not falsely triggered.

 Note that the condition "if during the lifetime of the TCP connection
 the TCP sender has previously received an ACK with a DSACK option" in
 step (5) would be true in case the TCP receiver would signal in the
 SYN that it is DSACK-enabled. But unfortunately, this is not
 required by [RFC2883].

3.3 A Corner Case: "Timeout due to loss of all ACKs" (step 5)

 Even though the oldest outstanding segment arrived at a TCP receiver,
 the TCP sender is forced into a timeout if all ACKs are lost.
 Although the resulting retransmit is unnecessary, such a timeout is
 unavoidable. It should therefore not be considered spurious.
 Moreover, the subsequent reduction of the congestion window is an
 appropriate response to the potentially heavy congestion in the ACK
 path. The original proposal [LK00] does not handle this case well.
 It effectively disables this implicit form of congestion control for
 the ACK path, which otherwise does not exist in TCP. This problem is
 fixed by step (5) of the Eifel detection algorithm as explained in
 the remainder of this section.

 If all ACKs are lost while the oldest outstanding segment arrived at
 the TCP receiver, the retransmit arrives as a duplicate. In response
 to duplicates, RFC 1323 mandates that the timestamp of the last
 segment that arrived in-sequence should be echoed. That timestamp is
 carried by the first acceptable ACK that arrives at the TCP sender
 after loss recovery was entered, and is commonly smaller than the
 timestamp carried by the retransmit. Consequently, the Eifel
 detection algorithm misinterprets such a timeout as being spurious,
 unless the TCP receiver is DSACK-enabled [RFC2883]. In that case,
 the acceptable ACK carries a DSACK option, and the Eifel algorithm is
 terminated through the first part of step (5).

Ludwig & Meyer Experimental [Page 7]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 Note: Not all TCP implementations strictly follow RFC 1323. In
 response to a duplicate data segment, some TCP receivers echo the
 timestamp of the duplicate. With such TCP receivers, the corner
 case discussed in this section does not apply. The timestamp
 carried by the retransmit would be echoed in the first acceptable
 ACK, and the Eifel detection algorithm would be terminated through
 step (4). Thus, even though all ACKs were lost and independent of
 whether the DSACK option was enabled for a connection, the Eifel
 detection algorithm would have no effect.

 With TCP receivers that are not DSACK-enabled, disabling the
 mentioned implicit congestion control for the ACK path is not a
 problem as long as data segments are lost, in addition to the entire
 flight of ACKs. The Eifel detection algorithm misinterprets such a
 timeout as being spurious, and the Eifel response algorithm would
 reverse the congestion control state. Still, the TCP sender would
 respond to congestion (in the data path) as soon as it finds out
 about the first loss in the outstanding flight. I.e., the TCP sender
 would still halve its congestion window for that flight of packets.
 If no data segment is lost while the entire flight of ACKs is lost,
 the first acceptable ACK that arrives at the TCP sender after loss
 recovery was entered acknowledges all outstanding data. In that
 case, the Eifel algorithm is terminated through the second part of
 step (5).

 Note that there is little concern about violating the packet
 conservation principle when entering slow start after an unavoidable
 timeout caused by the loss of an entire flight of ACKs, i.e., when
 the Eifel detection algorithm was terminated through step (5). This
 is because in that case, the acceptable ACK corresponds to the
 retransmit, which is a strong indication that the pipe has drained
 entirely, i.e., that no more original transmits are in the network.
 This is different with spurious timeouts as discussed in Section 2.

3.4 Protecting Against Misbehaving TCP Receivers (the Safe Variant)

 A TCP receiver can easily make a genuine retransmit appear to the TCP
 sender as a spurious retransmit by forging echoed timestamps. This
 may pose a security concern.

 Fortunately, there is a way to modify the Eifel detection algorithm
 in a way that makes it robust against lying TCP receivers. The idea
 is to use timestamps as a segment’s "secret" that a TCP receiver only
 gets to know if it receives the segment. Conversely, a TCP receiver
 will not know the timestamp of a segment that was lost. Hence, to
 "prove" that it received the original transmit of a segment that a
 TCP sender retransmitted, the TCP receiver would need to return the
 timestamp of that original transmit. The Eifel detection algorithm

Ludwig & Meyer Experimental [Page 8]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 could then be modified to only decide that loss recovery has been
 unnecessarily entered if the first acceptable ACK echoes the
 timestamp of the original transmit.

 Hence, implementers may choose to implement the algorithm with the
 following modifications.

 Step (2) is replaced with step (2’):

 (2’) Set a "RetransmitTS" variable to the value of the
 Timestamp Value field of the Timestamps option that was
 included in the original transmit corresponding to the
 retransmit. Note: This step requires that the TCP sender
 stores the timestamps of all outstanding original
 transmits.

 Step (4) is replaced with step (4’):

 (4’) If the value of the Timestamp Echo Reply field of the
 acceptable ACK’s Timestamps option is equal to the value
 of the variable RetransmitTS, then proceed to step (5),

 else proceed to step (DONE).

 These modifications come at a cost: the modified algorithm is fairly
 sensitive against ACK losses since it relies on the arrival of the
 acceptable ACK that corresponds to the original transmit.

 Note: The first acceptable ACK that arrives after loss recovery
 has been unnecessarily entered should echo the timestamp of the
 original transmit. This assumes that the ACK corresponding to the
 original transmit was not lost, that that ACK was not reordered in
 the network, and that the TCP receiver does not forge timestamps
 but complies with RFC 1323. In case of a spurious fast
 retransmit, this is implied by the rules for generating ACKs for
 data segments that fill in all or part of a gap in the sequence
 space (see section 4.2 of [RFC2581]) and by the rules for echoing
 timestamps in that case (see rule (C) in section 3.4 of
 [RFC1323]). In case of a spurious timeout, it is likely that the
 delay that has caused the spurious timeout has also caused the TCP
 receiver’s delayed ACK timer [RFC1122] to expire before the
 original transmit arrives. Also, in this case the rules for
 generating ACKs and the rules for echoing timestamps (see rule (A)
 in section 3.4 of [RFC1323]) ensure that the original transmit’s
 timestamp is echoed.

Ludwig & Meyer Experimental [Page 9]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 A remaining problem is that a TCP receiver might guess a lost
 segment’s timestamp from observing the timestamps of recently
 received segments. For example, if segment N was lost while segment
 N-1 and N+1 have arrived, a TCP receiver could guess the timestamp
 that lies in the middle of the timestamps of segments N-1 and N+1,
 and echo it in the ACK sent in response to the retransmit of segment
 N. Especially if the TCP sender implements timestamps with a coarse
 granularity, a misbehaving TCP receiver is likely to be successful
 with such an approach. In fact, with the 500 ms granularity
 suggested in [WS95], it even becomes quite likely that the timestamps
 of segments N-1, N, N+1 are identical.

 One way to reduce this risk is to implement fine grained timestamps.
 Note that the granularity of the timestamps is independent of the
 granularity of the retransmission timer. For example, some TCP
 implementations run a timestamp clock that ticks every millisecond.
 This should make it more difficult for a TCP receiver to guess the
 timestamp of a lost segment. Alternatively, it might be possible to
 combine the timestamps with a nonce, as is done for the Explicit
 Congestion Notification (ECN) [RFC3168]. One would need to take
 care, though, that the timestamps of consecutive segments remain
 monotonously increasing and do not interfere with the RTT timing
 defined in [RFC1323].

4. IPR Considerations

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights at http://www.ietf.org/ipr.

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

Ludwig & Meyer Experimental [Page 10]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

5. Security Considerations

 There do not seem to be any security considerations associated with
 the Eifel detection algorithm. This is because the Eifel detection
 algorithm does not alter the existing protocol state at a TCP sender.
 Note that the Eifel detection algorithm only requires changes to the
 implementation of a TCP sender.

 Moreover, a variant of the Eifel detection algorithm has been
 proposed in Section 3.4 that makes it robust against lying TCP
 receivers. This may become relevant when the Eifel detection
 algorithm is combined with a response algorithm such as the Eifel
 response algorithm [LG03].

Acknowledgments

 Many thanks to Keith Sklower, Randy Katz, Stephan Baucke, Sally
 Floyd, Vern Paxson, Mark Allman, Ethan Blanton, Andrei Gurtov, Pasi
 Sarolahti, and Alexey Kuznetsov for useful discussions that
 contributed to this work.

Normative References

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M. and A.
 Romanow, "An Extension to the Selective Acknowledgement
 (SACK) Option for TCP", RFC 2883, July 2000.

 [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October 1996.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

Ludwig & Meyer Experimental [Page 11]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

Informative References

 [BA02] Blanton, E. and M. Allman, "Using TCP DSACKs and SCTP
 Duplicate TSNs to Detect Spurious Retransmissions", Work in
 Progress.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2582] Floyd, S. and T. Henderson, "The NewReno Modification to
 TCP’s Fast Recovery Algorithm", RFC 2582, April 1999.

 [Gu01] Gurtov, A., "Effect of Delays on TCP Performance", In
 Proceedings of IFIP Personal Wireless Communications,
 August 2001.

 [RFC3481] Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A. and F.
 Khafizov, "TCP over Second (2.5G) and Third (3G) Generation
 Wireless Networks", RFC 3481, February 2003.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", In
 Proceedings of ACM SIGCOMM 88.

 [KP87] Karn, P. and C. Partridge, "Improving Round-Trip Time
 Estimates in Reliable Transport Protocols", In Proceedings
 of ACM SIGCOMM 87.

 [LK00] Ludwig, R. and R. H. Katz, "The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions", ACM Computer
 Communication Review, Vol. 30, No. 1, January 2000.

 [LG03] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm for
 TCP", Work in Progress.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC3168] Ramakrishnan, K., Floyd, S. and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [SK03] Sarolahti, P. and M. Kojo, "F-RTO: A TCP RTO Recovery
 Algorithm for Avoiding Unnecessary Retransmissions", Work
 in Progress.

Ludwig & Meyer Experimental [Page 12]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

 [WS95] Wright, G. R. and W. R. Stevens, "TCP/IP Illustrated,
 Volume 2 (The Implementation)", Addison Wesley, January
 1995.

 [Zh86] Zhang, L., "Why TCP Timers Don’t Work Well", In Proceedings
 of ACM SIGCOMM 86.

Authors’ Addresses

 Reiner Ludwig
 Ericsson Research
 Ericsson Allee 1
 52134 Herzogenrath, Germany

 EMail: Reiner.Ludwig@eed.ericsson.se

 Michael Meyer
 Ericsson Research
 Ericsson Allee 1
 52134 Herzogenrath, Germany

 EMail: Michael.Meyer@eed.ericsson.se

Ludwig & Meyer Experimental [Page 13]

RFC 3522 The Eifel Detection Algorithm for TCP April 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ludwig & Meyer Experimental [Page 14]

