
Network Working Group R. Frye
Request for Comments: 3584 Vibrant Solutions
BCP: 74 D. Levi
Obsoletes: 2576 Nortel Networks
Category: Best Current Practice S. Routhier
 Wind River Systems, Inc.
 B. Wijnen
 Lucent Technologies
 August 2003

 Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework

Status of this Memo

 This document specifies an Internet Best Current Practices for the
 Internet Community, and requests discussion and suggestions for
 improvements. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 The purpose of this document is to describe coexistence between
 version 3 of the Internet-standard Network Management Framework,
 (SNMPv3), version 2 of the Internet-standard Network Management
 Framework (SNMPv2), and the original Internet-standard Network
 Management Framework (SNMPv1). This document also describes how to
 convert MIB modules from SMIv1 format to SMIv2 format. This document
 obsoletes RFC 2576.

Frye, et al. Best Current Practice [Page 1]

RFC 3584 Coexistence between SNMP versions August 2003

Table Of Contents

 1. Overview . 3
 1.1. SNMPv1 . 4
 1.2. SNMPv2 . 4
 1.3. SNMPv3 . 5
 2. SMI and Management Information Mappings. 5
 2.1. MIB Modules. 6
 2.1.1. Object Definitions 6
 2.1.2. Trap and Notification Definitions 8
 2.2. Compliance Statements. 9
 2.3. Capabilities Statements. 9
 3. Translating Notification Parameters. 10
 3.1. Translating SNMPv1 Notification Parameters to
 SNMPv2 Notification Parameters 11
 3.2. Translating SNMPv2 Notification Parameters to
 SNMPv1 Notification Parameters 12
 4. Approaches to Coexistence in a Multi-lingual Network 14
 4.1. SNMPv1 and SNMPv2 Access to MIB Data 14
 4.2. Multi-lingual implementations. 15
 4.2.1. Command Generator. 15
 4.2.2. Command Responder. 16
 4.2.2.1. Handling Counter64 16
 4.2.2.2. Mapping SNMPv2 Exceptions. 17
 4.2.2.2.1. Mapping noSuchObject
 and noSuchInstance. . . . 18
 4.2.2.2.2. Mapping endOfMibView. . . 18
 4.2.2.3. Processing An SNMPv1 GetReques . . . 18
 4.2.2.4. Processing An SNMPv1 GetNextRequest. 19
 4.2.2.5. Processing An SNMPv1 SetRequest. . . 20
 4.2.3. Notification Originator. 21
 4.2.4. Notification Receiver. 21
 4.3. Proxy Implementations. 22
 4.3.1. Upstream Version Greater Than Downstream
 Version. 22
 4.3.2. Upstream Version Less Than Downstream Version. 23
 4.4. Error Status Mappings. 25
 5. Message Processing Models and Security Models. 26
 5.1. Mappings . 26
 5.2. The SNMPv1 MP Model and SNMPv1 Community-based
 Security Model . 26
 5.2.1. Processing An Incoming Request 27
 5.2.2. Generating An Outgoing Response. 29
 5.2.3. Generating An Outgoing Notification. 29
 5.2.4. Proxy Forwarding Of Requests 30
 5.3. The SNMP Community MIB Module. 30
 6. Intellectual Property Statement. 42
 7. Acknowledgments. 43

Frye, et al. Best Current Practice [Page 2]

RFC 3584 Coexistence between SNMP versions August 2003

 8. Security Considerations. 43
 9. References . 44
 9.1. Normative References 44
 9.2. Informative References 46
 Appendix A. Change Log. 47
 A.1. Changes From RFC 2576 47
 A.2. Changes Between RFC 1908 and RFC 2576 49
 Editors’ Addresses . 50
 Full Copyright Statement . 51

1. Overview

 The purpose of this document is to describe coexistence between
 version 3 of the Internet-standard Network Management Framework,
 termed the SNMP version 3 framework (SNMPv3), version 2 of the
 Internet-standard Network Management Framework, termed the SNMP
 version 2 framework (SNMPv2), and the original Internet-standard
 Network Management Framework (SNMPv1).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 There are four general aspects of coexistence described in this
 document. Each of these is described in a separate section:

 - Conversion of MIB documents between SMIv1 and SMIv2 formats is
 documented in section 2.

 - Mapping of notification parameters is documented in section 3.

 - Approaches to coexistence between entities which support the
 various versions of SNMP in a multi-lingual network is documented
 in section 4. This section addresses the processing of protocol
 operations in multi-lingual implementations, as well as behaviour
 of proxy implementations.

 - The SNMPv1 Message Processing Model and Community-Based Security
 Model, which provides mechanisms for adapting SNMPv1 into the
 View-Based Access Control Model (VACM) [20], is documented in
 section 5 (this section also addresses the SNMPv2c Message
 Processing Model and Community-Based Security Model).

Frye, et al. Best Current Practice [Page 3]

RFC 3584 Coexistence between SNMP versions August 2003

1.1. SNMPv1

 SNMPv1 is defined by these documents:

 - STD 15, RFC 1157 [RFC1157] which defines the Simple Network
 Management Protocol (SNMPv1), the protocol used for network access
 to managed objects.

 - STD 16, RFC 1155 [RFC1155] which defines the Structure of
 Management Information (SMIv1), the mechanisms used for describing
 and naming objects for the purpose of management.

 - STD 16, RFC 1212 [RFC1212] which defines a more concise
 description mechanism, which is wholly consistent with the SMIv1.

 - RFC 1215 [RFC1215] which defines a convention for defining Traps
 for use with the SMIv1.

 Note that throughout this document, the term ’SMIv1’ is used. This
 term generally refers to the information presented in RFC 1155, RFC
 1212, and RFC 1215.

1.2. SNMPv2

 SNMPv2 is defined by these documents:

 - STD 58, RFC 2578 which defines Version 2 of the Structure of
 Management Information (SMIv2) [RFC2578].

 - STD 58, RFC 2579 which defines common MIB "Textual Conventions"
 [RFC2579].

 - STD 58, RFC 2580 which defines Conformance Statements and
 requirements for defining agent and manager capabilities
 [RFC2580].

 - STD 62, RFC 3416 which defines the Protocol Operations used in
 processing [RFC3416].

 - STD 62, RFC 3417 which defines the Transport Mappings used "on the
 wire" [RFC3417].

 - STD 62, RFC 3418 which defines the basic Management Information
 Base for monitoring and controlling some basic common functions of
 SNMP entities [RFC3418].

 Note that SMIv2 as used throughout this document refers to the first
 three documents listed above (RFCs 2578, 2579, and 2580).

Frye, et al. Best Current Practice [Page 4]

RFC 3584 Coexistence between SNMP versions August 2003

 The following document augments the definition of SNMPv2:

 - RFC 1901 [RFC1901] is an Experimental definition for using SNMPv2
 PDUs within a community-based message wrapper. This is referred
 to throughout this document as SNMPv2c.

1.3. SNMPv3

 SNMPv3 is defined by these documents:

 - STD 62, RFC 3411 which defines an Architecture for Describing SNMP
 Management Frameworks [RFC3411].

 - STD 62, RFC 3412 which defines Message Processing and Dispatching
 [RFC3412].

 - STD 62, RFC 3413 which defines various SNMP Applications
 [RFC3413].

 - STD 62, RFC 3414 which defines the User-based Security Model
 (USM), providing for both Authenticated and Private (encrypted)
 SNMP messages [RFC3414].

 - STD 62, RFC 3415 which defines the View-based Access Control Model
 (VACM), providing the ability to limit access to different MIB
 objects on a per-user basis [RFC3415].

 SNMPv3 also uses the SNMPv2 definitions of RFCs 3416 through 3418 and
 the SMIv2 definitions of 2578 through 2580 described above. Note
 that text throughout this document that refers to SNMPv2 PDU types
 and protocol operations applies to both SNMPv2c and SNMPv3.

2. SMI and Management Information Mappings

 The SMIv2 approach towards describing collections of managed objects
 is nearly a proper superset of the approach defined in the SMIv1.
 For example, both approaches use an adapted subset of ASN.1 [ASN1] as
 the basis for a formal descriptive notation. Indeed, one might note
 that the SMIv2 approach largely codifies the existing practice for
 defining MIB modules, based on extensive experience with the SMIv1.

 The following sections consider the three areas: MIB modules,
 compliance statements, and capabilities statements.

Frye, et al. Best Current Practice [Page 5]

RFC 3584 Coexistence between SNMP versions August 2003

2.1. MIB Modules

 MIB modules defined using the SMIv1 may continue to be used with
 protocol versions which use SNMPv2 PDUs. However, for SMIv1 MIB
 modules to conform to the SMIv2, the following changes SHALL be made:

2.1.1. Object Definitions

 In general, conversion of a MIB module does not require the
 deprecation of the objects contained therein. If the definition of
 an object is truly inadequate for its intended purpose, the object
 SHALL be deprecated or obsoleted, otherwise deprecation is not
 required.

 (1) The IMPORTS statement MUST reference SNMPv2-SMI, instead of
 RFC1155-SMI and RFC-1212.

 (2) The MODULE-IDENTITY macro MUST be invoked immediately after any
 IMPORTs statement.

 (3) For any object with a SYNTAX clause value of Counter, the object
 MUST have the value of its SYNTAX clause changed to Counter32.

 (4) For any object with a SYNTAX clause value of Gauge, the object
 MUST have the value of its SYNTAX clause changed to Gauge32, or
 Unsigned32 where appropriate.

 (5) For all objects, the ACCESS clause MUST be replaced by a MAX-
 ACCESS clause. The value of the MAX-ACCESS clause SHALL be the
 same as that of the ACCESS clause unless some other value makes
 "protocol sense" as the maximal level of access for the object.
 In particular, object types for which instances can be
 explicitly created by a protocol set operation, SHALL have a
 MAX-ACCESS clause of "read-create". If the value of the ACCESS
 clause is "write-only", then the value of the MAX-ACCESS clause
 MUST be "read-write", and the DESCRIPTION clause SHALL note that
 reading this object will result in implementation-specific
 results. Note that in SMIv1, the ACCESS clause specifies the
 minimal required access, while in SMIv2, the MAX-ACCESS clause
 specifies the maximum allowed access. This should be considered
 when converting an ACCESS clause to a MAX-ACCESS clause.

 (6) For all objects, if the value of the STATUS clause is
 "mandatory" or "optional", the value MUST be replaced with
 "current", "deprecated", or "obsolete" depending on the current
 usage of such objects.

Frye, et al. Best Current Practice [Page 6]

RFC 3584 Coexistence between SNMP versions August 2003

 (7) For any object not containing a DESCRIPTION clause, the object
 MUST have a DESCRIPTION clause defined.

 (8) For any object corresponding to a conceptual row which does not
 have an INDEX clause, the object MUST have either an INDEX
 clause or an AUGMENTS clause defined.

 (9) If any INDEX clause contains a reference to an object with a
 syntax of NetworkAddress, then a new object MUST be created and
 placed in this INDEX clause immediately preceding the object
 whose syntax is NetworkAddress. This new object MUST have a
 syntax of INTEGER, it MUST be not-accessible, and its value MUST
 always be 1. The effect of this, and the preceding bullet, is
 to allow one to convert a MIB module in SMIv1 format to one in
 SMIv2 format, and then use it with the SNMPv1 protocol with no
 impact to existing SNMPv1 agents and managers.

 (10) For any object with a SYNTAX of NetworkAddress, the SYNTAX MUST
 be changed to IpAddress. Note that the use of NetworkAddress in
 new MIB documents is strongly discouraged (in fact, new MIB
 documents should be written using SMIv2, which does not define
 NetworkAddress).

 (11) For any object containing a DEFVAL clause with an OBJECT
 IDENTIFIER value which is expressed as a collection of sub-
 identifiers, the value MUST be changed to reference a single
 ASN.1 identifier. This may require defining a series of new
 administrative assignments (OBJECT IDENTIFIERS) in order to
 define the single ASN.1 identifier.

 (12) One or more OBJECT-GROUPS MUST be defined, and related objects
 MUST be collected into appropriate groups. Note that SMIv2
 requires all OBJECT-TYPEs to be a member of at least one
 OBJECT-GROUP.

 (13) For any non-columnar object that is instanced as if it were
 immediately subordinate to a conceptual row, the value of the
 STATUS clause of that object MUST be changed to "obsolete".

 (14) For any conceptual row object that is not immediately
 subordinate to a conceptual table, the value of the STATUS
 clause of that object (and all subordinate objects) MUST be
 changed to "obsolete".

Frye, et al. Best Current Practice [Page 7]

RFC 3584 Coexistence between SNMP versions August 2003

 Other changes are desirable, but not necessary:

 (1) Creation and deletion of conceptual rows is inconsistent using
 the SMIv1. The SMIv2 corrects this. As such, if the MIB module
 undergoes review early in its lifetime, and it contains
 conceptual tables which allow creation and deletion of
 conceptual rows, then the objects relating to those tables MAY
 be deprecated and replaced with objects defined using the new
 approach. The approach based on SMIv2 can be found in section 7
 of RFC 2578 [RFC2578], and the RowStatus and StorageType
 TEXTUAL-CONVENTIONs are described in section 2 of RFC 2579
 [RFC2579].

 (2) For any object with an integer-valued SYNTAX clause, in which
 the corresponding INTEGER does not have a range restriction
 (i.e., the INTEGER has neither a defined set of named-number
 enumerations nor an assignment of lower- and upper-bounds on its
 value), the object SHOULD have the value of its SYNTAX clause
 changed to Integer32, or have an appropriate range specified.

 (3) For any object with a string-valued SYNTAX clause, in which the
 corresponding OCTET STRING does not have a size restriction
 (i.e., the OCTET STRING has no assignment of lower- and upper-
 bounds on its length), the bounds for the size of the object
 SHOULD be defined.

 (4) All textual conventions informally defined in the MIB module
 SHOULD be redefined using the TEXTUAL-CONVENTION macro. Such a
 change would not necessitate deprecating objects previously
 defined using an informal textual convention.

 (5) For any object which represents a measurement in some kind of
 units, a UNITS clause SHOULD be added to the definition of that
 object.

 (6) For any conceptual row which is an extension of another
 conceptual row, i.e., for which subordinate columnar objects
 both exist and are identified via the same semantics as the
 other conceptual row, an AUGMENTS clause SHOULD be used in place
 of the INDEX clause for the object corresponding to the
 conceptual row which is an extension.

2.1.2. Trap and Notification Definitions

 If a MIB module is changed to conform to the SMIv2, then each
 occurrence of the TRAP-TYPE macro MUST be changed to a corresponding
 invocation of the NOTIFICATION-TYPE macro:

Frye, et al. Best Current Practice [Page 8]

RFC 3584 Coexistence between SNMP versions August 2003

 (1) The IMPORTS statement MUST NOT reference RFC-1215 [RFC1215], and
 MUST reference SNMPv2-SMI instead.

 (2) The ENTERPRISE clause MUST be removed.

 (3) The VARIABLES clause MUST be renamed to the OBJECTS clause.

 (4) A STATUS clause MUST be added, with an appropriate value.
 Normally the value should be ’current’, although ’deprecated’ or
 ’obsolete’ may be used as needed.

 (5) The value of an invocation of the NOTIFICATION-TYPE macro is an
 OBJECT IDENTIFIER, not an INTEGER, and MUST be changed
 accordingly. Specifically, if the value of the ENTERPRISE
 clause is not ’snmp’ then the value of the invocation SHALL be
 the value of the ENTERPRISE clause extended with two sub-
 identifiers, the first of which has the value 0, and the second
 has the value of the invocation of the TRAP-TYPE. If the value
 of the ENTERPRISE clause is ’snmp’, then the value of the
 invocation of the NOTIFICATION-TYPE macro SHALL be mapped in the
 same manner as described in section 3.1 in this document.

 (6) A DESCRIPTION clause MUST be added, if not already present.

 (7) One or more NOTIFICATION-GROUPs MUST be defined, and related
 notifications MUST be collected into those groups. Note that
 SMIv2 requires that all NOTIFICATION-TYPEs be a member of at
 least one NOTIFICATION-GROUP.

2.2. Compliance Statements

 For those information modules which are "standards track", a
 corresponding invocation of the MODULE-COMPLIANCE macro and related
 OBJECT-GROUP and/or NOTIFICATION-GROUP macros MUST be included within
 the information module (or in a companion information module), and
 any commentary text in the information module which relates to
 compliance SHOULD be removed. Typically this editing can occur when
 the information module undergoes review.

 Note that a MODULE-COMPLIANCE statement is not required for a MIB
 document that is not on the standards track (for example, an
 enterprise MIB), though it may be useful in some circumstances to
 define a MODULE-COMPLIANCE statement for such a MIB document.

2.3. Capabilities Statements

 RFC 1303 [RFC1303] uses the MODULE-CONFORMANCE macro to describe an
 agent’s capabilities with respect to one or more MIB modules.

Frye, et al. Best Current Practice [Page 9]

RFC 3584 Coexistence between SNMP versions August 2003

 Converting such a description for use with the SMIv2 requires these
 changes:

 (1) The macro name AGENT-CAPABILITIES MUST be used instead of
 MODULE-CONFORMANCE.

 (2) The STATUS clause MUST be added, with a value of ’current’.

 (3) All occurrences of the CREATION-REQUIRES clause MUST either be
 omitted if appropriate, or be changed such that the semantics
 are consistent with RFC 2580 [RFC2580].

 In order to ease coexistence, object groups defined in an SMIv1
 compliant MIB module may be referenced by the INCLUDES clause of an
 invocation of the AGENT-CAPABILITIES macro: upon encountering a
 reference to an OBJECT IDENTIFIER subtree defined in an SMIv1 MIB
 module, all leaf objects which are subordinate to the subtree and
 have a STATUS clause value of mandatory are deemed to be INCLUDEd.
 (Note that this method is ambiguous when different revisions of an
 SMIv1 MIB have different sets of mandatory objects under the same
 subtree; in such cases, the only solution is to rewrite the MIB using
 the SMIv2 in order to define the object groups unambiguously.)

3. Translating Notification Parameters

 This section describes how parameters used for generating
 notifications are translated between the format used for SNMPv1
 notification protocol operations and the format used for SNMPv2
 notification protocol operations. The parameters used to generate a
 notification are called ’notification parameters’. The format of
 parameters used for SNMPv1 notification protocol operations is
 referred to in this document as ’SNMPv1 notification parameters’.
 The format of parameters used for SNMPv2 notification protocol
 operations is referred to in this document as ’SNMPv2 notification
 parameters’.

 The situations where notification parameters MUST be translated are:

 - When an entity generates a set of notification parameters in a
 particular format, and the configuration of the entity indicates
 that the notification must be sent using an SNMP message version
 that requires the other format for notification parameters.

 - When a proxy receives a notification that was sent using an SNMP
 message version that requires one format of notification
 parameters, and must forward the notification using an SNMP
 message version that requires the other format of notification
 parameters.

Frye, et al. Best Current Practice [Page 10]

RFC 3584 Coexistence between SNMP versions August 2003

 In addition, it MAY be desirable to translate notification parameters
 in a notification receiver application in order to present
 notifications to the end user in a consistent format.

 Note that for the purposes of this section, the set of notification
 parameters is independent of whether the notification is to be sent
 as a trap or an inform.

 SNMPv1 notification parameters consist of:

 - An enterprise parameter (OBJECT IDENTIFIER).

 - An agent-addr parameter (NetworkAddress).

 - A generic-trap parameter (INTEGER).

 - A specific-trap parameter (INTEGER).

 - A time-stamp parameter (TimeTicks).

 - A list of variable-bindings (VarBindList).

 SNMPv2 notification parameters consist of:

 - A sysUpTime parameter (TimeTicks). This appears in the first
 variable-binding in an SNMPv2-Trap-PDU or InformRequest-PDU.

 - An snmpTrapOID parameter (OBJECT IDENTIFIER). This appears in the
 second variable-binding in an SNMPv2-Trap-PDU or InformRequest-
 PDU, and is equal to the value portion of that variable-binding
 (not the name portion, as both the name and value are OBJECT
 IDENTIFIERs).

 - A list of variable-bindings (VarBindList). This refers to all but
 the first two variable-bindings in an SNMPv2-Trap-PDU or
 InformRequest-PDU.

3.1. Translating SNMPv1 Notification Parameters to SNMPv2 Notification
 Parameters

 The following procedure describes how to translate SNMPv1
 notification parameters into SNMPv2 notification parameters:

 (1) The SNMPv2 sysUpTime parameter SHALL be taken directly from the
 SNMPv1 time-stamp parameter.

Frye, et al. Best Current Practice [Page 11]

RFC 3584 Coexistence between SNMP versions August 2003

 (2) If the SNMPv1 generic-trap parameter is ’enterpriseSpecific(6)’,
 the SNMPv2 snmpTrapOID parameter SHALL be the concatenation of
 the SNMPv1 enterprise parameter and two additional sub-
 identifiers, ’0’, and the SNMPv1 specific-trap parameter.

 (3) If the SNMPv1 generic-trap parameter is not
 ’enterpriseSpecific(6)’, the SNMPv2 snmpTrapOID parameter SHALL
 be the corresponding trap as defined in section 2 of RFC 3418
 [RFC3418]:

 generic-trap
 parameter snmpTrapOID.0
 ============ =============
 0 1.3.6.1.6.3.1.1.5.1 (coldStart)
 1 1.3.6.1.6.3.1.1.5.2 (warmStart)
 2 1.3.6.1.6.3.1.1.5.3 (linkDown)
 3 1.3.6.1.6.3.1.1.5.4 (linkUp)
 4 1.3.6.1.6.3.1.1.5.5 (authenticationFailure)
 5 1.3.6.1.6.3.1.1.5.6 (egpNeighborLoss)

 (4) The SNMPv2 variable-bindings SHALL be the SNMPv1 variable-
 bindings. In addition, if the translation is being performed by
 a proxy in order to forward a received trap, three additional
 variable-bindings will be appended, if these three additional
 variable-bindings do not already exist in the SNMPv1 variable-
 bindings. The name portion of the first additional variable
 binding SHALL contain snmpTrapAddress.0, and the value SHALL
 contain the SNMPv1 agent-addr parameter. The name portion of
 the second additional variable binding SHALL contain
 snmpTrapCommunity.0, and the value SHALL contain the value of
 the community-string field from the received SNMPv1 message
 which contained the SNMPv1 Trap-PDU. The name portion of the
 third additional variable binding SHALL contain
 snmpTrapEnterprise.0 [RFC3418], and the value SHALL be the
 SNMPv1 enterprise parameter.

3.2. Translating SNMPv2 Notification Parameters to SNMPv1 Notification
 Parameters

 The following procedure describes how to translate SNMPv2
 notification parameters into SNMPv1 notification parameters:

 (1) The SNMPv1 enterprise parameter SHALL be determined as follows:

 - If the SNMPv2 snmpTrapOID parameter is one of the standard
 traps as defined in RFC 3418 [RFC3418], then the SNMPv1
 enterprise parameter SHALL be set to the value of the
 variable-binding in the SNMPv2 variable-bindings whose name is

Frye, et al. Best Current Practice [Page 12]

RFC 3584 Coexistence between SNMP versions August 2003

 snmpTrapEnterprise.0 if that variable-binding exists. If it
 does not exist, the SNMPv1 enterprise parameter SHALL be set
 to the value ’snmpTraps’ as defined in RFC 3418 [RFC3418].

 - If the SNMPv2 snmpTrapOID parameter is not one of the standard
 traps as defined in RFC 3418 [RFC3418], then the SNMPv1
 enterprise parameter SHALL be determined from the SNMPv2
 snmpTrapOID parameter as follows:

 - If the next-to-last sub-identifier of the snmpTrapOID value
 is zero, then the SNMPv1 enterprise SHALL be the SNMPv2
 snmpTrapOID value with the last 2 sub-identifiers removed,
 otherwise

 - If the next-to-last sub-identifier of the snmpTrapOID value
 is non-zero, then the SNMPv1 enterprise SHALL be the SNMPv2
 snmpTrapOID value with the last sub-identifier removed.

 (2) The SNMPv1 agent-addr parameter SHALL be determined based on the
 situation in which the translation occurs.

 - If the translation occurs within a notification originator
 application, and the notification is to be sent over IP, the
 SNMPv1 agent-addr parameter SHALL be set to the IP address of
 the SNMP entity in which the notification originator resides.
 If the notification is to be sent over some other transport,
 the SNMPv1 agent-addr parameter SHALL be set to 0.0.0.0.

 - If the translation occurs within a proxy application, the
 proxy must attempt to extract the original source of the
 notification from the variable-bindings. If the SNMPv2
 variable-bindings contains a variable binding whose name is
 snmpTrapAddress.0, the agent-addr parameter SHALL be set to
 the value of that variable binding. Otherwise, the SNMPv1
 agent-addr parameter SHALL be set to 0.0.0.0.

 (3) If the SNMPv2 snmpTrapOID parameter is one of the standard traps
 as defined in RFC 3418 [RFC3418], the SNMPv1 generic-trap
 parameter SHALL be set as follows:

 snmpTrapOID.0 parameter generic-trap
 =============================== ============
 1.3.6.1.6.3.1.1.5.1 (coldStart) 0
 1.3.6.1.6.3.1.1.5.2 (warmStart) 1
 1.3.6.1.6.3.1.1.5.3 (linkDown) 2
 1.3.6.1.6.3.1.1.5.4 (linkUp) 3
 1.3.6.1.6.3.1.1.5.5 (authenticationFailure) 4
 1.3.6.1.6.3.1.1.5.6 (egpNeighborLoss) 5

Frye, et al. Best Current Practice [Page 13]

RFC 3584 Coexistence between SNMP versions August 2003

 Otherwise, the SNMPv1 generic-trap parameter SHALL be set to 6.

 (4) If the SNMPv2 snmpTrapOID parameter is one of the standard traps
 as defined in RFC 3418 [RFC3418], the SNMPv1 specific-trap
 parameter SHALL be set to zero. Otherwise, the SNMPv1
 specific-trap parameter SHALL be set to the last sub-identifier
 of the SNMPv2 snmpTrapOID parameter.

 (5) The SNMPv1 time-stamp parameter SHALL be taken directly from the
 SNMPv2 sysUpTime parameter.

 (6) The SNMPv1 variable-bindings SHALL be the SNMPv2 variable-
 bindings (and note that the SNMPv2 variable-bindings do not
 include the variable-bindings containing sysUpTime.0,
 snmpTrapOID.0). Note, however, that if the SNMPv2 variable-
 bindings contain any objects whose type is Counter64, the
 translation to SNMPv1 notification parameters cannot be
 performed. In this case, the notification cannot be encoded in
 an SNMPv1 packet (and so the notification cannot be sent using
 SNMPv1, see section 4.2.3 and section 4.3).

4. Approaches to Coexistence in a Multi-lingual Network

 There are two basic approaches to coexistence in a multi-lingual
 network, multi-lingual implementations and proxy implementations.
 Multi-lingual implementations allow elements in a network to
 communicate with each other using an SNMP version which both elements
 support. This allows a multi-lingual implementation to communicate
 with any mono-lingual implementation, regardless of the SNMP version
 supported by the mono-lingual implementation.

 Proxy implementations provide a mechanism for translating between
 SNMP versions using a third party network element. This allows
 network elements which support only a single, but different, SNMP
 version to communicate with each other. Proxy implementations are
 also useful for securing communications over an insecure link between
 two locally secure networks.

4.1. SNMPv1 and SNMPv2 Access to MIB Data

 Throughout section 4., this document refers to ’SNMPv1 Access to MIB
 Data’ and ’SNMPv2 Access to MIB Data’. These terms refer to the part
 of an SNMP agent which actually accesses instances of MIB objects,
 and which actually initiates generation of notifications.
 Differences between the two types of access to MIB data are:

 - Error-status values generated.

Frye, et al. Best Current Practice [Page 14]

RFC 3584 Coexistence between SNMP versions August 2003

 - Generation of exception codes.

 - Use of the Counter64 data type.

 - The format of parameters provided when a notification is
 generated.

 SNMPv1 access to MIB data may generate SNMPv1 error-status values,
 will never generate exception codes nor use the Counter64 data type,
 and will provide SNMPv1 format parameters for generating
 notifications. Note also that SNMPv1 access to MIB data will
 actually never generate a readOnly error (a noSuchName error would
 always occur in the situation where one would expect a readOnly
 error).

 SNMPv2 access to MIB data may generate SNMPv2 error-status values,
 may generate exception codes, may use the Counter64 data type, and
 will provide SNMPv2 format parameters for generating notifications.
 Note that SNMPv2 access to MIB data will never generate readOnly,
 noSuchName, or badValue errors.

 Note that a particular multi-lingual implementation may choose to
 implement all access to MIB data as SNMPv2 access to MIB data, and
 perform the translations described herein for SNMPv1-based
 transactions.

 Further, note that there is no mention of ’SNMPv3 access to MIB data’
 in this document, as SNMPv3 uses SNMPv2 PDU types and protocol
 operations.

4.2. Multi-lingual implementations

 This approach requires an entity to support multiple SNMP message
 versions. Typically this means supporting SNMPv1, SNMPv2c, and
 SNMPv3 message versions. The behaviour of various types of SNMP
 applications which support multiple message versions is described in
 the following sections. This approach allows entities which support
 multiple SNMP message versions to coexist with and communicate with
 entities which support only a single SNMP message version.

4.2.1. Command Generator

 A command generator must select an appropriate message version when
 sending requests to another entity. One way to achieve this is to
 consult a local database to select the appropriate message version.

 In addition, a command generator MUST ’downgrade’ GetBulk requests to
 GetNext requests when selecting SNMPv1 as the message version for an

Frye, et al. Best Current Practice [Page 15]

RFC 3584 Coexistence between SNMP versions August 2003

 outgoing request. This is done by simply changing the operation type
 to GetNext, ignoring any non-repeaters and max-repetitions values,
 and setting error-status and error-index to zero.

4.2.2. Command Responder

 A command responder must be able to deal with both SNMPv1 and SNMPv2
 access to MIB data. There are three aspects to dealing with this. A
 command responder must:

 - Deal correctly with SNMPv2 access to MIB data that returns a
 Counter64 value while processing an SNMPv1 message,

 - Deal correctly with SNMPv2 access to MIB data that returns one of
 the three exception values while processing an SNMPv1 message, and

 - Map SNMPv2 error codes returned from SNMPv2 access to MIB data
 into SNMPv1 error codes when processing an SNMPv1 message.

 Note that SNMPv1 error codes SHOULD NOT be used without any change
 when processing SNMPv2c or SNMPv3 messages, except in the case of
 proxy forwarding. Also, SNMPv1 access to MIB data SHOULD NOT be used
 when processing SNMPv2c or SNMPv3 messages. In the case of proxy
 forwarding, for backwards compatibility, SNMPv1 error codes may be
 used without any change in a forwarded SNMPv2c or SNMPv3 message.

 The following sections describe the behaviour of a command responder
 application which supports multiple SNMP message versions, and which
 uses SNMPv2 access to MIB data when processing an SNMPv1 message.

4.2.2.1. Handling Counter64

 The SMIv2 [RFC2578] defines one new syntax that is incompatible with
 SMIv1. This syntax is Counter64. All other syntaxes defined by
 SMIv2 are compatible with SMIv1.

 The impact on multi-lingual command responders is that they MUST NOT
 ever return a variable binding containing a Counter64 value in a
 response to a request that was received using the SNMPv1 message
 version.

 Multi-lingual command responders SHALL take the approach that object
 instances whose type is Counter64 are implicitly excluded from view
 when processing an SNMPv1 message. So:

 - On receipt of an SNMPv1 GetRequest-PDU containing a variable
 binding whose name field points to an object instance of type
 Counter64, a GetResponsePDU SHALL be returned, with an error-

Frye, et al. Best Current Practice [Page 16]

RFC 3584 Coexistence between SNMP versions August 2003

 status of noSuchName and the error-index set to the variable
 binding that caused this error.

 - On an SNMPv1 GetNextRequest-PDU, any object instance which
 contains a syntax of Counter64 SHALL be skipped, and the next
 accessible object instance that does not have the syntax of
 Counter64 SHALL be retrieved. If no such object instance exists,
 then an error-status of noSuchName SHALL be returned, and the
 error-index SHALL be set to the variable binding that caused this
 error.

 - Any SNMPv1 request which contains a variable binding with a
 Counter64 value is ill-formed, so the foregoing rules do not
 apply. If that error is detected, a response SHALL NOT be
 returned, since it would contain a copy of the ill-formed variable
 binding. Instead, the offending PDU SHALL be discarded and the
 counter snmpInASNParseErrs SHALL be incremented.

4.2.2.2. Mapping SNMPv2 Exceptions

 SNMPv2 provides a feature called exceptions, which allow an SNMPv2
 Response PDU to return as much management information as possible,
 even when an error occurs. However, SNMPv1 does not support
 exceptions, and so an SNMPv1 Response PDU cannot return any
 management information, and can only return an error-status and an
 error-index value.

 When an SNMPv1 request is received, a command responder MUST check
 any variable bindings returned using SNMPv2 access to MIB data for
 exception values, and convert these exception values into SNMPv1
 error codes.

 The type of exception that can be returned when accessing MIB data
 and the action taken depends on the type of SNMP request.

 - For a GetRequest, a noSuchObject or noSuchInstance exception may
 be returned.

 - For a GetNextRequest, an endOfMibView exception may be returned.

 - No exceptions will be returned for a SetRequest, and a
 GetBulkRequest should only be received in an SNMPv2c or SNMPv3
 message, so these request types may be ignored when mapping
 exceptions.

 Note that when a response contains multiple exceptions, it is an
 implementation choice as to which variable binding the error-index
 should reference.

Frye, et al. Best Current Practice [Page 17]

RFC 3584 Coexistence between SNMP versions August 2003

4.2.2.2.1. Mapping noSuchObject and noSuchInstance

 A noSuchObject or noSuchInstance exception generated by an SNMPv2
 access to MIB data indicates that the requested object instance can
 not be returned. The SNMPv1 error code for this condition is
 noSuchName, and so the error-status field of the response PDU SHALL
 be set to noSuchName. Also, the error-index field SHALL be set to
 the index of the variable binding for which an exception occurred (if
 there is more than one then it is an implementation decision as to
 which is used), and the variable binding list from the original
 request SHALL be returned with the response PDU.

4.2.2.2.2. Mapping endOfMibView

 When an SNMPv2 access to MIB data returns a variable binding
 containing an endOfMibView exception, it indicates that there are no
 object instances available which lexicographically follow the object
 in the request. In an SNMPv1 agent, this condition normally results
 in a noSuchName error, and so the error-status field of the response
 PDU SHALL be set to noSuchName. Also, the error-index field SHALL be
 set to the index of the variable binding for which an exception
 occurred (if there is more than one then it is an implementation
 decision as to which is used), and the variable binding list from the
 original request SHALL be returned with the response PDU.

4.2.2.3. Processing An SNMPv1 GetRequest

 When processing an SNMPv1 GetRequest, the following procedures MUST
 be followed when using an SNMPv2 access to MIB data.

 When such an access to MIB data returns response data using SNMPv2
 syntax and error-status values, then:

 (1) If the error-status is anything other than noError,

 - The error status SHALL be translated to an SNMPv1 error-
 status using the table in section 4.4, "Error Status
 Mappings".

 - The error-index SHALL be set to the position (in the
 original request) of the variable binding that caused the
 error-status.

 - The variable binding list of the response PDU SHALL be made
 exactly the same as the variable binding list that was
 received in the original request.

Frye, et al. Best Current Practice [Page 18]

RFC 3584 Coexistence between SNMP versions August 2003

 (2) If the error-status is noError, the variable bindings SHALL be
 checked for any SNMPv2 exception (noSuchObject or
 noSuchInstance) or an SNMPv2 syntax that is unknown to SNMPv1
 (Counter64). If there are any such variable bindings, one of
 those variable bindings SHALL be selected (it is an
 implementation choice as to which is selected), and:

 - The error-status SHALL be set to noSuchName,

 - The error-index SHALL be set to the position (in the
 variable binding list of the original request) of the
 selected variable binding, and

 - The variable binding list of the response PDU SHALL be
 exactly the same as the variable binding list that was
 received in the original request.

 (3) If there are no such variable bindings, then:

 - The error-status SHALL be set to noError,

 - The error-index SHALL be set to zero, and

 - The variable binding list of the response SHALL be composed
 from the data as it is returned by the access to MIB data.

4.2.2.4. Processing An SNMPv1 GetNextRequest

 When processing an SNMPv1 GetNextRequest, the following procedures
 MUST be followed when SNMPv2 access to MIB data is used as part of
 processing the request. There may be repetitive accesses to MIB data
 to try to find the first object which lexicographically follows each
 of the objects in the request. This is implementation specific.
 These procedures are followed only for data returned when using
 SNMPv2 access to MIB data. Data returned using SNMPv1 access to MIB
 data may be treated in the normal manner for an SNMPv1 request.

 First, if the access to MIB data returns an error-status of anything
 other than noError:

 (1) The error status SHALL be translated to an SNMPv1 error-status
 using the table in section 4.4, "Error Status Mappings".

 (2) The error-index SHALL be set to the position (in the original
 request) of the variable binding that caused the error-status.

Frye, et al. Best Current Practice [Page 19]

RFC 3584 Coexistence between SNMP versions August 2003

 (3) The variable binding list of the response PDU SHALL be exactly
 the same as the variable binding list that was received in the
 original request.

 Otherwise, if the access to MIB data returns an error-status of
 noError:

 (1) Any variable bindings containing an SNMPv2 syntax of Counter64
 SHALL be considered to be not in view, and MIB data SHALL be
 accessed as many times as is required until either a value other
 than Counter64 is returned, or an error or endOfMibView
 exception occurs.

 (2) If there is any variable binding that contains an SNMPv2
 exception endOfMibView (if there is more than one then it is an
 implementation decision as to which is chosen):

 - The error-status SHALL be set to noSuchName,

 - The error-index SHALL be set to the position (in the
 variable binding list of the original request) of the
 variable binding that returned such an SNMPv2 exception, and

 - The variable binding list of the response PDU SHALL be
 exactly the same as the variable binding list that was
 received in the original request.

 (3) If there are no such variable bindings, then:

 - The error-status SHALL be set to noError,

 - The error-index SHALL be set to zero, and

 - The variable binding list of the response SHALL be composed
 from the data as it is returned by the access to MIB data.

4.2.2.5. Processing An SNMPv1 SetRequest

 When processing an SNMPv1 SetRequest, the following procedures MUST
 be followed when using SNMPv2 access to MIB data.

 When such MIB access returns response data using SNMPv2 syntax and
 error-status values, and the error-status is anything other than
 noError, then:

 - The error status SHALL be translated to an SNMPv1 error-status
 using the table in section 4.4, "Error Status Mappings".

Frye, et al. Best Current Practice [Page 20]

RFC 3584 Coexistence between SNMP versions August 2003

 - The error-index SHALL be set to the position (in the original
 request) of the variable binding that caused the error-status.

 - The variable binding list of the response PDU SHALL be made
 exactly the same as the variable binding list that was received in
 the original request.

4.2.3. Notification Originator

 A notification originator must be able to translate between SNMPv1
 notification parameters and SNMPv2 notification parameters in order
 to send a notification using a particular SNMP message version. If a
 notification is generated using SNMPv1 notification parameters, and
 configuration information specifies that notifications be sent using
 SNMPv2c or SNMPv3, the notification parameters must be translated to
 SNMPv2 notification parameters. Likewise, if a notification is
 generated using SNMPv2 notification parameters, and configuration
 information specifies that notifications be sent using SNMPv1, the
 notification parameters must be translated to SNMPv1 notification
 parameters. In this case, if the notification cannot be translated
 (due to the presence of a Counter64 type), it will not be sent using
 SNMPv1.

 When a notification originator generates a notification, using
 parameters obtained from the SNMP-TARGET-MIB and SNMP-NOTIFICATION-
 MIB, if the SNMP version used to generate the notification is SNMPv1,
 the PDU type used will always be a TrapPDU, regardless of whether the
 value of snmpNotifyType is trap(1) or inform(2).

 Note also that access control and notification filtering are
 performed in the usual manner for notifications, regardless of the
 SNMP message version to be used when sending a notification. The
 parameters for performing access control are found in the usual
 manner (i.e., from inspecting the SNMP-TARGET-MIB and SNMP-
 NOTIFICATION-MIB). In particular, when generating an SNMPv1 Trap, in
 order to perform the access check specified in [RFC3413], section
 3.3, bullet (3), the notification originator may need to generate a
 value for snmpTrapOID.0 as described in section 3.1, bullets (2) and
 (3) of this document. If the SNMPv1 notification parameters being
 used were previously translated from a set of SNMPv2 notification
 parameters, this value may already be known, in which case it need
 not be generated.

4.2.4. Notification Receiver

 There are no special requirements of a notification receiver.
 However, an implementation may find it useful to allow a higher level
 application to request whether notifications should be delivered to a

Frye, et al. Best Current Practice [Page 21]

RFC 3584 Coexistence between SNMP versions August 2003

 higher level application using SNMPv1 notification parameter or
 SNMPv2 notification parameters. The notification receiver would then
 translate notification parameters when required in order to present a
 notification using the desired set of parameters.

4.3. Proxy Implementations

 A proxy implementation may be used to enable communication between
 entities which support different SNMP message versions. This is
 accomplished in a proxy forwarder application by performing
 translations on PDUs. These translations depend on the PDU type, the
 SNMP version of the packet containing a received PDU, and the SNMP
 version to be used to forward a received PDU. The following sections
 describe these translations. In all cases other than those described
 below, the proxy SHALL forward a received PDU without change, subject
 to size constraints as defined in section 5.3 (Community MIB) of this
 document. Note that in the following sections, the ’Upstream
 Version’ refers to the version used between the command generator or
 notification receiver and the proxy, and the ’Downstream Version’
 refers to the version used between the proxy and the command
 responder or notification originator, regardless of the PDU type or
 direction.

4.3.1. Upstream Version Greater Than Downstream Version

 - If a GetBulkRequest-PDU is received and must be forwarded using
 the SNMPv1 message version, the proxy forwarder SHALL act as if
 the non-repeaters and max-repetitions fields were both set to 0,
 and SHALL set the tag of the PDU to GetNextRequest-PDU.

 - If a GetResponse-PDU is received whose error-status field has a
 value of ’tooBig’, and the message will be forwarded using the
 SNMPv2c or SNMPv3 message version, and the original request
 received by the proxy was not a GetBulkRequest-PDU, the proxy
 forwarder SHALL remove the contents of the variable-bindings field
 and ensure that the error-index field is set to 0 before
 forwarding the response.

 - If a GetResponse-PDU is received whose error-status field has a
 value of ’tooBig’, and the message will be forwarded using the
 SNMPv2c or SNMPv3 message version, and the original request
 received by the proxy was a GetBulkRequest-PDU, the proxy
 forwarder SHALL re-send the forwarded request (which would have
 been altered to be a GetNextRequest-PDU) with all but the first
 variable-binding removed. The proxy forwarder SHALL only re-send
 such a request a single time. If the resulting GetResponse-PDU
 also contains an error-status field with a value of ’tooBig’, then
 the proxy forwarder SHALL remove the contents of the variable-

Frye, et al. Best Current Practice [Page 22]

RFC 3584 Coexistence between SNMP versions August 2003

 bindings field, and change the error-status field to ’noError’,
 and ensure that the error-index field is set to 0 before
 forwarding the response. Note that if the original request only
 contained a single variable-binding, the proxy may skip re-sending
 the request and simply remove the variable-bindings and change the
 error-status to ’noError’. Further note that, while it might have
 been possible to fit more variable bindings if the proxy only re-
 sent the request multiple times, and stripped only a single
 variable binding from the request at a time, this is deemed too
 expensive. The approach described here preserves the behaviour of
 a GetBulkRequest as closely as possible, without incurring the
 cost of re-sending the request multiple times.

 - If a Trap-PDU is received, and will be forwarded using the SNMPv2c
 or SNMPv3 message version, the proxy SHALL apply the translation
 rules described in section 3, and SHALL forward the notification
 as an SNMPv2-Trap-PDU.

 Note that when an SNMPv1 agent generates a message containing a
 Trap-PDU which is subsequently forwarded by one or more proxy
 forwarders using SNMP versions other than SNMPv1, the community
 string and agent-addr fields from the original message generated
 by the SNMPv1 agent will be preserved through the use of the
 snmpTrapAddress and snmpTrapCommunity objects.

4.3.2. Upstream Version Less Than Downstream Version

 - If a GetResponse-PDU is received in response to a GetRequest-PDU
 (previously generated by the proxy) which contains variable-
 bindings of type Counter64 or which contain an SNMPv2 exception
 code, and the message would be forwarded using the SNMPv1 message
 version, the proxy MUST generate an alternate response PDU
 consisting of the request-id and variable bindings from the
 original SNMPv1 request, containing a noSuchName error-status
 value, and containing an error-index value indicating the position
 of the variable-binding containing the Counter64 type or exception
 code.

 - If a GetResponse-PDU is received in response to a GetNextRequest-
 PDU (previously generated by the proxy) which contains variable-
 bindings that contain an SNMPv2 exception code, and the message
 would be forwarded using the SNMPv1 message version, the proxy
 MUST generate an alternate response PDU consisting of the
 request-id and variable bindings from the original SNMPv1 request,
 containing a noSuchName error-status value, and containing an
 error-index value indicating the position of the variable-binding
 containing the exception code.

Frye, et al. Best Current Practice [Page 23]

RFC 3584 Coexistence between SNMP versions August 2003

 - If a GetResponse-PDU is received in response to a GetNextRequest-
 PDU (previously generated by the proxy) which contains variable-
 bindings of type Counter64, the proxy MUST re-send the entire
 GetNextRequest-PDU, with the following modifications. For any
 variable bindings in the received GetResponse which contained
 Counter64 types, the proxy substitutes the object names of these
 variable bindings for the corresponding object names in the
 previously-sent GetNextRequest. The proxy MUST repeat this
 process until no Counter64 objects are returned. Note that an
 implementation may attempt to optimize this process of skipping
 Counter64 objects. One approach to such an optimization would be
 to replace the last sub-identifier of the object names of varbinds
 containing a Counter64 type with 65535 if that sub-identifier is
 less than 65535, or with 4294967295 if that sub-identifier is
 greater than 65535. This approach should skip multiple instances
 of the same Counter64 object, while maintaining compatibility with
 some broken agent implementations (which only use 16-bit integers
 for sub-identifiers).

 Deployment Hint: The process of repeated GetNext requests used by
 a proxy when Counter64 types are returned can be expensive. When
 deploying a proxy, this can be avoided by configuring the target
 agents to which the proxy forwards requests in a manner such that
 any objects of type Counter64 are in fact not-in-view for the
 principal that the proxy is using when communicating with these
 agents. However, when using such a configuration, one should be
 careful to use a different principal for communicating with the
 target agent when an incoming SNMPv2c or SNMPv3 request is
 received, to ensure that objects of type Counter64 are properly
 returned.

 - If a GetResponse-PDU is received which contains an SNMPv2 error-
 status value of wrongValue, wrongEncoding, wrongType, wrongLength,
 inconsistentValue, noAccess, notWritable, noCreation,
 inconsistentName, resourceUnavailable, commitFailed, undoFailed,
 or authorizationError, and the message would be forwarded using
 the SNMPv1 message version, the error-status value is modified
 using the mappings in section 4.4.

 - If an SNMPv2-Trap-PDU is received, and will be forwarded using the
 SNMPv1 message version, the proxy SHALL apply the translation
 rules described in section 3, and SHALL forward the notification
 as a Trap-PDU. Note that if the translation fails due to the
 existence of a Counter64 data-type in the received SNMPv2-Trap-
 PDU, the trap cannot be forwarded using SNMPv1.

Frye, et al. Best Current Practice [Page 24]

RFC 3584 Coexistence between SNMP versions August 2003

 - If an InformRequest-PDU is received, any configuration information
 indicating that it would be forwarded using the SNMPv1 message
 version SHALL be ignored. An InformRequest-PDU can only be
 forwarded using the SNMPv2c or SNMPv3 message version. The
 InformRequest-PDU may still be forwarded if there is other
 configuration information indicating that it should be forwarded
 using SNMPv2c or SNMPv3.

4.4. Error Status Mappings

 The following tables shows the mappings of SNMPv1 error-status values
 into SNMPv2 error-status values, and the mappings of SNMPv2 error-
 status values into SNMPv1 error-status values.

 SNMPv1 error-status SNMPv2 error-status
 =================== ===================
 noError noError
 tooBig tooBig
 noSuchName noSuchName
 badValue badValue
 genErr genErr

 SNMPv2 error-status SNMPv1 error-status
 =================== ===================
 noError noError
 tooBig tooBig
 genErr genErr
 wrongValue badValue
 wrongEncoding badValue
 wrongType badValue
 wrongLength badValue
 inconsistentValue badValue
 noAccess noSuchName
 notWritable noSuchName
 noCreation noSuchName
 inconsistentName noSuchName
 resourceUnavailable genErr
 commitFailed genErr
 undoFailed genErr
 authorizationError noSuchName

 Whenever the SNMPv2 error-status value of authorizationError is
 translated to an SNMPv1 error-status value of noSuchName, the value
 of snmpInBadCommunityUses MUST be incremented.

Frye, et al. Best Current Practice [Page 25]

RFC 3584 Coexistence between SNMP versions August 2003

5. Message Processing Models and Security Models

 In order to adapt SNMPv1 (and SNMPv2c) into the SNMP architecture,
 the following Message Processing (MP) models are defined in this
 document:

 - The SNMPv1 Message Processing Model

 - The SNMPv1 Community-Based Security Model

 - The SNMPv2c Message Processing Model

 - The SNMPv2c Community-Based Security Model

 In most respects, the SNMPv1 Message Processing Model and the SNMPv2c
 Message Processing Model are identical, and so these are not
 discussed independently in this document. Differences between the
 two models are described as required.

 Similarly, the SNMPv1 Community-Based Security Model and the SNMPv2c
 Community-Based Security Model are nearly identical, and so are not
 discussed independently. Differences between these two models are
 also described as required.

5.1. Mappings

 The SNMPv1 (and SNMPv2c) Message Processing Model and Security Model
 require mappings between parameters used in SNMPv1 (and SNMPv2c)
 messages, and the version independent parameters used in the SNMP
 architecture [RFC3411]. The parameters which MUST be mapped consist
 of the SNMPv1 (and SNMPv2c) community name, and the SNMP securityName
 and contextEngineID/contextName pair. A MIB module (the SNMP-
 COMMUNITY-MIB) is provided in this document in order to perform these
 mappings. This MIB provides mappings in both directions, that is, a
 community name may be mapped to a securityName, contextEngineID, and
 contextName, or the combination of securityName, contextEngineID, and
 contextName may be mapped to a community name.

5.2. The SNMPv1 MP Model and SNMPv1 Community-based Security Model

 The SNMPv1 Message Processing Model handles processing of SNMPv1
 messages. The processing of messages is handled generally in the
 same manner as described in RFC 1157 [RFC1157], with differences and
 clarifications as described in the following sections. The
 SnmpMessageProcessingModel value for SNMPv1 is 0 (the value for
 SNMPv2c is 1).

Frye, et al. Best Current Practice [Page 26]

RFC 3584 Coexistence between SNMP versions August 2003

5.2.1. Processing An Incoming Request

 In RFC 1157 [RFC1157], section 4.1, item (3) for an entity which
 receives a message, states that various parameters are passed to the
 "desired authentication scheme". The desired authentication scheme
 in this case is the SNMPv1 Community-Based Security Model, which will
 be called using the processIncomingMsg ASI. The parameters passed to
 this ASI are:

 - The messageProcessingModel, which will be 0 (or 1 for SNMPv2c).

 - The maxMessageSize, which should be the maximum size of a message
 that the receiving entity can generate (since there is no such
 value in the received message).

 - The securityParameters, which consist of the community string and
 the message’s source and destination transport domains and
 addresses.

 - The securityModel, which will be 1 (or 2 for SNMPv2c).

 - The securityLevel, which will be noAuthNoPriv.

 - The wholeMsg and wholeMsgLength.

 The Community-Based Security Model will attempt to select a row in
 the snmpCommunityTable. This is done by performing a search through
 the snmpCommunityTable in lexicographic order. The first entry for
 which the following matching criteria are satisfied will be selected:

 - The community string is equal to the snmpCommunityName value.

 - If the snmpCommunityTransportTag is an empty string, it is ignored
 for the purpose of matching. If the snmpCommunityTransportTag is
 not an empty string, the transportDomain and transportAddress from
 which the message was received must match one of the entries in
 the snmpTargetAddrTable selected by the snmpCommunityTransportTag
 value. The snmpTargetAddrTMask object is used as described in
 section 5.3 when checking whether the transportDomain and
 transportAddress matches a entry in the snmpTargetAddrTable.

 If no such entry can be found, an authentication failure occurs as
 described in RFC 1157 [RFC1157], and the snmpInBadCommunityNames
 counter is incremented.

Frye, et al. Best Current Practice [Page 27]

RFC 3584 Coexistence between SNMP versions August 2003

 The parameters returned from the Community-Based Security Model are:

 - The securityEngineID, which will always be the local value of
 snmpEngineID.0.

 - The securityName, which will be the value of
 snmpCommunitySecurityName from the selected row in the
 snmpCommunityTable.

 - The scopedPDU. Note that this parameter will actually consist of
 three values, the contextSnmpEngineID (which will be the value of
 snmpCommunityContextEngineID from the selected entry in the
 snmpCommunityTable), the contextName (which will be the value of
 snmpCommunityContextName from the selected entry in the
 snmpCommunityTable), and the PDU. These must be separate values,
 since the first two do not actually appear in the message.

 - The maxSizeResponseScopedPDU, which will be derived using the
 minimum of the maxMessageSize above, and the value of
 snmpTargetAddrMMS of the selected row in the snmpTargetAddrTable.
 If no such entry was selected, then this value will be derived
 from the maxMessageSize only.

 - The securityStateReference, which MUST contain the community
 string from the original request.

 The appropriate SNMP application will then be called (depending on
 the value of the contextEngineID and the request type in the PDU)
 using the processPdu ASI. The parameters passed to this ASI are:

 - The messageProcessingModel, which will be 0 (or 1 for SNMPv2c).

 - The securityModel, which will be 1 (or 2 for SNMPv2c).

 - The securityName, which was returned from the call to
 processIncomingMsg.

 - The securityLevel, which is noAuthNoPriv.

 - The contextEngineID, which was returned as part of the ScopedPDU
 from the call to processIncomingMsg.

 - The contextName, which was returned as part of the ScopedPDU from
 the call to processIncomingMsg.

 - The pduVersion, which should indicate an SNMPv1 version PDU (if
 the message version was SNMPv2c, this would be an SNMPv2 version
 PDU).

Frye, et al. Best Current Practice [Page 28]

RFC 3584 Coexistence between SNMP versions August 2003

 - The PDU, which was returned as part of the ScopedPDU from the call
 to processIncomingMsg.

 - The maxSizeResponseScopedPDU which was returned from the call to
 processIncomingMsg.

 - The stateReference which was returned from the call to
 processIncomingMsg.

 The SNMP application should process the request as described
 previously in this document. Note that access control is applied by
 an SNMPv3 command responder application as usual. The parameters as
 passed to the processPdu ASI will be used in calls to the
 isAccessAllowed ASI.

5.2.2. Generating An Outgoing Response

 There is no special processing required for generating an outgoing
 response. However, the community string used in an outgoing response
 must be the same as the community string from the original request.
 The original community string MUST be present in the
 securityStateReference information of the original request.

5.2.3. Generating An Outgoing Notification

 In a multi-lingual SNMP entity, the parameters used for generating
 notifications will be obtained by examining the SNMP-TARGET-MIB and
 SNMP-NOTIFICATION-MIB. These parameters will be passed to the SNMPv1
 Message Processing Model using the sendPdu ASI. The SNMPv1 Message
 Processing Model will attempt to locate an appropriate community
 string in the snmpCommunityTable based on the parameters passed to
 the sendPdu ASI. This is done by performing a search through the
 snmpCommunityTable in lexicographic order. The first entry for which
 the following matching criteria are satisfied will be selected:

 - The securityName must be equal to the snmpCommunitySecurityName
 value.

 - The contextEngineID must be equal to the
 snmpCommunityContextEngineID value.

 - The contextName must be equal to the snmpCommunityContextName
 value.

Frye, et al. Best Current Practice [Page 29]

RFC 3584 Coexistence between SNMP versions August 2003

 - If the snmpCommunityTransportTag is an empty string, it is ignored
 for the purpose of matching. If the snmpCommunityTransportTag is
 not an empty string, the transportDomain and transportAddress must
 match one of the entries in the snmpTargetAddrTable selected by
 the snmpCommunityTransportTag value.

 If no such entry can be found, the notification is not sent.
 Otherwise, the community string used in the outgoing notification
 will be the value of the snmpCommunityName column of the selected
 row.

5.2.4. Proxy Forwarding Of Requests

 In a proxy forwarding application, when a received request is to be
 forwarded using the SNMPv1 Message Processing Model, the parameters
 used for forwarding will be obtained by examining the SNMP-PROXY-MIB
 and the SNMP-TARGET-MIB. These parameters will be passed to the
 SNMPv1 Message Processing Model using the sendPdu ASI. The SNMPv1
 Message Processing Model will attempt to locate an appropriate
 community string in the snmpCommunityTable based on the parameters
 passed to the sendPdu ASI. This is done by performing a search
 through the snmpCommunityTable in lexicographic order. The first
 entry for which the following matching criteria are satisfied will be
 selected:

 - The securityName must be equal to the snmpCommunitySecurityName
 value.

 - The contextEngineID must be equal to the
 snmpCommunityContextEngineID value.

 - The contextName must be equal to the snmpCommunityContextName
 value.

 If no such entry can be found, the proxy forwarding application
 should follow the procedure described in RFC 3413 [RFC3413], section
 3.5.1.1, item (2). This procedure states that the snmpProxyDrops
 counter [RFC3418] is incremented, and that a Response-PDU is
 generated by calling the Dispatcher using the returnResponsePdu
 abstract service interface.

5.3. The SNMP Community MIB Module

 The SNMP-COMMUNITY-MIB contains objects for mapping between community
 strings and version-independent SNMP message parameters. In
 addition, this MIB provides a mechanism for performing source address
 validation on incoming requests, and for selecting community strings
 based on target addresses for outgoing notifications. These two

Frye, et al. Best Current Practice [Page 30]

RFC 3584 Coexistence between SNMP versions August 2003

 features are accomplished by providing a tag in the
 snmpCommunityTable which selects sets of entries in the
 snmpTargetAddrTable [RFC3413]. In addition, the SNMP-COMMUNITY-MIB
 augments the snmpTargetAddrTable with a transport address mask value
 and a maximum message size value. These values are used only where
 explicitly stated. In cases where the snmpTargetAddrTable is used
 without mention of these augmenting values, the augmenting values
 should be ignored.

 The mask value, snmpTargetAddrTMask, allows selected entries in the
 snmpTargetAddrTable to specify multiple addresses (rather than just a
 single address per entry). This would typically be used to specify a
 subnet in an snmpTargetAddrTable rather than just a single address.
 The mask value is used to select which bits of a transport address
 must match bits of the corresponding instance of
 snmpTargetAddrTAddress, in order for the transport address to match a
 particular entry in the snmpTargetAddrTable. The value of an
 instance of snmpTargetAddrTMask must always be an OCTET STRING whose
 length is either zero or the same as that of the corresponding
 instance of snmpTargetAddrTAddress.

 Note that the snmpTargetAddrTMask object is only used where
 explicitly stated. In particular, it is not used when generating
 notifications (i.e., when generating notifications, entries in the
 snmpTargetAddrTable only specify individual addresses). If use of
 the snmpTargetAddrTMask object is not mentioned in text describing
 matching addresses in the snmpTargetAddrTable, then its value MUST be
 ignored.

 When checking whether a transport address matches an entry in the
 snmpTargetAddrTable, if the value of snmpTargetAddrTMask is a zero-
 length OCTET STRING, the mask value is ignored, and the value of
 snmpTargetAddrTAddress must exactly match a transport address.
 Otherwise, each bit of each octet in the snmpTargetAddrTMask value
 corresponds to the same bit of the same octet in the
 snmpTargetAddrTAddress value. For bits that are set in the
 snmpTargetAddrTMask value (i.e., bits equal to 1), the corresponding
 bits in the snmpTargetAddrTAddress value must match the bits in a
 transport address. If all such bits match, the transport address is
 matched by that snmpTargetAddrTable entry. Otherwise, the transport
 address is not matched.

 The maximum message size value, snmpTargetAddrMMS, is used to
 determine the maximum message size acceptable to another SNMP entity
 when the value cannot be determined from the protocol.

Frye, et al. Best Current Practice [Page 31]

RFC 3584 Coexistence between SNMP versions August 2003

 SNMP-COMMUNITY-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 IpAddress,
 MODULE-IDENTITY,
 OBJECT-TYPE,
 Integer32,
 snmpModules
 FROM SNMPv2-SMI
 RowStatus,
 StorageType
 FROM SNMPv2-TC
 SnmpAdminString,
 SnmpEngineID
 FROM SNMP-FRAMEWORK-MIB
 SnmpTagValue,
 snmpTargetAddrEntry
 FROM SNMP-TARGET-MIB
 MODULE-COMPLIANCE,
 OBJECT-GROUP
 FROM SNMPv2-CONF;

 snmpCommunityMIB MODULE-IDENTITY
 LAST-UPDATED "200308060000Z" -- 06 Aug 2003, midnight
 ORGANIZATION "SNMPv3 Working Group"
 CONTACT-INFO "WG-email: snmpv3@lists.tislabs.com
 Subscribe: majordomo@lists.tislabs.com
 In msg body: subscribe snmpv3

 Co-Chair: Russ Mundy
 SPARTA, Inc
 Postal: 7075 Samuel Morse Drive
 Columbia, MD 21045
 USA
 EMail: mundy@tislabs.com
 Phone: +1 410-872-1515

 Co-Chair: David Harrington
 Enterasys Networks
 Postal: 35 Industrial Way
 P. O. Box 5005
 Rochester, New Hampshire 03866-5005
 USA
 EMail: dbh@enterasys.com
 Phone: +1 603-337-2614

 Co-editor: Rob Frye
 Vibrant Solutions

Frye, et al. Best Current Practice [Page 32]

RFC 3584 Coexistence between SNMP versions August 2003

 Postal: 2711 Prosperity Ave
 Fairfax, Virginia 22031
 USA
 E-mail: rfrye@vibrant-1.com
 Phone: +1-703-270-2000

 Co-editor: David B. Levi
 Nortel Networks
 Postal: 3505 Kesterwood Drive
 Knoxville, Tennessee 37918
 E-mail: dlevi@nortelnetworks.com
 Phone: +1 865 686 0432

 Co-editor: Shawn A. Routhier
 Wind River Systems, Inc.
 Postal: 500 Wind River Way
 Alameda, CA 94501
 E-mail: sar@epilogue.com
 Phone: +1 510 749 2095

 Co-editor: Bert Wijnen
 Lucent Technologies
 Postal: Schagen 33
 3461 GL Linschoten
 Netherlands
 Email: bwijnen@lucent.com
 Phone: +31-348-407-775
 "

 DESCRIPTION
 "This MIB module defines objects to help support
 coexistence between SNMPv1, SNMPv2c, and SNMPv3.

 Copyright (C) The Internet Society (2003) This
 version of this MIB module is part of RFC 3584;
 see the RFC itself for full legal notices."

 REVISION "200308060000Z" -- 06 Aug 2003
 DESCRIPTION
 "Updated the LAST-UPDATED, CONTACT-INFO, and REVISION
 clauses and added a copyright notice to the
 DESCRIPTION clause of the MIB module’s
 MODULE-IDENTITY invocation.

 Updated the description of snmpCommunityTransportTag
 to make it consistent with the rest of the document.

 Updated the description of ‘snmpTargetAddrMMS’ to

Frye, et al. Best Current Practice [Page 33]

RFC 3584 Coexistence between SNMP versions August 2003

 clarify that a value of 0 means that the maximum
 message size is unknown.

 Changed the name of ’snmpCommunityGroup’ to
 snmpCommunityTableGroup to avoid a name conflict
 with the SNMPv2-MIB.

 Updated DESCRIPTION of snmpCommunityName.

 Updated DESCRIPTION of snmpTrapCommunity.

 Added snmpCommunityMIBFullCompliance.

 This version published as RFC 3584."

 REVISION "200003060000Z" -- 6 Mar 2000
 DESCRIPTION "This version published as RFC 2576."

 ::= { snmpModules 18 }

-- Administrative assignments ************************************

snmpCommunityMIBObjects
 OBJECT IDENTIFIER ::= { snmpCommunityMIB 1 }

snmpCommunityMIBConformance
 OBJECT IDENTIFIER ::= { snmpCommunityMIB 2 }

--
-- The snmpCommunityTable contains a database of community
-- strings. This table provides mappings between community
-- strings, and the parameters required for View-based Access
-- Control.
--

snmpCommunityTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpCommunityEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of community strings configured in the SNMP
 engine’s Local Configuration Datastore (LCD)."
 ::= { snmpCommunityMIBObjects 1 }

snmpCommunityEntry OBJECT-TYPE
 SYNTAX SnmpCommunityEntry
 MAX-ACCESS not-accessible
 STATUS current

Frye, et al. Best Current Practice [Page 34]

RFC 3584 Coexistence between SNMP versions August 2003

 DESCRIPTION
 "Information about a particular community string."
 INDEX { IMPLIED snmpCommunityIndex }
 ::= { snmpCommunityTable 1 }

SnmpCommunityEntry ::= SEQUENCE {
 snmpCommunityIndex SnmpAdminString,
 snmpCommunityName OCTET STRING,
 snmpCommunitySecurityName SnmpAdminString,
 snmpCommunityContextEngineID SnmpEngineID,
 snmpCommunityContextName SnmpAdminString,
 snmpCommunityTransportTag SnmpTagValue,
 snmpCommunityStorageType StorageType,
 snmpCommunityStatus RowStatus
}

snmpCommunityIndex OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The unique index value of a row in this table."
 ::= { snmpCommunityEntry 1 }

snmpCommunityName OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The community string for which a row in this table
 represents a configuration. There is no SIZE constraint
 specified for this object because RFC 1157 does not
 impose any explicit limitation on the length of community
 strings (their size is constrained indirectly by the
 SNMP message size)."
 ::= { snmpCommunityEntry 2 }

snmpCommunitySecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(1..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A human readable string representing the corresponding
 value of snmpCommunityName in a Security Model
 independent format."
 ::= { snmpCommunityEntry 3 }

snmpCommunityContextEngineID OBJECT-TYPE

Frye, et al. Best Current Practice [Page 35]

RFC 3584 Coexistence between SNMP versions August 2003

 SYNTAX SnmpEngineID
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The contextEngineID indicating the location of the
 context in which management information is accessed
 when using the community string specified by the
 corresponding instance of snmpCommunityName.

 The default value is the snmpEngineID of the entity in
 which this object is instantiated."
 ::= { snmpCommunityEntry 4 }

snmpCommunityContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The context in which management information is accessed
 when using the community string specified by the
 corresponding instance of snmpCommunityName."
 DEFVAL { ’’H } -- the empty string
 ::= { snmpCommunityEntry 5 }

snmpCommunityTransportTag OBJECT-TYPE
 SYNTAX SnmpTagValue
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object specifies a set of transport endpoints
 which are used in two ways:
 - to specify the transport endpoints from which an
 SNMP entity will accept management requests, and
 - to specify the transport endpoints to which a
 notification may be sent using the community
 string matching the corresponding instance of
 snmpCommunityName.
 In either case, if the value of this object has
 zero-length, transport endpoints are not checked when
 either authenticating messages containing this community
 string, nor when generating notifications.

 The transports identified by this object are specified
 in the snmpTargetAddrTable. Entries in that table
 whose snmpTargetAddrTagList contains this tag value
 are identified.

 If a management request containing a community string

Frye, et al. Best Current Practice [Page 36]

RFC 3584 Coexistence between SNMP versions August 2003

 that matches the corresponding instance of
 snmpCommunityName is received on a transport endpoint
 other than the transport endpoints identified by this
 object the request is deemed unauthentic.

 When a notification is to be sent using an entry in
 this table, if the destination transport endpoint of
 the notification does not match one of the transport
 endpoints selected by this object, the notification
 is not sent."
 DEFVAL { ’’H } -- the empty string
 ::= { snmpCommunityEntry 6 }

snmpCommunityStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row in the
 snmpCommunityTable. Conceptual rows having the value
 ’permanent’ need not allow write-access to any
 columnar object in the row."
 ::= { snmpCommunityEntry 7 }

snmpCommunityStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row in the
 snmpCommunityTable.

 An entry in this table is not qualified for activation
 until instances of all corresponding columns have been
 initialized, either through default values, or through
 Set operations. The snmpCommunityName and
 snmpCommunitySecurityName objects must be explicitly set.

 There is no restriction on setting columns in this table
 when the value of snmpCommunityStatus is active(1)."
 ::= { snmpCommunityEntry 8 }

--
-- The snmpTargetAddrExtTable
--

snmpTargetAddrExtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SnmpTargetAddrExtEntry

Frye, et al. Best Current Practice [Page 37]

RFC 3584 Coexistence between SNMP versions August 2003

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The table of mask and maximum message size (mms) values
 associated with the snmpTargetAddrTable.

 The snmpTargetAddrExtTable augments the
 snmpTargetAddrTable with a transport address mask value
 and a maximum message size value. The transport address
 mask allows entries in the snmpTargetAddrTable to define
 a set of addresses instead of just a single address.
 The maximum message size value allows the maximum
 message size of another SNMP entity to be configured for
 use in SNMPv1 (and SNMPv2c) transactions, where the
 message format does not specify a maximum message size."
 ::= { snmpCommunityMIBObjects 2 }

snmpTargetAddrExtEntry OBJECT-TYPE
 SYNTAX SnmpTargetAddrExtEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Information about a particular mask and mms value."
 AUGMENTS { snmpTargetAddrEntry }
 ::= { snmpTargetAddrExtTable 1 }

SnmpTargetAddrExtEntry ::= SEQUENCE {
 snmpTargetAddrTMask OCTET STRING,
 snmpTargetAddrMMS Integer32
}

snmpTargetAddrTMask OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..255))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The mask value associated with an entry in the
 snmpTargetAddrTable. The value of this object must
 have the same length as the corresponding instance of
 snmpTargetAddrTAddress, or must have length 0. An
 attempt to set it to any other value will result in
 an inconsistentValue error.

 The value of this object allows an entry in the
 snmpTargetAddrTable to specify multiple addresses.
 The mask value is used to select which bits of
 a transport address must match bits of the corresponding
 instance of snmpTargetAddrTAddress, in order for the

Frye, et al. Best Current Practice [Page 38]

RFC 3584 Coexistence between SNMP versions August 2003

 transport address to match a particular entry in the
 snmpTargetAddrTable. Bits which are 1 in the mask
 value indicate bits in the transport address which
 must match bits in the snmpTargetAddrTAddress value.
 Bits which are 0 in the mask indicate bits in the
 transport address which need not match. If the
 length of the mask is 0, the mask should be treated
 as if all its bits were 1 and its length were equal
 to the length of the corresponding value of
 snmpTargetAddrTable.

 This object may not be modified while the value of the
 corresponding instance of snmpTargetAddrRowStatus is
 active(1). An attempt to set this object in this case
 will result in an inconsistentValue error."
 DEFVAL { ’’H }
 ::= { snmpTargetAddrExtEntry 1 }

snmpTargetAddrMMS OBJECT-TYPE
 SYNTAX Integer32 (0|484..2147483647)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The maximum message size value associated with an entry
 in the snmpTargetAddrTable. Note that a value of 0 means
 that the maximum message size is unknown."
 DEFVAL { 484 }
 ::= { snmpTargetAddrExtEntry 2 }

--
-- The snmpTrapAddress and snmpTrapCommunity objects are included
-- in notifications that are forwarded by a proxy, which were
-- originally received as SNMPv1 Trap messages.
--

snmpTrapAddress OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The value of the agent-addr field of a Trap PDU which
 is forwarded by a proxy forwarder application using
 an SNMP version other than SNMPv1. The value of this
 object SHOULD contain the value of the agent-addr field
 from the original Trap PDU as generated by an SNMPv1
 agent."
 ::= { snmpCommunityMIBObjects 3 }

Frye, et al. Best Current Practice [Page 39]

RFC 3584 Coexistence between SNMP versions August 2003

snmpTrapCommunity OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS accessible-for-notify
 STATUS current
 DESCRIPTION
 "The value of the community string field of an SNMPv1
 message containing a Trap PDU which is forwarded by a
 a proxy forwarder application using an SNMP version
 other than SNMPv1. The value of this object SHOULD
 contain the value of the community string field from
 the original SNMPv1 message containing a Trap PDU as
 generated by an SNMPv1 agent. There is no SIZE
 constraint specified for this object because RFC 1157
 does not impose any explicit limitation on the length
 of community strings (their size is constrained
 indirectly by the SNMP message size)."
 ::= { snmpCommunityMIBObjects 4 }

-- Conformance Information **************************************

snmpCommunityMIBCompliances OBJECT IDENTIFIER
 ::= { snmpCommunityMIBConformance 1 }
snmpCommunityMIBGroups OBJECT IDENTIFIER
 ::= { snmpCommunityMIBConformance 2 }

-- Compliance statements

snmpCommunityMIBCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines which
 implement the SNMP-COMMUNITY-MIB."

 MODULE -- this module
 MANDATORY-GROUPS { snmpCommunityTableGroup }

 OBJECT snmpCommunityName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT snmpCommunitySecurityName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT snmpCommunityContextEngineID
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

Frye, et al. Best Current Practice [Page 40]

RFC 3584 Coexistence between SNMP versions August 2003

 OBJECT snmpCommunityContextName
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT snmpCommunityTransportTag
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT snmpCommunityStorageType
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 OBJECT snmpCommunityStatus
 MIN-ACCESS read-only
 DESCRIPTION "Write access is not required."

 ::= { snmpCommunityMIBCompliances 1 }

snmpProxyTrapForwardCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines which
 contain a proxy forwarding application which is
 capable of forwarding SNMPv1 traps using SNMPv2c
 or SNMPv3."
 MODULE -- this module
 MANDATORY-GROUPS { snmpProxyTrapForwardGroup }
 ::= { snmpCommunityMIBCompliances 2 }

snmpCommunityMIBFullCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines which
 implement the SNMP-COMMUNITY-MIB with full read-create
 access."

 MODULE -- this module
 MANDATORY-GROUPS { snmpCommunityTableGroup }
 ::= { snmpCommunityMIBCompliances 3 }

snmpCommunityTableGroup OBJECT-GROUP
 OBJECTS {
 snmpCommunityName,
 snmpCommunitySecurityName,
 snmpCommunityContextEngineID,
 snmpCommunityContextName,
 snmpCommunityTransportTag,
 snmpCommunityStorageType,

Frye, et al. Best Current Practice [Page 41]

RFC 3584 Coexistence between SNMP versions August 2003

 snmpCommunityStatus,
 snmpTargetAddrTMask,
 snmpTargetAddrMMS
 }
 STATUS current
 DESCRIPTION
 "A collection of objects providing for configuration
 of community strings for SNMPv1 (and SNMPv2c) usage."
 ::= { snmpCommunityMIBGroups 1 }

snmpProxyTrapForwardGroup OBJECT-GROUP
 OBJECTS {
 snmpTrapAddress,
 snmpTrapCommunity
 }
 STATUS current
 DESCRIPTION
 "Objects which are used by proxy forwarding applications
 when translating traps between SNMP versions. These are
 used to preserve SNMPv1-specific information when
 translating to SNMPv2c or SNMPv3."
 ::= { snmpCommunityMIBGroups 3 }

END

6. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Frye, et al. Best Current Practice [Page 42]

RFC 3584 Coexistence between SNMP versions August 2003

7. Acknowledgments

 This document is the result of the efforts of the SNMPv3 Working
 Group. The design of the SNMP-COMMUNITY-MIB incorporates work done
 by the authors of SNMPv2*:

 Jeff Case (SNMP Research, Inc.)
 David Harrington (Enterasys Networks)
 David Levi (Nortel Networks)
 Brian O’Keefe (Hewlett Packard)
 Jon Saperia (IronBridge Networks, Inc.)
 Steve Waldbusser (International Network Services)

8. Security Considerations

 Although SNMPv1 and SNMPv2 do not provide any security, allowing
 community names to be mapped into securityName/contextName provides
 the ability to use view-based access control to limit the access of
 unsecured SNMPv1 and SNMPv2 operations. In fact, it is important for
 network administrators to make use of this capability in order to
 avoid unauthorized access to MIB data that would otherwise be secure.

 When a proxy implementation translates messages between SNMPv1 (or
 SNMPv2c) and SNMPv3, there may be a loss of security. For example,
 an SNMPv3 message received using authentication and privacy which is
 subsequently forwarded using SNMPv1 will lose the security benefits
 of using authentication and privacy (also known as confidentiality).
 Careful configuration of proxies is required to address such
 situations. One approach to deal with such situations might be to
 use an encrypted tunnel.

 There are a number of management objects defined in this MIB module
 with a MAX-ACCESS clause of read-write and/or read-create. Such
 objects may be considered sensitive or vulnerable in some network
 environments. The support for SET operations in a non-secure
 environment without proper protection can have a negative effect on
 network operations. These are the tables and objects and their
 sensitivity/vulnerability:

 - The snmpCommunityTable allows creation and deletion of community
 strings, which is potentially a serious security hole. Access to
 this table should be greatly restricted, preferably by only
 allowing write access using SNMPv3 VACM and USM, with
 authentication and privacy.

 - The snmpTargetAddrExtTable contains write-able objects which may
 also be considered sensitive, and so access to it should be
 restricted as well.

Frye, et al. Best Current Practice [Page 43]

RFC 3584 Coexistence between SNMP versions August 2003

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 - The snmpCommunityTable has the potential to expose community
 strings which provide access to more information than that which
 is available using the usual ’public’ community string. For this
 reason, a security administrator may wish to limit accessibility
 to objects in the snmpCommunityTable, and in particular, to make
 it inaccessible when using the ’public’ community string.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPSec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

 [RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
 of Management Information for TCP/IP-based internets",
 STD 16, RFC 1155, May 1990.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M. and C. Davin,
 "Simple Network Management Protocol (SNMP)", STD 15, RFC
 1157, May 1990.

 [RFC1212] Rose, M. and K. McCloghrie, Eds., "Concise MIB
 Definitions", STD 16, RFC 1212, March 1991.

Frye, et al. Best Current Practice [Page 44]

RFC 3584 Coexistence between SNMP versions August 2003

 [RFC1215] Rose, M., "A Convention for Defining Traps for use with
 the SNMP", RFC 1215, March 1991.

 [RFC1303] McCloghrie, K. and M. Rose, "A Convention for Describing
 SNMP-based Agents", RFC 1303, February 1992.

 [RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901,
 January 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",
 RFC 2578, STD 58, April 1999.

 [RFC2579] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
 "Textual Conventions for SMIv2", STD 58, RFC 2579, April
 1999.

 [RFC2580] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411] Harrington, D., Presuhn, R. and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R. and B. Wijnen,
 "Message Processing and Dispatching for the Simple
 Network Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3413] Levi, D., Meyer, P. and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62, RFC
 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "The User-Based Security
 Model (USM) for Version 3 of the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3414, December
 2002.

 [RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415, December
 2002.

Frye, et al. Best Current Practice [Page 45]

RFC 3584 Coexistence between SNMP versions August 2003

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMPv2)", STD
 62, RFC 3416, December 2002.

 [RFC3417] Presuhn, R., Ed., "Transport Mappings for Version 2 of
 the Simple Network Management Protocol (SNMPv2)", STD 62,
 RFC 3417, December 2002.

 [RFC3418] Presuhn, R., Ed., "Management Information Base (MIB) for
 Version 2 of the Simple Network Management Protocol
 (SNMP)", STD 62, RFC 3418, December 2002.

 [ASN1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, (December,
 1987).

9.2. Informative References

 [RFC1908] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Coexistence between Version 1 and Version 2 of the
 Internet-standard Network Management Framework", RFC
 1908, January 1996.

 [RFC2089] Levi, D. and B. Wijnen, "Mapping SNMPv2 onto SNMPv1
 within a bilingual SNMP agent", RFC 2089, January 1997.

 [RFC2576] Frye, R., Levi, D., Routhier, S. and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",
 RFC 2576, March 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

Frye, et al. Best Current Practice [Page 46]

RFC 3584 Coexistence between SNMP versions August 2003

Appendix A. Change Log

A.1. Changes From RFC 2576

 Section numbers below refer to the old section numbers from RFC 2576.
 Some section numbers have changed since RFC 2576.

 - Added text to abstract about conversion of MIBs from SMIv1 to
 SMIv2.

 - Added note at end of section 1.3 that all discussion of SNMPv2 PDU
 types and protocol operations applies to both SNMPv2c and SNMPv3.

 - Added text at end of section 1.4 to clarify that there is no such
 thing as ’SNMPv3 access to MIB data’, as SNMPv3 just uses SNMPv2
 PDU types and protocol operations.

 - Moved section 1.4 to the beginning of section 4.

 - Changed "MUST" to "SHOULD" in item (3) of the first list in
 Section 2.1.1 to since unconstrained INTEGER is not actually
 illegal in SMIv2.

 - Changed "SHOULD" to "MUST" in item (13) of the first list in
 Section 2.1.1 to clarify that collecting related objects into
 groups is required when translating a MIB module from SMIv1 to
 SMIv2.

 - Re-organized bullets in section 2.1.1 to improve clarity.

 - Changed "SHOULD" to "MUST" in items (1) and (2) of Section 2.3
 since those updates are indeed required when translating a
 capabilities statement from the language defined by RFC 1303 into
 SMIv2.

 - In the second bullet of the last part of Section 3 listing the
 SNMPv2 notification parameters, clarified that the snmpTrapOID
 parameter refers to the value portion (not the name portion) of
 the second variable-binding, and changed the wording in the text
 under bullet (1) of Section 3.2 from "the snmpTrapOID" to "the
 snmpTrapOID value" to emphasize this point.

 - In bullet (6) of Section 3.2 emphasized that the SNMPv2 variable-
 bindings do not include sysUpTime.0 an snmpTrapOID.0.

 - In Section 4.2 clarified that the ’Upstream Version’ refers to the
 version used between the command generator or notification
 receiver and the proxy, and the ’Downstream Version’ refers to the

Frye, et al. Best Current Practice [Page 47]

RFC 3584 Coexistence between SNMP versions August 2003

 version used between the proxy and the command responder or
 notification originator. RFC 2576 neglected to mention the
 notification receiver and notification originator.

 - In Section 4.1.2 added text noting that SNMPv1 access to MIB data
 SHOULD NOT be used when processing SNMPv2c or SNMPv3 messages and
 re-worded final paragraph to note that the sub-sections that
 follow are concerned solely with command responders that use
 SNMPv2 access to MIB data while processing an SNMPv1 request.

 - Re-worded first bullet, section 4.2.1, to make it more readable.

 - In Section 4.2.1 clarified that the error-index field must be set
 to zero in a translated GetResponse-PDU with an error-status of
 ’tooBig’ and made explicit the rationale for retrying a
 GetBulkRequest-PDU only once.

 - Added text to the Deployment Hint in Section 4.2.2 to clarify that
 different principals should be used for SNMPv1 requests and
 SNMPv2/v3c requests if for SNMPv1 requests a principal for which
 Counter64 objects are not-in-view is used.

 - In Section 5.2.1 clarified that the securityName value and the
 scopedPDU’s contextSnmpEngineID and contextName values come from
 the selected entry in the snmpCommunityTable. Also clarified how
 maxSizeResponseScopedPDU is determined and that
 securityStateReference must contain the community string of the
 original request.

 - Added Section 5.2.4 on Proxy Forwarding Of Requests.

 - In Section 5.3 clarified that snmpTargetAddrTMask is to be ignored
 whenever its use is not explicitly called for.

 - Updated the LAST-UPDATED, CONTACT-INFO, and REVISION clauses and
 added a copyright notice to the DESCRIPTION clause of the MIB
 module’s MODULE-IDENTITY invocation.

 - Added text to DESCRIPTION of snmpCommunityName and
 snmpTrapCommunity to clarify why the object has no size
 restriction.

 - Updated the description of snmpCommunityTransportTag to make it
 consistent with the rest of the document.

 - Updated the description of ’snmpTargetAddrMMS’ to clarify that a
 value of 0 means that the maximum message size is unknown.

Frye, et al. Best Current Practice [Page 48]

RFC 3584 Coexistence between SNMP versions August 2003

 - Changed the name of ’snmpCommunityGroup’ to
 ’snmpCommunityTableGroup’ in order to resolve a name conflict with
 the SNMPv2-MIB.

 - Added compliance statement to SNMP-COMMUNITY-MIB for full read-
 create compliance.

 - Divided references into Normative References and Informative
 Reference and updated them to point to current documents.

 - Inserted current year into all copyright notices.

 - Corrected various typographical and grammatical errors.

A.2. Changes Between RFC 1908 and RFC 2576

 - Editorial changes to comply with current RFC requirements.

 - Added/updated copyright statements.

 - Added Intellectual Property section.

 - Replaced old introduction with complete new introduction/overview.

 - Added content for the Security Considerations Section.

 - Updated References to current documents.

 - Updated text to use current SNMP terminology.

 - Added coexistence for/with SNMPv3.

 - Added description for SNMPv1 and SNMPv2c Message Processing Models
 and SNMPv1 and SNMPv2c Community-based Security Models.

 - Added snmpCommunityMIB so that SNMPv1 and SNMPv2 community strings
 can be mapped into the SNMP Version Independent parameters which
 can then be used for access control using the standard SNMPv3
 View-based Access Control Model and the snmpVacmMIB.

 - Added two MIB objects such that when an SNMPv1 notification (trap)
 must be converted into an SNMPv2 notification we add those two
 objects in order to preserve information about the address and
 community of the originating SNMPv1 agent.

 - Included (and extended) from RFC 2089 the SNMPv2 to SNMPv1 mapping
 within a multi-lingual SNMP Engine.

Frye, et al. Best Current Practice [Page 49]

RFC 3584 Coexistence between SNMP versions August 2003

 - Use keywords from RFC 2119 to describe requirements for
 compliance.

 - Changed/added some rules for converting a MIB module from SMIv1 to
 SMIv2.

 - Extended and improved the description of Proxy Forwarder behaviour
 when multiple SNMP versions are involved.

Editors’ Addresses

 Rob Frye
 Vibrant Solutions
 2711 Prosperity Ave
 Fairfax, Virginia 22031
 U.S.A.

 Phone: +1 703 270 2000
 EMail: rfrye@vibrant-1.com

 David B. Levi
 Nortel Networks
 3505 Kesterwood Drive
 Knoxville, TN 37918
 U.S.A.

 Phone: +1 865 686 0432
 EMail: dlevi@nortelnetworks.com

 Shawn A. Routhier
 Wind River Systems, Inc.
 500 Wind River Way
 Alameda, CA 94501
 U.S.A.

 Phone: + 1 510 749 2095
 EMail: sar@epilogue.com

 Bert Wijnen
 Lucent Technologies
 Schagen 33
 3461 GL Linschoten
 Netherlands

 Phone: +31 348 407 775
 EMail: bwijnen@lucent.com

Frye, et al. Best Current Practice [Page 50]

RFC 3584 Coexistence between SNMP versions August 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Frye, et al. Best Current Practice [Page 51]

