
Network Working Group P. Hethmon
Request for Comments: 3659 Hethmon Software
Updates: 959 March 2007
Category: Standards Track

 Extensions to FTP

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document specifies new FTP commands to obtain listings of remote
 directories in a defined format, and to permit restarts of
 interrupted data transfers in STREAM mode. It allows character sets
 other than US-ASCII, and also defines an optional virtual file
 storage structure.

Hethmon Standards Track [Page 1]

RFC 3659 Extensions to FTP March 2007

Table of Contents

 1. Introduction . 3
 2. Document Conventions . 3
 2.1. Basic Tokens . 4
 2.2. Pathnames. 4
 2.3. Times. 6
 2.4. Server Replies . 7
 2.5. Interpreting Examples. 8
 3. File Modification Time (MDTM). 8
 3.1. Syntax . 9
 3.2. Error Responses. 9
 3.3. FEAT Response for MDTM 10
 3.4. MDTM Examples. 10
 4. File SIZE. 11
 4.1. Syntax . 11
 4.2. Error Responses. 12
 4.3. FEAT Response for SIZE 12
 4.4. Size Examples. 12
 5. Restart of Interrupted Transfer (REST) 13
 5.1. Restarting in STREAM Mode. 14
 5.2. Error Recovery and Restart 14
 5.3. Syntax . 15
 5.4. FEAT Response for REST 16
 5.5. REST Example . 17
 6. A Trivial Virtual File Store (TVFS). 17
 6.1. TVFS File Names. 18
 6.2. TVFS Pathnames . 18
 6.3. FEAT Response for TVFS 20
 6.4. OPTS for TVFS. 21
 6.5. TVFS Examples. 21
 7. Listings for Machine Processing (MLST and MLSD). 23
 7.1. Format of MLSx Requests. 23
 7.2. Format of MLSx Response. 24
 7.3. File Name Encoding 26
 7.4. Format of Facts. 28
 7.5. Standard Facts . 28
 7.6. System Dependent and Local Facts 36
 7.7. MLSx Examples. 37
 7.8. FEAT Response for MLSx 49
 7.9. OPTS Parameters for MLST 51
 8. Impact on Other FTP Commands 54
 9. Character Sets and Internationalization. 55
 10. IANA Considerations. 55
 10.1. The OS Specific Fact Registry. 56
 10.2. The OS Specific Filetype Registry. 56

Hethmon Standards Track [Page 2]

RFC 3659 Extensions to FTP March 2007

 11. Security Considerations. 57
 12. Normative References . 58
 Acknowledgments. 59

1. Introduction

 This document updates the File Transfer Protocol (FTP) [3]. Four new
 commands are added: "SIZE", "MDTM", "MLST", and "MLSD". The existing
 command "REST" is modified. Of those, the "SIZE" and "MDTM"
 commands, and the modifications to "REST" have been in wide use for
 many years. The others are new.

 These commands allow a client to restart an interrupted transfer in
 transfer modes not previously supported in any documented way, and to
 obtain a directory listing in a machine friendly, predictable,
 format.

 An optional structure for the server’s file store (NVFS) is also
 defined, allowing servers that support such a structure to convey
 that information to clients in a standard way, thus allowing clients
 more certainty in constructing and interpreting pathnames.

2. Document Conventions

 This document makes use of the document conventions defined in BCP
 14, RFC 2119 [4]. That provides the interpretation of capitalized
 imperative words like MUST, SHOULD, etc.

 This document also uses notation defined in STD 9, RFC 959 [3]. In
 particular, the terms "reply", "user", "NVFS" (Network Virtual File
 System), "file", "pathname", "FTP commands", "DTP" (data transfer
 process), "user-FTP process", "user-PI" (user protocol interpreter),
 "user-DTP", "server-FTP process", "server-PI", "server-DTP", "mode",
 "type", "NVT" (Network Virtual Terminal), "control connection", "data
 connection", and "ASCII", are all used here as defined there.

 Syntax required is defined using the Augmented BNF defined in [5].
 Some general ABNF definitions that are required throughout the
 document will be defined later in this section. At first reading, it
 may be wise to simply recall that these definitions exist here, and
 skip to the next section.

Hethmon Standards Track [Page 3]

RFC 3659 Extensions to FTP March 2007

2.1. Basic Tokens

 This document imports the core ABNF definitions given in Appendix A
 of [5]. There definitions will be found for basic ABNF elements like
 ALPHA, DIGIT, SP, etc. The following terms are added for use in this
 document.

 TCHAR = VCHAR / SP / HTAB ; visible plus white space
 RCHAR = ALPHA / DIGIT / "," / "." / ":" / "!" /
 "@" / "#" / "$" / "%" / "^" /
 "&" / "(" / ")" / "-" / "_" /
 "+" / "?" / "/" / "\" / "’" /
 DQUOTE ; <"> -- double quote character (%x22)
 SCHAR = RCHAR / "=" ;

 The VCHAR (from [5]), RCHAR, SCHAR, and TCHAR types give basic
 character types from varying sub-sets of the ASCII character set for
 use in various commands and responses.

 token = 1*RCHAR

 A "token" is a string whose precise meaning depends upon the context
 in which it is used. In some cases it will be a value from a set of
 possible values maintained elsewhere. In others it might be a string
 invented by one party to an FTP conversation from whatever sources it
 finds relevant.

 Note that in ABNF, string literals are case insensitive. That
 convention is preserved in this document, and implies that FTP
 commands added by this specification have names that can be
 represented in any case. That is, "MDTM" is the same as "mdtm",
 "Mdtm" and "MdTm" etc. However note that ALPHA, in particular, is
 case sensitive. That implies that a "token" is a case sensitive
 value. That implication is correct, except where explicitly stated
 to the contrary in this document, or in some other specification that
 defines the values this document specifies be used in a particular
 context.

2.2. Pathnames

 Various FTP commands take pathnames as arguments, or return pathnames
 in responses. When the MLST command is supported, as indicated in
 the response to the FEAT command [6], pathnames are to be transferred
 in one of the following two formats.

Hethmon Standards Track [Page 4]

RFC 3659 Extensions to FTP March 2007

 pathname = utf-8-name / raw
 utf-8-name = <a UTF-8 encoded Unicode string>
 raw = <any string that is not a valid UTF-8 encoding>

 Which format is used is at the option of the user-PI or server-PI
 sending the pathname. UTF-8 encodings [2] contain enough internal
 structure that it is always, in practice, possible to determine
 whether a UTF-8 or raw encoding has been used, in those cases where
 it matters. While it is useful for the user-PI to be able to
 correctly display a pathname received from the server-PI to the user,
 it is far more important for the user-PI to be able to retain and
 retransmit the identical pathname when required. Implementations are
 advised against converting a UTF-8 pathname to a local charset that
 isn’t capable of representing the full Unicode character repertoire,
 and then attempting to invert the charset translation later. Note
 that ASCII is a subset of UTF-8. See also [1].

 Unless otherwise specified, the pathname is terminated by the CRLF
 that terminates the FTP command, or by the CRLF that ends a reply.
 Any trailing spaces preceding that CRLF form part of the name.
 Exactly one space will precede the pathname and serve as a separator
 from the preceding syntax element. Any additional spaces form part
 of the pathname. See [7] for a fuller explanation of the character
 encoding issues. All implementations supporting MLST MUST support
 [7].

 Note: for pathnames transferred over a data connection, there is no
 way to represent a pathname containing the characters CR and LF in
 sequence, and distinguish that from the end of line indication.
 Hence, pathnames containing the CRLF pair of characters cannot be
 transmitted over a data connection. Data connections only contain
 file names transmitted from server-FTP to user-FTP as the result of
 one of the directory listing commands. Files with names containing
 the CRLF sequence must either have that sequence converted to some
 other form, such that the other form can be recognised and be
 correctly converted back to CRLF, or be omitted from the listing.

 Implementations should also beware that the FTP control connection
 uses Telnet NVT conventions [8], and that the Telnet IAC character,
 if part of a pathname sent over the control connection, MUST be
 correctly escaped as defined by the Telnet protocol.

 NVT also distinguishes between CR, LF, and the end of line CRLF, and
 so would permit pathnames containing the pair of characters CR and LF
 to be correctly transmitted. However, because such a sequence cannot
 be transmitted over a data connection (as part of the result of a
 LIST, NLST, or MLSD command), such pathnames are best avoided.

Hethmon Standards Track [Page 5]

RFC 3659 Extensions to FTP March 2007

 Implementors should also be aware that, although Telnet NVT
 conventions are used over the control connections, Telnet option
 negotiation MUST NOT be attempted. See section 4.1.2.12 of [9].

2.2.1. Pathname Syntax

 Except where TVFS is supported (see section 6), this specification
 imposes no syntax upon pathnames. Nor does it restrict the character
 set from which pathnames are created. This does not imply that the
 NVFS is required to make sense of all possible pathnames. Server-PIs
 may restrict the syntax of valid pathnames in their NVFS in any
 manner appropriate to their implementation or underlying file system.
 Similarly, a server-PI may parse the pathname and assign meaning to
 the components detected.

2.2.2. Wildcarding

 For the commands defined in this specification, all pathnames are to
 be treated literally. That is, for a pathname given as a parameter
 to a command, the file whose name is identical to the pathname given
 is implied. No characters from the pathname may be treated as
 special or "magic", thus no pattern matching (other than for exact
 equality) between the pathname given and the files present in the
 NVFS of the server-FTP is permitted.

 Clients that desire some form of pattern matching functionality must
 obtain a listing of the relevant directory, or directories, and
 implement their own file name selection procedures.

2.3. Times

 The syntax of a time value is:

 time-val = 14DIGIT ["." 1*DIGIT]

 The leading, mandatory, fourteen digits are to be interpreted as, in
 order from the leftmost, four digits giving the year, with a range of
 1000--9999, two digits giving the month of the year, with a range of
 01--12, two digits giving the day of the month, with a range of
 01--31, two digits giving the hour of the day, with a range of
 00--23, two digits giving minutes past the hour, with a range of
 00--59, and finally, two digits giving seconds past the minute, with
 a range of 00--60 (with 60 being used only at a leap second). Years
 in the tenth century, and earlier, cannot be expressed. This is not
 considered a serious defect of the protocol.

Hethmon Standards Track [Page 6]

RFC 3659 Extensions to FTP March 2007

 The optional digits, which are preceded by a period, give decimal
 fractions of a second. These may be given to whatever precision is
 appropriate to the circumstance, however implementations MUST NOT add
 precision to time-vals where that precision does not exist in the
 underlying value being transmitted.

 Symbolically, a time-val may be viewed as

 YYYYMMDDHHMMSS.sss

 The "." and subsequent digits ("sss") are optional. However the "."
 MUST NOT appear unless at least one following digit also appears.

 Time values are always represented in UTC (GMT), and in the Gregorian
 calendar regardless of what calendar may have been in use at the date
 and time indicated at the location of the server-PI.

 The technical differences among GMT, TAI, UTC, UT1, UT2, etc., are
 not considered here. A server-FTP process should always use the same
 time reference, so the times it returns will be consistent. Clients
 are not expected to be time synchronized with the server, so the
 possible difference in times that might be reported by the different
 time standards is not considered important.

2.4. Server Replies

 Section 4.2 of [3] defines the format and meaning of replies by the
 server-PI to FTP commands from the user-PI. Those reply conventions
 are used here without change.

 error-response = error-code SP *TCHAR CRLF
 error-code = ("4" / "5") 2DIGIT

 Implementors should note that the ABNF syntax used in this document
 and in other FTP related documents (but not used in [3]), sometimes
 shows replies using the one-line format. Unless otherwise explicitly
 stated, that is not intended to imply that multi-line responses are
 not permitted. Implementors should assume that, unless stated to the
 contrary, any reply to any FTP command (including QUIT) may use the
 multi-line format described in [3].

 Throughout this document, replies will be identified by the three
 digit code that is their first element. Thus the term "500 reply"
 means a reply from the server-PI using the three digit code "500".

Hethmon Standards Track [Page 7]

RFC 3659 Extensions to FTP March 2007

2.5. Interpreting Examples

 In the examples of FTP dialogs presented in this document, lines that
 begin "C> " were sent over the control connection from the user-PI to
 the server-PI, lines that begin "S> " were sent over the control
 connection from the server-PI to the user-PI, and each sequence of
 lines that begin "D> " was sent from the server-PI to the user-PI
 over a data connection created just to send those lines and closed
 immediately after. No examples here show data transferred over a
 data connection from the client to the server. In all cases, the
 prefixes shown above, including the one space, have been added for
 the purposes of this document, and are not a part of the data
 exchanged between client and server.

3. File Modification Time (MDTM)

 The FTP command, MODIFICATION TIME (MDTM), can be used to determine
 when a file in the server NVFS was last modified. This command has
 existed in many FTP servers for many years, as an adjunct to the REST
 command for STREAM mode, thus is widely available. However, where
 supported, the "modify" fact that can be provided in the result from
 the new MLST command is recommended as a superior alternative.

 When attempting to restart a RETRieve, the user-FTP can use the MDTM
 command or the "modify" fact to check if the modification time of the
 source file is more recent than the modification time of the
 partially transferred file. If it is, then most likely the source
 file has changed, and it would be unsafe to restart the previously
 incomplete file transfer.

 Because the user- and server-FTPs’ clocks are not necessarily
 synchronised, user-FTPs intending to use this method should usually
 obtain the modification time of the file from the server before the
 initial RETRieval, and compare that with the modification time before
 a RESTart. If they differ, the files may have changed, and RESTart
 would be inadvisable. Where this is not possible, the user-FTP
 should make sure to allow for possible clock skew when comparing
 times.

 When attempting to restart a STORe, the User FTP can use the MDTM
 command to discover the modification time of the partially
 transferred file. If it is older than the modification time of the
 file that is about to be STORed, then most likely the source file has
 changed, and it would be unsafe to restart the file transfer.

Hethmon Standards Track [Page 8]

RFC 3659 Extensions to FTP March 2007

 Note that using MLST (described below), where available, can provide
 this information and much more, thus giving an even better indication
 that a file has changed and that restarting a transfer would not give
 valid results.

 Note that this is applicable to any RESTart attempt, regardless of
 the mode of the file transfer.

3.1. Syntax

 The syntax for the MDTM command is:

 mdtm = "MdTm" SP pathname CRLF

 As with all FTP commands, the "MDTM" command label is interpreted in
 a case-insensitive manner.

 The "pathname" specifies an object in the NVFS that may be the object
 of a RETR command. Attempts to query the modification time of files
 that exist but are unable to be retrieved may generate an error-
 response, or can result in a positive response carrying a time-val
 with an unspecified value, the choice being made by the server-PI.

 The server-PI will respond to the MDTM command with a 213 reply
 giving the last modification time of the file whose pathname was
 supplied, or a 550 reply if the file does not exist, the modification
 time is unavailable, or some other error has occurred.

 mdtm-response = "213" SP time-val CRLF /
 error-response

 Note that when the 213 response is issued, that is, when there is no
 error, the format MUST be exactly as specified. Multi-line responses
 are not permitted.

3.2. Error Responses

 Where the command is correctly parsed but the modification time is
 not available, either because the pathname identifies no existing
 entity or because the information is not available for the entity
 named, then a 550 reply should be sent. Where the command cannot be
 correctly parsed, a 500 or 501 reply should be sent, as specified in
 [3]. Various 4xy replies are also possible in appropriate
 circumstances.

Hethmon Standards Track [Page 9]

RFC 3659 Extensions to FTP March 2007

3.3. FEAT Response for MDTM

 When replying to the FEAT command [6], a server-FTP process that
 supports the MDTM command MUST include a line containing the single
 word "MDTM". This MAY be sent in upper or lower case or a mixture of
 both (it is case insensitive), but SHOULD be transmitted in upper
 case only. That is, the response SHOULD be:

 C> Feat
 S> 211- <any descriptive text>
 S> ...
 S> MDTM
 S> ...
 S> 211 End

 The ellipses indicate place holders where other features may be
 included, but are not required. The one-space indentation of the
 feature lines is mandatory [6].

3.4. MDTM Examples

 If we assume the existence of three files, A B and C, a directory D,
 two files with names that end with the string "ile6", and no other
 files at all, then the MDTM command may behave as indicated. The
 "C>" lines are commands from user-PI to server-PI, the "S>" lines are
 server-PI replies.

 C> MDTM A
 S> 213 19980615100045.014
 C> MDTM B
 S> 213 19980615100045.014
 C> MDTM C
 S> 213 19980705132316
 C> MDTM D
 S> 550 D is not retrievable
 C> MDTM E
 S> 550 No file named "E"
 C> mdtm file6
 S> 213 19990929003355
 C> MdTm 19990929043300 File6
 S> 213 19991005213102
 C> MdTm 19990929043300 file6
 S> 550 19990929043300 file6: No such file or directory.

 From that we can conclude that both A and B were last modified at the
 same time (to the nearest millisecond), and that C was modified 20
 days and several hours later.

Hethmon Standards Track [Page 10]

RFC 3659 Extensions to FTP March 2007

 The times are in GMT, so file A was modified on the 15th of June,
 1998, at approximately 11am in London (summer time was then in
 effect), or perhaps at 8pm in Melbourne, Australia, or at 6am in New
 York. All of those represent the same absolute time, of course. The
 location where the file was modified, and consequently the local wall
 clock time at that location, is not available.

 There is no file named "E" in the current directory, but there are
 files named both "file6" and "19990929043300 File6". The
 modification times of those files were obtained. There is no file
 named "19990929043300 file6".

4. File SIZE

 The FTP command, SIZE OF FILE (SIZE), is used to obtain the transfer
 size of a file from the server-FTP process. This is the exact number
 of octets (8 bit bytes) that would be transmitted over the data
 connection should that file be transmitted. This value will change
 depending on the current STRUcture, MODE, and TYPE of the data
 connection or of a data connection that would be created were one
 created now. Thus, the result of the SIZE command is dependent on
 the currently established STRU, MODE, and TYPE parameters.

 The SIZE command returns how many octets would be transferred if the
 file were to be transferred using the current transfer structure,
 mode, and type. This command is normally used in conjunction with
 the RESTART (REST) command when STORing a file to a remote server in
 STREAM mode, to determine the restart point. The server-PI might
 need to read the partially transferred file, do any appropriate
 conversion, and count the number of octets that would be generated
 when sending the file in order to correctly respond to this command.
 Estimates of the file transfer size MUST NOT be returned; only
 precise information is acceptable.

4.1. Syntax

 The syntax of the SIZE command is:

 size = "Size" SP pathname CRLF

 The server-PI will respond to the SIZE command with a 213 reply
 giving the transfer size of the file whose pathname was supplied, or
 an error response if the file does not exist, the size is
 unavailable, or some other error has occurred. The value returned is
 in a format suitable for use with the RESTART (REST) command for mode
 STREAM, provided the transfer mode and type are not altered.

Hethmon Standards Track [Page 11]

RFC 3659 Extensions to FTP March 2007

 size-response = "213" SP 1*DIGIT CRLF /
 error-response

 Note that when the 213 response is issued, that is, when there is no
 error, the format MUST be exactly as specified. Multi-line responses
 are not permitted.

4.2. Error Responses

 Where the command is correctly parsed but the size is not available,
 perhaps because the pathname identifies no existing entity or because
 the entity named cannot be transferred in the current MODE and TYPE
 (or at all), then a 550 reply should be sent. Where the command
 cannot be correctly parsed, a 500 or 501 reply should be sent, as
 specified in [3]. The presence of the 550 error response to a SIZE
 command MUST NOT be taken by the client as an indication that the
 file cannot be transferred in the current MODE and TYPE. A server
 may generate this error for other reasons -- for instance if the
 processing overhead is considered too great. Various 4xy replies are
 also possible in appropriate circumstances.

4.3. FEAT Response for SIZE

 When replying to the FEAT command [6], a server-FTP process that
 supports the SIZE command MUST include a line containing the single
 word "SIZE". This word is case insensitive, and MAY be sent in any
 mixture of upper or lower case, however it SHOULD be sent in upper
 case. That is, the response SHOULD be:

 C> FEAT
 S> 211- <any descriptive text>
 S> ...
 S> SIZE
 S> ...
 S> 211 END

 The ellipses indicate place holders where other features may be
 included, and are not required. The one-space indentation of the
 feature lines is mandatory [6].

4.4. Size Examples

 Consider a text file "Example" stored on a Unix(TM) server where each
 end of line is represented by a single octet. Assume the file
 contains 112 lines, and 1830 octets total. Then the SIZE command
 would produce:

Hethmon Standards Track [Page 12]

RFC 3659 Extensions to FTP March 2007

 C> TYPE I
 S> 200 Type set to I.
 C> size Example
 S> 213 1830
 C> TYPE A
 S> 200 Type set to A.
 C> Size Example
 S> 213 1942

 Notice that with TYPE=A the SIZE command reports an extra 112 octets.
 Those are the extra octets that need to be inserted, one at the end
 of each line, to provide correct end-of-line semantics for a transfer
 using TYPE=A. Other systems might need to make other changes to the
 transfer format of files when converting between TYPEs and MODEs.
 The SIZE command takes all of that into account.

 Since calculating the size of a file with this degree of precision
 may take considerable effort on the part of the server-PI, user-PIs
 should not used this command unless this precision is essential (such
 as when about to restart an interrupted transfer). For other uses,
 the "Size" fact of the MLST command (see section 7.5.7) ought be
 requested.

5. Restart of Interrupted Transfer (REST)

 To avoid having to resend the entire file if the file is only
 partially transferred, both sides need some way to agree on where in
 the data stream to restart the data transfer.

 The FTP specification [3] includes three modes of data transfer,
 STREAM, Block, and Compressed. In Block and Compressed modes, the
 data stream that is transferred over the data connection is
 formatted, allowing the embedding of restart markers into the stream.
 The sending DTP can include a restart marker with whatever
 information it needs to be able to restart a file transfer at that
 point. The receiving DTP can keep a list of these restart markers,
 and correlate them with how the file is being saved. To restart the
 file transfer, the receiver just sends back that last restart marker,
 and both sides know how to resume the data transfer. Note that there
 are some flaws in the description of the restart mechanism in STD 9,
 RFC 959 [3]. See section 4.1.3.4 of RFC 1123 [9] for the
 corrections.

Hethmon Standards Track [Page 13]

RFC 3659 Extensions to FTP March 2007

5.1. Restarting in STREAM Mode

 In STREAM mode, the data connection contains just a stream of
 unformatted octets of data. Explicit restart markers thus cannot be
 inserted into the data stream, they would be indistinguishable from
 data. For this reason, the FTP specification [3] did not provide the
 ability to do restarts in stream mode. However, there is not really
 a need to have explicit restart markers in this case, as restart
 markers can be implied by the octet offset into the data stream.

 Because the data stream defines the file in STREAM mode, a different
 data stream would represent a different file. Thus, an offset will
 always represent the same position within a file. On the other hand,
 in other modes than STREAM, the same file can be transferred using
 quite different octet sequences and yet be reconstructed into the one
 identical file. Thus an offset into the data stream in transfer
 modes other than STREAM would not give an unambiguous restart point.

 If the data representation TYPE is IMAGE and the STRUcture is File,
 for many systems the file will be stored exactly in the same format
 as it is sent across the data connection. It is then usually very
 easy for the receiver to determine how much data was previously
 received, and notify the sender of the offset where the transfer
 should be restarted. In other representation types and structures
 more effort will be required, but it remains always possible to
 determine the offset with finite, but perhaps non-negligible, effort.
 In the worst case, an FTP process may need to open a data connection
 to itself, set the appropriate transfer type and structure, and
 actually transmit the file, counting the transmitted octets.

 If the user-FTP process is intending to restart a retrieve, it will
 directly calculate the restart marker and send that information in
 the RESTart command. However, if the user-FTP process is intending
 to restart sending the file, it needs to be able to determine how
 much data was previously sent, and correctly received and saved. A
 new FTP command is needed to get this information. This is the
 purpose of the SIZE command, as documented in section 4.

5.2. Error Recovery and Restart

 STREAM mode transfers with FILE STRUcture may be restarted even
 though no restart marker has been transferred in addition to the data
 itself. This is done by using the SIZE command, if needed, in
 combination with the RESTART (REST) command, and one of the standard
 file transfer commands.

 When using TYPE ASCII or IMAGE, the SIZE command will return the
 number of octets that would actually be transferred if the file were

Hethmon Standards Track [Page 14]

RFC 3659 Extensions to FTP March 2007

 to be sent between the two systems, i.e., with type IMAGE, the SIZE
 normally would be the number of octets in the file. With type ASCII,
 the SIZE would be the number of octets in the file including any
 modifications required to satisfy the TYPE ASCII CR-LF end-of-line
 convention.

5.3. Syntax

 The syntax for the REST command when the current transfer mode is
 STREAM is:

 rest = "Rest" SP 1*DIGIT CRLF

 The numeric value gives the number of octets of the immediately-
 following transfer to not actually send, effectively causing the
 transmission to be restarted at a later point. A value of zero
 effectively disables restart, causing the entire file to be
 transmitted. The server-PI will respond to the REST command with a
 350 reply, indicating that the REST parameter has been saved, and
 that another command, which should be either RETR or STOR, should
 then follow to complete the restart.

 rest-response = "350" SP *TCHAR CRLF /
 error-response

 Server-FTP processes may permit transfer commands other than RETR and
 STOR, such as APPE and STOU, to complete a restart; however, this is
 not recommended. STOU (store unique) is undefined in this usage, as
 storing the remainder of a file into a unique file name is rarely
 going to be useful. If APPE (append) is permitted, it MUST act
 identically to STOR when a restart marker has been set. That is, in
 both cases, octets from the data connection are placed into the file
 at the location indicated by the restart marker value.

 The REST command is intended to complete a failed transfer. Use with
 RETR is comparatively well defined in all cases, as the client bears
 the responsibility of merging the retrieved data with the partially
 retrieved file. It may choose to use the data obtained other than to
 complete an earlier transfer, or to re-retrieve data that had been
 retrieved before. With STOR, however, the server must insert the
 data into the file named. The results are undefined if a client uses
 REST to do other than restart to complete a transfer of a file that
 had previously failed to completely transfer. In particular, if the
 restart marker set with a REST command is not at the end of the data
 currently stored at the server, as reported by the server, or if
 insufficient data are provided in a STOR that follows a REST to
 extend the destination file to at least its previous size, then the
 effects are undefined.

Hethmon Standards Track [Page 15]

RFC 3659 Extensions to FTP March 2007

 The REST command must be the last command issued before the data
 transfer command that is to cause a restarted, rather than a
 complete, file transfer. The effect of issuing a REST command at any
 other time is undefined. The server-PI may react to a badly
 positioned REST command by issuing an error response to the following
 command, not being a restartable data transfer command, or it may
 save the restart value and apply it to the next data transfer
 command, or it may silently ignore the inappropriate restart attempt.
 Because of this, a user-PI that has issued a REST command, but that
 has not successfully transmitted the following data transfer command
 for any reason, should send another REST command before the next data
 transfer command. If that transfer is not to be restarted, then
 "REST 0" should be issued.

 An error response will follow a REST command only when the server
 does not implement the command, or when the restart marker value is
 syntactically invalid for the current transfer mode (e.g., in STREAM
 mode, something other than one or more digits appears in the
 parameter to the REST command). Any other errors, including such
 problems as restart marker out of range, should be reported when the
 following transfer command is issued. Such errors will cause that
 transfer request to be rejected with an error indicating the invalid
 restart attempt.

5.4. FEAT Response for REST

 Where a server-FTP process supports RESTart in STREAM mode, as
 specified here, it MUST include, in the response to the FEAT command
 [6], a line containing exactly the string "REST STREAM". This string
 is not case sensitive, but it SHOULD be transmitted in upper case.
 Where REST is not supported at all or supported only in block or
 compressed modes, the REST line MUST NOT be included in the FEAT
 response. Where required, the response SHOULD be:

 C> feat
 S> 211- <any descriptive text>
 S> ...
 S> REST STREAM
 S> ...
 S> 211 end

 The ellipses indicate place holders where other features may be
 included, and are not required. The one-space indentation of the
 feature lines is mandatory [6].

Hethmon Standards Track [Page 16]

RFC 3659 Extensions to FTP March 2007

5.5. REST Example

 Assume that the transfer of a largish file has previously been
 interrupted after 802816 octets had been received, that the previous
 transfer was with TYPE=I, and that it has been verified that the file
 on the server has not since changed.

 C> TYPE I
 S> 200 Type set to I.
 C> PORT 127,0,0,1,15,107
 S> 200 PORT command successful.
 C> REST 802816
 S> 350 Restarting at 802816. Send STORE or RETRIEVE
 C> RETR cap60.pl198.tar
 S> 150 Opening BINARY mode data connection
 [...]
 S> 226 Transfer complete.

6. A Trivial Virtual File Store (TVFS)

 Traditionally, FTP has placed almost no constraints upon the file
 store (NVFS) provided by a server. This specification does not alter
 that. However, it has become common for servers to attempt to
 provide at least file system naming conventions modeled loosely upon
 those of the UNIX(TM) file system. This is a tree-structured file
 system, built of directories, each of which can contain other
 directories, or other kinds of files, or both. Each file and
 directory has a name relative to the directory that contains it,
 except for the directory at the root of the tree, which is contained
 in no other directory, and hence has no name of its own.

 That which has so far been described is perfectly consistent with the
 standard FTP NVFS and access mechanisms. The "CWD" command is used
 to move from one directory to an embedded directory. "CDUP" may be
 provided to return to the parent directory, and the various file
 manipulation commands ("RETR", "STOR", the rename commands, etc.) are
 used to manipulate files within the current directory.

 However, it is often useful to be able to reference files other than
 by changing directories, especially as FTP provides no guaranteed
 mechanism to return to a previous directory. The Trivial Virtual
 File Store (TVFS), if implemented, provides that mechanism.

Hethmon Standards Track [Page 17]

RFC 3659 Extensions to FTP March 2007

6.1. TVFS File Names

 Where a server implements the TVFS, no elementary file name shall
 contain the character "/". Where the underlying natural file store
 permits files, or directories, to contain the "/" character in their
 names, a server-PI implementing TVFS must encode that character in
 some manner whenever file or directory names are being returned to
 the user-PI, and reverse that encoding whenever such names are being
 accepted from the user-PI.

 The encoding method to be used is not specified here. Where some
 other character is illegal in file and directory names in the
 underlying file store, a simple transliteration may be sufficient.
 Where there is no suitable substitute character a more complex
 encoding scheme, possibly using an escape character, is likely to be
 required.

 With the one exception of the unnamed root directory, a TVFS file
 name may not be empty. That is, all other file names contain at
 least one character.

 With the sole exception of the "/" character, any valid IS10646
 character [10] may be used in a TVFS file name. When transmitted,
 file name characters are encoded using the UTF-8 encoding [2]. Note
 that the two-character sequence CR LF occurring in a file name will
 make that name impossible to transmit over a data connection.
 Consequently, it should be avoided, or if that is impossible to
 achieve, it MUST be encoded in some reversible way.

6.2. TVFS Pathnames

 A TVFS "Pathname" combines the file or directory name of a target
 file or directory, with the directory names of zero or more enclosing
 directories, so as to allow the target file or directory to be
 referenced other than when the server’s "current working directory"
 is the directory directly containing the target file or directory.

 By definition, every TVFS file or directory name is also a TVFS
 pathname. Such a pathname is valid to reference the file from the
 directory containing the name, that is, when that directory is the
 server-FTP’s current working directory.

 Other TVFS pathnames are constructed by prefixing a pathname by a
 name of a directory from which the path is valid, and separating the
 two with the "/" character. Such a pathname is valid to reference
 the file or directory from the directory containing the newly added
 directory name.

Hethmon Standards Track [Page 18]

RFC 3659 Extensions to FTP March 2007

 Where a pathname has been extended to the point where the directory
 added is the unnamed root directory, the pathname will begin with the
 "/" character. Such a path is known as a fully qualified pathname.
 Fully qualified paths may, obviously, not be further extended, as, by
 definition, no directory contains the root directory. Being unnamed,
 it cannot be represented in any other directory. A fully qualified
 pathname is valid to reference the named file or directory from any
 location (that is, regardless of what the current working directory
 may be) in the virtual file store.

 Any pathname that is not a fully qualified pathname may be referred
 to as a "relative pathname" and will only correctly reference the
 intended file when the current working directory of the server-FTP is
 a directory from which the relative pathname is valid.

 As a special case, the pathname "/" is defined to be a fully
 qualified pathname referring to the root directory. That is, the
 root directory does not have a directory (or file) name, but does
 have a pathname. This special pathname may be used only as is as a
 reference to the root directory. It may not be combined with other
 pathnames using the rules above, as doing so would lead to a pathname
 containing two consecutive "/" characters, which is an undefined
 sequence.

6.2.1. Notes

 + It is not required, or expected, that there be only one fully
 qualified pathname that will reference any particular file or
 directory.

 + As a caveat, though the TVFS file store is basically tree
 structured, there is no requirement that any file or directory
 have only one parent directory.

 + As defined, no TVFS pathname will ever contain two consecutive "/"
 characters. Such a name is not illegal however, and may be
 defined by the server for any purpose that suits it. Clients
 implementing this specification should not assume any semantics
 for such names.

 + Similarly, other than the special case path that refers to the
 root directory, no TVFS pathname constructed as defined here will
 ever end with the "/" character. Such names are also not illegal,
 but are undefined.

 + While any legal IS10646 character is permitted to occur in a TVFS
 file or directory name, other than "/", server FTP implementations
 are not required to support all possible IS10646 characters. The

Hethmon Standards Track [Page 19]

RFC 3659 Extensions to FTP March 2007

 subset supported is entirely at the discretion of the server. The
 case (where it exists) of the characters that make up file,
 directory, and pathnames may be significant. Unless determined
 otherwise by means unspecified here, clients should assume that
 all such names are comprised of characters whose case is
 significant. Servers are free to treat case (or any other
 attribute) of a name as irrelevant, and hence map two names that
 appear to be distinct onto the same underlying file.

 + There are no defined "magic" names, like ".", ".." or "C:".
 Servers may implement such names, with any semantics they choose,
 but are not required to do so.

 + TVFS imposes no particular semantics or properties upon files,
 guarantees no access control schemes, or any of the other common
 properties of a file store. Only the naming scheme is defined.

6.3. FEAT Response for TVFS

 In response to the FEAT command [6] a server that wishes to indicate
 support for the TVFS as defined here will include a line that begins
 with the four characters "TVFS" (in any case, or mixture of cases,
 upper case is not required). Servers SHOULD send upper case.

 Such a response to the FEAT command MUST NOT be returned unless the
 server implements TVFS as defined here.

 Later specifications may add to the TVFS definition. Such additions
 should be notified by means of additional text appended to the TVFS
 feature line. Such specifications, if any, will define the extra
 text.

 Until such a specification is defined, servers should not include
 anything after "TVFS" in the TVFS feature line. Clients, however,
 should be prepared to deal with arbitrary text following the four
 defined characters, and simply ignore it if unrecognized.

 A typical response to the FEAT command issued by a server
 implementing only this specification would be:

 C> feat
 S> 211- <any descriptive text>
 S> ...
 S> TVFS
 S> ...
 S> 211 end

Hethmon Standards Track [Page 20]

RFC 3659 Extensions to FTP March 2007

 The ellipses indicate place holders where other features may be
 included, but are not required. The one-space indentation of the
 feature lines is mandatory [6] and is not counted as one of the first
 four characters for the purposes of this feature listing.

 The TVFS feature adds no new commands to the FTP command repertoire.

6.4. OPTS for TVFS

 There are no options in this TVFS specification, and hence there is
 no OPTS command defined.

6.5. TVFS Examples

 Assume a TVFS file store is comprised of a root directory, which
 contains two directories (A and B) and two non-directory files (X and
 Y). The A directory contains two directories (C and D) and one other
 file (Z). The B directory contains just two non-directory files (P
 and Q) and the C directory also two non-directory files (also named P
 and Q, by chance). The D directory is empty, that is, contains no
 files or directories. This structure may depicted graphically as...

 (unnamed root)
 / | \ \
 / | \ \
 A X B Y
 /|\ / \
 / | \ / \
 C D Z P Q
 / \
 / \
 P Q

 Given this structure, the following fully qualified pathnames exist.

 /
 /A
 /B
 /X
 /Y
 /A/C
 /A/D
 /A/Z
 /A/C/P
 /A/C/Q
 /B/P
 /B/Q

Hethmon Standards Track [Page 21]

RFC 3659 Extensions to FTP March 2007

 It is clear that none of the paths / /A /B or /A/D refer to the same
 directory, as the contents of each is different. Nor do any of / /A
 /A/C or /A/D. However /A/C and /B might be the same directory, there
 is insufficient information given to tell. Any of the other
 pathnames (/X /Y /A/Z /A/C/P /A/C/Q /B/P and /B/Q) may refer to the
 same underlying files, in almost any combination.

 If the current working directory of the server-FTP is /A then the
 following pathnames, in addition to all the fully qualified
 pathnames, are valid

 C
 D
 Z
 C/P
 C/Q

 These all refer to the same files or directories as the corresponding
 fully qualified path with "/A/" prepended.

 That those pathnames all exist does not imply that the TVFS sever
 will necessarily grant any kind of access rights to the named paths,
 or that access to the same file via different pathnames will
 necessarily be granted equal rights.

 None of the following relative paths are valid when the current
 directory is /A

 A
 B
 X
 Y
 B/P
 B/Q
 P
 Q

 Any of those could be made valid by changing the server-FTP’s current
 working directory to the appropriate directory. Note that the paths
 "P" and "Q" might refer to different files depending upon which
 directory is selected to cause those to become valid TVFS relative
 paths.

Hethmon Standards Track [Page 22]

RFC 3659 Extensions to FTP March 2007

7. Listings for Machine Processing (MLST and MLSD)

 The MLST and MLSD commands are intended to standardize the file and
 directory information returned by the server-FTP process. These
 commands differ from the LIST command in that the format of the
 replies is strictly defined although extensible.

 Two commands are defined, MLST and MLSD. MLST provides data about
 exactly the object named on its command line, and no others. MLSD,
 on the other, lists the contents of a directory if a directory is
 named, otherwise a 501 reply is returned. In either case, if no
 object is named, the current directory is assumed. That will cause
 MLST to send a one-line response, describing the current directory
 itself, and MLSD to list the contents of the current directory.

 In the following, the term MLSx will be used wherever either MLST or
 MLSD may be inserted.

 The MLST and MLSD commands also extend the FTP protocol as presented
 in STD 9, RFC 959 [3] and STD 3, RFC 1123 [9] to allow that
 transmission of 8-bit data over the control connection. Note this is
 not specifying character sets which are 8-bit, but specifying that
 FTP implementations are to specifically allow the transmission and
 reception of 8-bit bytes, with all bits significant, over the control
 connection. That is, all 256 possible octet values are permitted.
 The MLSx command allows both UTF-8/Unicode and "raw" forms as
 arguments, and in responses both to the MLST and MLSD commands, and
 all other FTP commands which take pathnames as arguments.

7.1. Format of MLSx Requests

 The MLST and MLSD commands each allow a single optional argument.
 This argument may be either a directory name or, for MLST only, a
 file name. For these purposes, a "file name" is the name of any
 entity in the server NVFS which is not a directory. Where TVFS is
 supported, any TVFS relative pathname valid in the current working
 directory, or any TVFS fully qualified pathname, may be given. If a
 directory name is given then MLSD must return a listing of the
 contents of the named directory, otherwise it issues a 501 reply, and
 does not open a data connection. In all cases for MLST, a single set
 of fact lines (usually a single fact line) containing the information
 about the named file or directory shall be returned over the control
 connection, without opening a data connection.

 If no argument is given then MLSD must return a listing of the
 contents of the current working directory, and MLST must return a
 listing giving information about the current working directory
 itself. For these purposes, the contents of a directory are whatever

Hethmon Standards Track [Page 23]

RFC 3659 Extensions to FTP March 2007

 file or directory names (not pathnames) the server-PI will allow to
 be referenced when the current working directory is the directory
 named, and which the server-PI desires to reveal to the user-PI.
 Note that omitting the argument is the only defined way to obtain a
 listing of the current directory, unless a pathname that represents
 the directory happens to be known. In particular, there is no
 defined shorthand name for the current directory. This does not
 prohibit any particular server-PI implementing such a shorthand.

 No title, header, or summary, lines, or any other formatting, other
 than as is specified below, is ever returned in the output of an MLST
 or MLSD command.

 If the Client-FTP sends an invalid argument, the server-FTP MUST
 reply with an error code of 501.

 The syntax for the MLSx command is:

 mlst = "MLst" [SP pathname] CRLF
 mlsd = "MLsD" [SP pathname] CRLF

7.2. Format of MLSx Response

 The format of a response to an MLSx command is as follows:

 mlst-response = control-response / error-response
 mlsd-response = (initial-response final-response) /
 error-response

 control-response = "250-" [response-message] CRLF
 1*(SP entry CRLF)
 "250" [SP response-message] CRLF

 initial-response = "150" [SP response-message] CRLF
 final-response = "226" SP response-message CRLF

 response-message = *TCHAR

 data-response = *(entry CRLF)

 entry = [facts] SP pathname
 facts = 1*(fact ";")
 fact = factname "=" value
 factname = "Size" / "Modify" / "Create" /
 "Type" / "Unique" / "Perm" /
 "Lang" / "Media-Type" / "CharSet" /
 os-depend-fact / local-fact
 os-depend-fact = <IANA assigned OS name> "." token

Hethmon Standards Track [Page 24]

RFC 3659 Extensions to FTP March 2007

 local-fact = "X." token
 value = *SCHAR

 Upon receipt of an MLSx command, the server will verify the
 parameter, and if invalid return an error-response. For this
 purpose, the parameter should be considered to be invalid if the
 client issuing the command does not have permission to perform the
 requested operation.

 If the parameter is valid, then for an MLST command, the server-PI
 will send the first (leading) line of the control response, the entry
 for the pathname given, or the current directory if no pathname was
 provided, and the terminating line. Normally exactly one entry would
 be returned, more entries are permitted only when required to
 represent a file that is to have multiple "Type" facts returned. In
 this case, the pathname component of every response MUST be
 identical.

 Note that for MLST the fact set is preceded by a space. That is
 provided to guarantee that the fact set cannot be accidentally
 interpreted as the terminating line of the control response, but is
 required even when that would not be possible. Exactly one space
 exists between the set of facts and the pathname. Where no facts are
 present, there will be exactly two leading spaces before the
 pathname. No spaces are permitted in the facts, any other spaces in
 the response are to be treated as being a part of the pathname.

 If the command was an MLSD command, the server will open a data
 connection as indicated in section 3.2 of STD 9, RFC 959 [3]. If
 that fails, the server will return an error-response. If all is OK,
 the server will return the initial-response, send the appropriate
 data-response over the new data connection, close that connection,
 and then send the final-response over the control connection. The
 grammar above defines the format for the data-response, which defines
 the format of the data returned over the data connection established.

 The data connection opened for a MLSD response shall be a connection
 as if the "TYPE L 8", "MODE S", and "STRU F" commands had been given,
 whatever FTP transfer type, mode and structure had actually been set,
 and without causing those settings to be altered for future commands.
 That is, this transfer type shall be set for the duration of the data
 connection established for this command only. While the content of
 the data sent can be viewed as a series of lines, implementations
 should note that there is no maximum line length defined.
 Implementations should be prepared to deal with arbitrarily long
 lines.

Hethmon Standards Track [Page 25]

RFC 3659 Extensions to FTP March 2007

 The facts part of the specification would contain a series of "file
 facts" about the file or directory named on the same line. Typical
 information to be presented would include file size, last
 modification time, creation time, a unique identifier, and a
 file/directory flag.

 The complete format for a successful reply to the MLSD command would
 be:

 facts SP pathname CRLF
 facts SP pathname CRLF
 facts SP pathname CRLF
 ...

 Note that the format is intended for machine processing, not human
 viewing, and as such the format is very rigid. Implementations MUST
 NOT vary the format by, for example, inserting extra spaces for
 readability, replacing spaces by tabs, including header or title
 lines, or inserting blank lines, or in any other way alter this
 format. Exactly one space is always required after the set of facts
 (which may be empty). More spaces may be present on a line if, and
 only if, the pathname presented contains significant spaces. The set
 of facts must not contain any spaces anywhere inside it. Facts
 should be provided in each output line only if they both provide
 relevant information about the file named on the same line, and they
 are in the set requested by the user-PI. See section 7.9 (page 51).
 There is no requirement that the same set of facts be provided for
 each file, or that the facts presented occur in the same order for
 each file.

7.2.1. Error Responses to MLSx commands

 Many of the 4xy and 5xy responses defined in section 4.2 of STD 9,
 RFC 959 [3] are possible in response to the MLST and MLSD commands.
 In particular, syntax errors can generate 500 or 501 replies. Giving
 a pathname that exists but is not a directory as the argument to a
 MLSD command generates a 501 reply. Giving a name that does not
 exist, or for which access permission (to obtain directory
 information as requested) is not granted will elicit a 550 reply.
 Other replies (530, 553, 503, 504, and any of the 4xy replies) are
 also possible in appropriate circumstances.

7.3. File Name Encoding

 An FTP implementation supporting the MLSx commands must be 8-bit
 clean. This is necessary in order to transmit UTF-8 encoded file
 names. This specification recommends the use of UTF-8 encoded file

Hethmon Standards Track [Page 26]

RFC 3659 Extensions to FTP March 2007

 names. FTP implementations SHOULD use UTF-8 whenever possible to
 encourage the maximum inter-operability.

 File names are not restricted to UTF-8, however treatment of
 arbitrary character encodings is not specified by this standard.
 Applications are encouraged to treat non-UTF-8 encodings of file
 names as octet sequences.

 Note that this encoding is unrelated to that of the contents of the
 file, even if the file contains character data.

 Further information about file name encoding for FTP may be found in
 "Internationalization of the File Transfer Protocol" [7].

7.3.1. Notes about the File Name

 The file name returned in the MLST response should be the same name
 as was specified in the MLST command, or, where TVFS is supported, a
 fully qualified TVFS path naming the same file. Where no argument
 was given to the MLST command, the server-PI may either include an
 empty file name in the response, or it may supply a name that refers
 to the current directory, if such a name is available. Where TVFS is
 supported, a fully qualified pathname of the current directory SHOULD
 be returned.

 File names returned in the output from an MLSD command SHOULD be
 unqualified names within the directory named, or the current
 directory if no argument was given. That is, the directory named in
 the MLSD command SHOULD NOT appear as a component of the file names
 returned.

 If the server-FTP process is able, and the "type" fact is being
 returned, it MAY return in the MLSD response, an entry whose type is
 "cdir", which names the directory from which the contents of the
 listing were obtained. Where TVFS is supported, the name MAY be the
 fully qualified pathname of the directory, or MAY be any other
 pathname that is valid to refer to that directory from the current
 working directory of the server-FTP. Where more than one name
 exists, multiple of these entries may be returned. In a sense, the
 "cdir" entry can be viewed as a heading for the MLSD output.
 However, it is not required to be the first entry returned, and may
 occur anywhere within the listing.

 When TVFS is supported, a user-PI can refer to any file or directory
 in the listing by combining a type "cdir" name, with the appropriate
 name from the directory listing using the procedure defined in
 section 6.2.

Hethmon Standards Track [Page 27]

RFC 3659 Extensions to FTP March 2007

 Alternatively, whether TVFS is supported or not, the user-PI can
 issue a CWD command ([3]) giving a name of type "cdir" from the
 listing returned, and from that point reference the files returned in
 the MLSD response from which the cdir was obtained by using the file
 name components of the listing.

7.4. Format of Facts

 The "facts" for a file in a reply to a MLSx command consist of
 information about that file. The facts are a series of keyword=value
 pairs each followed by semi-colon (";") characters. An individual
 fact may not contain a semi-colon in its name or value. The complete
 series of facts may not contain the space character. See the
 definition or "RCHAR" in section 2.1 for a list of the characters
 that can occur in a fact value. Not all are applicable to all facts.

 A sample of a typical series of facts would be: (spread over two
 lines for presentation here only)

 size=4161;lang=en-US;modify=19970214165800;create=19961001124534;
 type=file;x.myfact=foo,bar;

7.5. Standard Facts

 This document defines a standard set of facts as follows:

 size -- Size in octets
 modify -- Last modification time
 create -- Creation time
 type -- Entry type
 unique -- Unique id of file/directory
 perm -- File permissions, whether read, write, execute is
 allowed for the login id.
 lang -- Language of the file name per IANA [11] registry.
 media-type -- MIME media-type of file contents per IANA registry.
 charset -- Character set per IANA registry (if not UTF-8)

 Fact names are case-insensitive. Size, size, SIZE, and SiZe are the
 same fact.

 Further operating system specific keywords could be specified by
 using the IANA operating system name as a prefix (examples only):

 OS/2.ea -- OS/2 extended attributes
 MACOS.rf -- MacIntosh resource forks
 UNIX.mode -- Unix file modes (permissions)

Hethmon Standards Track [Page 28]

RFC 3659 Extensions to FTP March 2007

 Implementations may define keywords for experimental, or private use.
 All such keywords MUST begin with the two character sequence "x.".
 As type names are case independent, "x." and "X." are equivalent.
 For example:

 x.ver -- Version information
 x.desc -- File description
 x.type -- File type

7.5.1. The Type Fact

 The type fact needs a special description. Part of the problem with
 current practices is deciding when a file is a directory. If it is a
 directory, is it the current directory, a regular directory, or a
 parent directory? The MLST specification makes this unambiguous
 using the type fact. The type fact given specifies information about
 the object listed on the same line of the MLST response.

 Five values are possible for the type fact:

 file -- a file entry
 cdir -- the listed directory
 pdir -- a parent directory
 dir -- a directory or sub-directory
 OS.name=type -- an OS or file system dependent file type

 The syntax is defined to be:

 type-fact = type-label "=" type-val
 type-label = "Type"
 type-val = "File" / "cdir" / "pdir" / "dir" /
 os-type

 The value of the type fact (the "type-val") is a case independent
 string.

7.5.1.1. type=file

 The presence of the type=file fact indicates the listed entry is a
 file containing non-system data. That is, it may be transferred from
 one system to another of quite different characteristics, and perhaps
 still be meaningful.

7.5.1.2. type=cdir

 The type=cdir fact indicates the listed entry contains a pathname of
 the directory whose contents are listed. An entry of this type will
 only be returned as a part of the result of an MLSD command when the

Hethmon Standards Track [Page 29]

RFC 3659 Extensions to FTP March 2007

 type fact is included, and provides a name for the listed directory,
 and facts about that directory. In a sense, it can be viewed as
 representing the title of the listing, in a machine friendly format.
 It may appear at any point of the listing, it is not restricted to
 appearing at the start, though frequently may do so, and may occur
 multiple times. It MUST NOT be included if the type fact is not
 included, or there would be no way for the user-PI to distinguish the
 name of the directory from an entry in the directory.

 Where TVFS is supported by the server-FTP, this name may be used to
 construct pathnames with which to refer to the files and directories
 returned in the same MLSD output (see section 6.2). These pathnames
 are only expected to work when the server-PI’s position in the NVFS
 file tree is the same as its position when the MLSD command was
 issued, unless a fully qualified pathname results.

 Where TVFS is not supported, the only defined semantics associated
 with a "type=cdir" entry are that, provided the current working
 directory of the server-PI has not been changed, a pathname of type
 "cdir" may be used as an argument to a CWD command, which will cause
 the current directory of the server-PI to change so that the
 directory that was listed in its current working directory.

7.5.1.3. type=dir

 If present, the type=dir entry gives the name of a directory. Such
 an entry typically cannot be transferred from one system to another
 using RETR, etc., but should (permissions permitting) be able to be
 the object of an MLSD command.

7.5.1.4. type=pdir

 If present, which will occur only in the response to a MLSD command
 when the type fact is included, the type=pdir entry represents a
 pathname of the parent directory of the listed directory. As well as
 having the properties of a type=dir, a CWD command that uses the
 pathname from this entry should change the user to a parent directory
 of the listed directory. If the listed directory is the current
 directory, a CDUP command may also have the effect of changing to the
 named directory. User-FTP processes should note not all responses
 will include this information, and that some systems may provide
 multiple type=pdir responses.

 Where TVFS is supported, a "type=pdir" name may be a relative
 pathname, or a fully qualified pathname. A relative pathname will be
 relative to the directory being listed, not to the current directory
 of the server-PI at the time.

Hethmon Standards Track [Page 30]

RFC 3659 Extensions to FTP March 2007

 For the purposes of this type value, a "parent directory" is any
 directory in which there is an entry of type=dir that refers to the
 directory in which the type=pdir entity was found. Thus it is not
 required that all entities with type=pdir refer to the same
 directory. The "unique" fact (if supported and supplied) can be used
 to determine whether there is a relationship between the type=pdir
 entries or not.

7.5.1.5. System Defined Types

 Files types that are specific to a specific operating system, or file
 system, can be encoded using the "OS." type names. The format is:

 os-type = "OS." os-name "=" os-kind
 os-name = <an IANA registered operating system name>
 os-kind = token

 The "os-name" indicates the specific system type that supports the
 particular localtype. OS specific types are registered by the IANA
 using the procedures specified in section 10. The "os-kind" provides
 the system dependent information as to the type of the file listed.
 The os-name and os-kind strings in an os-type are case independent.
 "OS.unix=block" and "OS.Unix=BLOCK" represent the same type (or
 would, if such a type were registered.)

 Note: Where the underlying system supports a file type that is
 essentially an indirect pointer to another file, the NVFS
 representation of that type should normally be to represent the file
 that the reference indicates. That is, the underlying basic file
 will appear more than once in the NVFS, each time with the "unique"
 fact (see immediately following section) containing the same value,
 indicating that the same file is represented by all such names.
 User-PIs transferring the file need then transfer it only once, and
 then insert their own form of indirect reference to construct
 alternate names where desired, or perhaps even copy the local file if
 that is the only way to provide two names with the same content. A
 file which would be a reference to another file, if only the other
 file actually existed, may be represented in any OS dependent manner
 appropriate, or not represented at all.

7.5.1.6. Multiple Types

 Where a file is such that it may validly, and sensibly, treated by
 the server-PI as being of more than one of the above types, then
 multiple entries should be returned, each with its own "Type" fact of
 the appropriate type, and each containing the same pathname. This
 may occur, for example, with a structured file, which may contain
 sub-files, and where the server-PI permits the structured file to be

Hethmon Standards Track [Page 31]

RFC 3659 Extensions to FTP March 2007

 treated as a unit, or treated as a directory allowing the sub-files
 within it to be referenced. When this is done, the pathname returned
 with each entry MUST be identical to the others representing the same
 file.

7.5.2. The unique Fact

 The unique fact is used to present a unique identifier for a file or
 directory in the NVFS accessed via a server-FTP process. The value
 of this fact should be the same for any number of pathnames that
 refer to the same underlying file. The fact should have different
 values for names that reference distinct files. The mapping between
 files, and unique fact tokens should be maintained, and remain
 consistent, for at least the lifetime of the control connection from
 user-PI to server-PI.

 unique-fact = "Unique" "=" token

 This fact would be expected to be used by server-FTPs whose host
 system allows things such as symbolic links so that the same file may
 be represented in more than one directory on the server. The only
 conclusion that should be drawn is that if two different names each
 have the same value for the unique fact, they refer to the same
 underlying object. The value of the unique fact (the token) should
 be considered an opaque string for comparison purposes, and is a case
 dependent value. The tokens "A" and "a" do not represent the same
 underlying object.

7.5.3. The modify Fact

 The modify fact is used to determine the last time the content of the
 file (or directory) indicated was modified. Any change of substance
 to the file should cause this value to alter. That is, if a change
 is made to a file such that the results of a RETR command would
 differ, then the value of the modify fact should alter. User-PIs
 should not assume that a different modify fact value indicates that
 the file contents are necessarily different than when last retrieved.
 Some systems may alter the value of the modify fact for other
 reasons, though this is discouraged wherever possible. Also a file
 may alter, and then be returned to its previous content, which would
 often be indicated as two incremental alterations to the value of the
 modify fact.

 For directories, this value should alter whenever a change occurs to
 the directory such that different file names would (or might) be
 included in MLSD output of that directory.

 modify-fact = "Modify" "=" time-val

Hethmon Standards Track [Page 32]

RFC 3659 Extensions to FTP March 2007

7.5.4. The create Fact

 The create fact indicates when a file, or directory, was first
 created. Exactly what "creation" is for this purpose is not
 specified here, and may vary from server to server. About all that
 can be said about the value returned is that it can never indicate a
 later time than the modify fact.

 create-fact = "Create" "=" time-val

 Implementation Note: Implementors of this fact on UNIX(TM) systems
 should note that the unix "stat" "st_ctime" field does not give
 creation time, and that unix file systems do not record creation
 time at all. Unix (and POSIX) implementations will normally not
 include this fact.

7.5.5. The perm Fact

 The perm fact is used to indicate access rights the current FTP user
 has over the object listed. Its value is always an unordered
 sequence of alphabetic characters.

 perm-fact = "Perm" "=" *pvals
 pvals = "a" / "c" / "d" / "e" / "f" /
 "l" / "m" / "p" / "r" / "w"

 There are ten permission indicators currently defined. Many are
 meaningful only when used with a particular type of object. The
 indicators are case independent, "d" and "D" are the same indicator.

 The "a" permission applies to objects of type=file, and indicates
 that the APPE (append) command may be applied to the file named.

 The "c" permission applies to objects of type=dir (and type=pdir,
 type=cdir). It indicates that files may be created in the directory
 named. That is, that a STOU command is likely to succeed, and that
 STOR and APPE commands might succeed if the file named did not
 previously exist, but is to be created in the directory object that
 has the "c" permission. It also indicates that the RNTO command is
 likely to succeed for names in the directory.

 The "d" permission applies to all types. It indicates that the
 object named may be deleted, that is, that the RMD command may be
 applied to it if it is a directory, and otherwise that the DELE
 command may be applied to it.

 The "e" permission applies to the directory types. When set on an
 object of type=dir, type=cdir, or type=pdir it indicates that a CWD

Hethmon Standards Track [Page 33]

RFC 3659 Extensions to FTP March 2007

 command naming the object should succeed, and the user should be able
 to enter the directory named. For type=pdir it also indicates that
 the CDUP command may succeed (if this particular pathname is the one
 to which a CDUP would apply.)

 The "f" permission for objects indicates that the object named may be
 renamed - that is, may be the object of an RNFR command.

 The "l" permission applies to the directory file types, and indicates
 that the listing commands, LIST, NLST, and MLSD may be applied to the
 directory in question.

 The "m" permission applies to directory types, and indicates that the
 MKD command may be used to create a new directory within the
 directory under consideration.

 The "p" permission applies to directory types, and indicates that
 objects in the directory may be deleted, or (stretching naming a
 little) that the directory may be purged. Note: it does not indicate
 that the RMD command may be used to remove the directory named
 itself, the "d" permission indicator indicates that.

 The "r" permission applies to type=file objects, and for some
 systems, perhaps to other types of objects, and indicates that the
 RETR command may be applied to that object.

 The "w" permission applies to type=file objects, and for some
 systems, perhaps to other types of objects, and indicates that the
 STOR command may be applied to the object named.

 Note: That a permission indicator is set can never imply that the
 appropriate command is guaranteed to work -- just that it might.
 Other system specific limitations, such as limitations on
 available space for storing files, may cause an operation to fail,
 where the permission flags may have indicated that it was likely
 to succeed. The permissions are a guide only.

 Implementation note: The permissions are described here as they apply
 to FTP commands. They may not map easily into particular
 permissions available on the server’s operating system. Servers
 are expected to synthesize these permission bits from the
 permission information available from operating system. For
 example, to correctly determine whether the "D" permission bit
 should be set on a directory for a server running on the UNIX(TM)
 operating system, the server should check that the directory named
 is empty, and that the user has write permission on both the
 directory under consideration, and its parent directory.

Hethmon Standards Track [Page 34]

RFC 3659 Extensions to FTP March 2007

 Some systems may have more specific permissions than those listed
 here, such systems should map those to the flags defined as best
 they are able. Other systems may have only more broad access
 controls. They will generally have just a few possible
 permutations of permission flags, however they should attempt to
 correctly represent what is permitted.

7.5.6. The lang Fact

 The lang fact describes the natural language of the file name for use
 in display purposes. Values used here should be taken from the
 language registry of the IANA. See [12] for the syntax, and
 procedures, related to language tags.

 lang-fact = "Lang" "=" token

 Server-FTP implementations MUST NOT guess language values. Language
 values must be determined in an unambiguous way such as file system
 tagging of language or by user configuration. Note that the lang
 fact provides no information at all about the content of a file, only
 about the encoding of its name.

7.5.7. The size Fact

 The size fact applies to non-directory file types and should always
 reflect the approximate size of the file. This should be as accurate
 as the server can make it, without going to extraordinary lengths,
 such as reading the entire file. The size is expressed in units of
 octets of data in the file.

 Given limitations in some systems, Client-FTP implementations must
 understand this size may not be precise and may change between the
 time of a MLST and RETR operation.

 Clients that need highly accurate size information for some
 particular reason should use the SIZE command as defined in section
 4. The most common need for this accuracy is likely to be in
 conjunction with the REST command described in section 5. The size
 fact, on the other hand, should be used for purposes such as
 indicating to a human user the approximate size of the file to be
 transferred, and perhaps to give an idea of expected transfer
 completion time.

 size-fact = "Size" "=" 1*DIGIT

Hethmon Standards Track [Page 35]

RFC 3659 Extensions to FTP March 2007

7.5.8. The media-type Fact

 The media-type fact represents the IANA media type of the file named,
 and applies only to non-directory types. The list of values used
 must follow the guidelines set by the IANA registry.

 media-type = "Media-Type" "=" <per IANA guidelines>

 Server-FTP implementations MUST NOT guess media type values. Media
 type values must be determined in an unambiguous way such as file
 system tagging of media-type or by user configuration. This fact
 gives information about the content of the file named. Both the
 primary media type, and any appropriate subtype should be given,
 separated by a slash "/" as is traditional.

7.5.9. The charset Fact

 The charset fact provides the IANA character set name, or alias, for
 the encoded pathnames in a MLSx response. The default character set
 is UTF-8 unless specified otherwise. FTP implementations SHOULD use
 UTF-8 if possible to encourage maximum inter-operability. The value
 of this fact applies to the pathname only, and provides no
 information about the contents of the file.

 charset-type = "Charset" "=" token

7.5.10. Required Facts

 Servers are not required to support any particular set of the
 available facts. However, servers SHOULD, if conceivably possible,
 support at least the type, perm, size, unique, and modify facts.

7.6. System Dependent and Local Facts

 By using an system dependent fact, or a local fact, a server-PI may
 communicate to the user-PI information about the file named that is
 peculiar to the underlying file system.

7.6.1. System Dependent Facts

 System dependent fact names are labeled by prefixing a label
 identifying the specific information returned by the name of the
 appropriate operating system from the IANA maintained list of
 operating system names.

 The value of an OS dependent fact may be whatever is appropriate to
 convey the information available. It must be encoded as a "token" as
 defined in section 2.1 however.

Hethmon Standards Track [Page 36]

RFC 3659 Extensions to FTP March 2007

 In order to allow reliable inter-operation between users of system
 dependent facts, the IANA will maintain a registry of system
 dependent fact names, their syntax, and the interpretation to be
 given to their values. Registrations of system dependent facts are
 to be accomplished according to the procedures of section 10.

7.6.2. Local Facts

 Implementations may also make available other facts of their own
 choosing. As the method of interpretation of such information will
 generally not be widely understood, server-PIs should be aware that
 clients will typically ignore any local facts provided. As there is
 no registration of locally defined facts, it is entirely possible
 that different servers will use the same local fact name to provide
 vastly different information. Hence user-PIs should be hesitant
 about making any use of any information in a locally defined fact
 without some other specific assurance that the particular fact is one
 that they do comprehend.

 Local fact names all begin with the sequence "X.". The rest of the
 name is a "token" (see section 2.1). The value of a local fact can
 be anything at all, provided it can be encoded as a "token".

7.7. MLSx Examples

 The following examples are all taken from dialogues between existing
 FTP clients and servers. Because of this, not all possible
 variations of possible response formats are shown in the examples.
 This should not be taken as limiting the options of other server
 implementors. Where the examples show OS dependent information, that
 is to be treated as being purely for the purposes of demonstration of
 some possible OS specific information that could be defined. As at
 the time of the writing of this document, no OS specific facts or
 file types have been defined, the examples shown here should not be
 treated as in any way to be preferred over other possible similar
 definitions. Consult the IANA registries to determine what types and
 facts have been defined. Finally also beware that as the examples
 shown are taken from existing implementations, coded before this
 document was completed, the possibility of variations between the
 text of this document and the examples exists. In any such case of
 inconsistency, the example is to be treated as incorrect.

 In the examples shown, only relevant commands and responses have been
 included. This is not to imply that other commands (including
 authentication, directory modification, PORT or PASV commands, or
 similar) would not be present in an actual connection, or were not,
 in fact, actually used in the examples before editing. Note also
 that the formats shown are those that are transmitted between client

Hethmon Standards Track [Page 37]

RFC 3659 Extensions to FTP March 2007

 and server, not formats that would normally ever be reported to the
 user of the client.

7.7.1. Simple MLST

C> PWD
S> 257 "/tmp" is current directory.
C> MLst cap60.pl198.tar.gz
S> 250- Listing cap60.pl198.tar.gz
S> Type=file;Size=1024990;Perm=r; /tmp/cap60.pl198.tar.gz
S> 250 End

 The client first asked to be told the current directory of the
 server. This was purely for the purposes of clarity of this example.
 The client then requested facts about a specific file. The server
 returned the "250-" first control-response line, followed by a single
 line of facts about the file, followed by the terminating "250 "
 line. The text on the control-response line and the terminating line
 can be anything the server decides to send. Notice that the fact
 line is indented by a single space. Notice also that there are no
 spaces in the set of facts returned, until the single space before
 the file name. The file name returned on the fact line is a fully
 qualified pathname of the file listed. The facts returned show that
 the line refers to a file, that file contains approximately 1024990
 bytes, though more or less than that may be transferred if the file
 is retrieved, and a different number may be required to store the
 file at the client’s file store, and the connected user has
 permission to retrieve the file but not to do anything else
 particularly interesting.

7.7.2. MLST of a directory

C> PWD
S> 257 "/" is current directory.
C> MLst tmp
S> 250- Listing tmp
S> Type=dir;Modify=19981107085215;Perm=el; /tmp
S> 250 End

 Again the PWD is just for the purposes of demonstration for the
 example. The MLST fact line this time shows that the file listed is
 a directory, that it was last modified at 08:52:15 on the 7th of
 November, 1998 UTC, and that the user has permission to enter the
 directory, and to list its contents, but not to modify it in any way.
 Again, the fully qualified pathname of the directory listed is given.

Hethmon Standards Track [Page 38]

RFC 3659 Extensions to FTP March 2007

7.7.3. MLSD of a directory

C> MLSD tmp
S> 150 BINARY connection open for MLSD tmp
D> Type=cdir;Modify=19981107085215;Perm=el; tmp
D> Type=cdir;Modify=19981107085215;Perm=el; /tmp
D> Type=pdir;Modify=19990112030508;Perm=el; ..
D> Type=file;Size=25730;Modify=19940728095854;Perm=; capmux.tar.z
D> Type=file;Size=1830;Modify=19940916055648;Perm=r; hatch.c
D> Type=file;Size=25624;Modify=19951003165342;Perm=r; MacIP-02.txt
D> Type=file;Size=2154;Modify=19950501105033;Perm=r; uar.netbsd.patch
D> Type=file;Size=54757;Modify=19951105101754;Perm=r; iptnnladev.1.0.sit.hqx
D> Type=file;Size=226546;Modify=19970515023901;Perm=r; melbcs.tif
D> Type=file;Size=12927;Modify=19961025135602;Perm=r; tardis.1.6.sit.hqx
D> Type=file;Size=17867;Modify=19961025135602;Perm=r; timelord.1.4.sit.hqx
D> Type=file;Size=224907;Modify=19980615100045;Perm=r; uar.1.2.3.sit.hqx
D> Type=file;Size=1024990;Modify=19980130010322;Perm=r; cap60.pl198.tar.gz
S> 226 MLSD completed

 In this example notice that there is no leading space on the fact
 lines returned over the data connection. Also notice that two lines
 of "type=cdir" have been given. These show two alternate names for
 the directory listed, one a fully qualified pathname, and the other a
 local name relative to the servers current directory when the MLSD
 was performed. Note that all other file names in the output are
 relative to the directory listed, though the server could, if it
 chose, give a fully qualified pathname for the "type=pdir" line.
 This server has chosen not to. The other files listed present a
 fairly boring set of files that are present in the listed directory.
 Note that there is no particular order in which they are listed.
 They are not sorted by file name, by size, or by modify time. Note
 also that the "perm" fact has an empty value for the file
 "capmux.tar.z" indicating that the connected user has no permissions
 at all for that file. This server has chosen to present the "cdir"
 and "pdir" lines before the lines showing the content of the
 directory, it is not required to do so. The "size" fact does not
 provide any meaningful information for a directory, so is not
 included in the fact lines for the directory types shown.

Hethmon Standards Track [Page 39]

RFC 3659 Extensions to FTP March 2007

7.7.4. A More Complex Example

C> MLst test
S> 250- Listing test
S> Type=dir;Perm=el;Unique=keVO1+ZF4 test
S> 250 End
C> MLSD test
S> 150 BINARY connection open for MLSD test
D> Type=cdir;Perm=el;Unique=keVO1+ZF4; test
D> Type=pdir;Perm=e;Unique=keVO1+d?3; ..
D> Type=OS.unix=slink:/foobar;Perm=;Unique=keVO1+4G4; foobar
D> Type=OS.unix=chr-13/29;Perm=;Unique=keVO1+5G4; device
D> Type=OS.unix=blk-11/108;Perm=;Unique=keVO1+6G4; block
D> Type=file;Perm=awr;Unique=keVO1+8G4; writable
D> Type=dir;Perm=cpmel;Unique=keVO1+7G4; promiscuous
D> Type=dir;Perm=;Unique=keVO1+1t2; no-exec
D> Type=file;Perm=r;Unique=keVO1+EG4; two words
D> Type=file;Perm=r;Unique=keVO1+IH4; leading space
D> Type=file;Perm=r;Unique=keVO1+1G4; file1
D> Type=dir;Perm=cpmel;Unique=keVO1+7G4; incoming
D> Type=file;Perm=r;Unique=keVO1+1G4; file2
D> Type=file;Perm=r;Unique=keVO1+1G4; file3
D> Type=file;Perm=r;Unique=keVO1+1G4; file4
S> 226 MLSD completed
C> MLSD test/incoming
S> 150 BINARY connection open for MLSD test/incoming
D> Type=cdir;Perm=cpmel;Unique=keVO1+7G4; test/incoming
D> Type=pdir;Perm=el;Unique=keVO1+ZF4; ..
D> Type=file;Perm=awdrf;Unique=keVO1+EH4; bar
D> Type=file;Perm=awdrf;Unique=keVO1+LH4;
D> Type=file;Perm=rf;Unique=keVO1+1G4; file5
D> Type=file;Perm=rf;Unique=keVO1+1G4; file6
D> Type=dir;Perm=cpmdelf;Unique=keVO1+!s2; empty
S> 226 MLSD completed

 For the purposes of this example the fact set requested has been
 modified to delete the "size" and "modify" facts, and add the
 "unique" fact. First, facts about a file name have been obtained via
 MLST. Note that no fully qualified pathname was given this time.
 That was because the server was unable to determine that information.
 Then having determined that the file name represents a directory,
 that directory has been listed. That listing also shows no fully
 qualified pathname, for the same reason, thus has but a single
 "type=cdir" line. This directory (which was created especially for
 the purpose) contains several interesting files. There are some with
 OS dependent file types, several sub-directories, and several
 ordinary files.

Hethmon Standards Track [Page 40]

RFC 3659 Extensions to FTP March 2007

 Not much can be said here about the OS dependent file types, as none
 of the information shown there should be treated as any more than
 possibilities. It can be seen that the OS type of the server is
 "unix" though, which is one of the OS types in the IANA registry of
 Operating System names.

 Of the three directories listed, "no-exec" has no permission granted
 to this user to access at all. From the "Unique" fact values, it can
 be determined that "promiscuous" and "incoming" in fact represent the
 same directory. Its permissions show that the connected user has
 permission to do essentially anything other than to delete the
 directory. That directory was later listed. It happens that the
 directory can not be deleted because it is not empty.

 Of the normal files listed, two contain spaces in their names. The
 file called " leading space" actually contains two spaces in its
 name, one before the "l" and one between the "g" and the "s". The
 two spaces that separate the facts from the visible part of the
 pathname make that clear. The file "writable" has the "a" and "w"
 permission bits set, and consequently the connected user should be
 able to STOR or APPE to that file.

 The other four file names, "file1", "file2", "file3", and "file4" all
 represent the same underlying file, as can be seen from the values of
 the "unique" facts of each. It happens that "file1" and "file2" are
 Unix "hard" links, and that "file3" and "file4" are "soft" or
 "symbolic" links to the first two. None of that information is
 available via standard MLST facts, it is sufficient for the purposes
 of FTP to note that all represent the same file, and that the same
 data would be fetched no matter which of them was retrieved, and that
 all would be simultaneously modified were data stored in any.

 Finally, the sub-directory "incoming" is listed. Since "promiscuous"
 is the same directory there would be no point listing it as well. In
 that directory, the files "file5" and "file6" represent still more
 names for the "file1" file we have seen before. Notice the entry
 between that for "bar" and "file5". Though it is not possible to
 easily represent it in this document, that shows a file with a name
 comprising exactly three spaces (" "). A client will have no
 difficulty determining that name from the output presented to it
 however. The directory "empty" is, as its name implies, empty,
 though that is not shown here. It can, however, be deleted, as can
 file "bar" and the file whose name is three spaces. All the files
 that reside in this directory can be renamed. This is a consequence
 of the UNIX semantics of the directory that contains them being
 modifiable.

Hethmon Standards Track [Page 41]

RFC 3659 Extensions to FTP March 2007

7.7.5. More Accurate Time Information

C> MLst file1
S> 250- Listing file1
S> Type=file;Modify=19990929003355.237; file1
S> 250 End

 In this example, the server-FTP is indicating that "file1" was last
 modified 237 milliseconds after 00:33:55 UTC on the 29th of
 September, 1999.

7.7.6. A Different Server

C> MLST
S> 250-Begin
S> type=dir;unique=AQkAAAAAAAABCAAA; /
S> 250 End.
C> MLSD
S> 150 Opening ASCII mode data connection for MLS.
D> type=cdir;unique=AQkAAAAAAAABCAAA; /
D> type=dir;unique=AQkAAAAAAAABEAAA; bin
D> type=dir;unique=AQkAAAAAAAABGAAA; etc
D> type=dir;unique=AQkAAAAAAAAB8AwA; halflife
D> type=dir;unique=AQkAAAAAAAABoAAA; incoming
D> type=dir;unique=AQkAAAAAAAABIAAA; lib
D> type=dir;unique=AQkAAAAAAAABWAEA; linux
D> type=dir;unique=AQkAAAAAAAABKAEA; ncftpd
D> type=dir;unique=AQkAAAAAAAABGAEA; outbox
D> type=dir;unique=AQkAAAAAAAABuAAA; quake2
D> type=dir;unique=AQkAAAAAAAABQAEA; winstuff
S> 226 Listing completed.
C> MLSD linux
S> 150 Opening ASCII mode data connection for MLS.
D> type=cdir;unique=AQkAAAAAAAABWAEA; /linux
D> type=pdir;unique=AQkAAAAAAAABCAAA; /
D> type=dir;unique=AQkAAAAAAAABeAEA; firewall
D> type=file;size=12;unique=AQkAAAAAAAACWAEA; helo_world
D> type=dir;unique=AQkAAAAAAAABYAEA; kernel
D> type=dir;unique=AQkAAAAAAAABmAEA; scripts
D> type=dir;unique=AQkAAAAAAAABkAEA; security
S> 226 Listing completed.
C> MLSD linux/kernel
S> 150 Opening ASCII mode data connection for MLS.
D> type=cdir;unique=AQkAAAAAAAABYAEA; /linux/kernel
D> type=pdir;unique=AQkAAAAAAAABWAEA; /linux
D> type=file;size=6704;unique=AQkAAAAAAAADYAEA; k.config
D> type=file;size=7269221;unique=AQkAAAAAAAACYAEA; linux-2.0.36.tar.gz
D> type=file;size=12514594;unique=AQkAAAAAAAAEYAEA; linux-2.1.130.tar.gz

Hethmon Standards Track [Page 42]

RFC 3659 Extensions to FTP March 2007

S> 226 Listing completed.

 Note that this server returns its "unique" fact value in quite a
 different format. It also returns fully qualified pathnames for the
 "pdir" entry.

7.7.7. Some IANA Files

C> MLSD
S> 150 BINARY connection open for MLSD .
D> Type=cdir;Modify=19990219183438; /iana/assignments
D> Type=pdir;Modify=19990112030453; ..
D> Type=dir;Modify=19990219073522; media-types
D> Type=dir;Modify=19990112033515; character-set-info
D> Type=dir;Modify=19990112033529; languages
D> Type=file;Size=44242;Modify=19990217230400; character-sets
D> Type=file;Size=1947;Modify=19990209215600; operating-system-names
S> 226 MLSD completed
C> MLSD media-types
S> 150 BINARY connection open for MLSD media-types
D> Type=cdir;Modify=19990219073522; media-types
D> Type=cdir;Modify=19990219073522; /iana/assignments/media-types
D> Type=pdir;Modify=19990219183438; ..
D> Type=dir;Modify=19990112033045; text
D> Type=dir;Modify=19990219183442; image
D> Type=dir;Modify=19990112033216; multipart
D> Type=dir;Modify=19990112033254; video
D> Type=file;Size=30249;Modify=19990218032700; media-types
S> 226 MLSD completed
C> MLSD character-set-info
S> 150 BINARY connection open for MLSD character-set-info
D> Type=cdir;Modify=19990112033515; character-set-info
D> Type=cdir;Modify=19990112033515; /iana/assignments/character-set-info
D> Type=pdir;Modify=19990219183438; ..
D> Type=file;Size=1234;Modify=19980903020400; windows-1251
D> Type=file;Size=4557;Modify=19980922001400; tis-620
D> Type=file;Size=801;Modify=19970324130000; ibm775
D> Type=file;Size=552;Modify=19970320130000; ibm866
D> Type=file;Size=922;Modify=19960505140000; windows-1258
S> 226 MLSD completed
C> MLSD languages
S> 150 BINARY connection open for MLSD languages
D> Type=cdir;Modify=19990112033529; languages
D> Type=cdir;Modify=19990112033529; /iana/assignments/languages
D> Type=pdir;Modify=19990219183438; ..
D> Type=file;Size=2391;Modify=19980309130000; default
D> Type=file;Size=943;Modify=19980309130000; tags
D> Type=file;Size=870;Modify=19971026130000; navajo

Hethmon Standards Track [Page 43]

RFC 3659 Extensions to FTP March 2007

D> Type=file;Size=699;Modify=19950911140000; no-bok
S> 226 MLSD completed
C> PWD
S> 257 "/iana/assignments" is current directory.

 This example shows some of the IANA maintained files that are
 relevant for this specification in MLSD format. Note that these
 listings have been edited by deleting many entries, the actual
 listings are much longer.

7.7.8. A Stress Test of Case (In)dependence

 The following example is intended to make clear some cases where case
 dependent strings are permitted in the MLSx commands, and where case
 independent strings are required.

 Note first that the "MLSD" command, shown here as "MlsD" is case
 independent. Clients may issue this command in any case, or
 combination of cases, they desire. This is the case for all FTP
 commands.

C> MlsD
S> 150 BINARY connection open for MLSD .
D> Type=pdir;Modify=19990929011228;Perm=el;Unique=keVO1+ZF4; ..
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+Bd8; FILE2
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+aG8; file3
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+ag8; FILE3
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+bD8; file1
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+bD8; file2
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+Ag8; File3
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+bD8; File1
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+Bd8; File2
D> Type=file;Size=4096;Modify=19990929011440;Perm=r;Unique=keVO1+bd8; FILE1
S> 226 MLSD completed

 Next, notice the labels of the facts. These are also case-
 independent strings; the server-FTP is permitted to return them in
 any case desired. User-FTP must be prepared to deal with any case,
 though it may do this by mapping the labels to a common case if
 desired.

 Then, notice that there are nine objects of "type" file returned. In
 a case-independent NVFS these would represent three different file
 names, "file1", "file2", and "file3". With a case-dependent NVFS all
 nine represent different file names. Either is possible, server-FTPs
 may implement a case dependent or a case independent NVFS. User-FTPs
 must allow for case dependent selection of files to manipulate on the
 server.

Hethmon Standards Track [Page 44]

RFC 3659 Extensions to FTP March 2007

 Lastly, notice that the value of the "unique" fact is case dependent.
 In the example shown, "file1", "File1", and "file2" all have the same
 "unique" fact value "keVO1+bD8", and thus all represent the same
 underlying file. On the other hand, "FILE1" has a different "unique"
 fact value ("keVO1+bd8") and hence represents a different file.
 Similarly, "FILE2" and "File2" are two names for the same underlying
 file, whereas "file3", "File3" and "FILE3" all represent different
 underlying files.

 That the approximate sizes ("size" fact) and last modification times
 ("modify" fact) are the same in all cases might be no more than a
 coincidence.

 It is not suggested that the operators of server-FTPs create an NVFS
 that stresses the protocols to this extent; however, both user and
 server implementations must be prepared to deal with such extreme
 examples.

7.7.9. Example from Another Server

C> MlsD
S> 150 File Listing Follows in IMAGE / Binary mode.
D> type=cdir;modify=19990426150227;perm=el; /MISC
D> type=pdir;modify=19791231130000;perm=el; /
D> type=dir;modify=19990426150227;perm=el; CVS
D> type=dir;modify=19990426150228;perm=el; SRC
S> 226 Transfer finished successfully.
C> MlsD src
S> 150 File Listing Follows in IMAGE / Binary mode.
D> type=cdir;modify=19990426150228;perm=el; /MISC/src
D> type=pdir;modify=19990426150227;perm=el; /MISC
D> type=dir;modify=19990426150228;perm=el; CVS
D> type=dir;modify=19990426150228;perm=el; INSTALL
D> type=dir;modify=19990426150230;perm=el; INSTALLI
D> type=dir;modify=19990426150230;perm=el; TREES
S> 226 Transfer finished successfully.
C> MlsD src/install
S> 150 File Listing Follows in IMAGE / Binary mode.
D> type=cdir;modify=19990426150228;perm=el; /MISC/src/install
D> type=pdir;modify=19990426150228;perm=el; /MISC/src
D> type=file;modify=19990406234304;perm=r;size=20059; BOOTPC.C
D> type=file;modify=19980401170153;perm=r;size=278; BOOTPC.H
D> type=file;modify=19990413153736;perm=r;size=54220; BOOTPC.O
D> type=file;modify=19990223044003;perm=r;size=3389; CDROM.C
D> type=file;modify=19990413153739;perm=r;size=30192; CDROM.O
D> type=file;modify=19981119155324;perm=r;size=1055; CHANGELO
D> type=file;modify=19981204171040;perm=r;size=8297; COMMANDS.C
D> type=file;modify=19980508041749;perm=r;size=580; COMMANDS.H

Hethmon Standards Track [Page 45]

RFC 3659 Extensions to FTP March 2007

 ...
D> type=file;modify=19990419052351;perm=r;size=54264; URLMETHO.O
D> type=file;modify=19980218161629;perm=r;size=993; WINDOWS.C
D> type=file;modify=19970912154859;perm=r;size=146; WINDOWS.H
D> type=file;modify=19990413153731;perm=r;size=16812; WINDOWS.O
D> type=file;modify=19990322174959;perm=r;size=129; _CVSIGNO
D> type=file;modify=19990413153640;perm=r;size=82536; _DEPEND
S> 226 Transfer finished successfully.
C> MLst src/install/windows.c
S> 250-Listing src/install/windows.c
S> type=file;perm=r;size=993; /misc/src/install/windows.c
S> 250 End
S> ftp> mlst SRC/INSTALL/WINDOWS.C
C> MLst SRC/INSTALL/WINDOWS.C
S> 250-Listing SRC/INSTALL/WINDOWS.C
S> type=file;perm=r;size=993; /misc/SRC/INSTALL/WINDOWS.C
S> 250 End

 Note that this server gives fully qualified pathnames for the "pdir"
 and "cdir" entries in MLSD listings. Also notice that this server
 does, though it is not required to, sort its directory listing
 outputs. That may be an artifact of the underlying file system
 access mechanisms of course. Finally notice that the NVFS supported
 by this server, in contrast to the earlier ones, implements its
 pathnames in a case independent manner. The server seems to return
 files using the case in which they were requested, when the name was
 sent by the client, and otherwise uses an algorithm known only to
 itself to select the case of the names it returns.

7.7.10. A Server Listing Itself

C> MLst f
S> 250-MLST f
S> Type=dir;Modify=20000710052229;Unique=AAD/AAAABIA; f
S> 250 End
C> CWD f
S> 250 CWD command successful.
C> MLSD
S> 150 Opening ASCII mode data connection for ’MLSD’.
D> Type=cdir;Unique=AAD/AAAABIA; .
D> Type=pdir;Unique=AAD/AAAAAAI; ..
D> Type=file;Size=987;Unique=AAD/AAAABIE; Makefile
D> Type=file;Size=20148;Unique=AAD/AAAABII; conf.c
D> Type=file;Size=11111;Unique=AAD/AAAABIM; extern.h
D> Type=file;Size=38721;Unique=AAD/AAAABIQ; ftpcmd.y
D> Type=file;Size=17922;Unique=AAD/AAAABIU; ftpd.8
D> Type=file;Size=60732;Unique=AAD/AAAABIY; ftpd.c
D> Type=file;Size=3127;Unique=AAD/AAAABIc; logwtmp.c

Hethmon Standards Track [Page 46]

RFC 3659 Extensions to FTP March 2007

D> Type=file;Size=2294;Unique=AAD/AAAABIg; pathnames.h
D> Type=file;Size=7605;Unique=AAD/AAAABIk; popen.c
D> Type=file;Size=9951;Unique=AAD/AAAABIo; ftpd.conf.5
D> Type=file;Size=5023;Unique=AAD/AAAABIs; ftpusers.5
D> Type=file;Size=3547;Unique=AAD/AAAABIw; logutmp.c
D> Type=file;Size=2064;Unique=AAD/AAAABI0; version.h
D> Type=file;Size=20420;Unique=AAD/AAAAAAM; cmds.c
D> Type=file;Size=15864;Unique=AAD/AAAAAAg; ls.c
D> Type=file;Size=2898;Unique=AAD/AAAAAAk; ls.h
D> Type=file;Size=2769;Unique=AAD/AAAAAAo; lsextern.h
D> Type=file;Size=2042;Unique=AAD/AAAAAAs; stat_flags.h
D> Type=file;Size=5708;Unique=AAD/AAAAAAw; cmp.c
D> Type=file;Size=9280;Unique=AAD/AAAAAA0; print.c
D> Type=file;Size=4657;Unique=AAD/AAAAAA4; stat_flags.c
D> Type=file;Size=2664;Unique=AAD/AAAAAA8; util.c
D> Type=file;Size=10383;Unique=AAD/AAAABJ0; ftpd.conf.cat5
D> Type=file;Size=3631;Unique=AAD/AAAABJ4; ftpusers.cat5
D> Type=file;Size=17729;Unique=AAD/AAAABJ8; ftpd.cat8
S> 226 MLSD complete.

 This examples shows yet another server implementation, showing a
 listing of its own source code. Note that this implementation does
 not include the fully qualified path name in its "cdir" and "pdir"
 entries, nor in the output from "MLST". Also note that the facts
 requested were modified between the "MLST" and "MLSD" commands,
 though that exchange has not been shown here.

7.7.11. A Server with a Difference

C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,46)
C> MLSD
S> 150 I tink I tee a trisector tree
D> Type=file;Unique=aaaaafUYqaaa;Perm=rf;Size=15741; x
D> Type=cdir;Unique=aaaaacUYqaaa;Perm=cpmel; /
D> Type=file;Unique=aaaaajUYqaaa;Perm=rf;Size=5760; x4
D> Type=dir;Unique=aaabcaUYqaaa;Perm=elf; sub
D> Type=file;Unique=aaaaagUYqaaa;Perm=rf;Size=8043; x1
D> Type=dir;Unique=aaab8aUYqaaa;Perm=cpmelf; files
D> Type=file;Unique=aaaaahUYqaaa;Perm=rf;Size=4983; x2
D> Type=file;Unique=aaaaaiUYqaaa;Perm=rf;Size=6854; x3
S> 226 That’s all folks...
C> CWD sub
S> 250 CWD command successful.
C> PWD
S> 257 "/sub" is current directory.
C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,44)

Hethmon Standards Track [Page 47]

RFC 3659 Extensions to FTP March 2007

C> MLSD
S> 150 I tink I tee a trisector tree
D> Type=dir;Unique=aaabceUYqaaa;Perm=elf; dir
D> Type=file;Unique=aaabcbUYqaaa;Perm=rf;Size=0; y1
D> Type=file;Unique=aaabccUYqaaa;Perm=rf;Size=0; y2
D> Type=file;Unique=aaabcdUYqaaa;Perm=rf;Size=0; y3
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; /
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; ..
D> Type=cdir;Unique=aaabcaUYqaaa;Perm=el; /sub
S> 226 That’s all folks...
C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,42)
C> MLSD dir
S> 150 I tink I tee a trisector tree
D> Type=pdir;Unique=aaabcaUYqaaa;Perm=el; /sub
D> Type=pdir;Unique=aaabcaUYqaaa;Perm=el; ..
D> Type=file;Unique=aaab8cUYqaaa;Perm=r;Size=15039; mlst.c
D> Type=dir;Unique=aaabcfUYqaaa;Perm=el; ect
D> Type=cdir;Unique=aaabceUYqaaa;Perm=el; dir
D> Type=cdir;Unique=aaabceUYqaaa;Perm=el; /sub/dir
D> Type=dir;Unique=aaabchUYqaaa;Perm=el; misc
D> Type=file;Unique=aaab8bUYqaaa;Perm=r;Size=34589; ftpd.c
S> 226 That’s all folks...
C> CWD dir/ect
S> 250 CWD command successful.
C> PWD
S> 257 "/sub/dir/ect" is current directory.
C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,40)
C> MLSD
S> 150 I tink I tee a trisector tree
D> Type=dir;Unique=aaabcgUYqaaa;Perm=el; ory
D> Type=pdir;Unique=aaabceUYqaaa;Perm=el; /sub/dir
D> Type=pdir;Unique=aaabceUYqaaa;Perm=el; ..
D> Type=cdir;Unique=aaabcfUYqaaa;Perm=el; /sub/dir/ect
S> 226 That’s all folks...
C> CWD /files
S> 250 CWD command successful.
C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,36)
C> MLSD
S> 150 I tink I tee a trisector tree
D> Type=cdir;Unique=aaab8aUYqaaa;Perm=cpmel; /files
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; /
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; ..
D> Type=file;Unique=aaab8cUYqaaa;Perm=rf;Size=15039; mlst.c
D> Type=file;Unique=aaab8bUYqaaa;Perm=rf;Size=34589; ftpd.c
S> 226 That’s all folks...

Hethmon Standards Track [Page 48]

RFC 3659 Extensions to FTP March 2007

C> RNFR mlst.c
S> 350 File exists, ready for destination name
C> RNTO list.c
S> 250 RNTO command successful.
C> PASV
S> 227 Entering Passive Mode (127,0,0,1,255,34)
C> MLSD
S> 150 I tink I tee a trisector tree
D> Type=file;Unique=aaab8cUYqaaa;Perm=rf;Size=15039; list.c
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; /
D> Type=pdir;Unique=aaaaacUYqaaa;Perm=cpmel; ..
D> Type=file;Unique=aaab8bUYqaaa;Perm=rf;Size=34589; ftpd.c
D> Type=cdir;Unique=aaab8aUYqaaa;Perm=cpmel; /files
S> 226 That’s all folks...

 The server shown here returns its directory listings in seemingly
 random order, and even seems to modify the order of the directory as
 its contents change -- perhaps the underlying directory structure is
 based upon hashing of some kind. Note that the "pdir" and "cdir"
 entries are interspersed with other entries in the directory. Note
 also that this server does not show a "pdir" entry when listing the
 contents of the root directory of the virtual filestore; however, it
 does however include multiple "cdir" and "pdir" entries when it feels
 inclined. The server also uses obnoxiously "cute" messages.

7.8. FEAT Response for MLSx

 When responding to the FEAT command, a server-FTP process that
 supports MLST, and MLSD, plus internationalization of pathnames, MUST
 indicate that this support exists. It does this by including a MLST
 feature line. As well as indicating the basic support, the MLST
 feature line indicates which MLST facts are available from the
 server, and which of those will be returned if no subsequent "OPTS
 MLST" command is sent.

 mlst-feat = SP "MLST" [SP factlist] CRLF
 factlist = 1*(factname ["*"] ";")

 The initial space shown in the mlst-feat response is that required by
 the FEAT command, two spaces are not permitted. If no factlist is
 given, then the server-FTP process is indicating that it supports
 MLST, but implements no facts. Only pathnames can be returned. This
 would be a minimal MLST implementation, and useless for most
 practical purposes. Where the factlist is present, the factnames
 included indicate the facts supported by the server. Where the
 optional asterisk appears after a factname, that fact will be
 included in MLST format responses, until an "OPTS MLST" is given to
 alter the list of facts returned. After that, subsequent FEAT

Hethmon Standards Track [Page 49]

RFC 3659 Extensions to FTP March 2007

 commands will return the asterisk to show the facts selected by the
 most recent "OPTS MLST".

 Note that there is no distinct FEAT output for MLSD. The presence of
 the MLST feature indicates that both MLST and MLSD are supported.

7.8.1. Examples

C> Feat
S> 211- Features supported
S> REST STREAM
S> MDTM
S> SIZE
S> TVFS
S> UTF8
S> MLST Type*;Size*;Modify*;Perm*;Unique*;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End

 Aside from some features irrelevant here, this server indicates that
 it supports MLST including several, but not all, standard facts, all
 of which it will send by default. It also supports two OS dependent
 facts, and one locally defined fact. The latter three must be
 requested expressly by the client for this server to supply them.

C> Feat
S> 211-Extensions supported:
S> CLNT
S> MDTM
S> MLST type*;size*;modify*;UNIX.mode*;UNIX.owner;UNIX.group;unique;
S> PASV
S> REST STREAM
S> SIZE
S> TVFS
S> Compliance Level: 19981201 (IETF mlst-05)
S> 211 End.

 Again, in addition to some irrelevant features here, this server
 indicates that it supports MLST, four of the standard facts, one of
 which ("unique") is not enabled by default, and several OS dependent
 facts, one of which is provided by the server by default. This
 server actually supported more OS dependent facts. Others were
 deleted for the purposes of this document to comply with document
 formatting restrictions.

Hethmon Standards Track [Page 50]

RFC 3659 Extensions to FTP March 2007

C> FEAT
S> 211-Features supported
S> MDTM
S> MLST Type*;Size*;Modify*;Perm;Unique*;
S> REST STREAM
S> SIZE
S> TVFS
S> 211 End

 This server has wisely chosen not to implement any OS dependent
 facts. At the time of writing this document, no such facts have been
 defined (using the mechanisms of section 10.1) so rational support
 for them would be difficult at best. All but one of the facts
 supported by this server are enabled by default.

7.9. OPTS Parameters for MLST

 For the MLSx commands, the Client-FTP may specify a list of facts it
 wishes to be returned in all subsequent MLSx commands until another
 OPTS MLST command is sent. The format is specified by:

 mlst-opts = "OPTS" SP "MLST"
 [SP 1*(factname ";")]

 By sending the "OPTS MLST" command, the client requests the server to
 include only the facts listed as arguments to the command in
 subsequent output from MLSx commands. Facts not included in the
 "OPTS MLST" command MUST NOT be returned by the server. Facts that
 are included should be returned for each entry returned from the MLSx
 command where they meaningfully apply. Facts requested that are not
 supported, or that are inappropriate to the file or directory being
 listed should simply be omitted from the MLSx output. This is not an
 error. Note that where no factname arguments are present, the client
 is requesting that only the file names be returned. In this case,
 and in any other case where no facts are included in the result, the
 space that separates the fact names and their values from the file
 name is still required. That is, the first character of the output
 line will be a space, (or two characters will be spaces when the line
 is returned over the control connection) and the file name will start
 immediately thereafter.

 Clients should note that generating values for some facts can be
 possible, but very expensive, for some servers. It is generally
 acceptable to retrieve any of the facts that the server offers as its
 default set before any "OPTS MLST" command has been given, however
 clients should use particular caution before requesting any facts not
 in that set. That is, while other facts may be available from the
 server, clients should refrain from requesting such facts unless

Hethmon Standards Track [Page 51]

RFC 3659 Extensions to FTP March 2007

 there is a particular operational requirement for that particular
 information, which ought be more significant than perhaps simply
 improving the information displayed to an end user.

 Note, there is no "OPTS MLSD" command, the fact names set with the
 "OPTS MLST" command apply to both MLST and MLSD commands.

 Servers are not required to accept "OPTS MLST" commands before
 authentication of the user-PI, but may choose to permit them.

7.9.1. OPTS MLST Response

 The "response-message" from [6] to a successful OPTS MLST command has
 the following syntax.

 mlst-opt-resp = "MLST OPTS" [SP 1*(factname ";")]

 This defines the "response-message" as used in the "opts-good"
 message in RFC 2389 [6].

 The facts named in the response are those that the server will now
 include in MLST (and MLSD) response, after the processing of the
 "OPTS MLST" command. Any facts from the request not supported by the
 server will be omitted from this response message. If no facts will
 be included, the list of facts will be empty. Note that the list of
 facts returned will be the same as those marked by a trailing
 asterisk ("*") in a subsequent FEAT command response. There is no
 requirement that the order of the facts returned be the same as that
 in which they were requested, or that in which they will be listed in
 a FEAT command response, or that in which facts are returned in MLST
 responses. The fixed string "MLST OPTS" in the response may be
 returned in any case, or mixture of cases.

7.9.2. Examples

C> Feat
S> 211- Features supported
S> MLST Type*;Size;Modify*;Perm;Unique;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End
C> OptS Mlst Type;UNIX.mode;Perm;
S> 200 MLST OPTS Type;Perm;UNIX.mode;
C> Feat
S> 211- Features supported
S> MLST Type*;Size;Modify;Perm*;Unique;UNIX.mode*;UNIX.chgd;X.hidden;
S> 211 End
C> opts MLst lang;type;charset;create;
S> 200 MLST OPTS Type;
C> Feat

Hethmon Standards Track [Page 52]

RFC 3659 Extensions to FTP March 2007

S> 211- Features supported
S> MLST Type*;Size;Modify;Perm;Unique;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End
C> OPTS mlst size;frogs;
S> 200 MLST OPTS Size;
C> Feat
S> 211- Features supported
S> MLST Type;Size*;Modify;Perm;Unique;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End
C> opts MLst unique type;
S> 501 Invalid MLST options
C> Feat
S> 211- Features supported
S> MLST Type;Size*;Modify;Perm;Unique;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End

 For the purposes of this example, features other than MLST have been
 deleted from the output to avoid clutter. The example shows the
 initial default feature output for MLST. The facts requested are
 then changed by the client. The first change shows facts that are
 available from the server being selected. Subsequent FEAT output
 shows the altered features as being returned. The client then
 attempts to select some standard features that the server does not
 support. This is not an error, however the server simply ignores the
 requests for unsupported features, as the FEAT output that follows
 shows. Then, the client attempts to request a non-standard, and
 unsupported, feature. The server ignores that, and selects only the
 supported features requested. Lastly, the client sends a request
 containing a syntax error (spaces cannot appear in the factlist.)
 The server-FTP sends an error response and completely ignores the
 request, leaving the fact set selected as it had been previously.

 Note that in all cases, except the error response, the response lists
 the facts that have been selected.

C> Feat
S> 211- Features supported
S> MLST Type*;Size*;Modify*;Perm*;Unique*;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End
C> Opts MLST
S> 200 MLST OPTS
C> Feat
S> 211- Features supported
S> MLST Type;Size;Modify;Perm;Unique;UNIX.mode;UNIX.chgd;X.hidden;
S> 211 End
C> MLst tmp
S> 250- Listing tmp
S> /tmp

Hethmon Standards Track [Page 53]

RFC 3659 Extensions to FTP March 2007

S> 250 End
C> OPTS mlst unique;size;
S> 200 MLST OPTS Size;Unique;
C> MLst tmp
S> 250- Listing tmp
S> Unique=keVO1+YZ5; /tmp
S> 250 End
C> OPTS mlst unique;type;modify;
S> 200 MLST OPTS Type;Modify;Unique;
C> MLst tmp
S> 250- Listing tmp
S> Type=dir;Modify=19990930152225;Unique=keVO1+YZ5; /tmp
S> 250 End
C> OPTS mlst fish;cakes;
S> 200 MLST OPTS
C> MLst tmp
S> 250- Listing tmp
S> /tmp
S> 250 End
C> OptS Mlst Modify;Unique;
S> 200 MLST OPTS Modify;Unique;
C> MLst tmp
S> 250- Listing tmp
S> Modify=19990930152225;Unique=keVO1+YZ5; /tmp
S> 250 End
C> opts MLst fish cakes;
S> 501 Invalid MLST options
C> MLst tmp
S> 250- Listing tmp
S> Modify=19990930152225;Unique=keVO1+YZ5; /tmp
S> 250 End

 This example shows the effect of changing the facts requested upon
 subsequent MLST commands. Notice that a syntax error leaves the set
 of selected facts unchanged. Also notice exactly two spaces
 preceding the pathname when no facts were selected, either
 deliberately, or because none of the facts requested were available.

8. Impact on Other FTP Commands

 Along with the introduction of MLST, traditional FTP commands must be
 extended to allow for the use of more than US-ASCII [1] or EBCDIC
 character sets. In general, the support of MLST requires support for
 arbitrary character sets wherever file names and directory names are
 allowed. This applies equally to both arguments given to the
 following commands and to the replies from them, as appropriate.

Hethmon Standards Track [Page 54]

RFC 3659 Extensions to FTP March 2007

 APPE RMD
 CWD RNFR
 DELE RNTO
 MKD STAT
 PWD STOR
 RETR STOU

 The arguments to all of these commands should be processed the same
 way that MLST commands and responses are processed with respect to
 handling embedded spaces, CRs and NULs. See section 2.2.

9. Character Sets and Internationalization

 FTP commands are protocol elements, and are always expressed in
 ASCII. FTP responses are composed of the numeric code, which is a
 protocol element, and a message, which is often expected to convey
 information to the user. It is not expected that users normally
 interact directly with the protocol elements, rather the user-FTP
 process constructs the commands, and interprets the results, in the
 manner best suited for the particular user. Explanatory text in
 responses generally has no particular meaning to the protocol. The
 numeric codes provide all necessary information. Server-PIs are free
 to provide the text in any language that can be adequately
 represented in ASCII, or where an alternative language and
 representation has been negotiated (see [7]) in that language and
 representation.

 Pathnames are expected to be encoded in UTF-8 allowing essentially
 any character to be represented in a pathname. Meaningful pathnames
 are defined by the server NVFS.

 No restrictions at all are placed upon the contents of files
 transferred using the FTP protocols. Unless the "media-type" fact is
 provided in a MLSx response nor is any advice given here that would
 allow determining the content type. That information is assumed to
 be obtained via other means.

10. IANA Considerations

 This specification makes use of some lists of values currently
 maintained by the IANA, and creates two new lists for the IANA to
 maintain. It does not add any values to any existing registries.

 The existing IANA registries used by this specification are modified
 using mechanisms specified elsewhere.

Hethmon Standards Track [Page 55]

RFC 3659 Extensions to FTP March 2007

10.1. The OS-Specific Fact Registry

 A registry of OS specific fact names shall be maintained by the IANA.
 The OS names for the OS portion of the fact name must be taken from
 the IANA’s list of registered OS names. To add a fact name to this
 OS specific registry of OS specific facts, an applicant must send to
 the IANA a request, in which is specified the OS name, the OS
 specific fact name, a definition of the syntax of the fact value,
 which must conform to the syntax of a token as given in this
 document, and a specification of the semantics to be associated with
 the particular fact and its values. Upon receipt of such an
 application, and if the combination of OS name and OS specific fact
 name has not been previously defined, the IANA will add the
 specification to the registry.

 Any examples of OS specific facts found in this document are to be
 treated as examples of possible OS specific facts, and do not form a
 part of the IANA’s registry merely because of being included in this
 document.

10.2. The OS-Specific Filetype Registry

 A registry of OS specific file types shall be maintained by the IANA.
 The OS names for the OS portion of the fact name must be taken from
 the IANA’s list of registered OS names. To add a file type to this
 OS specific registry of OS specific file types, an applicant must
 send to the IANA a request, in which is specified the OS name, the OS
 specific file type, a definition of the syntax of the fact value,
 which must conform to the syntax of a token as given in this
 document, and a specification of the semantics to be associated with
 the particular fact and its values. Upon receipt of such an
 application, and if the combination of OS name and OS specific file
 type has not been previously defined, the IANA will add the
 specification to the registry.

 Any examples of OS specific file types found in this document are to
 be treated as potential OS specific file types only, and do not form
 a part of the IANA’s registry merely because of being included in
 this document.

Hethmon Standards Track [Page 56]

RFC 3659 Extensions to FTP March 2007

11. Security Considerations

 This memo does not directly concern security. It is not believed
 that any of the mechanisms documented here impact in any particular
 way upon the security of FTP.

 Implementing the SIZE command, and perhaps some of the facts of the
 MLSx commands, may impose a considerable load on the server, which
 could lead to denial of service attacks. Servers have, however,
 implemented this for many years, without significant reported
 difficulties.

 The server-FTP should take care not to reveal sensitive information
 about files to unauthorised parties. In particular, some underlying
 filesystems provide a file identifier that, if known, can allow many
 of the filesystem protection mechanisms to be by-passed. That
 identifier would not be a suitable choice to use as the basis of the
 value of the unique fact.

 The FEAT and OPTS commands may be issued before the FTP
 authentication has occurred [6]. This allows unauthenticated clients
 to determine which of the features defined here are supported, and to
 negotiate the fact list for MLSx output. No actual MLSx commands may
 be issued however, and no problems with permitting the selection of
 the format prior to authentication are foreseen.

 A general discussion of issues related to the security of FTP can be
 found in [13].

Hethmon Standards Track [Page 57]

RFC 3659 Extensions to FTP March 2007

12. Normative References

 [1] Coded Character Set--7-bit American Standard Code for
 Information Interchange, ANSI X3.4-1986.

 [2] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
 3629, November 2003.

 [3] Postel, J. and J. Reynolds, "File Transfer Protocol (FTP)", STD
 9, RFC 959, October 1985.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [6] Hethmon, P. and R. Elz, "Feature negotiation mechanism for the
 File Transfer Protocol", RFC 2389, August 1998.

 [7] Curtin, B., "Internationalization of the File Transfer
 Protocol", RFC 2640, July 1999.

 [8] Postel, J. and J. Reynolds, "Telnet protocol Specification", STD
 8, RFC 854, May 1983.

 [9] Braden, R,. "Requirements for Internet Hosts -- Application and
 Support", STD 3, RFC 1123, October 1989.

 [10] ISO/IEC 10646-1:1993 "Universal multiple-octet coded character
 set (UCS) -- Part 1: Architecture and basic multilingual plane",
 International Standard -- Information Technology, 1993.

 [11] Internet Assigned Numbers Authority. http://www.iana.org
 Email: iana@iana.org.

 [12] Phillips, A. and M. Davis, "Tags for Identifying Languages", BCP
 47, RFC 4646, September 2006.

 [13] Allman, M. and S. Ostermann, "FTP Security Considerations" RFC
 2577, May 1999.

Hethmon Standards Track [Page 58]

RFC 3659 Extensions to FTP March 2007

Acknowledgments

 This document is a product of the FTPEXT working group of the IETF.

 The following people are among those who have contributed to this
 document:

 Alex Belits
 D. J. Bernstein
 Dave Cridland
 Martin J. Duerst
 Bill Fenner (and the rest of the IESG)
 Paul Ford-Hutchinson
 Mike Gleason
 Mark Harris
 Stephen Head
 Alun Jones
 Andrew Main
 James Matthews
 Luke Mewburn
 Jan Mikkelsen
 Keith Moore
 Buz Owen
 Mark Symons
 Stephen Tihor
 and the entire FTPEXT working group of the IETF.

 Apologies are offered to any inadvertently omitted.

 The description of the modifications to the REST command and the MDTM
 and SIZE commands comes from a set of modifications suggested for STD
 9, RFC 959 by Rick Adams in 1989. A document containing just those
 commands, edited by David Borman, has been merged with this document.

 Mike Gleason, Alun Jones and Luke Mewburn provided access to FTP
 servers used in some of the examples.

 All of the examples in this document are taken from actual
 client/server exchanges, though some have been edited for brevity, or
 to meet document formatting requirements.

RFC Editor Note:

 Several of the examples in this document exceed the RFC standard line
 length of 72 characters. Since this document is a standards-track
 result of an IETF working group and is important to an IETF sub-
 community, the RFC Editor is publishing it with the margin
 violations. This is not a precedent.

Hethmon Standards Track [Page 59]

RFC 3659 Extensions to FTP March 2007

Author’s Address

 Paul Hethmon
 Hethmon Software
 10420 Jackson Oaks Way, Suite 201
 Knoxville, TN 37922

 EMail: phethmon@hethmon.com

Hethmon Standards Track [Page 60]

RFC 3659 Extensions to FTP March 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hethmon Standards Track [Page 61]

