Net wor k Wor ki ng Group P. Het hnon
Request for Comments: 3659 Het hnon Sof t war e
Updat es: 959 Mar ch 2007
Cat egory: Standards Track

Extensions to FTP
Status of This Menp
This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for
i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.
Copyright Notice
Copyright (C The | ETF Trust (2007).
Abstract
Thi s docunent specifies new FTP comands to obtain listings of renote
directories in a defined format, and to permt restarts of
interrupted data transfers in STREAM node. It allows character sets

other than US-ASCI |, and al so defines an optional virtual file
storage structure.

Het hnon St andards Track [Page 1]

RFC 3659 Ext ensions to FTP

Tabl e of Contents

1.
2.

Het hnon

I ntroduction . .

Docunent Conventlons .

2.1. Basic Tokens .

Pat hnanes.

Ti mes. .

Server Replres -
Interpreting Exanpl es.

e Modification Tine (I\/DTM
Synt ax .

Error Responses e
FEAT Response for MDTM .
MDTM Exanpl es. .

e S| ZE. .o

Synt ax .

Error Responses .

FEAT Response for Sl ZE

Si ze Exanples. . .

tart of Interrupted Transfer (REST)
Restarting i n STREAM Mode.
Error Recovery and Restart
Syntax . . . S
FEAT Response for REST .
REST Exanple . .

rivial Virtual File Store (TVFS)
TVFS Fil e Nanes.

TVFS Pat hnanes . .

FEAT Response for TVFS
OPTS for TVFS.

TVFS Exanpl es.

©9°.\‘.®9".4>.°°!\’!“”U"PP"!*’!‘"“"P.W!\’!“”PW!\’P_P.‘*’!\’P_U‘PW!\’

DEPPPTORRWINNNNT

e

Format of M.Sx Requests.
Format of M.Sx Response.
Fil e Name Encodi ng .
Format of Facts.
Standard Facts .

M.Sx Exanples. . . .
FEAT Response for I\/LSx .
OPTS Paraneters for MST .
Irrpact on O her FTP Conmands .

NNNNNNNNNDOOOO o> 010101010

Character Sets and Internationali zat| on.

| ANA Consi derations. . .
10.1. The OS Specific Fact Regl stry

10.2. The OS Specific Filetype Regi stry:

St andards Track

t| ngs for Machine RroceSS| ng (NLST and NLSD)

Syst em Dependent and LocaI Facts .

March 2007

QCOOO~NOOPD_WW

CUUAUOBRWONNNNNNNNNRRRRRRRRRRRRR R R
OO RRONODOOORWWRRPOMONNOURRWNNNRROO

[Page 2]

RFC 3659 Ext ensions to FTP March 2007

11. Security Considerations.57

12. Nornmative References . 58

Acknowl edgnents. ... 5h9
1. Introduction

Thi s docunent updates the File Transfer Protocol (FTP) [3]. Four new
commands are added: "SIZE', "MDTM', "M.ST", and "M.SD'. The existing
command "REST" is nodified. O those, the "SI ZE' and "MOTM

commands, and the nodifications to "REST" have been in w de use for
many years. The others are new.

These commands allow a client to restart an interrupted transfer in
transfer nodes not previously supported in any docunented way, and to
obtain a directory listing in a machine friendly, predictable,

format.

An optional structure for the server’'s file store (NVFS) is also
defined, allow ng servers that support such a structure to convey
that information to clients in a standard way, thus allowing clients
nore certainty in constructing and interpreting pathnanes.

2. Docunment Conventi ons
Thi s docunent nmkes use of the docunent conventions defined in BCP

14, RFC 2119 [4]. That provides the interpretation of capitalized
i mperative words |ike MJST, SHOULD, etc.

Thi s docunent al so uses notation defined in STD 9, RFC 959 [3]. In
particular, the terns "reply", "user", "NVFS' (Network Virtual File
System), "file", "pathnane", "FTP commands", "DTP" (data transfer
process), "user-FTP process", "user-Pl" (user protocol interpreter),
"user-DTP", "server-FTP process", "server-Pl", "server-DTP', "node"
"type", "NVT" (Network Virtual Terminal), "control connection", "data
connection”, and "ASCII", are all used here as defined there.

Syntax required is defined using the Augnented BNF defined in [5].
Sone general ABNF definitions that are required throughout the
docunment will be defined later in this section. At first reading, it
may be wise to sinply recall that these definitions exist here, and
skip to the next section

Het hron St andards Track [Page 3]

RFC 3659 Ext ensions to FTP March 2007

2.1. Basic Tokens

Thi s docunent inports the core ABNF definitions given in Appendix A

of [5]. There definitions will be found for basic ABNF el enents |ike
ALPHA, DIG@T, SP, etc. The following terns are added for use in this
docunent .
TCHAR = VCHAR / SP / HTAB ; visible plus white space
RCHAR = ALPHA/ DIGT / ", ["." ["]
@/ ot# st T] A
B A (R A I A A |
B A A L
DQUOTE ; <"> -- double quote character (%22)
SCHAR = RCHAR / "="

The VCHAR (from[5]), RCHAR, SCHAR, and TCHAR types give basic
character types fromvarying sub-sets of the ASCI| character set for
use in various comands and responses.

t oken = 1*RCHAR
A "token" is a string whose precise nmeani ng depends upon the context
in which it is used. |In sone cases it will be a value froma set of
possi bl e val ues nmi ntai ned el sewhere. In others it night be a string

i nvented by one party to an FTP conversation from whatever sources it
finds rel evant.

Note that in ABNF, string literals are case insensitive. That
convention is preserved in this docunment, and inplies that FTP
commands added by this specification have nanmes that can be
represented in any case. That is, "MDTM is the sanme as "ndtni,
"Mit i and "MITni' etc. However note that ALPHA, in particular, is
case sensitive. That inplies that a "token" is a case sensitive
value. That inplication is correct, except where explicitly stated
to the contrary in this docunent, or in sone other specification that
defines the values this docunent specifies be used in a particular
cont ext .

2.2. Pathnanes
Various FTP conmands take pathnanes as argunments, or return pathnanes
in responses. Wen the MLST command i s supported, as indicated in

the response to the FEAT conmand [6], pathnanes are to be transferred
in one of the followi ng two fornats.

Het hron St andards Track [Page 4]

RFC 3659 Ext ensions to FTP March 2007

pat hname = utf-8-name / raw
ut f - 8- nane = <a UTF-8 encoded Uni code string>
raw = <any string that is not a valid UTF-8 encodi ng>

VWhich format is used is at the option of the user-Pl or server-P
sendi ng the pathnane. UTF-8 encodings [2] contain enough interna
structure that it is always, in practice, possible to deternine

whet her a UTF-8 or raw encodi ng has been used, in those cases where
it mtters. Wile it is useful for the user-Pl to be able to
correctly display a pathnane received fromthe server-Pl to the user,
it is far nore inmportant for the user-Pl to be able to retain and
retransmt the identical pathnanme when required. |nplenentations are
advi sed agai nst converting a UTF-8 pathname to a | ocal charset that
isn't capable of representing the full Unicode character repertoire,
and then attenpting to invert the charset translation later. Note
that ASCI1 is a subset of UTF-8. See also [1].

Unl ess ot herwi se specified, the pathnane is term nated by the CRLF
that term nates the FTP comand, or by the CRLF that ends a reply.
Any trailing spaces preceding that CRLF form part of the namne.
Exactly one space will precede the pathname and serve as a separator
fromthe preceding syntax elenent. Any additional spaces form part
of the pathnanme. See [7] for a fuller explanation of the character
encodi ng i ssues. Al inplenentations supporting M.ST MUST support

[71.

Note: for pathnanes transferred over a data connection, there is no
way to represent a pathnane containing the characters CR and LF in
sequence, and distinguish that fromthe end of line indication
Hence, pathnanes containing the CRLF pair of characters cannot be
transmitted over a data connection. Data connections only contain
file names transmitted fromserver-FTP to user-FTP as the result of
one of the directory listing commands. Files with nanes contai ning
the CRLF sequence nust either have that sequence converted to some
other form such that the other formcan be recogni sed and be
correctly converted back to CRLF, or be onmtted fromthe listing.

| mpl enent ati ons should al so beware that the FTP control connection
uses Tel net NVT conventions [8], and that the Tel net | AC character
if part of a pathnanme sent over the control connection, MJST be
correctly escaped as defined by the Tel net protocol

NVT al so di stingui shes between CR LF, and the end of line CRLF, and

so woul d pernit pathnanes containing the pair of characters CR and LF
to be correctly transnmitted. However, because such a sequence cannot
be transmtted over a data connection (as part of the result of a

LI ST, NLST, or M.SD command), such pat hnames are best avoi ded

Het hron St andards Track [Page 5]

RFC 3659 Ext ensions to FTP March 2007

| mpl enentors should also be aware that, although Tel net NVT
conventions are used over the control connections, Telnet option
negotiati on MUST NOT be attenpted. See section 4.1.2.12 of [9].

2.2.1. Pathnane Syntax

Except where TVFS is supported (see section 6), this specification

i mposes no syntax upon pathnanmes. Nor does it restrict the character
set from which pathnames are created. This does not inply that the
NVFS is required to make sense of all possible pathnanmes. Server-Pls
may restrict the syntax of valid pathnanmes in their NVFS in any
manner appropriate to their inplenentation or underlying file system
Simlarly, a server-Pl may parse the pathnane and assign neaning to

t he conponents det ect ed.

2.2.2. WIldcarding

For the commands defined in this specification, all pathnanmes are to
be treated literally. That is, for a pathnane given as a paraneter
to a comrand, the file whose nanme is identical to the pathname given
is inplied. No characters fromthe pathnanme nmay be treated as
special or "magic", thus no pattern matching (other than for exact
equal ity) between the pathnanme given and the files present in the
NVFS of the server-FTP is permtted.

Cients that desire sone formof pattern matching functionality nust
obtain a listing of the relevant directory, or directories, and
i npl ement their own file nanme sel ection procedures.

2.3. Tines
The syntax of a tinme value is:
ti nme-val =14DIGT ["." 1*DIGA T]

The | eadi ng, mandatory, fourteen digits are to be interpreted as, in
order fromthe leftnost, four digits giving the year, with a range of
1000--9999, two digits giving the nonth of the year, with a range of
01--12, two digits giving the day of the nmonth, with a range of
01--31, two digits giving the hour of the day, with a range of
00--23, two digits giving mnutes past the hour, with a range of
00--59, and finally, tw digits giving seconds past the nmnute, with
a range of 00--60 (with 60 being used only at a | eap second). Years
in the tenth century, and earlier, cannot be expressed. This is not
consi dered a serious defect of the protocol

Het hron St andards Track [Page 6]

RFC 3659 Ext ensions to FTP March 2007

The optional digits, which are preceded by a period, give decinal
fractions of a second. These may be given to whatever precision is
appropriate to the circunmstance, however inplenentations MJST NOT add
precision to tine-vals where that precision does not exist in the
underlying value being transmtted.

Synbolically, a tinme-val nay be viewed as

YYYYMVDDHHMVSS. sss

The "." and subsequent digits ("sss") are optional. However the "."
MUST NOT appear unless at |east one following digit al so appears.

Ti me values are always represented in UTC (GVIN), and in the G egorian
cal endar regardl ess of what cal endar may have been in use at the date
and tinme indicated at the |l ocation of the server-Pl

The technical differences anong GMI, TAI, UTC, UT1, UT2, etc., are
not considered here. A server-FTP process should al ways use the sane
time reference, so the tines it returns will be consistent. dients
are not expected to be tine synchronized with the server, so the
possible difference in tines that mght be reported by the different
time standards is not considered inportant.

2.4. Server Replies

Section 4.2 of [3] defines the format and neaning of replies by the
server-Pl to FTP commands fromthe user-Pl. Those reply conventions
are used here without change.

error-response = error-code SP *TCHAR CRLF
error-code =("4" |/ "5") 2D T

| mpl enentors should note that the ABNF syntax used in this docunent
and in other FTP related docunents (but not used in [3]), sonetines
shows replies using the one-line format. Unless otherwi se explicitly

stated, that is not intended to inply that nulti-line responses are
not permtted. |nplementors should assunme that, unless stated to the
contrary, any reply to any FTP conmand (including QU T) may use the
multi-line format described in [3].

Throughout this docunent, replies will be identified by the three
digit code that is their first elenment. Thus the term"500 reply"
means a reply fromthe server-Pl using the three digit code "500"

Het hron St andards Track [Page 7]

RFC 3659 Ext ensions to FTP March 2007

2.5. Interpreting Exanpl es

In the exanpl es of FTP dialogs presented in this docunent, |ines that
begin "C " were sent over the control connection fromthe user-Pl to
the server-Pl, lines that begin "S> " were sent over the contro

connection fromthe server-Pl to the user-Pl, and each sequence of
lines that begin "D> " was sent fromthe server-Pl to the user-P
over a data connection created just to send those lines and cl osed
i medi ately after. No exanples here show data transferred over a
data connection fromthe client to the server. 1In all cases, the
prefi xes shown above, including the one space, have been added for
the purposes of this docunent, and are not a part of the data
exchanged between client and server

3. File Mdification Tinme (MDTM

The FTP command, MODI FI CATION TI ME (MDTM, can be used to determ ne
when a file in the server NVFS was |ast nodified. This comand has
existed in many FTP servers for many years, as an adjunct to the REST
command for STREAM node, thus is widely available. However, where
supported, the "nodi fy" fact that can be provided in the result from
the new MLST command i s recommended as a superior alternative.

When attenpting to restart a RETRi eve, the user-FTP can use the MDTM
command or the "nodi fy" fact to check if the nodification tinme of the
source file is nore recent than the nodification tine of the
partially transferred file. |If it is, then nost likely the source
file has changed, and it would be unsafe to restart the previously
inconplete file transfer

Because the user- and server-FTPs' clocks are not necessarily
synchroni sed, user-FTPs intending to use this nmethod should usually
obtain the nodification tinme of the file fromthe server before the
initial RETRi eval, and conpare that with the nodification tinme before
a RESTart. |If they differ, the files may have changed, and RESTart
woul d be inadvisable. Were this is not possible, the user-FTP
shoul d nake sure to allow for possible clock skew when conpari ng
times.

When attenpting to restart a STORe, the User FTP can use the MDTM
command to discover the nodification time of the partially
transferred file. |If it is older than the nodification tine of the
file that is about to be STORed, then nost likely the source file has
changed, and it would be unsafe to restart the file transfer

Het hron St andards Track [Page 8]

RFC 3659 Ext ensions to FTP March 2007

Note that using M.ST (described below), where avail able, can provide
this information and nuch nore, thus giving an even better indication
that a file has changed and that restarting a transfer would not give
valid results.

Note that this is applicable to any RESTart attenpt, regardl ess of
the nmode of the file transfer

3. 1. Syntax
The syntax for the MDTM conmmand i s:
ndt m = "MITn' SP pat hnane CRLF

As with all FTP conmands, the "MDTM command | abel is interpreted in
a case-insensitive nmanner.

The "pat hnane" specifies an object in the NVFS that may be the object
of a RETR conmand. Attenpts to query the nodification tinme of files
that exist but are unable to be retrieved may generate an error-
response, or can result in a positive response carrying a tinme-va

wi th an unspecified value, the choice being nade by the server-Pl

The server-Pl will respond to the MDTM command with a 213 reply
giving the last nodification time of the file whose pat hname was
supplied, or a 550 reply if the file does not exist, the nodification
time is unavailable, or some other error has occurred.

mdt m response = "213" SP tinme-val CRLF /
error-response

Note that when the 213 response is issued, that is, when there is no
error, the format MJST be exactly as specified. Milti-line responses
are not permtted.

3.2. FError Responses

Where the command is correctly parsed but the nodification tine is
not avail able, either because the pathname identifies no existing
entity or because the information is not available for the entity
naned, then a 550 reply should be sent. \Were the comand cannot be
correctly parsed, a 500 or 501 reply should be sent, as specified in
[3]. Various 4xy replies are also possible in appropriate

ci rcunst ances

Het hron St andards Track [Page 9]

RFC 3659 Ext ensions to FTP March 2007

3.3. FEAT Response for MDTM

Wien replying to the FEAT command [6], a server-FTP process that
supports the MDTM conmand MJST include a line containing the single
word "MDTM'. This MAY be sent in upper or |ower case or a mxture of
both (it is case insensitive), but SHOULD be transnmitted in upper
case only. That is, the response SHOULD be:

C Feat

S> 211- <any descriptive text>
S> L.

S> MDTM

S L.

S> 211 End

The el lipses indicate place holders where other features may be
i ncl uded, but are not required. The one-space indentation of the
feature lines is mandatory [6].

3.4. MDTM Exanpl es

If we assune the existence of three files, A B and C, a directory D

two files with names that end with the string "ile6", and no ot her
files at all, then the MDIM command nmay behave as indicated. The
"C" lines are commands fromuser-Pl to server-Pl, the "S>" lines are

server-Pl replies.

C MDTM A

S> 213 19980615100045. 014

C MDTM B

S> 213 19980615100045. 014

C MDTM C

S> 213 19980705132316

C MDTM D

S> 550 Dis not retrievable
C MDTM E

S> 550 No file naned "E"

C nmdtmfileb

S> 213 19990929003355

C MdTm 19990929043300 Fil e6
S> 213 19991005213102

C MITm 19990929043300 fil e6
S> 550 19990929043300 file6: No such file or directory.

From that we can conclude that both A and B were |last nodified at the

same tinme (to the nearest nmillisecond), and that C was nodified 20
days and several hours |ater

Het hron St andards Track [Page 10]

RFC 3659 Ext ensions to FTP March 2007

The times are in GMI, so file A was nodified on the 15th of June,
1998, at approximately llamin London (sunmer time was then in
effect), or perhaps at 8pmin Ml bourne, Australia, or at 6amin New
York. All of those represent the same absolute tinme, of course. The
| ocation where the file was nodified, and consequently the |ocal wal
clock time at that location, is not avail able.

There is no file naned "E" in the current directory, but there are
files naned both "file6" and "19990929043300 File6". The

nodi fication tinmes of those files were obtained. There is no file
nanmed "19990929043300 fil e6"

4. File SIZE

The FTP command, SIZE OF FILE (SIZE), is used to obtain the transfer
size of a file fromthe server-FTP process. This is the exact nunber
of octets (8 bit bytes) that would be transmtted over the data
connection should that file be transmtted. This value will change
dependi ng on the current STRUcture, MODE, and TYPE of the data
connection or of a data connection that would be created were one
created now. Thus, the result of the SIZE comand is dependent on
the currently established STRU MODE, and TYPE paraneters

The SI ZE command returns how many octets would be transferred if the
file were to be transferred using the current transfer structure,
node, and type. This conmand is nornmally used in conjunction with

t he RESTART (REST) command when STORing a file to a renpte server in
STREAM node, to deternmine the restart point. The server-Pl might
need to read the partially transferred file, do any appropriate
conversion, and count the nunber of octets that woul d be generated
when sending the file in order to correctly respond to this conmand.
Estimates of the file transfer size MJUST NOT be returned; only
precise information is acceptable.

4.1. Syntax
The syntax of the SIZE conmand is:
si ze = "Size" SP pathnane CRLF
The server-Pl will respond to the SIZE command with a 213 reply
giving the transfer size of the file whose pathnanme was supplied, or
an error response if the file does not exist, the size is
unavail abl e, or sone other error has occurred. The value returned is

ina format suitable for use with the RESTART (REST) command for node
STREAM provided the transfer node and type are not altered.

Het hron St andards Track [Page 11]

RFC 3659 Ext ensions to FTP March 2007

size-response = "213" SP 1*DIA T CRLF /
error-response

Not e that when the 213 response is issued, that is, when there is no
error, the format MJST be exactly as specified. Milti-line responses
are not permtted.

4.2. FError Responses

Where the command is correctly parsed but the size is not avail abl e,
per haps because the pathnanme identifies no existing entity or because
the entity nanmed cannot be transferred in the current MODE and TYPE
(or at all), then a 550 reply should be sent. Were the comand
cannot be correctly parsed, a 500 or 501 reply should be sent, as
specified in [3]. The presence of the 550 error response to a SIZE
command MUST NOT be taken by the client as an indication that the
file cannot be transferred in the current MODE and TYPE. A server
may generate this error for other reasons -- for instance if the
processing overhead is considered too great. Various 4xy replies are
al so possible in appropriate circunstances.

4.3. FEAT Response for SIZE

When replying to the FEAT command [6], a server-FTP process that
supports the SIZE conmand MJST include a |ine containing the single
word "SI ZE'. This word is case insensitive, and MAY be sent in any
nm xture of upper or |ower case, however it SHOULD be sent in upper
case. That is, the response SHOULD be:

C FEAT

S> 211- <any descriptive text>
>

S> SIZE

S> L.

S> 211 END

The el lipses indicate place holders where other features nmay be
i ncluded, and are not required. The one-space indentation of the
feature lines is nandatory [6].

4.4. Size Exanpl es
Consider a text file "Exanple" stored on a Unix(TM server where each
end of Iine is represented by a single octet. Assune the file

contains 112 lines, and 1830 octets total. Then the SIZE command
woul d produce:

Het hron St andards Track [Page 12]

RFC 3659 Ext ensions to FTP March 2007

C TYPE |

S> 200 Type set to |
C size Exanple

S> 213 1830

C TYPE A

S> 200 Type set to A
C> Size Exanple

S> 213 1942

Notice that with TYPE=A the SIZE command reports an extra 112 octets.
Those are the extra octets that need to be inserted, one at the end
of each line, to provide correct end-of-line semantics for a transfer
using TYPEEA. O her systens might need to nake ot her changes to the
transfer format of files when converting between TYPEs and MODEs.

The Sl ZE conmmand takes all of that into account.

Since calculating the size of a file with this degree of precision
may take considerable effort on the part of the server-Pl, user-Pls
shoul d not used this command unless this precision is essential (such
as when about to restart an interrupted transfer). For other uses,
the "Size" fact of the M.ST command (see section 7.5.7) ought be
request ed.

5. Restart of Interrupted Transfer (REST)

To avoid having to resend the entire file if the file is only
partially transferred, both sides need sone way to agree on where in
the data streamto restart the data transfer.

The FTP specification [3] includes three nodes of data transfer
STREAM Bl ock, and Conpressed. |In Block and Conpressed nodes, the
data streamthat is transferred over the data connection is
formatted, allow ng the enbedding of restart nmarkers into the stream
The sending DTP can include a restart marker w th whatever
information it needs to be able to restart a file transfer at that
point. The receiving DIP can keep a list of these restart nmarkers,
and correlate themwith howthe file is being saved. To restart the
file transfer, the receiver just sends back that |ast restart marker,
and both sides know how to resune the data transfer. Note that there
are sone flaws in the description of the restart mechanismin STD 9,
RFC 959 [3]. See section 4.1.3.4 of RFC 1123 [9] for the
corrections.

Het hron St andards Track [Page 13]

RFC 3659 Ext ensions to FTP March 2007

5.1. Restarting in STREAM Mbde

I n STREAM node, the data connection contains just a stream of
unformatted octets of data. Explicit restart narkers thus cannot be
inserted into the data stream they would be indistinguishable from
data. For this reason, the FTP specification [3] did not provide the
ability to do restarts in stream node. However, there is not really
a need to have explicit restart markers in this case, as restart
markers can be inplied by the octet offset into the data stream

Because the data streamdefines the file in STREAM node, a different
data streamwoul d represent a different file. Thus, an offset wll

al ways represent the same position within a file. On the other hand,
in other nodes than STREAM the sanme file can be transferred using
quite different octet sequences and yet be reconstructed into the one
identical file. Thus an offset into the data streamin transfer
nodes ot her than STREAM woul d not gi ve an unanbi guous restart point.

If the data representation TYPE is | MAGE and the STRUcture is File,
for many systens the file will be stored exactly in the same format
as it is sent across the data connection. It is then usually very
easy for the receiver to determ ne how nmuch data was previously
recei ved, and notify the sender of the offset where the transfer
should be restarted. In other representation types and structures
nore effort will be required, but it remains always possible to
determine the offset with finite, but perhaps non-negligible, effort.
In the worst case, an FTP process nay need to open a data connection
to itself, set the appropriate transfer type and structure, and
actually transmt the file, counting the transmtted octets.

If the user-FTP process is intending to restart a retrieve, it wll
directly calculate the restart marker and send that information in
the RESTart conmand. However, if the user-FTP process is intending
to restart sending the file, it needs to be able to determ ne how
much data was previously sent, and correctly received and saved. A
new FTP conmand is needed to get this information. This is the

pur pose of the SIZE command, as docunented in section 4.

5.2. FError Recovery and Restart

STREAM node transfers with FILE STRUcture may be restarted even
though no restart marker has been transferred in addition to the data
itself. This is done by using the SIZE command, if needed, in

conmbi nation with the RESTART (REST) conmand, and one of the standard
file transfer conmands.

When using TYPE ASCI1 or I MAGE, the SIZE command will return the
nunber of octets that would actually be transferred if the file were

Het hron St andards Track [Page 14]

RFC 3659 Ext ensions to FTP March 2007

to be sent between the two systens, i.e., with type | MAGE, the SIZE
normal |y would be the nunber of octets in the file. Wth type ASC I,
the SIZE woul d be the nunber of octets in the file including any

nmodi fications required to satisfy the TYPE ASCI1 CR-LF end-of-1line
conventi on.

5.3. Syntax

The syntax for the REST conmand when the current transfer node is
STREAM i s:

rest = "Rest" SP 1*DIA T CRLF

The nuneric val ue gives the nunber of octets of the inmediately-
followi ng transfer to not actually send, effectively causing the
transmi ssion to be restarted at a later point. A value of zero
effectively disables restart, causing the entire file to be
transmtted. The server-Pl will respond to the REST comand with a
350 reply, indicating that the REST paraneter has been saved, and

t hat anot her command, whi ch should be either RETR or STOR, should
then follow to conplete the restart.

rest-response = "350" SP *TCHAR CRLF /
error-response

Server - FTP processes may permt transfer conmands ot her than RETR and
STOR, such as APPE and STQU, to conplete a restart; however, this is
not recomrended. STQOU (store unique) is undefined in this usage, as
storing the remainder of a file into a unique file name is rarely
going to be useful. |If APPE (append) is permitted, it MJST act
identically to STOR when a restart marker has been set. That is, in
both cases, octets fromthe data connection are placed into the file
at the location indicated by the restart marker val ue.

The REST conmand is intended to conplete a failed transfer. Use with
RETR i s conparatively well defined in all cases, as the client bears
the responsibility of nmerging the retrieved data with the partially
retrieved file. It may choose to use the data obtained other than to
complete an earlier transfer, or to re-retrieve data that had been
retrieved before. Wth STOR, however, the server nust insert the
data into the file named. The results are undefined if a client uses
REST to do other than restart to conplete a transfer of a file that
had previously failed to conpletely transfer. |In particular, if the
restart marker set with a REST command is not at the end of the data
currently stored at the server, as reported by the server, or if
insufficient data are provided in a STOR that follows a REST to
extend the destination file to at least its previous size, then the
ef fects are undefi ned.

Het hron St andards Track [Page 15]

RFC 3659 Ext ensions to FTP March 2007

The REST command nust be the | ast commuand i ssued before the data
transfer command that is to cause a restarted, rather than a
conplete, file transfer. The effect of issuing a REST command at any
other time is undefined. The server-Pl may react to a badly
posi ti oned REST conmand by issuing an error response to the foll ow ng
command, not being a restartable data transfer conmand, or it nmay
save the restart value and apply it to the next data transfer

command, or it may silently ignore the inappropriate restart attenpt.
Because of this, a user-Pl that has issued a REST conmand, but that
has not successfully transmitted the follow ng data transfer command
for any reason, should send anot her REST command before the next data
transfer command. |f that transfer is not to be restarted, then
"REST 0" should be issued.

An error response will follow a REST command only when the server
does not inplenent the conmand, or when the restart marker value is
syntactically invalid for the current transfer node (e.g., in STREAM
node, sonet hing other than one or nore digits appears in the
paraneter to the REST conmand). Any other errors, including such
probl ens as restart nmarker out of range, should be reported when the
followi ng transfer conmand is issued. Such errors will cause that
transfer request to be rejected with an error indicating the invalid
restart attenpt.

5.4. FEAT Response for REST

Where a server-FTP process supports RESTart in STREAM node, as
specified here, it MIST include, in the response to the FEAT command
[6], a line containing exactly the string "REST STREAM'. This string
is not case sensitive, but it SHOULD be transmtted in upper case.
Where REST is not supported at all or supported only in block or
conpressed nodes, the REST |ine MJUST NOT be included in the FEAT
response. Wiere required, the response SHOULD be:

C feat

S> 211- <any descriptive text>
5>

S> REST STREAM

S> L.

S> 211 end

The el lipses indicate place holders where other features nmay be
i ncluded, and are not required. The one-space indentation of the
feature lines is nandatory [6].

Het hron St andards Track [Page 16]

RFC 3659 Ext ensions to FTP March 2007

5.5. REST Exanple

Assume that the transfer of a largish file has previously been
interrupted after 802816 octets had been received, that the previous
transfer was with TYPE=l, and that it has been verified that the file
on the server has not since changed.

C TYPE |

S> 200 Type set to |

C PORT 127,0,0, 1, 15, 107

S> 200 PORT conmand successful

C> REST 802816

S> 350 Restarting at 802816. Send STORE or RETRI EVE
C RETR cap60. pl 198. tar

S> 150 Openi ng Bl NARY npbde data connection

[...

S> 226 Transfer conplete.

6. A Trivial Virtual File Store (TVFS)

Traditionally, FTP has placed al nbst no constraints upon the file
store (NVFS) provided by a server. This specification does not alter
that. However, it has becone conmon for servers to attenpt to
provide at least file systemnani ng conventions nodel ed | oosely upon
those of the UNIX(TM file system This is a tree-structured file
system built of directories, each of which can contain other
directories, or other kinds of files, or both. Each file and
directory has a name relative to the directory that contains it,
except for the directory at the root of the tree, which is contained
in no other directory, and hence has no name of its own.

That whi ch has so far been described is perfectly consistent with the
standard FTP NVFS and access nmechani sms. The "CWD' conmand is used
to nove fromone directory to an enbedded directory. "CDUP' may be
provided to return to the parent directory, and the various file
mani pul ati on conmands (" RETR', "STOR', the renanme conmands, etc.) are
used to mani pulate files within the current directory.

However, it is often useful to be able to reference files other than
by changing directories, especially as FTP provi des no guarant eed
mechanismto return to a previous directory. The Trivial Virtua
File Store (TVFS), if inplenented, provides that nechani sm

Het hron St andards Track [Page 17]

RFC 3659 Ext ensions to FTP March 2007

6.1. TVFS File Nanes

Wiere a server inplenments the TVFS, no elenentary file nane shal
contain the character "/". Were the underlying natural file store
permts files, or directories, to contain the "/" character in their
nanes, a server-Pl inplenenting TVFS nust encode that character in
some manner whenever file or directory nanmes are being returned to
the user-Pl, and reverse that encodi ng whenever such names are being
accepted fromthe user-Pl.

The encoding nmethod to be used is not specified here. Were sone
other character is illegal in file and directory nanes in the
underlying file store, a sinple transliteration may be sufficient.
Wiere there is no suitable substitute character a nore conpl ex
encodi ng schene, possibly using an escape character, is likely to be
required.

Wth the one exception of the unnaned root directory, a TVFS file
nane nay not be enpty. That is, all other file names contain at
| east one character.

Wth the sole exception of the "/" character, any valid |S10646
character [10] may be used in a TVFS file name. Wen transmitted,
file nane characters are encoded using the UTF-8 encoding [2]. Note
that the two-character sequence CR LF occurring in a file nane will
make that nane inpossible to transmt over a data connection
Consequently, it should be avoided, or if that is inpossible to
achieve, it MJST be encoded in sone reversible way.

6.2. TVFS Pat hnanes

A TVFS "Pat hnane" conbines the file or directory name of a target
file or directory, with the directory nanes of zero or nore encl osing
directories, so as to allowthe target file or directory to be

ref erenced other than when the server’s "current working directory”
is the directory directly containing the target file or directory.

By definition, every TVFS file or directory name is also a TVFS
pat hname. Such a pathname is valid to reference the file fromthe
directory containing the nane, that is, when that directory is the
server-FTP's current working directory.

O her TVFS pathnanes are constructed by prefixing a pathnane by a
name of a directory fromwhich the path is valid, and separating the
two with the "/" character. Such a pathnane is valid to reference
the file or directory fromthe directory containing the newy added
directory nane.

Het hron St andards Track [Page 18]

RFC 3659 Ext ensions to FTP March 2007

Where a pat hnane has been extended to the point where the directory
added is the unnamed root directory, the pathnanme will begin with the
"/" character. Such a path is known as a fully qualified pathnane.
Fully qualified paths may, obviously, not be further extended, as, by
definition, no directory contains the root directory. Being unnaned,
it cannot be represented in any other directory. A fully qualified
pat hnane is valid to reference the naned file or directory from any
location (that is, regardl ess of what the current working directory
may be) in the virtual file store.

Any pat hnane that is not a fully qualified pathnanme may be referred
to as a "relative pathnane" and will only correctly reference the

i ntended file when the current working directory of the server-FTP is
a directory fromwhich the relative pathnane is valid.

As a special case, the pathnane "/" is defined to be a fully
qualified pathnanme referring to the root directory. That is, the
root directory does not have a directory (or file) name, but does
have a pathname. This special pathnane nmay be used only as is as a
reference to the root directory. It may not be conbined with other
pat hnanmes using the rul es above, as doing so would |l ead to a pat hnane
contai ning two consecutive "/" characters, which is an undefi ned
sequence.

6.2.1. Not es

+ It is not required, or expected, that there be only one fully
qualified pathnanme that will reference any particular file or
directory.

+ As a caveat, though the TVFS file store is basically tree
structured, there is no requirenent that any file or directory
have only one parent directory.

+ As defined, no TVFS pathnanme will ever contain two consecutive "/"
characters. Such a nane is not illegal however, and may be
defined by the server for any purpose that suits it. Cients
i mpl ementing this specification should not assune any senantics
for such names

+ Simlarly, other than the special case path that refers to the
root directory, no TVFS pat hnane constructed as defined here will
ever end with the "/" character. Such nanes are also not ill egal
but are undefi ned.

+ While any legal 1S10646 character is permtted to occur in a TVFS

file or directory name, other than "/", server FTP inplenentations
are not required to support all possible |1S10646 characters. The

Het hron St andards Track [Page 19]

RFC 3659 Ext ensions to FTP March 2007

subset supported is entirely at the discretion of the server. The
case (where it exists) of the characters that nake up file,
directory, and pathnanmes nay be significant. Unless determ ned

ot herwi se by nmeans unspecified here, clients should assune that

all such nanmes are conprised of characters whose case is
significant. Servers are free to treat case (or any other
attribute) of a nane as irrelevant, and hence nap two nanes that
appear to be distinct onto the same underlying file.

+ There are no defined "nagic" nanes, like ".", ".." or "C"
Servers may inpl enent such nanmes, with any semantics they choose
but are not required to do so.

+ TVFS inposes no particular semantics or properties upon files,
guar antees no access control schenes, or any of the other comon
properties of a file store. Only the nam ng schene is defined.

6.3. FEAT Response for TVFS

In response to the FEAT conmmand [6] a server that wi shes to indicate
support for the TVFS as defined here will include a line that begins
with the four characters "TVFS' (in any case, or mxture of cases,
upper case is not required). Servers SHOULD send upper case.

Such a response to the FEAT command MJST NOT be returned unless the
server inplenents TVFS as defined here.

Later specifications nmay add to the TVFS definition. Such additions
shoul d be notified by neans of additional text appended to the TVFS
feature line. Such specifications, if any, will define the extra
text.

Until such a specification is defined, servers should not include
anything after "TVFS' in the TVFS feature line. Cients, however,
shoul d be prepared to deal with arbitrary text follow ng the four
defined characters, and sinply ignore it if unrecognized.

A typical response to the FEAT conmand issued by a server
i mpl ementing only this specification would be:

C feat

S> 211- <any descriptive text>
5>

S> TVFS

S> L.

S> 211 end

Het hron St andards Track [Page 20]

RFC 3659 Ext ensions to FTP March 2007

The el lipses indicate place holders where other features nmay be

i ncluded, but are not required. The one-space indentation of the
feature lines is mandatory [6] and is not counted as one of the first
four characters for the purposes of this feature listing.

The TVFS feature adds no new commands to the FTP conmand repertoire.
6.4. OPTS for TVFS

There are no options in this TVFS specification, and hence there is
no OPTS command defi ned.

6.5. TVFS Exanpl es

Assume a TVFS file store is conprised of a root directory, which
contains two directories (A and B) and two non-directory files (X and
Y). The A directory contains two directories (C and D) and one ot her
file (Z2). The B directory contains just two non-directory files (P
and Q and the C directory also two non-directory files (also naned P
and Q by chance). The D directory is enpty, that is, contains no
files or directories. This structure may depicted graphically as...

(unnanmed root)

G ven this structure, the following fully qualified pathnanes exist.

/

/A

/B

I X

1Y
/AN C
/A D
INZ
I NC P
INCQ
/B P
1B/ Q

Het hron St andards Track [Page 21]

RFC 3659 Ext ensions to FTP March 2007

It is clear that none of the paths / /A /B or /ADrefer to the same
directory, as the contents of each is different. Nor do any of / /A
INCor /AND However /AC and /B night be the same directory, there
is insufficient information given to tell. Any of the other

pat hnanes (/X /Y /AZ /ACP/ANCQ/B/Pand /B/Q my refer to the
same underlying files, in alnost any conbi nation

If the current working directory of the server-FTP is /A then the
followi ng pathnanmes, in addition to all the fully qualified
pat hnanes, are valid

C
D
4
apP

agQ

These all refer to the sane files or directories as the corresponding
fully qualified path with "/A" prepended.

That those pathnames all exist does not inply that the TVFS sever
wi Il necessarily grant any kind of access rights to the naned pat hs,
or that access to the sanme file via different pathnanes wll
necessarily be granted equal rights.

None of the following relative paths are valid when the current
directory is /A

A
B
X
Y
B/ P
B/ Q
P
Q

Any of those could be nmade valid by changing the server-FTP' s current
working directory to the appropriate directory. Note that the paths
"P' and "Q' night refer to different files dependi ng upon which
directory is selected to cause those to beconme valid TVFS relative
pat hs.

Het hron St andards Track [Page 22]

RFC 3659 Ext ensions to FTP March 2007

7.

7.

Li stings for Machi ne Processing (M.ST and M.SD)

The M.ST and ML.SD commands are intended to standardize the file and
directory information returned by the server-FTP process. These
commands differ fromthe LIST command in that the format of the
replies is strictly defined although extensible.

Two conmands are defined, M.ST and ML.SD. M.ST provi des data about
exactly the object nanmed on its command |ine, and no others. M.SD
on the other, lists the contents of a directory if a directory is
naned, otherwise a 501 reply is returned. 1In either case, if no
object is naned, the current directory is assuned. That will cause
M.ST to send a one-line response, describing the current directory
itself, and ML.SD to list the contents of the current directory.

In the following, the term M.Sx will be used wherever either MST or
M.SD may be inserted.

The M.ST and ML.SD conmands al so extend the FTP protocol as presented
in STD 9, RFC 959 [3] and STD 3, RFC 1123 [9] to allow that

transm ssion of 8-bit data over the control connection. Note this is
not specifying character sets which are 8-bit, but specifying that
FTP inpl ementations are to specifically allow the transn ssion and
reception of 8-bit bytes, with all bits significant, over the contro
connection. That is, all 256 possible octet values are pernitted.
The MLSx command al |l ows bot h UTF-8/ Uni code and "raw' forms as
argunments, and in responses both to the M.ST and MLSD conmmands, and
all other FTP commands which take pat hnanes as argunents

1. Format of M.Sx Requests

The MLST and M.SD commands each all ow a single optional argunent.
This argunent may be either a directory nane or, for M.ST only, a
file name. For these purposes, a "file nane" is the nane of any
entity in the server NVFS which is not a directory. Were TVFS is
supported, any TVFS rel ative pathnane valid in the current working
directory, or any TVFS fully qualified pathnane, may be given. |If a
directory nane is given then M.SD nust return a listing of the
contents of the naned directory, otherwise it issues a 501 reply, and
does not open a data connection. |In all cases for MST, a single set
of fact lines (usually a single fact line) containing the information
about the naned file or directory shall be returned over the contro
connection, w thout opening a data connection

If no argument is given then MLSD nust return a listing of the
contents of the current working directory, and M.ST nust return a
listing giving informati on about the current working directory
itself. For these purposes, the contents of a directory are whatever

Het hron St andards Track [Page 23]

RFC 3659 Ext ensions to FTP March 2007

file or directory nanmes (not pathnanes) the server-Pl will allowto
be referenced when the current working directory is the directory
named, and which the server-Pl desires to reveal to the user-Pl
Note that omitting the argunment is the only defined way to obtain a
listing of the current directory, unless a pathnane that represents
the directory happens to be known. |In particular, there is no
defined shorthand nane for the current directory. This does not
prohi bit any particular server-Pl inplenenting such a shorthand.

No title, header, or summary, lines, or any other formatting, other

than as is specified below, is ever returned in the output of an MST
or M.SD command.

If the Cient-FTP sends an invalid argunent, the server-FTP MJST
reply with an error code of 501

The syntax for the M.Sx conmmand is:

nl st
n sd

"Mest" [SP pathnane] CRLF
"M.sD' [SP pathnanme] CRLF

7.2. Format of M.Sx Response
The format of a response to an M.Sx conmand is as foll ows:

m st -response
m sd- r esponse

control -response / error-response
(initial-response final-response) /
error-response

control -response "250-" [response-nessage | CRLF
1*(SP entry CRLF)

"250" [SP response-nessage | CRLF

initial-response
final -response

"150" [SP response-nessage | CRLF
"226" SP response-nessage CRLF

*TCHAR

response- nessage

dat a- response *(entry CRLF)

entry = [facts] SP pat hnane

facts = 1*(fact ";")

fact = factname "=" val ue

fact nane = "Size" /| "Mdify" / "Create" /
"Type" /["Unique" / "Perm /
"Lang" [/ "Media-Type" / "CharSet" /
os-depend-fact / local-fact

os- depend- f act = <| ANA assi gned CS nane> "." token

Het hron St andards Track [Page 24]

RFC 3659 Ext ensions to FTP March 2007

| ocal - f act = "X." token
val ue = *SCHAR
Upon recei pt of an M.Sx conmand, the server will verify the

paraneter, and if invalid return an error-response. For this

pur pose, the paraneter should be considered to be invalid if the
client issuing the command does not have permission to performthe
requested operation

If the paraneter is valid, then for an MLST comand, the server-P
will send the first (leading) line of the control response, the entry
for the pathnanme given, or the current directory if no pathnanme was
provided, and the termnating line. Nornally exactly one entry would
be returned, nore entries are permtted only when required to

represent a file that is to have nultiple "Type" facts returned. In
this case, the pathnane conponent of every response MJIST be
i denti cal

Note that for M.ST the fact set is preceded by a space. That is
provided to guarantee that the fact set cannot be accidentally
interpreted as the terminating Iine of the control response, but is
requi red even when that woul d not be possible. Exactly one space

exi sts between the set of facts and the pathnanme. Were no facts are
present, there will be exactly two | eading spaces before the

pat hnane. No spaces are pernmitted in the facts, any other spaces in
the response are to be treated as being a part of the pathnane.

If the command was an MLSD conmand, the server will open a data
connection as indicated in section 3.2 of STD 9, RFC 959 [3]. |If
that fails, the server will return an error-response. |If all is K
the server will return the initial-response, send the appropriate

dat a-response over the new data connection, close that connection

and then send the final-response over the control connection. The
grammar above defines the format for the data-response, which defines
the format of the data returned over the data connection established.

The data connection opened for a M.SD response shall be a connection
as if the "TYPE L 8", "MODE S", and "STRU F' comands had been given,
what ever FTP transfer type, node and structure had actually been set,
and wi thout causing those settings to be altered for future comrands.
That is, this transfer type shall be set for the duration of the data
connection established for this cormand only. Wiile the content of
the data sent can be viewed as a series of lines, inplenentations
shoul d note that there is no maxi mumline | ength defined.

| mpl enent ati ons shoul d be prepared to deal with arbitrarily Iong
I'ines.

Het hron St andards Track [Page 25]

RFC 3659 Ext ensions to FTP March 2007

The facts part of the specification would contain a series of "file
facts" about the file or directory naned on the sane line. Typica
information to be presented would include file size, |ast

nmodi fication tine, creation time, a unique identifier, and a
file/directory flag.

The conplete format for a successful reply to the M.SD command woul d
be:

facts SP pat hname CRLF
facts SP pat hnanme CRLF
facts SP pat hnane CRLF

Note that the format is intended for machi ne processing, not hunan
vi ewi ng, and as such the format is very rigid. |nplenentations MJST
NOT vary the format by, for exanple, inserting extra spaces for
readability, replacing spaces by tabs, including header or title
lines, or inserting blank Iines, or in any other way alter this
format. Exactly one space is always required after the set of facts
(which may be enpty). Mre spaces may be present on a line if, and
only if, the pathnane presented contains significant spaces. The set
of facts nust not contain any spaces anywhere inside it. Facts
shoul d be provided in each output line only if they both provide

rel evant information about the file naned on the sane |ine, and they
are in the set requested by the user-Pl. See section 7.9 (page 51).
There is no requirenment that the sane set of facts be provided for
each file, or that the facts presented occur in the sane order for
each file.

7.2.1. Error Responses to M.Sx comands

Many of the 4xy and 5xy responses defined in section 4.2 of STD 9,
RFC 959 [3] are possible in response to the MLST and M_SD conmands.
In particular, syntax errors can generate 500 or 501 replies. @ ving
a pat hnane that exists but is not a directory as the argunent to a
M.SD comand generates a 501 reply. @Gving a nane that does not
exist, or for which access permi ssion (to obtain directory
informati on as requested) is not granted will elicit a 550 reply.

O her replies (530, 553, 503, 504, and any of the 4xy replies) are

al so possible in appropriate circunstances.

7.3. File Nane Encoding
An FTP inplenmentation supporting the M.Sx comuands must be 8-bit

clean. This is necessary in order to transmt UTF-8 encoded file
nanes. This specification recommends the use of UTF-8 encoded file

Het hron St andards Track [Page 26]

RFC 3659 Ext ensions to FTP March 2007

nanes. FTP i npl enentati ons SHOULD use UTF-8 whenever possible to
encourage the maxi numinter-operability.

File names are not restricted to UTF-8, however treatnent of
arbitrary character encodings is not specified by this standard.
Applications are encouraged to treat non-UTF-8 encodings of file
names as octet sequences.

Note that this encoding is unrelated to that of the contents of the
file, even if the file contains character data.

Furt her information about file nanme encoding for FTP may be found in
"Internationalization of the File Transfer Protocol" [7].

7.3.1. Notes about the File Nane

The file nane returned in the M.ST response should be the sanme nane
as was specified in the M.ST conmmand, or, where TVFS is supported, a
fully qualified TVFS path naning the same file. Were no argunent
was given to the MLST comand, the server-Pl nmay either include an
enpty file name in the response, or it may supply a nane that refers
to the current directory, if such a name is available. Were TVFS is
supported, a fully qualified pathnane of the current directory SHOULD
be returned.

File names returned in the output froman M.SD comand SHOULD be
unqual i fied names within the directory named, or the current
directory if no argunent was given. That is, the directory named in
the MLSD conmand SHOULD NOT appear as a conponent of the file names
returned.

If the server-FTP process is able, and the "type" fact is being
returned, it MAY return in the M.SD response, an entry whose type is
"cdir", which names the directory fromwhich the contents of the
listing were obtained. Were TVFS is supported, the name MAY be the
fully qualified pathnanme of the directory, or MAY be any other

pat hnane that is valid to refer to that directory fromthe current
wor ki ng directory of the server-FTP. Were nore than one nane
exists, multiple of these entries nay be returned. |In a sense, the
"cdir" entry can be viewed as a heading for the M.SD out put.

However, it is not required to be the first entry returned, and may
occur anywhere within the listing.

Wien TVFS is supported, a user-Pl can refer to any file or directory
in the listing by conbining a type "cdir" name, with the appropriate
nane fromthe directory listing using the procedure defined in
section 6. 2.

Het hron St andards Track [Page 27]

RFC 3659 Ext ensions to FTP March 2007

Al ternatively, whether TVFS is supported or not, the user-Pl can

i ssue a CWD command ([3]) giving a nane of type "cdir" fromthe
listing returned, and fromthat point reference the files returned in
the MLSD response from which the cdir was obtained by using the file
nane conponents of the |isting.

7.4. Format of Facts

The "facts" for a file in areply to a M.Sx command consi st of

i nformati on about that file. The facts are a series of keyword=val ue
pairs each followed by sem -colon (";") characters. An individua
fact may not contain a sem-colon in its nanme or value. The conplete
series of facts may not contain the space character. See the
definition or "RCHAR' in section 2.1 for a list of the characters
that can occur in a fact value. Not all are applicable to all facts.

A sample of a typical series of facts would be: (spread over two
lines for presentation here only)

si ze=4161; | ang=en- US; nodi f y=19970214165800; cr eat €=19961001124534;
type=fil e; x. myfact =f oo, bar;

7.5. Standard Facts

Thi s docunent defines a standard set of facts as fol |l ows:

si ze -- Size in octets

nmodi fy -- Last nodification tine

Ccreate -- Creation tine

type -- Entry type

uni que -- Unique id of file/directory

perm -- File pernissions, whether read, wite, execute is
all owed for the login id.

| ang -- Language of the file name per | ANA [11] registry.

medi a-type -- M ME nedia-type of file contents per | ANA registry.

char set -- Character set per IANA registry (if not UTF-8)

Fact nanes are case-insensitive. Size, size, SIZE, and SiZe are the
sane fact.

Furt her operating system specific keywords coul d be specified by
using the | ANA operating systemnane as a prefix (exanples only):

OS/ 2. ea -- 0S8/ 2 extended attributes
MACCS.rf -- Maclntosh resource forks
UNI X. node -- Unix file nodes (perm ssions)

Het hron St andards Track [Page 28]

RFC 3659 Ext ensions to FTP

| npl enent ati ons nay define keywords for experinental,

Al'l such keywords MJUST begin with the two
As type nanes are case independent, "x
For exanpl e:

March 2007

or private use
" X.

character sequence

" and "X " are equivalent.

x.ver -- Version information
x.desc -- File description
X.type -- File type
7.5.1. The Type Fact
The type fact needs a special description. Part of the problemwth
current practices is deciding when a file is a directory. If it is a
directory, is it the current directory, a regular directory, or a
parent directory? The MST specification makes this unanbi guous
using the type fact. The type fact given specifies information about
the object listed on the sane Iine of the M.ST response.
Fi ve val ues are possible for the type fact:
file -- afileentry
cdir -- the listed directory
pdi r -- a parent directory
dir -- a directory or sub-directory
CS. nane=type -- an OS or file system dependent file type
The syntax is defined to be:
type-fact = type-label "=" type-val
type- | abel = "Type"
t ype-val ="File" [/ "cdir" [/ "pdir" ["dir" /
0s-type
The value of the type fact (the "type-val") is a case independent
string.
7.5.1.1. type=file
The presence of the type=file fact indicates the listed entry is a
file containing non-systemdata. That is, it may be transferred from
one systemto another of quite different characteristics, and perhaps
still be neani ngful
7.5.1.2. type=cdir
The type=cdir fact indicates the listed entry contains a pathnane of
the directory whose contents are listed. An entry of this type wll
only be returned as a part of the result of an MLSD conmand when the
Het hron St andards Track [Page 29]

RFC 3659 Ext ensions to FTP March 2007

type fact is included, and provides a nane for the listed directory,
and facts about that directory. 1In a sense, it can be viewed as
representing the title of the listing, in a machine friendly format.
It may appear at any point of the listing, it is not restricted to
appearing at the start, though frequently may do so, and may occur
multiple tinmes. It MJST NOT be included if the type fact is not

i ncluded, or there would be no way for the user-Pl to distinguish the
name of the directory froman entry in the directory.

Where TVFS is supported by the server-FTP, this nane nay be used to
construct pathnanmes with which to refer to the files and directories
returned in the sane MLSD output (see section 6.2). These pat hnanes
are only expected to work when the server-Pl’'s position in the NVFS
file tree is the sane as its position when the M.SD command was

i ssued, unless a fully qualified pathnane results.

Where TVFS is not supported, the only defined semantics associ at ed
with a "type=cdir" entry are that, provided the current working
directory of the server-Pl has not been changed, a pathname of type
"cdir" may be used as an argunment to a CWD command, which will cause
the current directory of the server-Pl to change so that the
directory that was listed in its current working directory.

7.5.1.3. type=dir

If present, the type=dir entry gives the name of a directory. Such
an entry typically cannot be transferred fromone systemto another
using RETR, etc., but should (perm ssions permitting) be able to be
t he object of an M.SD conmand.

7.5.1.4. type=pdir

If present, which will occur only in the response to a M.SD comand
when the type fact is included, the type=pdir entry represents a

pat hnanme of the parent directory of the listed directory. As well as
havi ng the properties of a type=dir, a CWD conmmand that uses the

pat hnane fromthis entry shoul d change the user to a parent directory
of the listed directory. |If the listed directory is the current
directory, a CDUP conmmand nmay al so have the effect of changing to the
naned directory. User-FTP processes should note not all responses
will include this information, and that sone systens may provide

mul tiple type=pdir responses.

Where TVFS is supported, a "type=pdir" nanme nmay be a relative

pat hnanme, or a fully qualified pathname. A relative pathnane will be
relative to the directory being listed, not to the current directory
of the server-Pl at the tine.

Het hron St andards Track [Page 30]

RFC 3659 Ext ensions to FTP March 2007

For the purposes of this type value, a "parent directory" is any
directory in which there is an entry of type=dir that refers to the
directory in which the type=pdir entity was found. Thus it is not
required that all entities with type=pdir refer to the sane
directory. The "unique" fact (if supported and supplied) can be used
to determ ne whether there is a relationship between the type=pdir
entries or not.

7.5.1.5. System Defined Types

Files types that are specific to a specific operating system or file
system can be encoded using the "CS." type nanes. The format is:

os-type = "0S." os-nane "=" os-kind
os-name = <an | ANA regi stered operating system name>
os- ki nd = t oken

The "os-nane" indicates the specific systemtype that supports the
particular localtype. OS specific types are registered by the | ANA
using the procedures specified in section 10. The "os-kind" provides
the system dependent information as to the type of the file |isted.
The os-nanme and os-kind strings in an os-type are case independent.

" OS. uni x=bl ock” and " CS. Uni x=BLOCK" represent the sane type (or
woul d, if such a type were registered.)

Not e: Where the underlying system supports a file type that is
essentially an indirect pointer to another file, the NVFS
representation of that type should normally be to represent the file
that the reference indicates. That is, the underlying basic file

wi ||l appear nore than once in the NVFS, each tine with the "uni que"
fact (see immediately foll owi ng section) containing the sane val ue,
indicating that the same file is represented by all such nanes.
User-Pls transferring the file need then transfer it only once, and
then insert their own formof indirect reference to construct

al ternat e nanes where desired, or perhaps even copy the local file if
that is the only way to provide two nanes with the sane content. A
file which would be a reference to another file, if only the other
file actually existed, nmay be represented in any OS dependent manner
appropriate, or not represented at all.

7.5.1.6. Miltiple Types

Where a file is such that it may validly, and sensibly, treated by
the server-Pl as being of nore than one of the above types, then
multiple entries should be returned, each with its own "Type" fact of
the appropriate type, and each containing the sane pathnane. This
may occur, for exanple, with a structured file, which may contain
sub-files, and where the server-Pl pernmits the structured file to be

Het hron St andards Track [Page 31]

RFC 3659 Ext ensions to FTP March 2007

treated as a unit, or treated as a directory allow ng the sub-files
within it to be referenced. Wen this is done, the pathnane returned
with each entry MJUST be identical to the others representing the sane
file.

7.5.2. The uni que Fact

The unique fact is used to present a unique identifier for a file or
directory in the NVFS accessed via a server-FTP process. The val ue
of this fact should be the sane for any nunber of pathnanes that
refer to the sane underlying file. The fact should have different
val ues for nanmes that reference distinct files. The nmappi ng between
files, and uni que fact tokens should be naintai ned, and renain
consistent, for at least the lifetime of the control connection from
user-Pl to server-Pl

uni que-fact = "Unique" "=" token

This fact would be expected to be used by server-FTPs whose host
system al |l ows things such as synbolic Iinks so that the sane file may
be represented in nore than one directory on the server. The only
concl usion that should be drawn is that if two different names each
have the sanme value for the unique fact, they refer to the sane
underlying object. The value of the unique fact (the token) should
be consi dered an opaque string for conparison purposes, and is a case
dependent value. The tokens "A" and "a" do not represent the sane
under | yi ng obj ect.

7.5.3. The nodify Fact

The nodify fact is used to determine the last tine the content of the
file (or directory) indicated was nodified. Any change of substance
to the file should cause this value to alter. That is, if a change
is made to a file such that the results of a RETR conmand woul d
differ, then the value of the nodify fact should alter. User-Pls
shoul d not assunme that a different nodify fact val ue indicates that
the file contents are necessarily different than when last retrieved.
Some systens nmay alter the value of the nodify fact for other

reasons, though this is discouraged wherever possible. Also a file
may alter, and then be returned to its previous content, which would
often be indicated as two increnmental alterations to the value of the
nodi fy fact.

For directories, this value should alter whenever a change occurs to
the directory such that different file names would (or m ght) be
i ncluded in M.SD out put of that directory.

nodi fy-fact = "Mdify" "=" tinme-val

Het hron St andards Track [Page 32]

RFC 3659 Ext ensions to FTP March 2007

7.5.4. The create Fact

The create fact indicates when a file, or directory, was first
created. Exactly what "creation" is for this purpose is not
specified here, and may vary fromserver to server. About all that
can be said about the value returned is that it can never indicate a
later tinme than the nodify fact.

create-fact = "Create" time-va

I mpl enentation Note: Inplenentors of this fact on UNI X(TM systens
should note that the unix "stat" "st _ctinme" field does not give
creation tinme, and that unix file systens do not record creation
time at all. Unix (and PCSI X) inplenmentations will normally not
include this fact.

7.5.5. The perm Fact
The permfact is used to indicate access rights the current FTP user
has over the object listed. |Its value is always an unordered
sequence of al phabetic characters.

perm f act
pval s

"Perni "=" *pvals
"a" [/ "c" ["d" ["e" ["f" [
B I AR 11 A o Y A Y

There are ten pernmission indicators currently defined. Mny are
meani ngful only when used with a particular type of object. The
i ndi cators are case independent, "d" and "D' are the sane indicator

The "a" perm ssion applies to objects of type=file, and indicates
that the APPE (append) conmmand may be applied to the file naned.

The "c" perm ssion applies to objects of type=dir (and type=pdir,
type=cdir). It indicates that files may be created in the directory
naned. That is, that a STQU command is likely to succeed, and that
STOR and APPE comuands mi ght succeed if the file naned did not
previously exist, but is to be created in the directory object that
has the "c" permission. It also indicates that the RNTO command is
likely to succeed for nanmes in the directory.

The "d" permi ssion applies to all types. It indicates that the
obj ect naned nmay be deleted, that is, that the RVD comand nay be
applied to it if it is a directory, and otherwi se that the DELE
command rmay be applied to it.

The "e" permi ssion applies to the directory types. Wen set on an
obj ect of type=dir, type=cdir, or type=pdir it indicates that a C\WD

Het hron St andards Track [Page 33]

RFC 3659 Ext ensions to FTP March 2007

command nani ng the object should succeed, and the user should be able
to enter the directory named. For type=pdir it also indicates that
the CDUP conmand may succeed (if this particular pathnane is the one
to which a CDUP woul d apply.)

The "f" perm ssion for objects indicates that the object named may be
renaned - that is, nmay be the object of an RNFR conmand.

The "I" permission applies to the directory file types, and indicates
that the listing conmands, LIST, NLST, and M_SD nay be applied to the
directory in question

The "m' permi ssion applies to directory types, and indicates that the
MKD comrand nmay be used to create a new directory within the
directory under consideration

The "p" perm ssion applies to directory types, and indicates that
objects in the directory nay be deleted, or (stretching namng a
little) that the directory may be purged. Note: it does not indicate
that the RVD command may be used to renove the directory naned
itself, the "d" permission indicator indicates that.

The "r" perm ssion applies to type=file objects, and for some
systens, perhaps to other types of objects, and indicates that the
RETR command nmay be applied to that object.

The "w' permission applies to type=file objects, and for sone
systens, perhaps to other types of objects, and indicates that the
STOR command nay be applied to the object naned.

Note: That a pernission indicator is set can never inply that the
appropriate command is guaranteed to work -- just that it mght.
O her systemspecific limtations, such as limtations on
avai |l abl e space for storing files, may cause an operation to fail,
where the pernmission flags may have indicated that it was likely
to succeed. The pernissions are a guide only.

| mpl enent ati on note: The permissions are described here as they apply
to FTP conmmands. They may not map easily into particul ar
perm ssions avail able on the server’s operating system Servers
are expected to synthesize these perm ssion bits fromthe
permi ssion information avail able from operating system For
exanple, to correctly determ ne whether the "D' pernission bit
shoul d be set on a directory for a server running on the UNI X(TM
operating system the server should check that the directory naned
is enpty, and that the user has wite perm ssion on both the
directory under consideration, and its parent directory.

Het hron St andards Track [Page 34]

RFC 3659 Ext ensions to FTP March 2007

Sonme systens nmay have nore specific pernissions than those |isted
here, such systens should nmap those to the flags defined as best
they are able. Qher systens may have only nore broad access
controls. They will generally have just a few possible
permut ati ons of perm ssion flags, however they should attenpt to
correctly represent what is permtted.

7.5.6. The lang Fact

The | ang fact describes the natural |anguage of the file name for use
in display purposes. Values used here should be taken fromthe

| anguage registry of the ANA. See [12] for the syntax, and
procedures, related to | anguage tags.

| ang-fact = "Lang" t oken

Server-FTP i npl enmentati ons MJUST NOT guess | anguage val ues. Language
val ues nust be deternined in an unanbi guous way such as file system
taggi ng of | anguage or by user configuration. Note that the |ang
fact provides no information at all about the content of a file, only
about the encoding of its nane.

7.5.7. The size Fact

The size fact applies to non-directory file types and shoul d al ways
reflect the approximate size of the file. This should be as accurate
as the server can nake it, w thout going to extraordinary | engths,
such as reading the entire file. The size is expressed in units of
octets of data in the file.

Gven linmtations in some systens, Cient-FTP inplenentations nust
understand this size may not be precise and may change between the
time of a MLST and RETR operati on.

Cients that need highly accurate size information for some
particul ar reason should use the SIZE command as defined in section
4. The nost common need for this accuracy is likely to be in
conjunction with the REST conmand described in section 5. The size
fact, on the other hand, should be used for purposes such as
indicating to a human user the approxi mate size of the file to be
transferred, and perhaps to give an idea of expected transfer
conpletion tine.

size-fact = "Size" "=" 1*DIAT

Het hron St andards Track [Page 35]

RFC 3659 Ext ensions to FTP March 2007

7.5.8. The nedi a-type Fact

The medi a-type fact represents the | ANA nedia type of the file naned,
and applies only to non-directory types. The list of values used
nmust foll ow the guidelines set by the | ANA registry.

medi a-type = "Media-Type" "=" <per | ANA gui delines>

Server-FTP i npl ement ati ons MUST NOT guess nedi a type val ues. Media
type val ues nmust be determined in an unanbi guous way such as file
systemtaggi ng of medi a-type or by user configuration. This fact
gives informati on about the content of the file named. Both the
primary media type, and any appropriate subtype should be given
separated by a slash "/" as is traditional

7.5.9. The charset Fact

The charset fact provides the | ANA character set name, or alias, for
t he encoded pat hnanmes in a M.Sx response. The default character set
is UTF-8 unl ess specified otherwi se. FTP inplenentations SHOULD use
UTF-8 if possible to encourage maxi muminter-operability. The value
of this fact applies to the pathnanme only, and provides no

i nformati on about the contents of the file.

charset-type = "Charset" "=" token
7.5.10. Required Facts

Servers are not required to support any particular set of the
avai l abl e facts. However, servers SHOULD, if conceivably possible,
support at least the type, perm size, unique, and nodify facts.

7.6. System Dependent and Local Facts

By using an system dependent fact, or a | ocal fact, a server-Pl may
comuni cate to the user-Pl information about the file nanmed that is
peculiar to the underlying file system

7.6.1. System Dependent Facts

System dependent fact names are | abeled by prefixing a | abe
identifying the specific information returned by the name of the
appropriate operating systemfromthe | ANA naintained |ist of
operating system nanes.

The val ue of an OS dependent fact may be whatever is appropriate to

convey the information available. It nust be encoded as a "token" as
defined in section 2.1 however.

Het hron St andards Track [Page 36]

RFC 3659 Ext ensions to FTP March 2007

In order to allow reliable inter-operation between users of system
dependent facts, the IANA will maintain a registry of system
dependent fact nanes, their syntax, and the interpretation to be
given to their values. Registrations of system dependent facts are
to be acconplished according to the procedures of section 10.

7.6.2. Local Facts

| mpl enent ati ons nmay al so make avail abl e other facts of their own
choosing. As the nmethod of interpretation of such information will
generally not be wi dely understood, server-Pls should be aware that
clients will typically ignore any local facts provided. As there is
no registration of locally defined facts, it is entirely possible
that different servers will use the same |local fact nanme to provide
vastly different information. Hence user-Pls should be hesitant
about making any use of any information in a locally defined fact

wi t hout sone other specific assurance that the particular fact is one
that they do conprehend.

Local fact nanmes all begin with the sequence "X ". The rest of the
name is a "token" (see section 2.1). The value of a local fact can
be anything at all, provided it can be encoded as a "t oken"

7.7. MSx Exanpl es

The foll owi ng exanples are all taken from di al ogues between existing
FTP clients and servers. Because of this, not all possible

vari ations of possible response formats are shown in the exanples.
This should not be taken as linmting the options of other server

i mpl enentors. \Were the exanpl es show OGS dependent infornation, that
is to be treated as being purely for the purposes of denonstration of
some possible OS specific information that could be defined. As at
the time of the witing of this document, no CS specific facts or
file types have been defined, the exanples shown here should not be
treated as in any way to be preferred over other possible simlar
definitions. Consult the IANA registries to determ ne what types and
facts have been defined. Finally also beware that as the exanpl es
shown are taken from existing inplenentations, coded before this
docunent was conpleted, the possibility of variations between the
text of this docunent and the exanples exists. In any such case of

i nconsi stency, the exanple is to be treated as incorrect.

In the exanpl es shown, only rel evant commands and responses have been
included. This is not to inply that other commands (i ncl udi ng

aut hentication, directory nodification, PORT or PASV commands, or
simlar) would not be present in an actual connection, or were not,
in fact, actually used in the exanples before editing. Note al so
that the formats shown are those that are transnitted between client

Het hron St andards Track [Page 37]

RFC 3659 Ext ensions to FTP March 2007

and server, not formats that would nornally ever be reported to the
user of the client.

7.7.1. Sinple M.ST

C PWD

S> 257 "/tnmp" is current directory.

C> M.st cap60. pl 198.tar. gz

S> 250- Listing cap60.pl198.tar. gz

S> Type=file; Si ze=1024990; Perm=r; /tnp/cap60.pl 198.tar.gz
S> 250 End

The client first asked to be told the current directory of the
server. This was purely for the purposes of clarity of this exanple.
The client then requested facts about a specific file. The server
returned the "250-" first control-response line, followed by a single
line of facts about the file, followed by the term nating "250 "

line. The text on the control-response line and the termnating |line
can be anything the server decides to send. Notice that the fact
line is indented by a single space. Notice also that there are no
spaces in the set of facts returned, until the single space before
the file nane. The file nane returned on the fact line is a fully
qualified pathnanme of the file listed. The facts returned show t hat
the line refers to a file, that file contains approxi nately 1024990
bytes, though nore or less than that nmay be transferred if the file
is retrieved, and a different nunber nmay be required to store the
file at the client’s file store, and the connected user has

permi ssion to retrieve the file but not to do anything el se
particularly interesting.

7.7.2. MST of a directory

C PWD

S> 257 "/" is current directory.

C Mst tnp

S> 250- Listing tnp

S> Type=dir; Modi f y=19981107085215; Pernrel ; /tnp
S> 250 End

Again the PAD is just for the purposes of denonstration for the
exanple. The MST fact line this time shows that the file listed is
a directory, that it was last nodified at 08:52:15 on the 7th of
Novenber, 1998 UTC, and that the user has pernission to enter the
directory, and to list its contents, but not to nodify it in any way.
Again, the fully qualified pathname of the directory listed is given

Het hron St andards Track [Page 38]

RFC 3659 Ext ensions to FTP March 2007

~

.7.3. MSD of a directory

M.SD t np

150 BI NARY connection open for MSD tnp

Type=cdi r; Modi fy=19981107085215; Permrel ; tnp

Type=cdi r; Modi fy=19981107085215; Permeel ; /tnp

Type=pdi r; Modi fy=19990112030508; Per m=el ; ..

Type=file; Si ze=25730; Modi f y=19940728095854; Per m=; capnux.tar.z
Type=file; Si ze=1830; Modi f y=19940916055648; Per n¥r; hatch.c

Type=file; Si ze=25624; Modi f y=19951003165342; Per mer; Macl P- 02. t xt
Type=file; Si ze=2154; Modi f y=19950501105033; Per n¥r; uar. net bsd. patch
Type=file; Si ze=54757; Modi fy=19951105101754; Per mer; i ptnnl adev. 1. 0. sit. hgx
Type=fil e; Si ze=226546; Modi f y=19970515023901; Pern¥r; nel bcs.tif
Type=file; Si ze=12927; Modi f y=19961025135602; Permer; tardis. 1l.6.sit.hgx
Type=file; Si ze=17867; Modi f y=19961025135602; Permer; tinelord.1.4.sit.hgx
Type=file; Si ze=224907; Modi f y=19980615100045; Per n=r; uar.1.2.3.sit. hgx
Type=file; Si ze=1024990; Modi f y=19980130010322; Per n=r; cap60. pl 198.tar.gz
226 M.SD conpl et ed

VAAVA A A A A A A AR AR A AY,

In this exanple notice that there is no | eading space on the fact
lines returned over the data connection. Al so notice that two |ines
of "type=cdir" have been given. These show two alternate nanes for
the directory listed, one a fully qualified pathnane, and the other a
| ocal name relative to the servers current directory when the M.SD
was performed. Note that all other file names in the output are
relative to the directory listed, though the server could, if it
chose, give a fully qualified pathname for the "type=pdir" I|ine.
This server has chosen not to. The other files listed present a
fairly boring set of files that are present in the listed directory.
Note that there is no particular order in which they are |isted.
They are not sorted by file name, by size, or by nodify tine. Note
al so that the "pernt fact has an enpty value for the file
"capnux.tar.z" indicating that the connected user has no pernmni ssions
at all for that file. This server has chosen to present the "cdir"
and "pdir" lines before the Iines showi ng the content of the
directory, it is not required to do so. The "size" fact does not
provi de any neani ngful information for a directory, so is not
included in the fact Iines for the directory types shown.

Het hron St andards Track [Page 39]

RFC 3659 Ext ensions to FTP March 2007

7.7.4. A More Conpl ex Exanpl e

C Mst test

S> 250- Listing test

S> Type=dir; Pernmrel ; Uni que=keVOL+ZF4 t est

S> 250 End

M.SD t est

150 BI NARY connection open for M.SD test

Type=cdi r; Per mrel ; Uni que=keVOL+ZF4; test

Type=pdi r; Per mre; Uni que=keVO1+d?3; ..

Type=0CS. uni x=sl i nk: / f oobar ; Per m=; Uni que=keVOl+4(4; foobar
Type=0S. uni x=chr - 13/ 29; Per n¥; Uni que=keVOL+5G4; devi ce
Type=0S. uni x=bl k- 11/ 108; Per n=; Uni que=keVOL+6&4; bl ock
Type=fil e; Per mrawr ; Uni que=keVOL+8; writable
Type=di r; Per m=cpnel ; Uni que=keVOL+7G4; promni scuous
Type=di r; Per ms; Uni que=keVOLl+1t 2; no-exec

Type=fil e; Permer; Uni que=keVOL+E(4; two words
Type=fil e; Perner; Uni que=keVOL+l H4; | eadi ng space
Type=fil e; Perner; Uni que=keVOl+1A4; filel

Type=di r; Per m=cpnel ; Uni que=keVOL+7G4; i ncom ng
Type=fil e; Permer; Uni que=keVOL+1A; file2

Type=fil e; Permer; Uni que=keVOl+1A4; file3

Type=fil e; Perner; Uni que=keVOl+1A4; file4d

226 M.SD conpl et ed

M.SD test/incon ng

150 BI NARY connection open for M.SD test/inconi ng
Type=cdi r; Per m=cpnel ; Uni que=keVOL+7G4; test/inconing
Type=pdi r; Per mrel ; Uni que=keVOL+ZF4; ..

Type=fil e; Per mmawdr f ; Uni que=keVOL+EH4; bar

Type=fil e; Per mrawdr f ; Uni que=keVOL+LH4;
Type=file; Pernerf; Uni que=keVOL+1G4; fileb

Type=fil e; Permerf; Uni que=keVOL+1G4; fil eb6

Type=di r; Per mecpndel f ; Uni que=keVOL+! s2; enpty

226 M.SD conpl et ed

AY

VAR AR A AR AV A A A A A A A A A A A A A A AY

For the purposes of this exanple the fact set requested has been

nodi fied to delete the "size" and "nodi fy" facts, and add the

"uni que" fact. First, facts about a file name have been obtained via
M.ST. Note that no fully qualified pathnane was given this tine.

That was because the server was unable to determine that information
Then having determ ned that the file name represents a directory,

that directory has been listed. That listing also shows no fully
qual i fied pathname, for the sane reason, thus has but a single
"type=cdir" line. This directory (which was created especially for

t he purpose) contains several interesting files. There are sonme with
CS dependent file types, several sub-directories, and severa

ordinary files.

Het hron St andards Track [Page 40]

RFC 3659 Ext ensions to FTP March 2007

Not rmuch can be said here about the OS dependent file types, as none
of the information shown there should be treated as any nore than
possibilities. It can be seen that the OS type of the server is
"uni x" though, which is one of the CS types in the | ANA registry of
Operati ng System nanes.

O the three directories listed, "no-exec" has no perm ssion granted
to this user to access at all. Fromthe "Unique" fact values, it can
be deternined that "promi scuous” and "incoming" in fact represent the
same directory. |Its perm ssions show that the connected user has
perm ssion to do essentially anything other than to delete the
directory. That directory was later listed. 1t happens that the
directory can not be del eted because it is not enpty.

O the normal files listed, two contain spaces in their names. The
file called " | eading space" actually contains two spaces in its
nane, one before the "I" and one between the "g" and the "s". The
two spaces that separate the facts fromthe visible part of the

pat hnane make that clear. The file "witable" has the "a" and "w'
permi ssion bits set, and consequently the connected user should be
able to STOR or APPE to that file.

The other four file names, "filel", "file2", "file3", and "file4" all
represent the sanme underlying file, as can be seen fromthe val ues of
the "uni que" facts of each. It happens that "filel" and "file2" are
Uni x "hard" links, and that "file3" and "file4" are "soft" or
"symbolic" links to the first two. None of that information is

avail abl e via standard MLST facts, it is sufficient for the purposes
of FTP to note that all represent the sane file, and that the sane
data woul d be fetched no matter which of themwas retrieved, and that
all would be sinmultaneously nodified were data stored in any.

Finally, the sub-directory "incomng" is listed. Since "prom scuous"
is the same directory there would be no point listing it as well. In
that directory, the files "file5" and "file6" represent still nore
nanes for the "filel" file we have seen before. Notice the entry
between that for "bar" and "fileb". Though it is not possible to
easily represent it in this docunent, that shows a file with a name
conprising exactly three spaces (" "). Aclient will have no
difficulty determning that nane fromthe output presented to it
however. The directory "enpty"” is, as its name inplies, enpty,
though that is not shown here. It can, however, be deleted, as can
file "bar" and the file whose nane is three spaces. Al the files
that reside in this directory can be renaned. This is a consequence
of the UNI X senmantics of the directory that contains them being
nmodi fi abl e.

Het hron St andards Track [Page 41]

RFC 3659 Ext ensions to FTP March 2007

7.7.5. More Accurate Tine Infornation

C Mst filel

S> 250- Listing filel

S> Type=fil e; Modi f y=19990929003355. 237; filel
S> 250 End

In this exanple, the server-FTP is indicating that "filel" was | ast
nodi fied 237 nmilliseconds after 00:33:55 UTC on the 29th of
Sept ember, 1999.

7.7.6. A Different Server

C MLST

S> 250- Begin

S> type=dir; uni que=AQKAAAAAAAABCAAA; /

S> 250 End.

M.SD

150 Opening ASCI|I nobde data connection for MS.
type=cdi r; uni que=AQKAAAAAAAABCAAA; [/

t ype=di r; uni que=AQKAAAAAAAABEAAA; bin

A%

t ype=di r; uni que=AKAAAAAAAABGAAA; et cC
type=di r; uni que=AQKAAAAAAAABBAWA; hal flife
t ype=di r; uni que=AKAAAAAAAABOAAA; i nconi ng
type=di r; uni que=AKAAAAAAAABI AAA; |ib

t ype=di r; uni que=AQKAAAAAAAABWAEA; | i nux

t ype=di r; uni que=AQKAAAAAAAABKAEA; ncft pd

t ype=di r; uni que=AQKAAAAAAAABGAEA; out box
type=di r; uni que=AQKAAAAAAAABUAAA; quake?2

t ype=di r; uni que=AKAAAAAAAABQAEA; wi nst uff

226 Listing conpleted.

M.SD | i nux

150 Opening ASCI1I node data connection for MS.

type=cdi r; uni que=AQKAAAAAAAABWAEA; /1 i nux

type=pdi r; uni que=AQKAAAAAAAABCAAA; /

t ype=di r; uni que=AKAAAAAAAABEAEA; firewal |
type=file;size=12; uni que=AQKAAAAAAAACWAEA; hel o_worl d

t ype=di r; uni que=AKAAAAAAAABYAEA; ker ne

type=di r; uni que=AKAAAAAAAABMAEA; scripts

type=di r; uni que=AKAAAAAAAABKAEA; security

226 Listing conpleted.

M.SD | i nux/ ker ne

150 Opening ASCI|I nobde data connection for MS.

type=cdi r; uni que=AQKAAAAAAAABYAEA; /1i nux/kerne

type=pdi r; uni que=AQKAAAAAAAABWAEA; /1 i nux

type=fil e; si ze=6704; uni que=AKAAAAAAAADYAEA; k. config
type=file;size=7269221; uni que=AQKAAAAAAAACYAEA; |inux-2.0.36.tar.gz
type=file;size=12514594; uni que=AQKAAAAAAAAEYAEA; |inux-2.1.130.tar.gz

VARV AV A A A A A A A A AV A A A A A A A AVAVAAY,

Het hron St andards Track [Page 42]

RFC 3659 Ext ensions to FTP March 2007

S> 226 Listing conpleted.

Note that this server returns its "unique" fact value in quite a
different format. It also returns fully qualified pathnanmes for the
"pdir" entry.

7.7.7. Sone | ANA Files

M.SD

150 BI NARY connection open for MSD .

Type=cdi r; Modi fy=19990219183438; /i anal/ assi gnnents

Type=pdi r; Modi fy=19990112030453; .

Type=di r; Modi f y=19990219073522; nedi a-types

Type=di r; Modi f y=19990112033515; character-set-info

Type=di r; Modi f y=19990112033529; | anguages

Type=fil e; Si ze=44242; Modi f y=19990217230400; character-sets
Type=file; Si ze=1947; Modi f y=19990209215600; oper ati ng-syst em nanes
226 M.SD conpl et ed

M.SD nedi a-t ypes

150 BI NARY connection open for M.SD nedi a-types

Type=cdi r; Modi f y=19990219073522; nedi a-types

Type=cdi r; Modi f y=19990219073522; /i anal/ assi gnnent s/ medi a-types
Type=pdi r; Modi fy=19990219183438; .

Type=di r; Modi f y=19990112033045; text

Type=di r; Modi f y=19990219183442; i nage

Type=di r; Modi f y=19990112033216; nul ti part

Type=di r; Modi fy=19990112033254; vi deo

Type=fil e; Si ze=30249; Modi f y=19990218032700; mnedi a-types

226 M.SD conpl et ed

M.SD character-set-info

150 BI NARY connection open for M.SD character-set-info
Type=cdi r; Modi fy=19990112033515; character-set-info

Type=cdi r; Modi f y=19990112033515; /i anal/assi gnnents/character-set-info
Type=pdi r; Modi f y=19990219183438; .

Type=fil e; Si ze=1234; Modi f y=19980903020400; w ndows- 1251
Type=fil e; Si ze=4557; Modi f y=19980922001400; ti s-620
Type=file; Si ze=801; Modi f y=19970324130000; i bn¥75

Type=fil e; Si ze=552; Mbdi f y=19970320130000; i bnB66

Type=file; Si ze=922; Mbdi f y=19960505140000; wi ndows- 1258

226 M.SD conpl et ed

M.SD | anguages

150 BI NARY connection open for M.SD | anguages

Type=cdi r; Modi fy=19990112033529; | anguages

Type=cdi r; Modi f y=19990112033529; /i anal/ assi gnnent s/ | anguages
Type=pdi r; Modi f y=19990219183438; ..

Type=file; Si ze=2391; Modi f y=19980309130000; default

Type=fil e; Si ze=943; Modi f y=19980309130000; tags

Type=file; Si ze=870; Modi f y=19971026130000; navaj o

VAR A AR A VA A A A A A A A A VA A A A A A A A A A AR A A A AR AR A AV

Het hron St andards Track [Page 43]

RFC 3659 Ext ensions to FTP March 2007

D>
S>
(0=
S>

7.

Type=file; Si ze=699; Modi f y=19950911140000; no- bok
226 M.SD conpl et ed

PWD

257 "/ianal/assignnents” is current directory.

Thi s exanpl e shows sone of the | ANA naintained files that are
rel evant for this specification in ML.SD format. Note that these
listings have been edited by deleting many entries, the actua
listings are nuch | onger.

.8. A Stress Test of Case (In)dependence

The following exanple is intended to nake clear sone cases where case
dependent strings are pernitted in the M.Sx conmands, and where case
i ndependent strings are required.

Note first that the "M.SD' conmand, shown here as "M sD' is case
i ndependent. dients may issue this conmand in any case, or
conbi nation of cases, they desire. This is the case for all FTP
commands.

M sD
150 BI NARY connection open for M.SD .
Type=pdi r; Modi f y=19990929011228; Per m=el ; Uni que=keVOL+ZF4;

VAR A AR A A AR AR AY,

226 M.SD conpl et ed

Type=fil e; Si ze=4096; Modi f y=19990929011440; Per n¥r ; Uni que=keVOL+Bd8; FI LE2
Type=file; Si ze=4096; Modi f y=19990929011440; Per n=r ; Uni que=keVOL+aG8; fil e3
Type=file; Si ze=4096; Modi f y=19990929011440; Per m=r ; Uni que=keVOl+ag8; FI LE3
Type=file; Si ze=4096; Modi f y=19990929011440; Per n=r ; Uni que=keVOL+bD8; fil el
Type=fil e; Si ze=4096; Modi f y=19990929011440; Per n¥r ; Uni que=keVOL+bD3; fil e2
Type=file; Si ze=4096; Modi f y=19990929011440; Per n¥r ; Uni que=keVOL+Ag8; Fil e3
Type=file; Si ze=4096; Modi f y=19990929011440; Per n¥r ; Uni que=keVOL+bD8; Fil el
Type=file; Si ze=4096; Modi f y=19990929011440; Per n=r ; Uni que=keVOL+Bd8; Fil e2
Type=file; Si ze=4096; Modi f y=19990929011440; Per n=r ; Uni que=keVOL+bd8; FI LEl

Next, notice the labels of the facts. These are al so case-

i ndependent strings; the server-FTP is pernitted to return themin
any case desired. User-FTP must be prepared to deal with any case,
though it may do this by mapping the |abels to a common case if
desi red.

Then, notice that there are nine objects of "type" file returned. In
a case-independent NVFS these would represent three different file
nanes, "filel", "file2", and "file3". Wth a case-dependent NVFS all
nine represent different file names. Either is possible, server-FTPs
may i npl ement a case dependent or a case independent NVFS. User-FTPs
must all ow for case dependent selection of files to mani pulate on the
server.

Het hron St andards Track [Page 44]

RFC 3659 Ext ensions to FTP March 2007

~

VAR A A A A A A AYA A AR A A AR AVAAAAAA AY

Lastly, notice that the value of the "unique" fact is case dependent.
In the exanple shown, "filel", "Filel", and "file2" all have the sane
"uni que" fact val ue "keVOlL+bD8", and thus all represent the same
underlying file. On the other hand, "FILEl1l" has a different "unique"
fact value ("keVOlL+bd8") and hence represents a different file.
Simlarly, "FILE2" and "File2" are two nanmes for the same underlying
file, whereas "file3", "File3" and "FILE3" all represent different
underlying files.

That the approxi mate sizes ("size" fact) and last nodification tines
("nodify" fact) are the same in all cases mght be no nore than a
coi nci dence

It is not suggested that the operators of server-FTPs create an NVFS
that stresses the protocols to this extent; however, both user and
server inplenentations nmust be prepared to deal with such extrene
exanpl es.

.9. Exanple from Anot her Server

M sD

150 File Listing Follows in I MAGE / Binary node

type=cdi r; nodi f y=19990426150227; permrel ; /M SC

type=pdir; nodi fy=19791231130000; per mcel ; /

type=di r; nodi f y=19990426150227; per nxel ; CVS

type=di r; nodi f y=19990426150228; per nrel ; SRC

226 Transfer finished successfully.

M sD src

150 File Listing Follows in I MAGE / Binary node.

type=cdir; nodi f y=19990426150228; permcel ; /M SC src

type=pdi r; nodi f y=19990426150227; perm=el ; /M SC

type=di r; nodi f y=19990426150228; per n=el ; CVS

type=di r; nodi f y=19990426150228; per mrel ; | NSTALL

type=di r; nodi f y=19990426150230; per mrel ; | NSTALLI

type=di r; nodi f y=19990426150230; per n=el ; TREES

226 Transfer finished successfully.

M sD src/install

150 File Listing Follows in | MAGE / Binary node.

type=cdir; nodi f y=19990426150228; perm=el ; /M SC/ src/i nstal
type=pdi r; nodi f y=19990426150228; perm=el ; /M SC/ src

type=fil e; nodi f y=19990406234304; per n¥r ; si ze=20059; BOOTPC. C
type=file; nodi fy=19980401170153; per n¥r; si ze=278; BOOTPC. H
type=file; nodi fy=19990413153736; per m=r ; si ze=54220; BOOTPC. O
type=file; nodi f y=19990223044003; per m=r ; si ze=3389; CDROM C
type=file; nodi f y=19990413153739; per n¥r; si ze=30192; CDROM O
type=file; nodi fy=19981119155324; per n¥r; si ze=1055; CHANGELO
type=file; nodi fy=19981204171040; per mer ; si ze=8297; COVMANDS. C
type=file; nodi fy=19980508041749; per mer ; si ze=580; COMVANDS. H

Het hron St andards Track [Page 45]

RFC 3659 Ext ensions to FTP March 2007

type=file; nodi fy=19990419052351; per nm=r ; si ze=54264; URLMETHO. O
type=file; nodi fy=19980218161629; per m=r; si ze=993; W NDOWS. C
type=file; nodi fy=19970912154859; per mer; si ze=146; W NDOA5. H
type=fil e; nodi f y=19990413153731; per n¥r; si ze=16812; W NDOA&E. O
type=file; nodi fy=19990322174959; per n¥r; si ze=129; _CVSI GNO
type=file; nodi fy=19990413153640; per n¥r ; si ze=82536; _DEPEND
226 Transfer finished successfully.

M.st src/install/w ndows. c

S> 250-Listing src/install/w ndows. c

S> type=file; pern¥r;size=993; /msc/src/install/w ndows.c

S> 250 End

S> ftp> m st SRC/ | NSTALL/ W NDOAS. C

C> M.st SRC/ | NSTALL/ W NDOWS. C

S> 250- Li sting SRC/ | NSTALL/ W NDOWB. C

S> type=file; pern¥r;size=993; /m sc/SRC/ | NSTALL/ W NDOWS. C

S> 250 End

VA AVAVAVAVAYAY

Note that this server gives fully qualified pathnanes for the "pdir"
and "cdir" entries in M.SD listings. Also notice that this server
does, though it is not required to, sort its directory listing
outputs. That may be an artifact of the underlying file system
access nechani sms of course. Finally notice that the NVFS supported
by this server, in contrast to the earlier ones, inplenents its

pat hnanes in a case independent nmanner. The server seens to return
files using the case in which they were requested, when the name was
sent by the client, and otherw se uses an al gorithm known only to
itself to select the case of the nanes it returns

7.7.10. A Server Listing Itself

C Mst f

S> 250- MLST f

S> Type=dir; Modi f y=20000710052229; Uni que=AAD/ AAAABI A; f
S> 250 End

G o f

S> 250 CWD comand successful .

C MLSD

S> 150 Opening ASClI|I node data connection for 'M.SD .
D> Type=cdi r; Uni que=AAD/ AAAABI A;

D> Type=pdi r; Uni que=AAD/ AAAAAAI ; ..

D> Type=fil e; Si ze=987; Uni que=AAD/ AAAABI E; Makefil e
D> Type=fil e; Si ze=20148; Uni que=AAD/ AAAABI | ; conf.c
D> Type=file; Si ze=11111; Uni que=AAD AAAABI M extern.h
D> Type=file; Si ze=38721; Uni que=AAD/ AAAABI Q@ ftpcnd.y
D> Type=file; Si ze=17922; Uni que=AAD/ AAAABI U; ftpd.8
D> Type=fil e; Si ze=60732; Uni que=AAD/ AAAABI Y; ftpd.c
D> Type=file; Si ze=3127; Uni que=AAD/ AAAABI c; | ogwt np. c

Het hron St andards Track [Page 46]

RFC 3659 Ext ensions to FTP March 2007

Type=fil e; Si ze=2294; Uni que=AAD/ AAAABI g; pat hnanes. h
Type=fil e; Si ze=7605; Uni que=AAD/ AAAABI k; popen.c
Type=file; Si ze=9951; Uni que=AAD/ AAAABI 0; ftpd.conf.5
Type=fil e; Si ze=5023; Uni que=AAD/ AAAABI s; ftpusers.5
Type=fil e; Si ze=3547; Uni que=AAD/ AAAABI w; | ogut np.c
Type=fil e; Si ze=2064; Uni que=AAD/ AAAABI 0; version.h
Type=fil e; Si ze=20420; Uni que=AAD/ AAAAAAM cnds. ¢
Type=fil e; Si ze=15864; Uni que=AAD/ AAAAAAg; Is.cC
Type=fil e; Si ze=2898; Uni que=AAD/ AAAAAAK; |s.h
Type=file; Si ze=2769; Uni que=AAD/ AAAAAAD; | sextern.h
Type=fil e; Si ze=2042; Uni que=AAD/ AAAAAAs; stat _flags.h
Type=fil e; Si ze=5708; Uni que=AAD/ AAAAAAW, cnp. C
Type=fil e; Si ze=9280; Uni que=AAD/ AAAAAAD; print.c
Type=fil e; Si ze=4657; Uni que=AADI AAAAAA4; stat flags.c
Type=fil e; Si ze=2664; Uni que=AAD/ AAAAAAS; util.c
Type=fil e; Si ze=10383; Uni que=AAD/ AAAABJO; ftpd.conf.cath
Type=fil e; Si ze=3631; Uni que=AAD/ AAAABJ4; ftpusers.cat5
Type=file; Si ze=17729; Uni que=AAD/ AAAABJ8; ftpd.cat8
226 M.SD conpl et e.

VAR A A A A A A A A A A A A AR

Thi s exanpl es shows yet another server inplenentation, showi ng a
listing of its own source code. Note that this inplenmentation does
not include the fully qualified path nane in its "cdir" and "pdir"
entries, nor in the output from"MST". Also note that the facts
requested were nodified between the "M.ST" and "M.SD' comands,

t hough that exchange has not been shown here.

7.7.11. A Server with a D fference

0

PASV

S> 227 Entering Passive Mde (127,0,0, 1, 255, 46)

M.SD

150 | tink | tee a trisector tree

Type=fil e; Uni que=aaaaaf Uvqaaa; Per merf ; Si ze=15741; x
Type=cdi r; Uni que=aaaaacUYqgaaa; Per m=cpnel ; /

Type=fil e; Uni que=aaaaaj UYgaaa; Per nerf; Si ze=5760; x4
Type=di r; Uni que=aaabcaUYqaaa; Per mel f; sub

Type=fil e; Uni que=aaaaagUYqgaaa; Per merf ; Si ze=8043; x1
Type=di r; Uni que=aaab8aUyqaaa; Per m=cprel f; files
Type=fil e; Uni que=aaaaahUYqgaaa; Per merf ; Si ze=4983; x2
Type=fil e; Uni que=aaaaai UYgaaa; Per merf; Si ze=6854; x3
226 That's all folKks..

CWD sub

250 CWD command successf ul

PWD

257 "/sub" is current directory.
PASV

VAR AR AV AR A A A A A AR Y,

227 Entering Passive Mde (127,0,0, 1, 255, 44)

Het hron St andards Track [Page 47]

Py}
Y
O
w
o
a1
©

Ext ensions to FTP March 2007

M.SD

150 | tink | tee a trisector tree

Type=di r; Uni que=aaabceUYqaaa; Pernm=el f; dir
Type=fil e; Uni que=aaabcbUyqaaa; Per merf; Si ze=0; y1
Type=fil e; Uni que=aaabccUyqaaa; Permerf; Si ze=0; y2
Type=fil e; Uni que=aaabcdUYqgaaa; Per merf; Si ze=0; y3
Type=pdi r; Uni que=aaaaacUYqgaaa; Per m=cpnel ; /
Type=pdi r; Uni que=aaaaacUYqgaaa; Per m=cpnel ;
Type=cdi r; Uni que=aaabcaUyqaaa; Per mrel ; /sub

226 That’'s all folks..

PASV

227 Entering Passive Mde (127,0,0, 1, 255, 42)
M.SD dir

150 | tink | tee a trisector tree

Type=pdi r; Uni que=aaabcaUyqaaa; Per mrel ; /sub
Type=pdi r; Uni que=aaabcaUYyqgaaa; Per mrel ; .

Type=fil e; Uni que=aaab8cUYqgaaa; Per mer; Si ze=15039; mist.c
Type=di r ; Uni qgue=aaabcf Uvqaaa; Per m=el ; ect
Type=cdi r; Uni que=aaabceUYqgaaa; Per mrel ; dir
Type=cdi r; Uni que=aaabceUYqaaa; Per mrel ; /sub/dir
Type=di r; Uni que=aaabchUYyqaaa; Perm=el ; mni sc
Type=fil e; Uni que=aaab8bUYqgaaa; Per mer; Si ze=34589; ftpd.c
226 That’s all folks..

QWD dir/ ect

250 OAD conmmand successf ul

PWD

257 "/sub/dir/ect" is current directory.
PASV

227 Entering Passive Mde (127,0,0, 1, 255, 40)
M.SD

150 | tink | tee a trisector tree

Type=di r; Uni que=aaabcgUYqaaa; Pern=el ; ory

Type=pdi r; Uni que=aaabceUYqaaa; Per mrel ; /sub/dir

Type=pdi r; Uni que=aaabceUYqaaa; Per mrel ;

Type=cdi r; Uni que=aaabcf Uyqgaaa; Per mrel ; /sub/dir/ect

226 That's all folKks..

QWD /files

250 CWD conmand successf ul

PASV

227 Entering Passive Mde (127,0,0, 1, 255, 36)

M.SD

150 | tink | tee a trisector tree

Type=cdi r; Uni que=aaab8aUYqgaaa; Per m=cpnel ; /files
Type=pdi r; Uni que=aaaaacUYqaaa; Per m=cpnel ; /

Type=pdi r; Uni que=aaaaacUYqaaa; Per m=cpnel ; ..

Type=fil e; Uni que=aaab8cUYqaaa; Per merf ; Si ze=15039; nmist.c
Type=fil e; Uni que=aaab8bUYqgaaa; Per merf ; Si ze=34589; ftpd.c
226 That's all folKks..

VAR A A A A VA VA VA A A A A A AV AV AV AR A A A A A A A AR A AV A A A A A A A A Y,

Het hron St andards Track [Page 48]

RF

VAR A A AR AVAAVARYARY,

7.

C 3659 Ext ensions to FTP March 2007
RNFR mi st. c

350 File exists, ready for destination name

RNTO list.c

250 RNTO command successf ul

PASV

227 Entering Passive Mde (127,0,0, 1, 255, 34)

M.SD

150 | tink | tee a trisector tree

Type=fil e; Uni que=aaab8cUYqaaa; Per merf ; Si ze=15039; list.c
Type=pdi r; Uni que=aaaaacUYqgaaa; Per m=cpnel ; /

Type=pdi r; Uni que=aaaaacUYqgaaa; Per m=cpnel ; ..

Type=fil e; Uni que=aaab8bUYqgaaa; Per nmerf; Si ze=34589; ftpd.c
Type=cdi r; Uni que=aaab8aUYqgaaa; Per m=cpnel ; /files

226 That's all folks..

The server shown here returns its directory listings in seemnmingly
random order, and even seens to nodify the order of the directory as
its contents change -- perhaps the underlying directory structure is
based upon hashing of sone kind. Note that the "pdir" and "cdir"
entries are interspersed with other entries in the directory. Note
al so that this server does not show a "pdir" entry when listing the
contents of the root directory of the virtual filestore; however, it
does however include multiple "cdir” and "pdir" entries when it feels
inclined. The server also uses obnoxiously "cute" nessages.

8. FEAT Response for M.Sx

When respondi ng to the FEAT command, a server-FTP process that
supports M.ST, and M.SD, plus internationalization of pathnanmes, MJST
indicate that this support exists. It does this by including a M.ST
feature line. As well as indicating the basic support, the MST
feature line indicates which M.ST facts are available fromthe
server, and which of those will be returned if no subsequent "OPTS
M.ST" conmand i s sent.

nl st - f eat
factli st

SP "MLST" [SP factlist] CRLF
1*(factnane ["*"] ";")

The initial space shown in the mst-feat response is that required by
t he FEAT conmmand, two spaces are not permitted. |If no factlist is
given, then the server-FTP process is indicating that it supports
M.ST, but inplenents no facts. Only pathnanes can be returned. This
woul d be a mninmal MST inplenentation, and usel ess for nost

practical purposes. Were the factlist is present, the factnanes

i ncluded indicate the facts supported by the server. \ere the
optional asterisk appears after a factnanme, that fact will be
included in M.ST format responses, until an "OPTS MLST" is given to
alter the list of facts returned. After that, subsequent FEAT

Het hron St andards Track [Page 49]

RFC 3659 Ext ensions to FTP March 2007

7.

(O
S>
S>
S>
S>
S>
S>
S>
S>

S>
S>
S>
S>
S>
S>
S>
S>
S>
S>

commands will return the asterisk to show the facts selected by the
nost recent "OPTS M.ST".

Note that there is no distinct FEAT output for M.SD. The presence of
the MLST feature indicates that both MLST and MLSD are support ed.

. 1. Exanples

Feat
211- Features supported

REST STREAM

MDTM

S| ZE

TVFS

UTF8

M_.ST Type*; Si ze*; Modi f y*; Per mr; Uni que*; UNI X. node; UNI X. chgd; X. hi dden
211 End

Aside fromsone features irrelevant here, this server indicates that
it supports M.ST including several, but not all, standard facts, al
of which it will send by default. It also supports two OS dependent
facts, and one locally defined fact. The latter three nust be
requested expressly by the client for this server to supply them

Feat
211- Ext ensi ons support ed:

CLNT

MDTM

M.ST type*;size*; nodi fy*; UNl X. nrode*; UNI X. owner ; UNI X. gr oup; uni que;

PASV

REST STREAM

Sl ZE

TVFS

Conpl i ance Level: 19981201 (I ETF m st-05)
211 End.

Again, in addition to sone irrelevant features here, this server
indicates that it supports MST, four of the standard facts, one of
which ("unique") is not enabled by default, and several OS dependent
facts, one of which is provided by the server by default. This
server actually supported nore OS dependent facts. Ohers were

del eted for the purposes of this docunent to conply with docunent
formatting restrictions.

Het hron St andards Track [Page 50]

RFC 3659 Ext ensions to FTP March 2007

(>
S>
S>
S>
S>
S>
S>
S>

7.

FEAT
211- Feat ures supported

MDTM

M.ST Type*; Si ze*; Modi f y*; Per my Uni que*;
REST STREAM

S| ZE

TVFS
211 End

This server has wi sely chosen not to inplenent any OS dependent

facts. At the time of witing this docunent, no such facts have been
defined (using the nechanisns of section 10.1) so rational support
for themwould be difficult at best. All but one of the facts
supported by this server are enabled by default.

OPTS Paraneters for MST

For the MLSx comuands, the Client-FTP nay specify a list of facts it
wi shes to be returned in all subsequent M.Sx commands until another
OPTS MLST command is sent. The format is specified by:

m st-opts = "OPTS" SP "M.ST"
[SP 1*(factnane ";")]

By sending the "OPTS M.ST" conmand, the client requests the server to
include only the facts listed as argunents to the command in
subsequent out put from M.Sx conmands. Facts not included in the
"OPTS MLST" conmmand MJST NOT be returned by the server. Facts that
are included should be returned for each entry returned fromthe M.Sx
command where they neaningfully apply. Facts requested that are not
supported, or that are inappropriate to the file or directory being
listed should sinply be onmitted fromthe M.Sx output. This is not an
error. Note that where no factname argunents are present, the client
is requesting that only the file names be returned. |In this case,
and in any other case where no facts are included in the result, the
space that separates the fact nanes and their values fromthe file
nane is still required. That is, the first character of the output
line will be a space, (or two characters will be spaces when the |ine
is returned over the control connection) and the file name will start
i medi ately thereafter.

Cients should note that generating values for some facts can be
possi bl e, but very expensive, for sone servers. It is generally
acceptable to retrieve any of the facts that the server offers as its
default set before any "OPTS MLST" command has been given, however
clients should use particular caution before requesting any facts not
in that set. That is, while other facts may be available fromthe
server, clients should refrain fromrequesting such facts unl ess

Het hron St andards Track [Page 51]

RFC 3659 Ext ensions to FTP March 2007

7.

7.

(>4
S>
S>
S>
(>4
S>
(>4
S>
S>
S>
(>4
S>
(>4

there is a particular operational requirenent for that particul ar
i nformati on, which ought be nore significant than perhaps sinply
i mproving the information displayed to an end user

Note, there is no "OPTS MLSD' conmmand, the fact nanes set with the
"OPTS MLST" command apply to both MLST and M.SD comuands.

Servers are not required to accept "OPTS MLST" commands before
aut hentication of the user-Pl, but may choose to pernmit them

9.1. OPTS M.ST Response

The "response-nessage" from[6] to a successful OPTS MLST command has
the foll owi ng syntax.

m st-opt-resp = "M.ST OPTS' [SP 1*(factname ";")]

This defines the "response-nessage" as used in the "opts-good"
message in RFC 2389 [6].

The facts named in the response are those that the server will now
include in M.ST (and M_SD) response, after the processing of the
"OPTS MLST" conmmand. Any facts fromthe request not supported by the
server will be omitted fromthis response nessage. |If no facts will
be included, the list of facts will be enpty. Note that the list of
facts returned will be the sane as those nmarked by a trailing
asterisk ("*") in a subsequent FEAT conmand response. There is no
requi renent that the order of the facts returned be the sane as that
in which they were requested, or that in which they will be listed in
a FEAT command response, or that in which facts are returned in MST
responses. The fixed string "M.ST OPTS" in the response nay be
returned in any case, or nixture of cases.

9.2. Exanples

Feat
211- Features supported
M.ST Type*; Si ze; Modi f y*; Per m Uni que; UNI X. node; UNI X. chgd; X. hi dden
211 End
Opt S M st Type; UNI X. node; Per m
200 MLST OPTS Type; Pern1 UNI X. node;
Feat
211- Features supported
M.ST Type*; Si ze; Modi fy; Pernt; Uni que; UNI X. node*; UNI X. chgd; X. hi dden

211 End

opts Mst |ang;type;charset;create;
200 MLST OPTS Type;

Feat

Het hron St andards Track [Page 52]

RFC 3659 Ext ensions to FTP March 2007

S>
S>
S>
(>4
S>
(>4
S>
S>
S>
(>4
S>
(>4
S>
S>
S>

S>
S>
S>

S>
S>
S>
S>

S>
S>

211- Features supported
M.ST Type*; Si ze; Modi fy; Permy Uni que; UNI X. node; UNI X. chgd; X. hi dden
211 End
OPTS m st size; frogs;
200 MLST OPTS Si ze
Feat
211- Features supported
M.ST Type; Si ze*; Modi fy; Permy Uni que; UNI X. node; UNI X. chgd; X. hi dden
211 End
opts M.st uni que type;
501 Invalid MST options
Feat
211- Features supported
M.ST Type; Si ze*; Modi fy; Permy Uni que; UNI X. node; UNI X. chgd; X. hi dden
211 End

For the purposes of this exanple, features other than M.ST have been
del eted fromthe output to avoid clutter. The exanple shows the
initial default feature output for M.ST. The facts requested are

t hen changed by the client. The first change shows facts that are
avail able fromthe server being selected. Subsequent FEAT out put
shows the altered features as being returned. The client then
attenpts to select sonme standard features that the server does not
support. This is not an error, however the server sinply ignores the
requests for unsupported features, as the FEAT output that follows
shows. Then, the client attenpts to request a non-standard, and
unsupported, feature. The server ignores that, and selects only the
supported features requested. Lastly, the client sends a request
contai ning a syntax error (spaces cannot appear in the factlist.)
The server-FTP sends an error response and conpletely ignores the
request, leaving the fact set selected as it had been previously.

Note that in all cases, except the error response, the response lists
the facts that have been sel ected.

Feat
211- Features supported
M.ST Type*; Si ze*; Modi f y*; Per mr; Uni que*; UNI X. node; UNI X. chgd; X. hi dden
211 End
Opts MLST
200 MLST OPTS
Feat
211- Features supported
M.ST Type; Si ze; Modi fy; Perm Uni que; UNI X. node; UNI X. chgd; X. hi dden
211 End
M.st tnp
250- Listing tnp
/tnp

Het hron St andards Track [Page 53]

RFC 3659 Ext ensions to FTP March 2007

S>
(03
S>
(>4
S>
S>
S>
(03
S>
(>4
S>
S>
S>
(07
S>
(>4
S>
S>
S>
(07
S>
(>4
S>
S>
S>
(07
S>
(>4
S>
S>
S>

250 End
OPTS ml st uni que; si ze;
200 MLST OPTS Si ze; Uni que;

M.st tnp
250- Listing tnp

Uni que=keVOL+YZ5; /tnp
250 End
OPTS ml st uni que; type; nodi fy;
200 MLST OPTS Type; Modi fy; Uni que;
M.st tnp
250- Listing tnp

Type=di r; Modi f y=19990930152225; Uni que=keVOL+YZ5; /tnp
250 End
OPTS ml st fish; cakes;
200 MLST OPTS

M.st tnp
250- Listing tnp
/tnp
250 End
Opt S M st Modi fy; Uni que;

200 MLST OPTS Modi fy; Uni que;
M.st tnp
250- Listing tnp
Modi f y=19990930152225; Uni que=keVOL+YZ5; /tnp
250 End
opts Mst fish cakes;
501 Invalid MST options
M.st tnp
250- Listing tnp
Modi f y=19990930152225; Uni que=keVOL+YZ5; /tnp
250 End

Thi s exanpl e shows the effect of changing the facts requested upon
subsequent M.ST commands. Notice that a syntax error |eaves the set
of selected facts unchanged. Also notice exactly two spaces
precedi ng the pathnane when no facts were selected, either

del i berately, or because none of the facts requested were avail abl e.

| npact on Ot her FTP Commands

Along with the introduction of M.ST, traditional FTP commands nust be
extended to allow for the use of nore than US-ASCI| [1] or EBCDIC
character sets. In general, the support of M.ST requires support for
arbitrary character sets wherever file names and directory nanmes are
all owed. This applies equally to both argunents given to the

foll owi ng commands and to the replies fromthem as appropriate.

Het hron St andards Track [Page 54]

RFC 3659 Ext ensions to FTP March 2007

10.

APPE RVD

WD RNFR
DELE RNTO
VKD STAT
PWD STOR
RETR STQU

The argunents to all of these conmands shoul d be processed the sane
way that M.ST conmands and responses are processed with respect to
handl i ng enbedded spaces, CRs and NULs. See section 2.2.

Character Sets and Internationalization

FTP commands are protocol elenents, and are al ways expressed in

ASCII. FTP responses are conposed of the numeric code, which is a
protocol elenent, and a nessage, which is often expected to convey
information to the user. It is not expected that users normally

interact directly with the protocol elenents, rather the user-FTP
process constructs the commands, and interprets the results, in the
manner best suited for the particular user. Explanatory text in
responses generally has no particular neaning to the protocol. The
nuneric codes provide all necessary information. Server-Pls are free
to provide the text in any |anguage that can be adequately
represented in ASCII, or where an alternative | anguage and
representati on has been negotiated (see [7]) in that |anguage and
representation.

Pat hnames are expected to be encoded in UTF-8 allow ng essentially
any character to be represented in a pathnane. Meani ngful pathnanes
are defined by the server NVFS.

No restrictions at all are placed upon the contents of files
transferred using the FTP protocols. Unless the "nedia-type" fact is
provided in a M.Sx response nor is any advice given here that would
all ow determ ning the content type. That information is assuned to
be obtained via other means.

| ANA Consi derati ons
This specification nakes use of sone lists of values currently
mai ntai ned by the 1 ANA, and creates two new lists for the ANA to
mai ntain. |t does not add any values to any existing registries.

The existing | ANA registries used by this specification are nodified
usi ng mechani sns speci fied el sewhere.

Het hron St andards Track [Page 55]

RFC 3659 Ext ensions to FTP March 2007

10.

10.

1. The OS-Specific Fact Registry

A registry of OS specific fact names shall be maintained by the | ANA
The OS nanmes for the OS portion of the fact name nust be taken from
the 1ANA's |ist of registered OS nanmes. To add a fact name to this
CS specific registry of OS specific facts, an applicant nust send to
the 1ANA a request, in which is specified the OGS nane, the CS
specific fact name, a definition of the syntax of the fact val ue,

whi ch must conformto the syntax of a token as given in this
docunent, and a specification of the semantics to be associated with
the particular fact and its values. Upon receipt of such an
application, and if the conbination of OS nane and CS specific fact
nane has not been previously defined, the IANA will add the
specification to the registry.

Any exanples of OS specific facts found in this document are to be
treated as exanpl es of possible OS specific facts, and do not forma
part of the IANA's registry nerely because of being included in this
docunent .

2. The OS-Specific Filetype Registry

A registry of OS specific file types shall be maintained by the | ANA
The OS nanes for the OS portion of the fact nane nust be taken from
the 1ANA's |ist of registered OS nanes. To add a file type to this
CS specific registry of OS specific file types, an applicant nust
send to the | ANA a request, in which is specified the OCS nane, the OS
specific file type, a definition of the syntax of the fact val ue,

whi ch must conformto the syntax of a token as given in this
docunent, and a specification of the semantics to be associated with
the particular fact and its values. Upon receipt of such an
application, and if the conbination of OS name and CS specific file
type has not been previously defined, the |ANA will add the
specification to the registry.

Any exanples of OS specific file types found in this docunent are to
be treated as potential OS specific file types only, and do not form
a part of the |ANA's registry nerely because of being included in
this docunent.

Het hron St andards Track [Page 56]

RFC 3659 Ext ensions to FTP March 2007

11.

Security Considerations

This meno does not directly concern security. It is not believed
that any of the nechani sns docunmented here inpact in any particul ar
way upon the security of FTP.

| mpl enenting the SIZE conmmand, and perhaps sonme of the facts of the
M.Sx comuands, may i npose a consi derable | oad on the server, which
could lead to denial of service attacks. Servers have, however,

i npl emented this for many years, wi thout significant reported
difficulties.

The server-FTP shoul d take care not to reveal sensitive information
about files to unauthorised parties. In particular, some underlying
filesystens provide a file identifier that, if known, can allow many
of the filesystem protection mechani sms to be by-passed. That
identifier would not be a suitable choice to use as the basis of the
val ue of the unique fact.

The FEAT and OPTS conmands nay be issued before the FTP

aut hentication has occurred [6]. This allows unauthenticated clients
to determ ne which of the features defined here are supported, and to
negotiate the fact list for M.Sx output. No actual MSx conmands may
be i ssued however, and no problens with permitting the selection of
the format prior to authentication are foreseen

A general discussion of issues related to the security of FTP can be
found in [13].

Het hron St andards Track [Page 57]

RFC 3659 Ext ensions to FTP March 2007

12. Normative References

[1] Coded Character Set--7-bit American Standard Code for
I nformation | nterchange, ANSI X3.4-1986.

[2] VYergeau, F., "UTF-8, a transfornmation format of |SO 10646", RFC
3629, Novenber 2003.

[3] Postel, J. and J. Reynolds, "File Transfer Protocol (FTP)", STD
9, RFC 959, Cctober 1985.

[4] Bradner, S., "Key words for use in RFCs to |Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[5] Crocker, D. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 4234, Cctober 2005.

[6] Hethnmon, P. and R Elz, "Feature negotiation nechanismfor the
File Transfer Protocol", RFC 2389, August 1998.

[7] Curtin, B., "Internationalization of the File Transfer
Protocol ", RFC 2640, July 1999.

[8] Postel, J. and J. Reynolds, "Telnet protocol Specification", STD
8, RFC 854, May 1983.

[9] Braden, R . "Requirenents for Internet Hosts -- Application and
Support™, STD 3, RFC 1123, Cctober 1989.

[10] 1SOIEC 10646-1:1993 "Universal nultiple-octet coded character
set (UCS) -- Part 1: Architecture and basic multilingual plane",
International Standard -- Information Technol ogy, 1993.

[11] Internet Assigned Nunbers Authority. http://ww.iana.org
Emai | : iana@ ana. org.

[12] Phillips, A and M Davis, "Tags for ldentifying Languages", BCP
47, RFC 4646, Septenber 2006.

[13] Allman, M and S. Gsternann, "FTP Security Considerations" RFC
2577, May 1999.

Het hron St andards Track [Page 58]

RFC 3659 Ext ensions to FTP March 2007

Acknowl edgrent s
This docunent is a product of the FTPEXT working group of the |ETF.

The followi ng people are anong those who have contributed to this
docunent :

Alex Belits

D. J. Bernstein

Dave Cridl and

Martin J. Duerst

Bill Fenner (and the rest of the | ESG
Paul For d- Hut chi nson

M ke d eason

Mark Harris

St ephen Head

Al un Jones

Andr ew Mai n

Janes Matt hews

Luke Mewburn

Jan M kkel sen

Keith Moore

Buz Owen

Mar k Synons

St ephen Ti hor

and the entire FTPEXT working group of the |IETF.

Apol ogi es are offered to any inadvertently omitted.

The description of the nodifications to the REST command and t he MDTM
and SI ZE comands cones froma set of nodifications suggested for STD
9, RFC 959 by Rick Adans in 1989. A docunent containing just those

commands, edited by David Borman, has been nerged with this docunent.

M ke d eason, Al un Jones and Luke Mewburn provi ded access to FTP
servers used in sone of the exanples

Al of the exanples in this docunment are taken from actua
client/server exchanges, though sonme have been edited for brevity, or
to neet document formatting requirenents

RFC Edi tor Not e:

Several of the exanples in this document exceed the RFC standard |ine
I ength of 72 characters. Since this docunent is a standards-track
result of an IETF working group and is inportant to an | ETF sub-
community, the RFC Editor is publishing it with the margin
violations. This is not a precedent.

Het hron St andards Track [Page 59]

RFC 3659 Ext ensions to FTP March 2007

Aut hor’ s Addr ess
Paul Het hnon
Het hnon Sof t war e
10420 Jackson Caks Way, Suite 201
Knoxville, TN 37922

EMai | : phet hnon@et hnon. com

Het hron St andards Track [Page 60]

RFC 3659 Ext ensions to FTP March 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Het hron St andards Track [Page 61]

