
Network Working Group G. Huang
Request for Comments: 3706 S. Beaulieu
Category: Informational D. Rochefort
 Cisco Systems, Inc.
 February 2004

 A Traffic-Based Method of Detecting Dead Internet
 Key Exchange (IKE) Peers

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document describes the method detecting a dead Internet Key
 Exchange (IKE) peer that is presently in use by a number of vendors.
 The method, called Dead Peer Detection (DPD) uses IPSec traffic
 patterns to minimize the number of IKE messages that are needed to
 confirm liveness. DPD, like other keepalive mechanisms, is needed to
 determine when to perform IKE peer failover, and to reclaim lost
 resources.

Table of Contents

 1. Introduction . 2
 2. Document Roadmap . 3
 3. Rationale for Periodic Message Exchange for Proof of
 Liveliness . 3
 4. Keepalives vs. Heartbeats 3
 4.1. Keepalives . 3
 4.2. Heartbeats . 5
 5. DPD Protocol . 6
 5.1. DPD Vendor ID. 7
 5.2. Message Exchanges. 7
 5.3. NOTIFY(R-U-THERE/R-U-THERE-ACK) Message Format 8
 5.4. Impetus for DPD Exchange 9
 5.5. Implementation Suggestion. 9
 5.6. Comparisons. 10
 6. Resistance to Replay Attack and False Proof of Liveliness. . . 10
 6.1. Sequence Number in DPD Messages. 10

Huang, et al. Informational [Page 1]

RFC 3706 Detecting Dead IKE Peers February 2004

 6.2. Selection and Maintenance of Sequence Numbers. 11
 7. Security Considerations. 11
 8. IANA Considerations. 12
 9. References . 12
 9.1. Normative Reference. 12
 9.2. Informative References 12
 10. Editors’ Addresses . 12
 11. Full Copyright Statement 13

1. Introduction

 When two peers communicate with IKE [2] and IPSec [3], the situation
 may arise in which connectivity between the two goes down
 unexpectedly. This situation can arise because of routing problems,
 one host rebooting, etc., and in such cases, there is often no way
 for IKE and IPSec to identify the loss of peer connectivity. As
 such, the SAs can remain until their lifetimes naturally expire,
 resulting in a "black hole" situation where packets are tunneled to
 oblivion. It is often desirable to recognize black holes as soon as
 possible so that an entity can failover to a different peer quickly.
 Likewise, it is sometimes necessary to detect black holes to recover
 lost resources.

 This problem of detecting a dead IKE peer has been addressed by
 proposals that require sending periodic HELLO/ACK messages to prove
 liveliness. These schemes tend to be unidirectional (a HELLO only)
 or bidirectional (a HELLO/ACK pair). For the purpose of this
 document, the term "heartbeat" will refer to a unidirectional message
 to prove liveliness. Likewise, the term "keepalive" will refer to a
 bidirectional message.

 The problem with current heartbeat and keepalive proposals is their
 reliance upon their messages to be sent at regular intervals. In the
 implementation, this translates into managing some timer to service
 these message intervals. Similarly, because rapid detection of the
 dead peer is often desired, these messages must be sent with some
 frequency, again translating into considerable overhead for message
 processing. In implementations and installations where managing
 large numbers of simultaneous IKE sessions is of concern, these
 regular heartbeats/keepalives prove to be infeasible.

 To this end, a number of vendors have implemented their own approach
 to detect peer liveliness without needing to send messages at regular
 intervals. This informational document describes the current
 practice of those implementations. This scheme, called Dead Peer
 Detection (DPD), relies on IKE Notify messages to query the
 liveliness of an IKE peer.

Huang, et al. Informational [Page 2]

RFC 3706 Detecting Dead IKE Peers February 2004

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

2. Document Roadmap

 As mentioned above, there are already proposed solutions to the
 problem of detecting dead peers. Section 3 elaborates the rationale
 for using an IKE message exchange to query a peer’s liveliness.
 Section 4 examines a keepalives-based approach as well as a
 heartbeats-based approach. Section 5 presents the DPD proposal
 fully, highlighting differences between DPD and the schemes presented
 in Section 4 and emphasizing scalability issues. Section 6 examines
 security issues surrounding replayed messages and false liveliness.

3. Rationale for Periodic Message Exchange for Proof of Liveliness

 As the introduction mentioned, it is often necessary to detect that a
 peer is unreachable as soon as possible. IKE provides no way for
 this to occur -- aside from waiting until the rekey period, then
 attempting (and failing the rekey). This would result in a period of
 loss connectivity lasting the remainder of the lifetime of the
 security association (SA), and in most deployments, this is
 unacceptable. As such, a method is needed for checking up on a
 peer’s state at will. Different methods have arisen, usually using
 an IKE Notify to query the peer’s liveliness. These methods rely on
 either a bidirectional "keepalive" message exchange (a HELLO followed
 by an ACK), or a unidirectional "heartbeat" message exchange (a HELLO
 only). The next section considers both of these schemes.

4. Keepalives vs. Heartbeats

4.1. Keepalives:

 Consider a keepalives scheme in which peer A and peer B require
 regular acknowledgements of each other’s liveliness. The messages
 are exchanged by means of an authenticated notify payload. The two
 peers must agree upon the interval at which keepalives are sent,
 meaning that some negotiation is required during Phase 1. For any
 prompt failover to be possible, the keepalives must also be sent at
 rather frequent intervals -- around 10 seconds or so. In this
 hypothetical keepalives scenario, peers A and B agree to exchange
 keepalives every 10 seconds. Essentially, every 10 seconds, one peer
 must send a HELLO to the other. This HELLO serves as proof of
 liveliness for the sending entity. In turn, the other peer must
 acknowledge each keepalive HELLO. If the 10 seconds elapse, and one
 side has not received a HELLO, it will send the HELLO message itself,
 using the peer’s ACK as proof of liveliness. Receipt of either a

Huang, et al. Informational [Page 3]

RFC 3706 Detecting Dead IKE Peers February 2004

 HELLO or ACK causes an entity’s keepalive timer to reset. Failure to
 receive an ACK in a certain period of time signals an error. A
 clarification is presented below:

 Scenario 1:
 Peer A’s 10-second timer elapses first, and it sends a HELLO to B.
 B responds with an ACK.

 Peer A: Peer B:
 10 second timer fires; ------>
 wants to know that B is alive;
 sends HELLO.
 Receives HELLO; acknowledges
 A’s liveliness;
 <------ resets keepalive timer, sends
 ACK.
 Receives ACK as proof of
 B’s liveliness; resets timer.

 Scenario 2:
 Peer A’s 10-second timer elapses first, and it sends a HELLO to B.
 B fails to respond. A can retransmit, in case its initial HELLO is
 lost. This situation describes how peer A detects its peer is dead.

 Peer A: Peer B (dead):

 10 second timer fires; ------X
 wants to know that B is
 alive; sends HELLO.

 Retransmission timer ------X
 expires; initial message
 could have been lost in
 transit; A increments
 error counter and
 sends another HELLO.

 After some number of errors, A assumes B is dead; deletes SAs and
 possibly initiates failover.

 An advantage of this scheme is that the party interested in the other
 peer’s liveliness begins the message exchange. In Scenario 1, peer A
 is interested in peer B’s liveliness, and peer A consequently sends

Huang, et al. Informational [Page 4]

RFC 3706 Detecting Dead IKE Peers February 2004

 the HELLO. It is conceivable in such a scheme that peer B would
 never be interested in peer A’s liveliness. In such a case, the onus
 would always lie on peer A to initiate the exchange.

4.2. Heartbeats:

 By contrast, consider a proof-of-liveliness scheme involving
 unidirectional (unacknowledged) messages. An entity interested in
 its peer’s liveliness would rely on the peer itself to send periodic
 messages demonstrating liveliness. In such a scheme, the message
 exchange might look like this:

 Scenario 3: Peer A and Peer B are interested in each other’s
 liveliness. Each peer depends on the other to send periodic HELLOs.

 Peer A: Peer B:
 10 second timer fires; ------>
 sends HELLO. Timer also
 signals expectation of
 B’s HELLO.
 Receives HELLO as proof of A’s
 liveliness.

 <------ 10 second timer fires; sends
 HELLO.
 Receives HELLO as proof
 of B’s liveliness.

 Scenario 4:
 Peer A fails to receive HELLO from B and marks the peer dead. This
 is how an entity detects its peer is dead.

 Peer A: Peer B (dead):
 10 second timer fires; ------X
 sends HELLO. Timer also
 signals expectation of
 B’s HELLO.

 Some time passes and A assumes B is dead.

 The disadvantage of this scheme is the reliance upon the peer to
 demonstrate liveliness. To this end, peer B might never be
 interested in peer A’s liveliness. Nonetheless, if A is interested
 B’s liveliness, B must be aware of this, and maintain the necessary
 state information to send periodic HELLOs to A. The disadvantage of

Huang, et al. Informational [Page 5]

RFC 3706 Detecting Dead IKE Peers February 2004

 such a scheme becomes clear in the remote-access scenario. Consider
 a VPN aggregator that terminates a large number of sessions (on the
 order of 50,000 peers or so). Each peer requires fairly rapid
 failover, therefore requiring the aggregator to send HELLO packets
 every 10 seconds or so. Such a scheme simply lacks scalability, as
 the aggregator must send 50,000 messages every few seconds.

 In both of these schemes (keepalives and heartbeats), some
 negotiation of message interval must occur, so that each entity can
 know how often its peer expects a HELLO. This immediately adds a
 degree of complexity. Similarly, the need to send periodic messages
 (regardless of other IPSec/IKE activity), also increases
 computational overhead to the system.

5. DPD Protocol

 DPD addresses the shortcomings of IKE keepalives- and heartbeats-
 schemes by introducing a more reasonable logic governing message
 exchange. Essentially, keepalives and heartbeats mandate exchange of
 HELLOs at regular intervals. By contrast, with DPD, each peer’s DPD
 state is largely independent of the other’s. A peer is free to
 request proof of liveliness when it needs it -- not at mandated
 intervals. This asynchronous property of DPD exchanges allows fewer
 messages to be sent, and this is how DPD achieves greater
 scalability.

 As an elaboration, consider two DPD peers A and B. If there is
 ongoing valid IPSec traffic between the two, there is little need for
 proof of liveliness. The IPSec traffic itself serves as the proof of
 liveliness. If, on the other hand, a period of time lapses during
 which no packet exchange occurs, the liveliness of each peer is
 questionable. Knowledge of the peer’s liveliness, however, is only
 urgently necessary if there is traffic to be sent. For example, if
 peer A has some IPSec packets to send after the period of idleness,
 it will need to know if peer B is still alive. At this point, peer A
 can initiate the DPD exchange.

 To this end, each peer may have different requirements for detecting
 proof of liveliness. Peer A, for example, may require rapid
 failover, whereas peer B’s requirements for resource cleanup are less
 urgent. In DPD, each peer can define its own "worry metric" - an
 interval that defines the urgency of the DPD exchange. Continuing the
 example, peer A might define its DPD interval to be 10 seconds.
 Then, if peer A sends outbound IPSec traffic, but fails to receive
 any inbound traffic for 10 seconds, it can initiate a DPD exchange.

Huang, et al. Informational [Page 6]

RFC 3706 Detecting Dead IKE Peers February 2004

 Peer B, on the other hand, defines its less urgent DPD interval to be
 5 minutes. If the IPSec session is idle for 5 minutes, peer B can
 initiate a DPD exchange the next time it sends IPSec packets to A.

 It is important to note that the decision about when to initiate a
 DPD exchange is implementation specific. An implementation might
 even define the DPD messages to be at regular intervals following
 idle periods. See section 5.5 for more implementation suggestions.

5.1. DPD Vendor ID

 To demonstrate DPD capability, an entity must send the DPD vendor ID.
 Both peers of an IKE session MUST send the DPD vendor ID before DPD
 exchanges can begin. The format of the DPD Vendor ID is:

 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ! !M!M!
 ! HASHED_VENDOR_ID !J!N!
 ! !R!R!
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 where HASHED_VENDOR_ID = {0xAF, 0xCA, 0xD7, 0x13, 0x68, 0xA1, 0xF1,
 0xC9, 0x6B, 0x86, 0x96, 0xFC, 0x77, 0x57}, and MJR and MNR correspond
 to the current major and minor version of this protocol (1 and 0
 respectively). An IKE peer MUST send the Vendor ID if it wishes to
 take part in DPD exchanges.

5.2. Message Exchanges

 The DPD exchange is a bidirectional (HELLO/ACK) Notify message. The
 exchange is defined as:

 Sender Responder
 -------- -----------
 HDR*, NOTIFY(R-U-THERE), HASH ------>

 <------ HDR*, NOTIFY(R-U-THERE-
 ACK), HASH

Huang, et al. Informational [Page 7]

RFC 3706 Detecting Dead IKE Peers February 2004

 The R-U-THERE message corresponds to a "HELLO" and the R-U-THERE-ACK
 corresponds to an "ACK." Both messages are simply ISAKMP Notify
 payloads, and as such, this document defines these two new ISAKMP
 Notify message types:

 Notify Message Value
 R-U-THERE 36136
 R-U-THERE-ACK 36137

 An entity that has sent the DPD Vendor ID MUST respond to an R-U-
 THERE query. Furthermore, an entity MUST reject unencrypted R-U-
 THERE and R-U-THERE-ACK messages.

5.3. NOTIFY(R-U-THERE/R-U-THERE-ACK) Message Format

 When sent, the R-U-THERE message MUST take the following form:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload ! RESERVED ! Payload Length !
 +-+
 ! Domain of Interpretation (DOI) !
 +-+
 ! Protocol-ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ˜ Security Parameter Index (SPI) ˜
 ! !
 +-+
 ! Notification Data !
 +-+

 As this message is an ISAKMP NOTIFY, the Next Payload, RESERVED, and
 Payload Length fields should be set accordingly. The remaining
 fields are set as:

 - Domain of Interpretation (4 octets) - SHOULD be set to IPSEC-DOI.

 - Protocol ID (1 octet) - MUST be set to the protocol ID for ISAKMP.

 - SPI Size (1 octet) - SHOULD be set to sixteen (16), the length of
 two octet-sized ISAKMP cookies.

 - Notify Message Type (2 octets) - MUST be set to R-U-THERE

Huang, et al. Informational [Page 8]

RFC 3706 Detecting Dead IKE Peers February 2004

 - Security Parameter Index (16 octets) - SHOULD be set to the
 cookies of the Initiator and Responder of the IKE SA (in that
 order)

 - Notification Data (4 octets) - MUST be set to the sequence number
 corresponding to this message

 The format of the R-U-THERE-ACK message is the same, with the
 exception that the Notify Message Type MUST be set to R-U-THERE-ACK.
 Again, the Notification Data MUST be sent to the sequence number
 corresponding to the received R-U-THERE message.

5.4. Impetus for DPD Exchange

 Again, rather than relying on some negotiated time interval to force
 the exchange of messages, DPD does not mandate the exchange of R-U-
 THERE messages at any time. Instead, an IKE peer SHOULD send an R-
 U-THERE query to its peer only if it is interested in the liveliness
 of this peer. To this end, if traffic is regularly exchanged between
 two peers, either peer SHOULD use this traffic as proof of
 liveliness, and both peers SHOULD NOT initiate a DPD exchange.

 A peer MUST keep track of the state of a given DPD exchange. That
 is, once it has sent an R-U-THERE query, it expects an ACK in
 response within some implementation-defined period of time. An
 implementation SHOULD retransmit R-U-THERE queries when it fails to
 receive an ACK. After some number of retransmitted messages, an
 implementation SHOULD assume its peer to be unreachable and delete
 IPSec and IKE SAs to the peer.

5.5. Implementation Suggestion

 Since the liveliness of a peer is only questionable when no traffic
 is exchanged, a viable implementation might begin by monitoring
 idleness. Along these lines, a peer’s liveliness is only important
 when there is outbound traffic to be sent. To this end, an
 implementation can initiate a DPD exchange (i.e., send an R-U-THERE
 message) when there has been some period of idleness, followed by the
 desire to send outbound traffic. Likewise, an entity can initiate a
 DPD exchange if it has sent outbound IPSec traffic, but not received
 any inbound IPSec packets in response. A complete DPD exchange
 (i.e., transmission of R-U-THERE and receipt of corresponding R-U-
 THERE-ACK) will serve as proof of liveliness until the next idle
 period.

 Again, since DPD does not mandate any interval, this "idle period"
 (or "worry metric") is left as an implementation decision. It is not
 a negotiated value.

Huang, et al. Informational [Page 9]

RFC 3706 Detecting Dead IKE Peers February 2004

5.6. Comparisons

 The performance benefit that DPD offers over traditional keepalives-
 and heartbeats-schemes comes from the fact that regular messages do
 not need to be sent. Returning to the examples presented in section
 4.1, a keepalive implementation such as the one presented would
 require one timer to signal when to send a HELLO message and another
 timer to "timeout" the ACK from the peer (this could also be the
 retransmit timer). Similarly, a heartbeats scheme such as the one
 presented in section 4.2 would need to keep one timer to signal when
 to send a HELLO, as well as another timer to signal the expectation
 of a HELLO from the peer. By contrast a DPD scheme needs to keep a
 timestamp to keep track of the last received traffic from the peer
 (thus marking beginning of the "idle period"). Once a DPD R-U-THERE
 message has been sent, an implementation need only maintain a timer
 to signal retransmission. Thus, the need to maintain active timer
 state is reduced, resulting in a scalability improvement (assuming
 maintaining a timestamp is less costly than an active timer).
 Furthermore, since a DPD exchange only occurs if an entity has not
 received traffic recently from its peer, the number of IKE messages
 to be sent and processed is also reduced. As a consequence, the
 scalability of DPD is much better than keepalives and heartbeats.

 DPD maintains the HELLO/ACK model presented by keepalives, as it
 follows that an exchange is initiated only by an entity interested in
 the liveliness of its peer.

6. Resistance to Replay Attack and False Proof of Liveliness

6.1. Sequence Number in DPD Messages

 To guard against message replay attacks and false proof of
 liveliness, a 32-bit sequence number MUST be presented with each R-
 U-THERE message. A responder to an R-U-THERE message MUST send an
 R-U-THERE-ACK with the same sequence number. Upon receipt of the R-
 U-THERE-ACK message, the initial sender SHOULD check the validity of
 the sequence number. The initial sender SHOULD reject the R-U-
 THERE-ACK if the sequence number fails to match the one sent with the
 R-U-THERE message.

 Additionally, both the receiver of the R-U-THERE and the R-U-THERE-
 ACK message SHOULD check the validity of the Initiator and Responder
 cookies presented in the SPI field of the payload.

Huang, et al. Informational [Page 10]

RFC 3706 Detecting Dead IKE Peers February 2004

6.2. Selection and Maintenance of Sequence Numbers

 As both DPD peers can initiate a DPD exchange (i.e., both peers can
 send R-U-THERE messages), each peer MUST maintain its own sequence
 number for R-U-THERE messages. The first R-U-THERE message sent in a
 session MUST be a randomly chosen number. To prevent rolling past
 overflowing the 32-bit boundary, the high-bit of the sequence number
 initially SHOULD be set to zero. Subsequent R-U-THERE messages MUST
 increment the sequence number by one. Sequence numbers MAY reset at
 the expiry of the IKE SA, moving to a newly chosen random number.
 Each entity SHOULD also maintain its peer’s R-U-THERE sequence
 number, and an entity SHOULD reject the R-U-THERE message if it fails
 to match the expected sequence number.

 Implementations MAY maintain a window of acceptable sequence numbers,
 but this specification makes no assumptions about how this is done.
 Again, it is an implementation specific detail.

7. Security Considerations

 As the previous section highlighted, DPD uses sequence numbers to
 ensure liveliness. This section describes the advantages of using
 sequence numbers over random nonces to ensure liveliness.

 While sequence numbers do require entities to keep per-peer state,
 they also provide an added method of protection in certain replay
 attacks. Consider a case where peer A sends peer B a valid DPD R-U-
 THERE message. An attacker C can intercept this message and flood B
 with multiple copies of the messages. B will have to decrypt and
 process each packet (regardless of whether sequence numbers or nonces
 are in use). With sequence numbers B can detect that the packets are
 replayed: the sequence numbers in these replayed packets will not
 match the incremented sequence number that B expects to receive from
 A. This prevents B from needing to build, encrypt, and send ACKs.
 By contrast, if the DPD protocol used nonces, it would provide no way
 for B to detect that the messages are replayed (unless B maintained a
 list of recently received nonces).

 Another benefit of sequence numbers is that it adds an extra
 assurance of the peer’s liveliness. As long as a receiver verifies
 the validity of a DPD R-U-THERE message (by verifying its incremented
 sequence number), then the receiver can be assured of the peer’s
 liveliness by the very fact that the sender initiated the query.
 Nonces, by contrast, cannot provide this assurance.

Huang, et al. Informational [Page 11]

RFC 3706 Detecting Dead IKE Peers February 2004

8. IANA Considerations

 There is no IANA action required for this document. DPD uses notify
 numbers from the private range.

9. References

9.1. Normative Reference

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [2] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
 RFC 2409, November 1998.

 [3] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

10. Editors’ Addresses

 Geoffrey Huang
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134

 Phone: (408) 525-5354
 EMail: ghuang@cisco.com

 Stephane Beaulieu
 Cisco Systems, Inc.
 2000 Innovation Drive
 Kanata, ON
 Canada, K2K 3E8

 Phone: (613) 254-3678
 EMail: stephane@cisco.com

 Dany Rochefort
 Cisco Systems, Inc.
 124 Grove Street, Suite 205
 Franklin, MA 02038

 Phone: (508) 553-8644
 EMail: danyr@cisco.com

Huang, et al. Informational [Page 12]

RFC 3706 Detecting Dead IKE Peers February 2004

11. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it
 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to
 rights in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Huang, et al. Informational [Page 13]

