
Network Working Group S. Hollenbeck
Request for Comments: 3749 VeriSign, Inc.
Category: Standards Track May 2004

 Transport Layer Security Protocol Compression Methods

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 The Transport Layer Security (TLS) protocol (RFC 2246) includes
 features to negotiate selection of a lossless data compression method
 as part of the TLS Handshake Protocol and to then apply the algorithm
 associated with the selected method as part of the TLS Record
 Protocol. TLS defines one standard compression method which
 specifies that data exchanged via the record protocol will not be
 compressed. This document describes an additional compression method
 associated with a lossless data compression algorithm for use with
 TLS, and it describes a method for the specification of additional
 TLS compression methods.

Table of Contents

 1. Introduction . 2
 2. Compression Methods . 2
 2.1. DEFLATE Compression. 3
 3. Compression History and Packet Processing 4
 4. Internationalization Considerations 4
 5. IANA Considerations . 4
 6. Security Considerations 5
 7. Acknowledgements . 6
 8. References . 6
 8.1. Normative References 6
 8.2. Informative References 6
 Author’s Address . 7
 Full Copyright Statement 8

Hollenbeck Standards Track [Page 1]

RFC 3749 TLS Compression Methods May 2004

1. Introduction

 The Transport Layer Security (TLS) protocol (RFC 2246, [2]) includes
 features to negotiate selection of a lossless data compression method
 as part of the TLS Handshake Protocol and to then apply the algorithm
 associated with the selected method as part of the TLS Record
 Protocol. TLS defines one standard compression method,
 CompressionMethod.null, which specifies that data exchanged via the
 record protocol will not be compressed. While this single
 compression method helps ensure that TLS implementations are
 interoperable, the lack of additional standard compression methods
 has limited the ability of implementers to develop interoperable
 implementations that include data compression.

 TLS is used extensively to secure client-server connections on the
 World Wide Web. While these connections can often be characterized
 as short-lived and exchanging relatively small amounts of data, TLS
 is also being used in environments where connections can be long-
 lived and the amount of data exchanged can extend into thousands or
 millions of octets. XML [4], for example, is increasingly being used
 as a data representation method on the Internet, and XML tends to be
 verbose. Compression within TLS is one way to help reduce the
 bandwidth and latency requirements associated with exchanging large
 amounts of data while preserving the security services provided by
 TLS.

 This document describes an additional compression method associated
 with a lossless data compression algorithm for use with TLS.
 Standardization of the compressed data formats and compression
 algorithms associated with this compression method is beyond the
 scope of this document.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

2. Compression Methods

 TLS [2] includes the following compression method structure in
 sections 6.1 and 7.4.1.2 and Appendix sections A.4.1 and A.6:

 enum { null(0), (255) } CompressionMethod;

Hollenbeck Standards Track [Page 2]

RFC 3749 TLS Compression Methods May 2004

 which allows for later specification of up to 256 different
 compression methods. This definition is updated to segregate the
 range of allowable values into three zones:

 1. Values from 0 (zero) through 63 decimal (0x3F) inclusive are
 reserved for IETF Standards Track protocols.

 2. Values from 64 decimal (0x40) through 223 decimal (0xDF) inclusive
 are reserved for assignment for non-Standards Track methods.

 3. Values from 224 decimal (0xE0) through 255 decimal (0xFF)
 inclusive are reserved for private use.

 Additional information describing the role of the IANA in the
 allocation of compression method identifiers is described in Section
 5.

 In addition, this definition is updated to include assignment of an
 identifier for the DEFLATE compression method:

 enum { null(0), DEFLATE(1), (255) } CompressionMethod;

 As described in section 6 of RFC 2246 [2], TLS is a stateful
 protocol. Compression methods used with TLS can be either stateful
 (the compressor maintains its state through all compressed records)
 or stateless (the compressor compresses each record independently),
 but there seems to be little known benefit in using a stateless
 compression method within TLS.

 The DEFLATE compression method described in this document is
 stateful. It is RECOMMENDED that other compression methods that
 might be standardized in the future be stateful as well.

 Compression algorithms can occasionally expand, rather than compress,
 input data. A compression method that exceeds the expansion limits
 described in section 6.2.2 of RFC 2246 [2] MUST NOT be used with TLS.

2.1. DEFLATE Compression

 The DEFLATE compression method and encoding format is described in
 RFC 1951 [5]. Examples of DEFLATE use in IETF protocols can be found
 in RFC 1979 [6], RFC 2394 [7], and RFC 3274 [8].

 DEFLATE allows the sending compressor to select from among several
 options to provide varying compression ratios, processing speeds, and
 memory requirements. The receiving decompressor MUST automatically
 adjust to the parameters selected by the sender. All data that was
 submitted for compression MUST be included in the compressed output,

Hollenbeck Standards Track [Page 3]

RFC 3749 TLS Compression Methods May 2004

 with no data retained to be included in a later output payload.
 Flushing ensures that each compressed packet payload can be
 decompressed completely.

3. Compression History and Packet Processing

 Some compression methods have the ability to maintain state/history
 information when compressing and decompressing packet payloads. The
 compression history allows a higher compression ratio to be achieved
 on a stream as compared to per-packet compression, but maintaining a
 history across packets implies that a packet might contain data
 needed to completely decompress data contained in a different packet.
 History maintenance thus requires both a reliable link and sequenced
 packet delivery. Since TLS and lower-layer protocols provide
 reliable, sequenced packet delivery, compression history information
 MAY be maintained and exploited if supported by the compression
 method.

 As described in section 7 of RFC 2246 [2], TLS allows multiple
 connections to be instantiated using the same session through the
 resumption feature of the TLS Handshake Protocol. Session resumption
 has operational implications when multiple compression methods are
 available for use within the session. For example, load balancers
 will need to maintain additional state information if the compression
 state is not cleared when a session is resumed. As a result, the
 following restrictions MUST be observed when resuming a session:

 1. The compression algorithm MUST be retained when resuming a
 session.

 2. The compression state/history MUST be cleared when resuming a
 session.

4. Internationalization Considerations

 The compression method identifiers specified in this document are
 machine-readable numbers. As such, issues of human
 internationalization and localization are not introduced.

5. IANA Considerations

 Section 2 of this document describes a registry of compression method
 identifiers to be maintained by the IANA, including assignment of an
 identifier for the DEFLATE compression method. Identifier values
 from the range 0-63 (decimal) inclusive are assigned via RFC 2434
 Standards Action [3]. Values from the range 64-223 (decimal)

Hollenbeck Standards Track [Page 4]

RFC 3749 TLS Compression Methods May 2004

 inclusive are assigned via RFC 2434 Specification Required [3].
 Identifier values from 224-255 (decimal) inclusive are reserved for
 RFC 2434 Private Use [3].

6. Security Considerations

 This document does not introduce any topics that alter the threat
 model addressed by TLS. The security considerations described
 throughout RFC 2246 [2] apply here as well.

 However, combining compression with encryption can sometimes reveal
 information that would not have been revealed without compression:
 data that is the same length before compression might be a different
 length after compression, so adversaries that observe the length of
 the compressed data might be able to derive information about the
 corresponding uncompressed data. Some symmetric encryption
 ciphersuites do not hide the length of symmetrically encrypted data
 at all. Others hide it to some extent, but still do not hide it
 fully. For example, ciphersuites that use stream cipher encryption
 without padding do not hide length at all; ciphersuites that use
 Cipher Block Chaining (CBC) encryption with padding provide some
 length hiding, depending on how the amount of padding is chosen. Use
 of TLS compression SHOULD take into account that the length of
 compressed data may leak more information than the length of the
 original uncompressed data.

 Compression algorithms tend to be mathematically complex and prone to
 implementation errors. An implementation error that can produce a
 buffer overrun introduces a potential security risk for programming
 languages and operating systems that do not provide buffer overrun
 protections. Careful consideration should thus be given to
 protections against implementation errors that introduce security
 risks.

 As described in Section 2, compression algorithms can occasionally
 expand, rather than compress, input data. This feature introduces
 the ability to construct rogue data that expands to some enormous
 size when compressed or decompressed. RFC 2246 describes several
 methods to ameliorate this kind of attack. First, compression has to
 be lossless. Second, a limit (1,024 bytes) is placed on the amount
 of allowable compression content length increase. Finally, a limit
 (2^14 bytes) is placed on the total content length. See section
 6.2.2 of RFC 2246 [2] for complete details.

Hollenbeck Standards Track [Page 5]

RFC 3749 TLS Compression Methods May 2004

7. Acknowledgements

 The concepts described in this document were originally discussed on
 the IETF TLS working group mailing list in December, 2000. The
 author acknowledges the contributions to that discussion provided by
 Jeffrey Altman, Eric Rescorla, and Marc Van Heyningen. Later
 suggestions that have been incorporated into this document were
 provided by Tim Dierks, Pasi Eronen, Peter Gutmann, Elgin Lee, Nikos
 Mavroyanopoulos, Alexey Melnikov, Bodo Moeller, Win Treese, and the
 IESG.

8. References

8.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [3] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

8.2. Informative References

 [4] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C REC-xml,
 October 2000, <http://www.w3.org/TR/REC-xml>.

 [5] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [6] Woods, J., "PPP Deflate Protocol", RFC 1979, August 1996.

 [7] Pereira, R., "IP Payload Compression Using DEFLATE", RFC 2394,
 December 1998.

 [8] Gutmann, P., "Compressed Data Content Type for Cryptographic
 Message Syntax (CMS)", RFC 3274, June 2002.

Hollenbeck Standards Track [Page 6]

RFC 3749 TLS Compression Methods May 2004

Author’s Address

 Scott Hollenbeck
 VeriSign, Inc.
 21345 Ridgetop Circle
 Dulles, VA 20166-6503
 US

 EMail: shollenbeck@verisign.com

Hollenbeck Standards Track [Page 7]

RFC 3749 TLS Compression Methods May 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hollenbeck Standards Track [Page 8]

