Net wor k Wor ki ng Group F. Strauss

Request for Comments: 3781 TU Braunschwei g
Cat egory: Experi nental J. Schoenwael der
I nternational University Brenen

May 2004

Next Generation Structure of Managenment |nformation (SM ng)
Mappi ngs to the Sinple Network Managenment Protocol (SNWP)

Status of this Meno

Thi s neno defines an Experinmental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenent are requested.
Distribution of this menmo is unlinited.

Copyright Notice
Copyright (C) The Internet Society (2004). Al Rights Reserved.
Abstr act

SMng (Structure of Managenent |nformation, Next Generation)
(RFC3780), is a protocol -i ndependent data definition |anguage for
managenent information. This meno defines an SM ng | anguage
extension that specifies the mapping of SMng definitions of
identities, classes, and their attributes and events to dedicated
definitions of nodes, scalar objects, tables and col umar objects,
and notifications, for application to the SNVMP nmanagenent franeworKk.

Tabl e of Contents

1. Introduction . G e e 3
2. SNWP Based I nternet Managenent 3
2.1, Ki nds of Nodes. . e e 4

2. 2. Scal ar and Col umar Obj ect | nstances. 5

2. 3. bject ldentifier Hi erarchy . 7

3. SMng Data Type Mappings . . 8
3. 1. ASN. 1 Definitions . 9

4. The snnp Extension Statenent 10
4.1, The oid Statenrent10

4. 2. The node Statenrent.10
4.2.1. The node’s oid Statenent . 10

4.2.2. The node’s represents Statenent. 10

4.2.3. The node’s status Statenent. 11

4.2.4. The node's description Statenent 11

4.2.5. The node’s reference Statenent 11

Strauss & Schoenwael der Experi ment al [Page 1]

RFC 3781

©No O

Strauss & Schoenwael der

>

NNNNNNNNOIOOOO OO0 AEAMALALDDOWWWWWWON

>
DNOURONEGONPWNPQOUARNNEIONOUAONETOORMWNE

> >

e aE ettt o B Rl otk e e =

SM ng Mappi ngs to SNWP

. 6. Usage Exanples .
scal ars St at enent .
The scalars’ oid St
The scal ars’ obj ect
The scal ars’
The scal ars’
The scal ars’
Usage Exanpl e.
abl e Statenent

descri

Tabl e | ndexi ng St at
The table’'s create
The tabl e’ s object

The table’'s status

The table’s
The table’'s
Usage Exanpl e

ot ification Statenment
The notification's

The notification's

The notification's

The notification’s

The notification’s

Usage Exanpl e.

roup St at enment

The group’s status

Usage Exanpl e

orrpl i ance Statenent.
The conpliance’s oi
The conpliance’s st
The conpl i ance’
The conpli ance’
The conpl i ance’
The conpli ance’
The conpli ance’
Usage Exarrpl e

nnununonon

NVRG SM NG SNI\/P— EXT
NVRG SM NG- SNIVP
Security Considerati ons
Acknow edgenents .

Experi ment

at errent
St at enent

status St at enment

ption Statenent

reference Statenent

The table’'s oid St at errent

ement s.

St at enent
St at enent
St at enent

description Statenent
ref erence Statenent

oid Statenent

signal s Statenent
status Statenent
description Statenent
ref erence Statenent

The group’s oid St at errent
The group’s nmenbers Statenent

St at enent

The group’ s description Statenent
The group’s reference Statenent

d St at errent
at us St at enment

description Statenent
reference Statenent
mandat ory St at enent
optional
refine Statenent

St at enent .

al

May 2004

11
11
12
12
13
14
14
14
14
15
15
17
17
19
19
19
19
20
20
20
20
21
21
21
21
22
22
22
22
22
22
23
23
23
23
23
24
24
24
26
26
33
46
46

[Page 2]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

9. Referenceso ay
9.1. Nor mati ve References. 47
9. 2. Informati ve References. 47
Authors’ Addresses . 48
Ful | Copyright Staterment . 49

1. Introduction

SMng (Structure of Managenent |nformation, Next Generation)

[RFC3780] is a protocol -i ndependent data definition | anguage for
managenent information. This nmeno defines an SM ng | anguage
extension that specifies the mapping of SM ng definitions of
identities, classes, and their attributes and events to dedicated
definitions of nodes, scalar objects, tables and col umar objects,
and notifications for application in the SNVP managenent frameworKk.
Section 2 introduces basics of the SNVWP managenent franework
Section 3 defines how SMng data types are napped to the data types
supported by the SNVWP protocol. It introduces sonme new ASN. 1 [ASN1]
definitions which are used to represent new SM ng base types such as
floats in the SNWP protocol

Section 4 describes the semantics of the SNVMP nmappi ng extensions for
SMng. The formal SM ng specification of the extension is provided
in Section 5.

Section 6 contains an SM ng nodul e which defines derived types (such
as RowStatus) that are specific to the SNWP mappi ng.

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

2. SNWP- Based I nternet Managenent

The SNWVP networ k managenent franmework [RFC3410] is based on the
concept of "nanaged objects". Managed objects represent real or
synt hesi zed vari abl es of systens that are to be nanaged. Note that
in spite of these ternms this nodel is not object-oriented. For

nam ng purposes, the managed objects are organi zed hierarchically in
an "object identifier tree", where only | eaf nodes nay represent

obj ect s.

Nodes in the object identifier tree may al so identify conceptua

tabl es, rows of conceptual tables, notifications, groups of objects
and/ or notifications, conpliance statenents, nodul es or other

i nformati on. Each node is identified by an uni que "object
identifier" value which is a sequence of non-negative nunbers, naned
"sub-identifiers", where the left-npst sub-identifier refers to the

Strauss & Schoenwael der Experi ment al [Page 3]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

node next to the root of the tree and the right-nost sub-identifier
refers to the node that is identified by the conplete object
identifier value. Each sub-identifier has a val ue between 0 and
2732-1 (4294967295).

The SM ng extensions described in this docunent are used to map SM ng
data definitions to SNMP conpliant nanaged objects. This mapping is

designed to be readable to conputer prograns, naned M B conpilers, as
well as to hunman readers.

2. 1. Ki nds of Nodes

Each node in the object identifier tree is of a certain kind and may
represent nanagenent information or not:

o Sinple nodes, that do not represent managenent information, but
may be used for grouping nodes in a subtree. Those nodes are
defined by the ‘node’ statenent. This statenment can al so be used
to map an SMng ‘identity’ to a node.

0 Nodes representing the identity of a nodule to allow references to
a nmodul e in other objects of type ‘Objectldentifier’. Those nodes
are defined by the ‘snnp’ statenent,

o Scal ar objects, which have exactly one object instance and no
child nodes. See Section 2.2 for scalar objects’ instances. A
set of scalar objects is napped fromone or nore SMng cl asses
using the ‘scalars’ statenent. The statenent block of the
‘scal ars’ statenent contains one ‘inplenents’ statement for each
class. The associated statenent blocks in turn contain ‘object’
statenents that specify the mapping of attributes to scal ar
obj ects. Scal ar objects MJST not have any child node.

0o Tables, which represent the root node of a collection of
information structured in table rows. Table nodes are defined by
the ‘table’ statement. A table object identifier SHOULD not have
any other child node than the inplicitly defined row node (see
bel ow) .

0 Rows, which belong to a table (that is, row s object identifier
consists of the table’s full object identifier plus a single * 1’
sub-identifier) and represent a sequence of one or nore col umar
objects. Arownode is inplicitly defined for each table node.

Strauss & Schoenwael der Experi ment al [Page 4]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

2.

2.

0 Columar objects, which belong to a row (that is, the col umar
obj ects’ object identifier consists of the row s full object
identifier plus a single colum-identifying sub-identifier) and
have zero or nore object instances and no child nodes. They are
defined as follows: The classes that are inplenented by a ‘table’
statenent are identified by ‘inplenents’ statenents. The
statenment bl ock of each ‘inplenents’ statenent contains ‘object’
statenments that specify the nmapping of attributes to col umar
objects of this table. Columar objects MJIST not have any child
node.

0 Notifications, which represent infornmation that is sent by agents
within unsolicited transmissions. The ‘notification’ statement is
used to map an SMng event to a notification. A notification's
obj ect identifier SHOULD not have any child node.

0 Goups of objects and notifications, which my be used for
conpliance statenments. They are defined using the ‘group
st at ement .

0o Conpliance statenents which define requirements for MB nodul e
i npl enmentations. They are defined using the ‘conpliance
st at enent .

Scal ar and Col ummar Obj ect |nstances

I nstances of nmanaged objects are identified by appending an
instance-identifier to the object’s object identifier. Scalar
obj ects and col umar objects use different ways to construct the
i nstance-identifier.

Scal ar obj ects have exactly one object instance. It is identified by
appending a single ‘0" sub-identifier to the object identifier of the
scal ar obj ect.

Wthin tables, different instances of the sanme col umar object are
identified by appending a sequence of one or nore sub-identifiers to
the object identifier of the columar object which consists of the
val ues of object instances that unanbi guously distinguish a table
row. These indexing objects can be col umar objects of the sane
and/ or another table, but MUST NOT be scal ar objects. Miltiple
applications of the sane object in a single table indexing
specification are strongly discouraged.

Strauss & Schoenwael der Experi ment al [Page 5]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

The base types of the indexing objects indicate how to formthe
i nstance-identifier:

0 integer-valued or enuneration-valued: a single sub-identifier
taking the integer value (this works only for non-negative
integers and integers of a size of up to 32 bits),

0 string-valued, fixed-length strings (or variable-length with
conmpact encoding): ‘n’ sub-identifiers, where ‘n’ is the Iength of
the string (each octet of the string is encoded in a separate
sub-identifier),

0 string-valued, variable-length strings or bits-valued: ‘n+l1" sub-
identifiers, where ‘n” is the length of the string or bits
encoding (the first sub-identifier is ‘n itself, follow ng this,
each octet of the string or bits is encoded in a separate sub-
identifier),

0 object identifier-valued (with conpact encoding): ‘n’ sub-
identifiers, where ‘n’” is the nunber of sub-identifiers in the
val ue (each sub-identifier of the value is copied into a separate
sub-identifier),

0 object identifier-valued: ‘n+1’ sub-identifiers, where ‘n" is the
nunber of sub-identifiers in the value (the first sub-identifier
is‘n itself, following this, each sub-identifier in the value is
copi ed),

Not e that conpact encoding can only be applied to an object having a
vari abl e-1 ength syntax (e.g., variable-length strings, bits objects
or object identifier-valued objects). Further, conpact encoding can
only be associated with the last object in a list of indexing
objects. Finally, conpact encodi ng MJST NOT be used on a vari abl e-
length string object if that string m ght have a val ue of zero-

| engt h.

I nstances identified by use of integer-valued or enuneration-val ued
obj ects are RECOMMENDED to be nunbered starting fromone (i.e., not
fromzero). |Integer objects that allow negative val ues, Unsigned64
objects, Integer64 objects and floating point objects MIUST NOT be
used for tabl e indexing.

bj ects which are both specified for indexing in a row and al so

col umar objects of the sane row are termed auxiliary objects.

Auxi liary objects SHOULD be non-accessible, except in the follow ng
ci rcunst ances:

0o within a nodule originally witten to conformto SMvl, or

Strauss & Schoenwael der Experi ment al [Page 6]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

0 a row nust contain at |east one columar object which is not an
auxiliary object. 1In the event that all of a row s col umar
objects are also specified to be indexing objects then one of them
MUST be accessi bl e.

2.3. (Object ldentifier Hierarchy

The layers of the object identifier tree near the root are well
defined and organi zed by standardi zati on bodies. The first |eve
next to the root has three nodes:

0: ccitt
1: iso
2: joint-iso-ccitt

Note that the renaming of the Conmmite Consultatif International de
Tel egraphi que et Tel ephoni que (CCITT) to Internationa

Tel econmuni cati ons Union (I TU) had no consequence on the names used
in the object identifier tree.

The root of the subtree adm nistered by the Internet Assigned Numbers
Authority (1 ANA) for the Internet is ‘1.3.6.1 which is assigned with
the identifier ‘internet’. That is, the Internet subtree of object
identifiers starts with the prefix “1.3.6.1.°

Several branches underneath this subtree are used for network
nmanagenent :

The ‘nmgnmt’ (internet.2) subtree is used to identify "standard"
definitions. An information nodul e produced by an | ETF worki ng group
beconmes a "standard" informati on nodul e when the docunent is first
approved by the I ESG and enters the Internet standards track

The ‘experinental’ (internet.3) subtree is used to identify
experinental definitions being designed by working groups of the | ETF
or IRTF. If an information nodul e produced by a working group
beconmes a "standard" nodule, then at the very beginning of its entry
onto the Internet standards track, the definitions are noved under
the nmgnt subtree

The ‘private’ (internet.4) subtree is used to identify definitions
defined unilaterally. The ‘enterprises’ (private.l) subtree beneath
private is used, anong other things, to permt providers of
net wor ki ng subsystens to register information nodules of their
products.

Strauss & Schoenwael der Experi ment al [Page 7]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

These and sone other nodes are defined in the SMng nodul e NVRG
SM NG SNMP- EXT (Section 5).

3. SMng Data Type Mappi ngs

SM ng [RFC3780] supports the follow ng set of base types:
Cctet String, Pointer, Integer32, Integer64, Unsigned32, Unsigned64,
Fl oat 32, Fl oat 64, Float128, Enuneration, Bits, and Cbjectldentifier.

The SM ng core nodul e NVMRG SM NG ([RFC3780], Appendi x A) defines
addi tional derived types, anong them Counter32 (derived from

Unsi gned32), Counter64 (derived from Unsi gned64), TineTicks32 and
Ti meTi cks64 (derived from Unsi gned32 and Unsi gned64), | pAddress
(derived fromCctetString), and Opaque (derived fromCctetString).

The version 2 of the protocol operations for SNVWP document [RFC3416]
defines the following 9 data types which are distinguished by the
protocol : I NTEGER, OCTET STRI NG OBJECT | DENTI FI ER, | pAddress
Count er 32, Ti neTicks, Opaque, Counter64, and Unsi gned32.

The SM ng base types and their derived types are mapped to SNWP data
types according to the follow ng table:

SM ng Data Type SNVP Data Type Conment
CctetString OCTET STRI NG (1)

Poi nt er OBJECT | DENTI FI ER

| nt eger 32 | NTEGER

I nt eger 64 Opaque (I nteger64) (2)
Unsi gned32 Unsi gned32 (3)
Unsi gned64 Opaque (Unsi gned64) (2) (4)
Fl oat 32 Opaque (Fl oat 32) (2)

Fl oat 64 Opaque (Fl oat 64) (2)

Fl oat 128 Opaque (Fl oat 128) (2)
Enuner ati on | NTEGER

Bits OCTET STRI NG

bj ectldentifier OBJECT | DENTI FI ER

Count er 32 Count er 32

Count er 64 Count er 64

Ti meTi cks32 Ti meTi cks

Ti neTi cks64 Opaque (Unsi gned64) (2)

| pAddr ess | pAddr ess

Opaque Opaque

(1) This mapping includes all types derived fromthe OctetString
type except those types derived fromthe | pAddress and Opaque
SM ng types defined in the nodul e NVRG SM NG

Strauss & Schoenwael der Experi ment al [Page 8]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

(2) This type is encoded according to the ASN. 1 type with the sane
nane defined in Section 3.1. The resulting BER encoded val ue
is then wapped in an Opaque val ue.

(3) This mapping includes all types derived fromthe Unsigned32
type except those types derived fromthe Counter32 and
Ti meTi cks32 SM ng types defined in the nodul e NVRG SM NG

(4) This mapping includes all types derived fromthe Unsigned64
type except those types derived fromthe Counter64 SMng type
defined in the nodul e NVRG SM NG

3.1. ASN. 1 Definitions

The ASN. 1 [ASNL1] type definitions below introduce data types which
are used to map the new SM ng base types into the set of ASN. 1 types
supported by the second version of SNWP protocol operations

[RFC3416] .

NVRG- SM NG- SNIVP- MAPPI NG DEFI NI TIONS :: = BEG N

Integer64 ::=
[APPLI CATI ON 10]
| MPLI CI' T | NTEGER (-9223372036854775808. . 9223372036854775807)

Unsi gned64
[APPLI CATI ON 11]
| MPLI CI T | NTEGER (0..18446744073709551615)

Fl oat 32
[APPLI CATI ON 12]
| MPLI CI T OCTET STRING (S| ZE (4))

Fl oat 64
[APPLI CATI ON 13]
| MPLI CI T OCTET STRING (SIZE (8))

FIl oat 128
[APPLI CATI ON 14]
| MPLI CI T OCTET STRING (SI ZE (16))
END
The definitions of |Integer64 and Unsi gned64 are consistent with the

sanme definitions in the SPPI [RFC3159]. The floating point types
Fl oat 32, Fl oat64 and Fl oat 128 support single, double and quadruple

Strauss & Schoenwael der Experi ment al [Page 9]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

| EEE fl oating point values. The encoding of the values follows the
"I EEE Standard for Binary Floating-Point Arithnetic" as defined in
ANSI /| EEE St andard 754-1985 [| EEE754] .

4. The snnp Extension Statenent

The ‘snnp’ statenent is the nmain statenent of the SNVP nappi ng
specification. It gets one or two argunents: an optional |ower-case
identifier that specifies a node that represents the nodule’s
identity, and a mandatory statenent block that contains all details
of the SNWMP mapping. Al information of an SNMP mappi ng are napped
to an SNWP conformant nodul e of the sanme nanme as the containing SMng
nmodul e. A single SMng nodul e nust not contain nore than one ‘snnp’
st at enent .

4.1. The oid Statenent

The snnp’s ‘oid statenent, which nust be present, if the snnp
statement contains a nodule identifier and nust be absent otherw se,
gets one argunent which specifies the object identifier value that is
assigned to this nodule's identity node.

4.2. The node Statenent

The ‘node’ statement is used to nane and describe a node in the
object identifier tree, without associating any class or attribute
information with this node. This may be useful to group definitions
in a subtree of related nmanagenent information, or to uniquely define
an SMng ‘identity’ to be referenced in attributes of type Pointer
The ‘node’ statenent gets two argunents: a | ower-case node identifier
and a statenent block that holds detailed node information in an
obligatory order.

See the '‘nodeStatenment’ rule of the grammar (Section 5) for the
formal syntax of the ‘node’ statement.

4.2.1. The node’s oid Statenent
The node’s ‘oid statenment, which nust be present, gets one argunent
whi ch specifies the object identifier value that is assigned to this
node.

4.2.2. The node’s represents Statenent
The node’s ‘represents’ statenent, which need not be present, makes
this node represent an SMng identity, so that objects of type

Poi nter can reference that identity. The statenent gets one argunent
whi ch specifies the identity nane.

Strauss & Schoenwael der Experi ment al [Page 10]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.2.3 The node’s status Statenent

The node’s ‘status’ statement, which nust be present, gets one
argunent which is used to specify whether this node definition is
current or historic. The value ‘current’ means that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and should not be inplenented and/ or can be renoved if
previously inplenented. Wile the value ‘deprecated also indicates
an obsolete definition, it pernmts new continued inplenentation in
order to foster interoperability with ol der/existing inplenentations.

4.2.4. The node’s description Statenent
The node’s ‘description’ statement, which need not be present, gets
one argurent which is used to specify a high-level textua
description of this node.
It is RECOWENDED to include all semantics and purposes of this node.
4.2.5. The node’s reference Statenent
The node’s ‘reference’ statenment, which need not be present, gets one
argunent which is used to specify a textual cross-reference to some
ot her docunent, either another nodul e which defines rel ated
definitions, or sone other docunent which provides additiona
information relevant to this node.

4.2.6. Usage Exanpl es

node i so { oid 1; status current; };
node org { oid iso.3; status current; };
node dod { oid org.6; status current; };
node i nternet { oid dod.1; status current; };

node zer oDot Zero {

oid 0. 0;
represents NWVRG SM NG : nul | ;
status current;

description "A null value used for pointers.”

b
4.3. The scal ars Statenent
The ‘scalars’ statement is used to define the mapping of one or nore

classes to a group of SNWP scal ar rmanaged obj ects organi zed under a
conmon parent node. The ‘scalars’ statenment gets two argunents: a

Strauss & Schoenwael der Experi ment al [Page 11]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

| ower-case scalar group identifier and a statenent block that holds
detail ed mapping information of this scalar group in an obligatory
order.

See the '‘scalarsStatenent’ rule of the grammar (Section 5) for the
formal syntax of the ‘scalars’ statenent.

4.3.1. The scalars’ oid Statenent

The scalars’ ‘oid statenent, which nust be present, gets one
argunent which specifies the object identifier value that is assigned
to the common parent node of this scalar group

4.3.2. The scalars’ object Statenent

The scalars’ ‘object’ statenment, which nust be present at |east once,
makes this scalar group contain a given scalar object. It gets two
argunents: the nane of the scalar object to be defined and a
statement bl ock that holds additional detailed information in an
obligatory order.

4.3.2.1. The object’s inplenents Statenent

The ‘inplenents’ statenent, which nust be present, is used to specify
a single leaf attribute of a class that is inplenented by this scalar
object. The type of this attribute nmust be a sinple type, i.e., not
a cl ass.

4.3.2.2. The object’s subid Statenent

The ‘subid statenent, which need not be present, is used to specify
the sub-identifier that identifies the scalar object within this
scal ar group, i.e., the object identifier of the scalar object is the
concat enati on of the values of this scalar group’s oid statenent and
of this subid statenent.

If this statenent is omtted, the sub-identifier is the one of the
previous object statement within this scalar group plus 1. |If the
cont ai ni ng object statement is the first one within the containing
scal ar group and the subid statenment is onmtted, the sub-identifier
is 1.

4.3.2.3. The object’s status Statenent
The object’s ‘status’ statenent, which need not be present, gets one

argunent which is used to specify whether this scal ar object
definition is current or historic. The value ‘current’ neans that

Strauss & Schoenwael der Experi ment al [Page 12]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

the definition is current and valid. The value ‘obsolete’ neans the
definition is obsolete and shoul d not be inpl enented and/or can be
removed if previously inplenented. While the value ‘deprecated also
i ndi cates an obsolete definition, it pernmts new continued

i npl ementation in order to foster interoperability with

ol der/exi sting inplenentations.

Scal ar objects SHOULD NOT be defined as ‘current’ if the inplenmented

attribute definition is ‘deprecated’ or ‘obsolete’. Sinmilarly, they
SHOULD NOT be defined as ‘deprecated if the inplemented attribute is
‘obsolete’. Neverthel ess, subsequent revisions of used class

definitions cannot be avoi ded, but SHOULD be taken into account in
subsequent revisions of the | ocal nodule.

Note that it is RECOMENDED to onit the status statenent which neans
that the status is inherited fromthe containing scalars statenent.
However, if the status of a scalar object varies fromthe containing
scal ar group, it has to be expressed explicitly, e.g., if the

i mpl enented attri bute has been deprecated or obsol et ed.

4.3.2.4. The object’s description Statenent

The object’s *description” statenent, which need not be present, gets
one argunent which is used to specify a high-level textua
description of this scalar object.

Note that in contrast to other definitions this description statenent
is not mandatory and it is RECOWENDED to omit it, if the object is
fully described by the description of the inplenented attribute.

4.3.2.5. The object’s reference Statenent

The object’s ‘reference’ statement, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
some ot her docunment, either another nodul e which defines rel ated
definitions, or sone other docunent which provides additiona
information relevant to this scal ar object.

It is RECOWENDED to onmit this statement, if the object’s references
are fully described by the inplenented attribute.

4,.3.3. The scalars’ status Statenent

The scalars’ ‘status’ statenent, which nust be present, gets one
argunent which is used to specify whether this scalar group
definition is current or historic. The value ‘current’ neans that
the definition is current and valid. The value ‘obsolete’ neans the
definition is obsol ete and shoul d not be inplenented and/or can be

Strauss & Schoenwael der Experi ment al [Page 13]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

renoved if previously inplenmented. Wile the value ‘deprecated also
i ndi cates an obsolete definition, it pernits new continued

i mpl ementation in order to foster interoperability with

ol der/exi sting inplenentations.

4.3.4. The scalars’ description Statenent

The scalars’ ‘description’ statenent, which nust be present, gets one
argunent which is used to specify a high-level textual description of
this scal ar group.

It is RECOWENDED to include all senmantic definitions necessary for
the inplenmentation of this scalar group

4.3.5. The scalars’ reference Statenent

The scalars’ ‘reference’ statement, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
sone ot her docunent, either another nodul e which defines rel ated
definitions, or sonme other docunent which provides additiona
information relevant to this scalars statement.

4.3.6. Usage Exanple

scalars ip {

oid n b- 2. 4;

obj ect ipForwarding { inplenents |p.forwarding; };

object ipDefault TTL { inplenments |p.defaultTTL; }

...

stat us current;

description

"This scalar group inplenments the Ip class."

i

4.4, The table Statenent

The ‘table’ statement is used to define the mapping of one or nore
classes to a single SNWP table of colummar nanaged objects. The
‘table’ statenment gets two argunents: a | ower-case table identifier
and a statenment block that holds detailed mapping information of this
table in an obligatory order.

See the ‘tableStatenent’ rule of the grammar (Section 5) for the
formal syntax of the ‘table’ statenent.

Strauss & Schoenwael der Experi ment al [Page 14]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.4.1. The table's oid Statenent

The table’'s ‘oid statenment, which nust be present, gets one argunent
whi ch specifies the object identifier value that is assigned to this
tabl e’ s node.

4.4.2. Table Indexing Statenents

SNMP tabl e mappings offers five nethods to supply tabl e indexing

i nformation: ordinary tables, table augnentations, sparse table
augnent ati ons, table expansions, and reordered tables use different
statenents to denote their indexing information. Each table
definition nust contain exactly one of the follow ng indexing

st at enent s.

4.4.2.1. The table’'s index Statenment for Table | ndexing

The table’'s ‘index’ statenent, which is used to supply table indexing
i nformati on of base tables, gets one argunent that specifies a

comma- separated list of objects, that are used for table indexing,
encl osed in parenthesis.

The el ements of the ‘unique’ statement of the inplenented class(es)
and their order should be regarded as a hint for the index el enments
of the table.

In case of nodul es that should be conpatible on the SNMP protoco
level to SMv2 versions of the nodule, an optional ‘inplied keyword
may be added in front of the list to indicate a conpact encodi ng of
the last object in the list. See Section 2.2 for details.

4.4.2.2. The table’'s augnments Statenent for Tabl e |ndexing

The table’s ‘augnents’ statement, which is used to supply table

i ndexi ng information of tables that augnent a base table, gets one
argunent that specifies the identifier of the table to be augnented.
Note that a table augnentation cannot itself be augnmented. Anyhow, a
base tabl e may be augmented by nultiple table augnentations.

A tabl e augnentati on nmakes instances of subordi nate col umar objects
identified according to the index specification of the base table
corresponding to the table nanmed in the ‘augnents’ statenent.

Furt her, instances of subordi nate col umar objects of a table
augrment ati on exi st according to the sane senmantics as instances of
subordi nate col umar objects of the base table being augnented. As
such, note that creation of a base table rowinplies the

Strauss & Schoenwael der Experi ment al [Page 15]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

correspondent creation of any table row augnentations. Table
augrment ati ons MJUST NOT be used in table row creation and del etion
operati ons.

4.4.2.3. The table’'s extends Statenment for Tabl e Indexing

The table’'s ‘extends’ statenent, which is used to supply table

i ndexi ng information of tables that sparsely augnment a base table,
gets one argunent that specifies the identifier of the table to be
sparsely augnented. Note that a sparse table augnentati on cannot
itself be augnmented. Anyhow, a base table may be augnented by

nmul tiple table augnentations, sparsely or not.

A sparse tabl e augnmentation nmakes instances of subordinate col umar
objects identified, if present, according to the index specification
of the base table corresponding to the table nanmed in the ‘extends
statement. Further, instances of subordinate col umar objects of a
sparse tabl e augnentation exist according to the senantics as

i nstances of subordi nate col utmmar objects of the base table and the
(non-formal) rules that confine the sparse relationship. As such
note that creation of a sparse table row augnentati on nay be inplied
by the creation of a base table row as well as done by an explicit
creation. However, if a base table row gets del eted, any dependent
sparse tabl e row augnentations get also deleted inplicitly.

4.4.2.4. The table’'s reorders Statenent for Tabl e |ndexing

The table’'s ‘reorders’ statenent is used to supply table indexing
informati on of tables, that contain exactly the same index objects of
a base table but in a different order. It gets at |east two
argunents. The first one specifies the identifier of the base table.
The second one specifies a comma-separated |ist of exactly those
object identifiers of the base table's ‘index’ statement, but in the
order to be used in this table. Note that a reordered table cannot
itself be reordered. Anyhow, a base table may be used for nultiple
reordered tables.

Under sone circunstances, an optional ‘inplied keyword nmay be added
in front of the list to indicate a conpact encodi ng of the |ast
object in the list. See Section 2.2 for details.

I nstances of subordi nate col unmar objects of a reordered tabl e exi st
according to the sane semantics as instances of subordinate col umar
obj ects of the base table. As such, note that creation of a base
table row inplies the correspondent creation of any related reordered
table row Reordered tables MJUST NOT be used in table row creation
and del eti on operations.

Strauss & Schoenwael der Experi ment al [Page 16]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.4.2.5. The table’'s expands Statenent for Tabl e |Indexing

The table’'s ‘expands’ statenent is used to supply table indexing

i nformati on of table expansions. Table expansions use exactly the
same i ndex objects of another table together with additional indexing
objects. Thus, the ‘expands’ statenent gets at |east two argunents.
The first one specifies the identifier of the base table. The second
one specifies a comma-separated |list of the additional object
identifiers used for indexing. Note that an expanded table may
itself be expanded, and base tables nay be used for nultiple table
expansi ons.

Under sone circunstances, an optional ‘inplied keyword nmay be added
in front of the list to indicate a conpact encodi ng of the |ast
object in the list. See Section 2.2 for details.

4.4.3. The table's create Statenent

The table’'s ‘create’ statenent, which need not be present, gets no
argument. If the ‘create’ statement is present, table row creation
(and del etion) is possible.

4.4.4. The table’ s object Statenent

The table’'s ‘object’ statement, which nust be present at |east once,
makes this table contain a given columar object. It gets two
argunments: the name of the colummar object to be defined and a
statement bl ock that holds additional detailed information in an
obligatory order.

4.4.4.1. The object’s inplenents Statenent

The ‘inplenents’ statenment, which nust be present, is used to specify
a single leaf attribute of a class that is inplenented by this
colummar object. The type of this attribute nust be a sinple type,
i.e., not a class.

4.4.4.2. The object’s subid Statenent

The ‘subid statenent, which need not be present, is used to specify
the sub-identifier that identifies the columar object within this
table, i.e., the object identifier of the columar object is the
concatenation of the values of this table’'s oid statenent and of this
subi d statenent.

Strauss & Schoenwael der Experi ment al [Page 17]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

If this statenent is omtted, the sub-identifier is the one of the
previ ous object statement within this table plus 1. |f the

cont ai ni ng object statenment is the first one within the containing
table and the subid statement is onitted, the sub-identifier is 1.

4.4.4.3. The object’s status Statenent

The object’s ‘status’ statenent, which need not be present, gets one
argunent which is used to specify whether this col ummar object
definition is current or historic. The value ‘current’ neans that
the definition is current and valid. The value ‘obsolete’ neans the
definition is obsol ete and shoul d not be inplenented and/or can be
renoved if previously inplenmented. Wile the value ‘deprecated also
i ndi cates an obsolete definition, it pernits new continued

i mpl ementation in order to foster interoperability with

ol der/exi sting inplenentations.

Col ummar obj ects SHOULD NOT be defined as ‘current’ if the

i mpl enented attribute definition is ‘deprecated’ or ‘obsolete’
Simlarly, they SHOULD NOT be defined as ‘deprecated if the

i mpl emented attribute is ‘obsolete’. Neverthel ess, subsequent

revi sions of used class definitions cannot be avoided, but SHOULD be
taken into account in subsequent revisions of the |ocal nodule.

Note that it is RECOMVENDED to omit the status statenent which neans
that the status is inherited fromthe containing table statenent.
However, if the status of a columar object varies fromthe
containing table, it has to be expressed explicitly, e.g., if the

i npl emented attribute has been deprecated or obsol et ed.

4.4.4.4. The object’s description Statenent

The object’s ‘description’ statenent, which need not be present, gets
one argurent which is used to specify a high-level textua
description of this columar object.

Note that in contrast to other definitions this description statenent
is not mandatory and it is RECOMVENDED to onit it, if the object is
fully described by the description of the inplenmented attribute.

4.4.4.5. The object’s reference Statenent

The object’s ‘reference’ statenment, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
sone ot her docunent, either another nodul e which defines related
definitions, or some other document which provides additiona
information relevant to this col ummar object.

Strauss & Schoenwael der Experi ment al [Page 18]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

It is RECOWENDED to onit this statenment, if the object’s references
are fully described by the inplenented attribute.

4.4.5. The table's status Statenent

The table’'s ‘status’ statenment, which nust be present, gets one
argunent which is used to specify whether this table definition is
current or historic. The value ‘current’ means that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and should not be inplenmented and/ or can be renoved if
previously inplemented. While the value ‘deprecated’ also indicates
an obsolete definition, it permts new continued inplenentation in
order to foster interoperability with ol der/existing inplenentations.

4.4.6. The table’ s description Statenent
The table’s ‘description’ statenent, which nust be present, gets one
argunent which is used to specify a high-level textual description of
this table.

It is RECOMWENDED to include all semantic definitions necessary for
the inplenmentation of this table.

4.4.7. The table's reference Statenent
The table's ‘reference’ statenent, which need not be present, gets
one argurent which is used to specify a textual cross-reference to
some ot her docunent, either another nodul e which defines related
definitions, or some other docunment which provides additiona
information relevant to this table statenent.

4.4.8. Usage Exanple

table ifTable {

oid i nterfaces. 2;

i ndex (iflndex);

object iflndex { inplenents Interface.index; };
object ifDescr { inplenents Interface. description; };
I

st at us current;

description
"This table inplenents the Interface class."

Strauss & Schoenwael der Experi ment al [Page 19]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.5, The notification Statenment

The ‘notification’ statenent is used to nap events defined within
classes to SNWP notifications. The ‘notification’ statenent gets two
argunents: a |lower-case notification identifier and a statenent bl ock
that holds detailed notification information in an obligatory order

See the ‘notificationStatenent’ rule of the grammar (Section 5) for
the formal syntax of the ‘notification statenent.

4.5.1. The notification's oid Statenent

The notification’'s ‘oid statenment, which nust be present, gets one
argument whi ch specifies the object identifier value that is assigned
to this notification.

4.5.2. The notification’s signals Statenent

The notification's ‘signals’ statenent, which nust be present,
denotes the event that is signaled by this notification. The
statement gets two argunents: the event to be signaled (in the
qualified form'‘d ass.event’) and a statenment bl ock that hol ds
detailed information on the objects transnmitted with this
notification in an obligatory order

4.5.2.1. The signals’ object Statenent

The signals’ ‘object’ statenent, which can be present zero, one or
multiple tinmes, makes a single instance of a class attribute be
contained in this notification. It gets one argunent: the specific
class attribute. The nanespace of attributes not specified by
qualified nanes is the nanespace of the event’s class specified in
the ‘signals’ statenent.

4.5.3. The notification s status Statenent

The notification’s ‘status’ statenment, which nust be present, gets
one argunent which is used to specify whether this notification
definition is current or historic. The value ‘current’ neans that
the definition is current and valid. The value ‘obsolete’ neans the
definition is obsolete and shoul d not be inplenented and/or can be
renoved if previously inplemented. Wile the value ‘deprecated also
i ndi cates an obsolete definition, it pernits new continued

i mpl ementation in order to foster interoperability with

ol der/exi sting inplenentations.

Strauss & Schoenwael der Experi ment al [Page 20]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.5.4. The notification's description Statenent

The notification’s ‘description statement, which need not be
present, gets one argument which is used to specify a high-1leve
textual description of this notification

It is RECOWENDED to include all senmantics and purposes of this
notification.

4.5.5. The notification's reference Statenent
The notification's ‘reference’ statenent, which need not be present,
gets one argunent which is used to specify a textual cross-reference
to sonme ot her docunent, either another nodul e which defines rel ated
definitions, or some other document which provides additiona
information relevant to this notification statenent.

4.5.6. Usage Exanple

notification |inkDown {

oid snnpTr aps. 3;

si gnal s Interface.linkDown {
obj ect i flndex;
obj ect i f Adm nSt at us;
obj ect i f Oper St at us;

i

stat us current;

description
"This notification signals the IinkDown event
of the Interface class."

s
4.6. The group Statenent

The ‘group’ statement is used to define a group of arbitrary nodes in
the object identifier tree. It gets two argunents: a | ower-case
group identifier and a statenment bl ock that holds detail ed group
information in an obligatory order

Note that the primary application of groups are conpliance
statements, although they might be referred in other formal or
i nformal documents.

See the ‘groupStatenent’ rule of the grammar (Section 5) for the
formal syntax of the ‘group’ statenent.

Strauss & Schoenwael der Experi ment al [Page 21]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.6.1. The group’s oid Statenent

The group’s ‘oid statenment, which nust be present, gets one argunent
whi ch specifies the object identifier value that is assigned to this

group.
4.6.2. The group’s nenbers Statenent

The group’s ‘nenbers’ statement, which nust be present, gets one
argunent which specifies the list of nodes by their identifiers to be
contained in this group. The list of nodes has to be conma-separated
and encl osed i n parenthesis.

4.6.3. The group’s status Statenent

The group’s ‘status’ statement, which nust be present, gets one
argunent which is used to specify whether this group definition is
current or historic. The value ‘current’ neans that the definition
is current and valid. The value ‘obsolete’ neans the definition is
obsol ete and the group should no | onger be used. While the val ue
‘deprecated’ also indicates an obsolete definition, it permits

new conti nued use of this group.

4.6.4. The group’s description Statenent

The group’s ‘description’ statenent, which nust be present, gets one
argunent which is used to specify a high-level textual description of
this group. It is RECOMWENDED to include any relation to other
groups.

4.6.5. The group’s reference Statenent

The group’s ‘reference’ statenent, which need not be present, gets
one argunent which is used to specify a textual cross-reference to
some ot her docunment, either another nodul e which defines rel ated
groups, or sone ot her docunent which provides additional information
rel evant to this group.

4.6.6. Usage Exanple

The snnpG oup, originally defined in [RFC3418], may be described as
fol | ows:

group snnmpGoup {
oid snnmpM BG oups. 8;
obj ects (snmpl nPkt's, snnpl nBadVer si ons,
snnpl nASNPar seErr s,
snnpSi | ent Drops, snnpProxyDrops,

Strauss & Schoenwael der Experi ment al [Page 22]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

snnpEnabl eAut henTr aps) ;
st atus current;
description
"A collection of objects providing basic
instrunmentation and control of an agent."

4.7. The conpliance Statenent

The ‘conpliance’ statenment is used to define a set of confornmance
requi renents, named a ‘conpliance statenment’. It gets two argunents
a |l ower-case conpliance identifier and a statenent block that holds
detail ed conpliance infornation in an obligatory order

See the ‘conplianceStatenment’ rule of the grammar (Section 5) for the
formal syntax of the ‘conpliance’ statenent.

4.7.1. The conpliance’s oid Statenent

The conpliance’'s ‘oid statenent, which nust be present, gets one
argument which specifies the object identifier value that is assigned
to this conpliance statenent.

4.7.2. The conpliance’s status Statenent

The conpliance’'s ‘status’ statenent, which nust be present, gets one
argunent which is used to specify whether this conpliance statenent
is current or historic. The value ‘current’ neans that the
definition is current and valid. The value ‘obsolete’ neans the
definition is obsolete and no | onger specifies a valid definition of
conformance. Wile the value ‘deprecated also indicates an obsolete
definition, it permts new continued use of the conpliance

speci fication.

4.7.3. The conpliance’s description Statenent

The conpliance’s ‘description’ statenent, which nust be present, gets
one argunent which is used to specify a high-level textua
description of this conpliance statenent.

4.7.4. The conpliance’s reference Statenent

The conpliance’'s ‘reference’ statenent, which need not be present,
gets one argunment which is used to specify a textual cross-reference
to sone other docunent, either another nodul e which defines related
conmpl i ance statenments, or some other document which provides
additional information relevant to this conpliance statenent.

Strauss & Schoenwael der Experi ment al [Page 23]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.7.5. The conpliance’s nmandatory Statenent

The conpliance’s ‘mandatory’ statenment, which need not be present,
gets one argunment which is used to specify a comma-separated |ist of
one or nore groups (Section 4.6) of objects and/or notifications
encl osed in parenthesis. These groups are unconditionally nmandatory
for inplenentation.

If an agent clains conpliance to a MB nodule then it mnust inplenent
each and every object and notification within each group listed in
the ‘mandatory’ statenent(s) of the conpliance statenent(s) of that
nodul e.

4.7.6. The conpliance’s optional Statenent

The conpliance’s ‘optional’ statenment, which need not be present, is
repeatedly used to name each group which is conditionally nmandatory
for conpliance to the conpliance statement. It can also be used to
nane unconditionally optional groups. A group naned in an ‘optional
statement MJUST be absent from the correspondent ‘mandatory’

statenment. The ‘optional’ statenent gets two argunents: a | ower-case
group identifier and a statement bl ock that hol ds detail ed conpliance
i nformati on on that group

Condi tionally mandatory groups include those groups which are
mandatory only if a particular protocol is inplenmented, or only if
anot her group is inplenented. The ‘description’ statenent specifies
the conditions under which the group is conditionally mandatory.

A group which is naned in neither a ‘nandatory’ statenent nor an
‘optional’ statenment, is unconditionally optional for conpliance to
t he nodul e.

See the 'optional Statenent’ rule of the grammar (Section 5) for the
formal syntax of the ‘optional’ statenent.

4.7.6.1. The optional’s description Statenent
The optional’s ‘description’ statenent, which nust be present, gets
one argurent which is used to specify a high-level textua
description of the conditions under which this group is conditionally
mandat ory or unconditionally optional

4.7.7. The conpliance’s refine Statenent
The conpliance’'s ‘refine’ statenent, which need not be present, is

repeatedly used to specify each object for which conpliance has a
refined requirenent with respect to the nodule definition. The

Strauss & Schoenwael der Experi ment al [Page 24]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

obj ect nust be present in one of the confornmance groups naned in the
correspondent ‘mandatory’ or ‘optional’ statenents. The ‘refine
statement gets two argunments: a |lower-case identifier of a scalar or
col ummar object and a statenent block that holds detail ed refinenent
i nformati on on that object.

See the ‘refineStatenent’ rule of the grammar (Section 5) for the
formal syntax of the ‘refine’ statenent.

4.7.7.1. The refine’s type Statenent

The refine’'s ‘type’ statenent, which need not be present, gets one
argunent that is used to provide a refined type for the correspondent
object. Type restrictions may be applied by appendi ng subtyping

i nformati on according to the rules of the base type. See [RFC3780]
for SMng base types and their type restrictions. 1In case of
enunmeration or bitset types the order of naned nunbers is not
significant.

Note that if a ‘type’ and a ‘witetype’ statenment are both present
then this type only applies when instances of the correspondent
obj ect are read.

4.7.7.2. The refine’s witetype Statenent

The refine’s ‘witetype’ statement, which need not be present, gets
one argunment that is used to provide a refined type for the
correspondent object, only when instances of that object are witten.
Type restrictions may be applied by appendi ng subtyping information
according to the rules of the base type. See [RFC3780] for SM ng
base types and their type restrictions. In case of enuneration or
bitset types the order of naned nunbers is not significant.

4.7.7.3. The refine’s access Statenent

The refine’'s ‘access’ statenent, which need not be present, gets one
argunent that is used to specify the minimal |evel of access that the
correspondent object nust inplement in the sense of its origina
‘access’ statement. Hence, the refine’s 'access’ statenent MJST NOT
specify a greater level of access than is specified in the
correspondent object definition.

An inmplenentation is conpliant if the level of access it provides is
greater or equal to the nminimal level in the refine’'s ‘access
statement and |l ess or equal to the maximal level in the object’s
‘access’ statenent.

Strauss & Schoenwael der Experi ment al [Page 25]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

4.7.7.4. The refine' s description Statenent

The refine’s ‘description’ statenent, which nmust be present, gets one
argunent which is used to specify a high-level textual description of
the refined conpliance requirenent.

4.7.8. Usage Exanpl e

The conpliance statenment contained in the SNWPv2-M B [RFC3418],
converted to SM ng:

conpl i ance snnpBasi cConpl i anceRev2 {
oid snnpM BConpl i ances. 3;
stat us current;
description
"The conpliance statenment for SNWP entities which

i npl ement this MB nodul e.™;

mandat ory (snnmpGroup, snnpSet Group, systentoup,
snnpBasi cNot i fi cati onsG oup);

optional snmpConmunityG oup {
description
"This group is mandatory for SNMP entities which
support community-based authentication.”
i
optional snnmpWarnttartNotificati onGoup {
description
"This group is mandatory for an SNMP entity which
supports comuand responder applications, and is
able to reinitialize itself such that its
configuration is unaltered."”;

H
b
5. NMRG SM NG SNWVP- EXT
The grammar of the snnp statenent (including all its contained
statements) conforns to the Augmented Backus- Naur Form (ABNF)
[RFC2234]. It is included in the abnf statenment of the snnp SM ng

extension definition in the NVRG SM NG SNVP- EXT nodul e bel ow.
nodul e NVRG SM NG SNVP- EXT {
organi zati on "I RTF Networ k Managenent Research Group (NVRG";

cont act "I RTF Networ k Managenent Research Group (NVRG
http://ww.ibr.cs.tu-bs. de/projects/nnrg/

Strauss & Schoenwael der Experi ment al [Page 26]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

Frank Strauss

TU Braunschwei g

Muehl enpf or dt strasse 23

38106 Braunschweig

Cer many

Phone: +49 531 391 3266

EMai | : strauss@br. cs.tu-bs. de

Juer gen Schoenwael der

I nternational University Brenen

P. O Box 750 561

28725 Brenen

Cer many

Phone: +49 421 200 3587

EMai | 1 j.schoenwael der @ u- br enen. de";

description "This nodul e defines a SMng extension to define
the mappi ng of SMng definitions of class and
their attributes and events to SNMP conpati bl e
definitions of nodules, node, scalars, tables,
and notifications, and additional information on
nmodul e conpli ances.

Copyright (C The Internet Society (2004).
Al'l Rights Reserved.

This version of this nodule is part of
RFC 3781, see the RFC itself for ful

| egal notices.";

revision {
date "2003-12- 16"
description "lInitial revision, published as RFC 3781."
}
[/
/1
/1

ext ensi on snnp {

st atus current;
description
"The snnp statenment nmaps SMng definitions to SNWP
conformant definitions.";
abnf "

sm ng-snnp. abnf -- Gammar of SNWVP mappi ngs in ABNF
notati on (RFC 2234).

Strauss & Schoenwael der Experi ment al [Page 27]

RFC 3781

;. Statement rul es.

snnpSt at enment

nodeSt at enent

represent sSt at enent

scal ar sSt at enent

t abl eSt at enent

Strauss & Schoenwael der

SM ng Mappi ngs to SNWP May 2004

@#) $ld: sming-snnp.abnf,v 1.14 2003/10/23 19:31:55 strauss Exp $

Copyright (C) The Internet Society (2004). Al Ri ghts Reserved.

= snnpKeyword *1(sep lcldentifier) optsep

\"{\" stntsep
*1(0i dSt at enent st nt sep)
*(nodeSt at enent st mt sep)
*(scal arsSt at enent st nt sep)
*(tabl eStat ement stntsep)
*(notificationStatenent stmntsep)
*(groupSt atenment stntsep)
*(conmpl i anceSt at ement st nt sep)
statusSt at ement stntsep
descriptionStatenment stntsep
*1(referenceStatement stntsep)

\"}\" optsep \";\"

= nodeKeyword sep Icldentifier optsep
\"{\" stntsep
oi dSt at emrent st nt sep
*1(representsStatenment stntsep)
stat usSt at ement stntsep
*1(descriptionStatenent stntsep)
*1(referenceStatenment stntsep)

\"}I\" optsep \";\"

= represent skeyword sep
qucldentifier optsep \";\"

= scal arsKeyword sep lcldentifier optsep

\"{\" stntsep
oi dSt at emrent st nt sep
1*(obj ect St at ement st nt sep)
statusSt at ement stntsep
descriptionStatenent stntsep
*1(referenceStatenment stntsep)

\"}I\" optsep \";\"

= tabl eKeyword sep lcldentifier optsep

\"{\" stntsep
oi dSt at enent st ntsep

Experi ment al [Page 28]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

anyl ndexSt at ement st nt sep

*1(createStatenent stmntsep)

1*(obj ect St at ement st nt sep)

statusSt at ement stntsep

descriptionStatenment stntsep

*1(referenceStatenent stntsep)
\"}I\" optsep \";\"

obj ect St at enent = obj ect Keyword sep Icldentifier optsep

\"{\" stntsep
i mpl ement sSt at enent st nt sep
*1(subi dSt at ement st nt sep)
*1(statusStatenent stntsep)
*1(descriptionStatenent stmntsep)
*1(referenceSt at ement stntsep)

\"}\" optsep \";\"

i mpl enent sSt at enent = i npl enent skeyword sep qcattrldentifier
optsep \";\"
notificationStatenent = notificationKeyword sep lcldentifier

optsep \"{\" stntsep

oi dSt at ement st nt sep

si gnal sSt at enent stntsep

statusSt at ement stntsep

descriptionStatenent stntsep

*1(referenceSt atement stntsep)
\"}\" optsep \";\"

si gnal sSt at enent = signal skeyword sep qgattrldentifier
optsep \"{\" stntsep
*(si gnal sObj ect St at enent)
\"}\" optsep \";\"

si gnal sObj ect Statenment = obj ect Keyword sep
gattrldentifier optsep \";\"

groupSt at enent = groupKeyword sep lcldentifier optsep

\V"{\" stntsep
oi dSt at ement st nt sep
menber sSt at enent st nt sep
statusSt atenent stntsep
descriptionStatenent stntsep
*1(referenceSt at ement stntsep)

\"}\" optsep \";\"

conpl i anceSt at enent = conpl i anceKeyword sep lcldentifier optsep
\"{\" stntsep

Strauss & Schoenwael der Experi ment al [Page 29]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

oi dSt at enent st ntsep
statusSt at ement stntsep
descriptionStatenment stntsep
*1(referenceStatenment stntsep)
*1(mandat or ySt at ement st nt sep)
*(optional Statenent stntsep)
*(refineStatenment stntsep)
\"}I\" optsep \";\"

anyl ndex St at enment = i ndexSt at enent /
augnent sSt at ement /
reordersStatenment /
extendsSt at ement /
expandsSt at enent

i ndexSt at enent = i ndexKeyword *1(sep inpliedKeyword) optsep
\"(\" optsep qglcldentifierList
optsep \")\" optsep \";\"

augment sSt at enent = augnent skeyword sep gl cldentifier
optsep \";\"
reor der sSt at enent = reordersKeyword sep qglcldentifier

*1(sep inpliedKeyword)
optsep \"(\" optsep
glcldentifierList optsep \")\"

optsep \";\"
ext endsSt at enent = extendsKeyword sep glcldentifier optsep \";\"
expandsSt at enent = expandsKeyword sep gl cldentifier

*1(sep inpliedKeyword)
optsep \"(\" optsep
gl cldentifierlList optsep \")\"

optsep \";\"
creat eSt at enent = createKeyword optsep \";\"
menber sSt at enent = menber skeyword optsep \"(\" optsep

gl cldentifierlList optsep
\")\" optsep \";\"

mandat or ySt at enent = mandat or yKeyword optsep \"(\" optsep
gl cldentifierlList optsep
\")\" optsep \";\"

opti onal St at ement = optional Keyword sep qlcldentifier optsep
\"{\" descriptionStatenent stntsep

Strauss & Schoenwael der Experi ment al [Page 30]

RFC 3781

refi neSt at enent

typeSt at enent

writetypeStatenent

oi dSt at enent

subi dSt at enent

;; St at ement keywor ds.

snnpKeywor d
nodeKeywor d
repr esent skeyword

scal ar sKeywor d
t abl eKeywor d
i mpl emrent sKeywor d

subi dKeywor d
obj ect Keywor d
notificati onKeyword

si gnal skeywor d

oi dKeywor d

gr oupKeywor d
conpl i anceKeywor d

i mpl i edKeyword
i ndexKeywor d

augnent skeywor d
r eor der skeywor d
ext endsKeywor d
expandsKeywor d

Strauss & Schoenwael der

SM ng Mappi ngs to SNWP

\"}\" optsep \";\"

May 2004

= refineKeyword sep glcldentifier optsep \"{\"
*1(typeStatenment stntsep)
*1(witetypeStatenment stntsep)
*1(accessSt at enent st ntsep)

descriptionStatenent stntsep

\"}I\" optsep \";\"

= typeKeyword sep

(refinedBaseType /

optsep \";\"

= witetypeKeyword sep

= oi dKeyword sep objectldentifier optsep \";\

(refinedBaseType /

optsep \";\"

refi nedType)

refinedType)

= subi dkeyword sep subid optsep \";\"

o073
UX6E
072
073
Ux73
Ux74
69
073
073
%X 6F
%X 6E
69
o073
ox6F
967
X 63
%65
69
69
o061
072
%65
%65

9% 6E
o 6F
%65

963
61
06D

975
X 62
U 6F
U 6F
69
%x 69
072
%X 6F

9% 6D
U 6E
975
%65
Ux78
Ux78

9% 6D
o%x 64
%70

oUx61
62
o070

962
X B6A
Ux74
U 6E
067
ox64
%X 6F
96D

%70
0% 64
Ux67
%X 6F
Ux74
%70

970
%65
Ux72

%x6C
9% 6C
9% 6C

%69
%65
%69

9% 6E

W75
%70

9% 6C
965
06D
072
%65
oUx61

Experi ment al

%65

oUx61
%65
965

%64
%63
%x66

61

%70
" 6C

69
o078
%x 65
%64
%X 6E
%X 6E

W73

W72

9% 6D

W74

%69

9% 6C

%69

%65

M 6E
%65
%x64
%x64

%65

Mx73

965

%63

073

%61

0x64

W74
W72
W73
Mx73

W6E W74

W6E W74

61 W74

W6E %63

MX73
W73

[Page 31]

RFC 3781 SM ng Mappi ngs to SNWP

cr eat eKeywor d = 963
menber skeywor d = W6D
mandat or yKeywor d = W6D
opt i onal Keywor d = Wx6F
ref i neKeywor d = W72
writ et ypeKeywor d = W77
;; End of ABNF

1

/1

/1

/1

snmp {

node ccitt

node zer oDot Zero {
oid 0. 0;

072
965
o061
%70
%65
072

65 %61
Ux6D %62
UX6E %64
Ux74 %69
ox66 969
Ux69 %74

description "A null value used
s
node i so {
node org {
node dod {
node i nt ernet {
node directory {
node nmgnt {
node m b-2 {
node transm ssi on {
node experi nent al {
node private {
node enterprises {
node security {
node snnpV2 {
node snnpDomai ns {
node snnpPr oxys {
node snnpMbdul es {
node joint-iso-ccitt {

status curr
description

ent;

Ux74
965
ox61
Ux6F
U 6E
%65

oid

for

oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid
oid

oid

"This set of nodes defines the core
identifier hierarchy”;

ref erence

"RFC 2578, Section 2.";

Strauss & Schoenwael der

Exp

eri nment al

965
072 973
074 9%6F
UX6E 961
965
Ux74 979

pointers.";

1;

i so. 3;
org. 6;
dod. 1;

i nternet. 1;
i nternet. 2;
nmgnt . 1;

m b-2. 10

i nternet.3;
i nternet. 4;
private.1;
i nt ernet.5;
i nternet. 6;
snnmpV2. 1;
snnmpV2. 2;
snmpV2. 3;

2;

obj ect

W72

May 2004

W79

%x6C

%70

— e e M " e e e e e e e e e e o

%65

[Page 32]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

b

6. NVRG SM NG SNWP

The nodul e NVRG SM NG SNWP speci fi ed bel ow defines derived types that
are specific to the SNWP nappi ng.

nodul e NMRG SM NG- SNWP {
organi zati on "I RTF Networ k Managenent Research Group (NVRG";

cont act "I RTF Networ k Managenment Research G oup (NVRG
http://ww.ibr.cs.tu-bs. de/projects/nnrg/

Frank Strauss

TU Braunschwei g

Muehl enpf ordt strasse 23

38106 Braunschwei g

Cer many

Phone: +49 531 391 3266

EMail : strauss@br.cs. tu-bs. de

Juer gen Schoenwael der

I nternational University Brenen

P. O Box 750 561

28725 Brenen

Cer many

Phone: +49 421 200 3587

EMai | : j.schoenwael der @ u- br enen. de";

description "Core type definitions for the SM ng SNVP nappi ng.
These definitions are based on RFC 2579 definitions
that are specific to the SNVWP protocol and its
nam ng system

Copyright (C) The Internet Society (2004).
Al Rights Reserved.

This version of this nodule is part of
RFC 3781, see the RFC itself for full

| egal notices.";

revision {
date "2003-12-16";
description "lInitial version, published as RFC 3781.";

H

Strauss & Schoenwael der Experi ment al [Page 33]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

typedef Test Andl ncr {
type Integer32 (0..2147483647);
description
"Represents integer-valued information used for atonic
operations. Wen the nanagenent protocol is used to
specify that an object instance having this type is to
be nodified, the new val ue supplied via the nanagenent
protocol must precisely match the value presently held by
the instance. |If not, the nanagenent protocol set
operation fails with an error of ‘inconsistentValue’
O herwise, if the current value is the maxi num val ue of
2"31-1 (2147483647 decimal), then the value held by the
instance is wapped to zero; otherw se, the value held by
the instance is increnmented by one. (Note that
regardl ess of whether the managenent protocol set
operation succeeds, the variable-binding in the request
and response PDUs are identical.)

The val ue of the SNWP access clause for objects having
this type has to be ‘readwite’. When an instance of a
col ummar object having this type is created, any val ue
may be supplied via the managenent protocol

When t he network managenent portion of the systemis re-
initialized, the value of every object instance having
this type nmust either be increnented fromits value prior
to the re-initialization, or (if the value prior to the
re-initialization is unknown) be set to a
pseudo-random y generated value."; };

typedef AutononousType {
type Poi nt er;
description
"Represents an independently extensible type
identification value. It may, for exanple, indicate a
particular OD sub-tree with further MB definitions, or
define a particular type of protocol or hardware.";

s
typedef Vari abl ePoi nter {
type Poi nt er;
description
"A pointer to a specific object instance. For exanple,
sysContact. 0 or iflnCctets.3.";
s
typedef RowPoi nter {

type Poi nt er;

Strauss & Schoenwael der Experi ment al [Page 34]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

description
"Represents a pointer to a conceptual row. The value is
the nane of the instance of the first accessible col umar
object in the conceptual row

For exanple, iflndex.3 would point to the 3rd rowin the
i fTable (note that if iflndex were not-accessible, then
i fDescr.3 woul d be used instead)."

b

typedef RowSt atus {
type Enuneration (active(l1l), notlnService(2),
not Ready(3), createAndGo(4),
creat eAndWait (5), destroy(6));
description
"The RowStatus type is used to nmanage the creation and
del etion of conceptual rows, and is used as the type for the
row status columm of a conceptual row

The status columm has six defined val ues:

- ‘active’, which indicates that the conceptual rowis
avail abl e for use by the managed devi ce;

- ‘notlnService’, which indicates that the conceptua
row exists in the agent, but is unavailable for use by
t he managed devi ce (see NOTE bel ow);

- ‘notReady’, which indicates that the conceptual row
exists in the agent, but is mssing information
necessary in order to be available for use by the
managed devi ce;

- ‘createAndGo’, which is supplied by a managenent
station wishing to create a new i nstance of a
conceptual row and to have its status automatically set
to active, naking it avail able for use by the managed
devi ce;

- ‘createAndWait’, which is supplied by a managenent
station wishing to create a new i nstance of a
conceptual row (but not make it available for use by
t he managed device); and,

- ‘destroy’, which is supplied by a managenent station

wi shing to delete all of the instances associated with
an exi sting conceptual row

Strauss & Schoenwael der Experi ment al [Page 35]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

Whereas five of the six values (all except ‘notReady’) may
be specified in a nanagenent protocol set operation, only
three values will be returned in response to a nmanagenent
protocol retrieval operation: ‘notReady’, ‘notlnService or
“active’. That is, when queried, an existing conceptual row
has only three states: it is either available for use by the
managed device (the status columm has value ‘active’); it is
not avail able for use by the nmanaged device, though the
agent has sufficient information to make it so (the status
columm has value ‘notlnService'); or, it is not available
for use by the nmanaged device, and an attenpt to nmake it so
woul d fail because the agent has insufficient information
(the state columm has val ue ‘not Ready’).

NOTE WELL

This textual convention may be used for a MB table,
irrespective of whether the values of that table's
conceptual rows are able to be nodified while it is
active, or whether its conceptual rows nust be taken
out of service in order to be nodified. That is, it is
the responsibility of the DESCRI PTI ON cl ause of the
status colum to specify whether the status col um nust
not be ‘active’ in order for the value of some other
colunmm of the same conceptual row to be nodified. |If
such a specification is made, affected colums nmay be
changed by an SNMP set PDU if the RowStatus woul d not
be equal to ‘active’ either imediately before or after
processing the PDU. In other words, if the PDU al so
contai ned a varbind that woul d change the RowSt at us

val ue, the colum in question nmay be changed if the
RowSt at us was not equal to ‘active’ as the PDU was
received, or if the varbind sets the status to a val ue
other than ’'active’.

Al so note that whenever any elenents of a row exist, the
RowsSt at us col utm nust al so exi st.

To sunmari ze the effect of having a conceptual row with a

columm having a type of RowStatus, consider the follow ng
state diagram

Strauss & Schoenwael der Experi ment al [Page 36]

RFC 3781 SM ng Mappi ngs to SNWP

A | B | C

I
| | status col .| status col um|

May 2004

| status col um | is | is | status col um
ACTI ON | does not exist| notReady | notlnService| 1is active

-------------- T T JE iy
set status | noError ->D| i nconsi st- |inconsistent-]|inconsistent-
columm to | or | ent Val ue| Val ue| Val ue
cr eat eAndGo | i nconsi stent- | | |

| Val ue| |
-------------- T T L T T gy
set status | noError see 1|inconsist- |inconsistent-]|inconsistent-
columm to | or | ent Val ue| Val ue| Val ue
creat eAndWait | wrongVal ue | | |
-------------- e
set status | i nconsistent- |inconsist- |noError | noError
colum to | Val ue| ent Val ue| |
active | | |

| | or | |

| | |

| | see 2 ->D see 8 ->0| ->D
-------------- T T T T T g
set status | i nconsi stent- |inconsist- | noError | noError ->C
colum to | Val ue| ent Val ue| |
notl nService | | |

| | or | | or

| | | |

| | see 3 ->C ->C|l see 6
-------------- T T L T T gy
set status | noError | noError | noError | noError ->A
columm to | | | | or
destroy | ->A| ->A| ->A|l see 7
-------------- e
set any other |see 4 | noError | noError | see 5
colum to soneg| | |
val ue | | see 1| ->C| ->D
-------------- Ty

(1) go to B or C, depending on information available to the

agent .

(2)
provide values for all colums which are niss
required, then return noError and goto D

Strauss & Schoenwael der Experi ment a

i f other variable bindings included in the same PDU,

ng but

[Page 37]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

(3) if other variable bindings included in the sane PDU,
provide values for all colums which are m ssing but
required, then return noError and goto C

(4) at the discretion of the agent, the return value nmay be
ei ther:

i nconsi st ent Narme: because the agent does not choose to
create such an instance when the correspondi ng
RowSt at us i nstance does not exist, or

i nconsistentValue: if the supplied value is
i nconsistent with the state of sone other M B object’s
val ue, or

noError: because the agent chooses to create the
i nstance.

If noError is returned, then the instance of the status

col um nust al so be created, and the new state is B or C
dependi ng on the information available to the agent. |If

i nconsi stent Nane or inconsistentValue is returned, the row
remains in state A

(5) depending on the MB definition for the col um/tabl e,
ei ther noError or inconsistentValue nmay be returned.

(6) the return value can indicate one of the follow ng
errors:

wrongVal ue: because the agent does not support
creat eAndWait, or

i nconsi st ent Val ue: because the agent is unable to take
the row out of service at this tinme, perhaps because it
is in use and cannot be de-activat ed.

(7) the return value can indicate the follow ng error
i nconsi st ent Val ue: because the agent is unable to
renove the row at this tine, perhaps because it is in
use and cannot be de-acti vat ed.

NOTE: O her processing of the set request nay result in a

response other than noError being returned, e.g.
wr ongVal ue, noCreation, etc.

Strauss & Schoenwael der Experi ment al [Page 38]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

Conceptual Row Creation

There are four potential interactions when creating a
conceptual row selecting an instance-identifier which is
not in use; creating the conceptual row, initializing any
obj ects for which the agent does not supply a default; and,
maki ng the conceptual row avail able for use by the managed
devi ce.

Interaction 1: Selecting an Instance-ldentifier

The al gorithmused to select an instance-identifier varies
for each conceptual row. |n sone cases, the instance-
identifier is semantically significant, e.g., the
destination address of a route, and a nmnagenent station
selects the instance-identifier according to the senantics.

In other cases, the instance-identifier is used solely to

di stingui sh conceptual rows, and a nmanagenent station

wi t hout specific know edge of the conceptual row nm ght

exam ne the instances present in order to determ ne an
unused instance-identifier. (This approach may be used, but
it is often highly sub-optinmal; however, it is also a
questionabl e practice for a naive nanagenent station to
attenpt conceptual row creation.)

Alternately, the MB nodul e which defines the conceptual row
m ght provide one or nore objects which provide assistance
in determ ning an unused instance-identifier. For exanple,
if the conceptual row is indexed by an integer-value, then
an obj ect having an integer-val ued SYNTAX cl ause mi ght be
defined for such a purpose, allowi ng a managenent station to
i ssue a managenent protocol retrieval operation. |n order
to avoid unnecessary collisions between conpeting managenent
stations, ‘adjacent’ retrievals of this object should be
different.

Finally, the nanagenent station could select a pseudo-random
number to use as the index. |In the event that this index
was al ready in use and an inconsistentValue was returned in
response to the managenent protocol set operation, the
managenent station should sinply select a new pseudo-random
nunber and retry the operation

A M B desi gner should choose between the two latter

al gorithnms based on the size of the table (and therefore the
efficiency of each algorithn). For tables in which a large
nunber of entries are expected, it is recommended that a M B

Strauss & Schoenwael der Experi ment al [Page 39]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

obj ect be defined that returns an acceptable index for
creation. For tables with snmall nunbers of entries, it is
recomended that the latter pseudo-random i ndex mechani sm be
used.

Interaction 2: Creating the Conceptual Row

Once an unused instance-identifier has been selected, the
management station deternmines if it wishes to create and
activate the conceptual row in one transaction or in a
negoti ated set of interactions.

Interaction 2a: Creating and Activating the Conceptual Row

The managenent station nust first determine the col um
requirenents, i.e., it nust determ ne those colums for
which it nmust or nust not provide values. Depending on the
conplexity of the table and the managenent station’s

know edge of the agent’s capabilities, this determ nation
can be nmade locally by the nmanagenent station. Alternately,
t he managenent station issues a nanagenent protocol get
operation to examine all colums in the conceptual row that
it wishes to create. In response, for each colum, there
are three possible outcones:

- a value is returned, indicating that sone other
managenent station has already created this conceptua
row. W return to interaction 1

- the exception ‘noSuchlnstance’ is returned,

i ndi cating that the agent inplenents the object-type
associated with this colum, and that this colum in at
| east one conceptual row would be accessible in the MB
view used by the retrieval were it to exist. For those
columms to which the agent provides read-create access,
the ‘noSuchl nstance’ exception tells the nanagenent
station that it should supply a value for this colum
when the conceptual rowis to be created.

- the exception ‘noSuchoject’ is returned, indicating
that the agent does not inplenent the object-type
associated with this colum or that there is no
conceptual row for which this colum would be
accessible in the MB view used by the retrieval. As
such, the nanagenent station can not issue any
nmanagenent protocol set operations to create an

i nstance of this colum.

Strauss & Schoenwael der Experi ment al [Page 40]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

Once the colum requirenents have been deternined, a
managenent protocol set operation is accordingly issued.
This operation also sets the new instance of the status
columm to ‘createAndGo’ .

When the agent processes the set operation, it verifies that
it has sufficient infornation to nake the conceptual row
avail abl e for use by the nanaged device. The infornation
available to the agent is provided by two sources: the
managenent protocol set operation which creates the
conceptual row, and, inplenentation-specific defaults
supplied by the agent (note that an agent nust provide

i mpl enentation-specific defaults for at |east those objects
which it inplenents as read-only). |If there is sufficient

i nformati on avail able, then the conceptual rowis created, a
‘noError’ response is returned, the status colum is set to
“active’, and no further interactions are necessary (i.e.
interactions 3 and 4 are skipped). |If there is insufficient
i nformati on, then the conceptual rowis not created, and the
set operation fails with an error of ‘inconsistentVal ue’

On this error, the managenent station can i ssue a managenent
protocol retrieval operation to determine if this was
because it failed to specify a value for a required col um,
or, because the selected instance of the status columm
already existed. |In the latter case, we return to
interaction 1. 1In the forner case, the nmanagenent station
can re-issue the set operation with the additiona

i nformation, or begin interaction 2 again using
‘createAndWait’ in order to negotiate creation of the
conceptual row.

NOTE WELL

Regardl ess of the nethod used to determine the col um
requirenents, it is possible that the nmanagenent
station m ght deem a col unm necessary when, in fact,
the agent will not allow that particular col umar

instance to be created or witten. |In this case, the
managenment protocol set operation will fail with an
error such as ‘noCreation’ or ‘notWitable’. In this

case, the managenent station decides whether it needs
to be able to set a value for that particular col umar
instance. |f not, the nanagenent station re-issues the
managenent protocol set operation, but wthout setting

Strauss & Schoenwael der Experi ment al [Page 41]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

a value for that particular columar instance;
ot herwi se, the managenent station aborts the row
creation algorithm

Interaction 2b: Negotiating the Creation of the Conceptua
Row

The managenent station issues a nanagenent protocol set
operation which sets the desired instance of the status
columm to ‘createAndWait’. |If the agent is unwilling to
process a request of this sort, the set operation fails with
an error of ‘wongValue’. (As a consequence, such an agent
nmust be prepared to accept a single nanagenent protocol set
operation, i.e., interaction 2a above, containing all of the
columms indicated by its colum requirenments.) Oherw se

the conceptual row is created, a ‘noError’ response is
returned, and the status colum is inmediately set to either
‘notlnService’ or ‘notReady’, depending on whether it has
sufficient information to nake the conceptual row avail abl e
for use by the nmanaged device. |If there is sufficient
information available, then the status colum is set to
‘notlnService'; otherwise, if there is insufficient

i nformation, then the status colum is set to ‘notReady’.
Regar dl ess, we proceed to interaction 3.

Interaction 3: Initializing non-defaulted Objects

The managenent station rmust now determ ne the col um

requirenents. It issues a nmanagenent protocol get operation
to exanine all columms in the created conceptual row. In
the response, for each colunm, there are three possible

out cones:

- avalue is returned, indicating that the agent

i npl ements the object-type associated with this colum
and had sufficient information to provide a value. For
those colums to which the agent provides read-create
access (and for which the agent allows their values to
be changed after their creation), a value return tells
t he managenent station that it may issue additiona
managenent protocol set operations, if it desires, in
order to change the value associated with this col um.

- the exception ‘noSuchl nstance’ is returned,

i ndi cating that the agent inplenents the object-type
associated with this colum, and that this colum in at
| east one conceptual row would be accessible in the MB
view used by the retrieval were it to exist. However,

Strauss & Schoenwael der Experi ment al [Page 42]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

t he agent does not have sufficient information to
provide a value, and until a value is provided, the
conceptual row may not be made avail able for use by the
managed device. For those columms to which the agent
provi des read-create access, the ‘noSuchl nstance’
exception tells the nanagenent station that it nust

i ssue additional nmanagenent protocol set operations, in
order to provide a value associated with this col um.

- the exception ‘noSuchQoject’ is returned, indicating
that the agent does not inplenent the object-type
associated with this colum or that there is no
conceptual row for which this colum would be
accessible in the MB view used by the retrieval. As
such, the nanagenment station can not issue any
nmanagenent protocol set operations to create an

i nstance of this colum.

If the value associated with the status colum is

‘not Ready’, then the managenment station nust first deal with
all ‘noSuchl nstance’ columms, if any. Having done so, the
val ue of the status columm becones ‘notlnService’, and we
proceed to interaction 4.

Interaction 4: Making the Conceptual Row Avail abl e

Once the nanagenent station is satisfied with the val ues
associated with the colums of the conceptual row, it issues
a managenent protocol set operation to set the status col um
to ‘active’. If the agent has sufficient information to
make t he conceptual row avail able for use by the nanaged
devi ce, the nanagenent protocol set operation succeeds (a
‘noError’ response is returned). Oherw se, the nanagenent
protocol set operation fails with an error of
‘inconsi st ent Val ue’

NOTE WELL

A conceptual row having a status columm w th val ue
‘notlnService’ or ‘notReady’ is unavailable to the
managed device. As such, it is possible for the
managed device to create its own instances during the
ti me between the managenent protocol set operation

whi ch sets the status columm to ‘createAndWait’ and the
managenment protocol set operation which sets the status
columm to ‘active’. |In this case, when the managenent
protocol set operation is issued to set the status
columm to ‘active’, the values held in the agent

Strauss & Schoenwael der Experi ment al [Page 43]

RFC 3781

SM ng Mappi ngs to SNWP May 2004

supersede those used by the nmanaged devi ce.

If the managenent station is prevented fromsetting the
status colum to ‘active’ (e.g., due to managenent station or
network failure) the conceptual rowwll be left in the
‘notlnService’ or ‘notReady’ state, consum ng resources
indefinitely. The agent nust detect conceptual rows that
have been in either state for an abnornally | ong period of
time and renove them It is the responsibility of the
DESCRI PTI ON cl ause of the status columm to indicate what an
abnormal ly long period of time would be. This period of tine
shoul d be | ong enough to allow for human response tine
(including ‘think tine') between the creation of the
conceptual row and the setting of the status to ‘active’. In
t he absence of such information in the DESCRI PTI ON cl ause, it
i s suggested that this period be approximately 5 nminutes in
length. This renoval action applies not only to newy-
created rows, but also to previously active rows which are
set to, and left in, the notlnService state for a prol onged
peri od exceedi ng that which is considered nornmal for such a
conceptual row.

Concept ual Row Suspensi on

When a conceptual rowis ‘active', the managenent station
may i ssue a nmanagenent protocol set operation which sets the
i nstance of the status columm to ‘notlnService’. |If the
agent is unwilling to do so, the set operation fails with an
error of ‘wongValue' or ‘inconsistentVal ue’

O herwi se, the conceptual rowis taken out of service, and a
‘noError’ response is returned. It is the responsibility of
t he DESCRI PTI ON cl ause of the status colum to indicate
under what circunstances the status columm shoul d be taken
out of service (e.g., in order for the value of some other
columm of the sanme conceptual row to be nodified).

Conceptual Row Del etion

For del etion of conceptual rows, a nmanagenent protocol set
operation is issued which sets the instance of the status
colum to ‘destroy’. This request nay be made regardl ess of
the current value of the status colum (e.g., it is possible
to del ete conceptual rows which are either ‘notReady’
‘notlnService’ or ‘active’.) |If the operation succeeds, then
all instances associated with the conceptual row are

i medi ately renoved. "

Strauss & Schoenwael der Experi ment al [Page 44]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

typedef StorageType {
type Enuneration (other(1l), volatile(2),
nonVol atil e(3), permanent(4),
readOnl y(5));
description
"Describes the nenory realization of a conceptual row. A
row which is volatile(2) is |ost upon reboot. A row
which is either nonVol atil e(3), pernanent(4) or
readOnl y(5), is backed up by stable storage. A row which
i s permanent (4) can be changed but not deleted. A row
which is readOnl y(5) cannot be changed nor del et ed.

If the value of an object with this syntax is either

per manent (4) or readOnly(5), it cannot be nodifi ed.
Conversely, if the value is either other(1), volatile(2)
or nonVol atile(3), it cannot be nodified to be

per manent (4) or readOnly(5). (Al illegal nodifications
result in a 'wongValue' error.)

Every usage of this textual convention is required to
specify the columar objects which a permanent(4) row
must at a minimumallowto be witable.";

i
typedef TDonmain {
type Poi nt er;
description
"Denotes a kind of transport service.
Sonme possi bl e val ues, such as snnpUDPDonmi n, are defined
in the SNMPv2-TM M B nodul e. O her possible values are
defined in other MB nodul es.”
ref erence
"The SNWPv2-TM M B nodul e is defined in RFC 3417."
i
typedef TAddressOrZero {

type Cctet String (0..255);
description
"Denotes a transport service address.

A TAddress value is always interpreted within the context
of a TDomain value. Thus, each definition of a TDomain
val ue nust be acconpanied by a definition of a textua
convention for use with that TDomain. Sone possible
textual conventions, such as SnnmpUDPAddress for
snnmpUDPDonai n, are defined in the SNMPv2-TM M B nodul e.

O her possible textual conventions are defined in other

Strauss & Schoenwael der Experi ment al [Page 45]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

M B nodul es.

A zero-length TAddress val ue denotes an unknown transport
service address.”

ref erence
"The SNWPv2-TM M B nodul e is defined in RFC 3417."

i
typedef TAddress {
type TAddressOr Zero (1..255);
description
"Denotes a transport service address.
This type does not allow a zero-length TAddress val ue. "
i

Security Considerations

Thi s docunent presents an extension of the SMng data definition

| anguage whi ch supports the nmapping of SMng data definitions so that
they can be used with the SNMP managenent franework. The | anguage
extension and the nmapping itself has no security inpact on the

I nternet.

Acknowl edgenent s

Since SMng started as a cl ose successor of SMv2, sone paragraphs
and phrases are directly taken fromthe SMv2 specifications

[RFC2578], [RFC2579], [RFC2580] witten by Jeff Case, Keith

McCl oghrie, David Perkins, Marshall T. Rose, Juergen Schoenwael der
and Steven L. Wal dbusser

The authors would like to thank all participants of the 7th NVRG
nmeeting held in Schloss Kl ei nheubach from 6-8 Septenber 2000, which
was a najor step towards the current status of this neno, nanely
Hei ko Dassow, David Durham Keith Md oghrie, and Bert Wj nen.

Furt hernmore, several discussions within the SM NG Wrki ng G oup
reflected experience with SMv2 and influenced this specification at
sone poi nts.

Strauss & Schoenwael der Experi ment al [Page 46]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

9. References
9.1. Normmtive References

[RFC3780] Strauss, F. and J. Schoenwael der, "SM ng - Next GCeneration
Structure of Managenent Information", RFC 3780, May 2004.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

9.2. Informative References

[RFC3410] Case, J., Mundy, R, Partain, D. and B. Stewart,
"Introduction and Applicability Statements for Internet
St andard Managenent Framewor k", RFC 3410, Decenber 2002.

[RFC2578] MO oghrie, K., Perkins, D. and J. Schoenwael der,
"Structure of Managenent Infornmation Version 2 (SMv2)",
STD 58, RFC 2578, April 1999.

[RFC2579] M oghrie, K, Perkins, D. and J. Schoenwael der, "Text ual
Conventions for SMv2", STD 59, RFC 2579, April 1999.

[RFC2580] Mcd oghrie, K., Perkins, D. and J. Schoenwael der,
"Conformance Statenents for SMv2", STD 60, RFC 2580,
April 1999.

[ASN1] I nternational O ganization for Standardization,
"Specification of Abstract Syntax Notation One (ASN. 1)",
International Standard 8824, Decenber 1987.

[RFC3159] MO oghrie, K, Fine, M, Seligson, J., Chan, K, Hahn,
S., Sahita, R, Smith, A and F. Reichneyer, "Structure of
Policy Provisioning Information (SPPI)", RFC 3159, August
2001.

[EEE7T54] Institute of Electrical and El ectronics Engineers, "I|EEE

Standard for Binary Floating-Point Arithnetic", ANSI/IEEE
Standard 754-1985, August 1985.

Strauss & Schoenwael der Experi ment al [Page 47]

RFC 3781 SM ng Mappi ngs to SNWP

[RFC3418] Presuhn, R, Case, J., M oghrie,

May 2004

M and S.

Wal dbusser, "Managenent |nformation Base (MB) for the

Si npl e Networ k Managenent Protocol

3418, Decenber 2002.

[RFC3416] Presuhn, R, Case, J., M oghrie,
Wal dbusser, "Version 2 of the Protocol
Si npl e Network Managenent Protocol

3416, Decenber 2002.
Aut hors’ Addresses

Frank Strauss

TU Braunschwei g

Muehl enpf or dt strasse 23
38106 Braunschweig

Cer many

Phone: +49 531 391 3266
EMai | : strauss@br.cs.tu-bs. de
URI : http://ww.ibr.cs.tu-bs. de/

Juer gen Schoenwael der

I nternational University Brenen
P. O Box 750 561

28725 Brenen

Cer many

Phone: +49 421 200 3587

EMai | : j.schoenwael der @ u- br enen. de
URI : http://ww. eecs. i u-brenmen. de/

Strauss & Schoenwael der Experi ment al

STD 62, RFC

M and S.
Qperations for the
STD 62, RFC

[Page 48]

RFC 3781 SM ng Mappi ngs to SNWP May 2004

Ful I Copyright Statenent

Copyright (C) The Internet Society (2004). This docunent is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Thi s docunent and the infornmation contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATlI ON HE/ SHE REPRESENTS
OR |'S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

| NFORMATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS CR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intellectual Property

The |1 ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or mnight not be avail able; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of | PR disclosures nade to the | ETF Secretariat and any
assurances of licenses to be made available, or the result of an
attenpt nmade to obtain a general |icense or permi ssion for the use of
such proprietary rights by inplenmenters or users of this
specification can be obtained fromthe IETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Strauss & Schoenwael der Experi ment al [Page 49]

