
Network Working Group S. Floyd
Request for Comments: 3782 ICSI
Obsoletes: 2582 T. Henderson
Category: Standards Track Boeing
 A. Gurtov
 TeliaSonera
 April 2004

 The NewReno Modification to TCP’s Fast Recovery Algorithm

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 The purpose of this document is to advance NewReno TCP’s Fast
 Retransmit and Fast Recovery algorithms in RFC 2582 from Experimental
 to Standards Track status.

 The main change in this document relative to RFC 2582 is to specify
 the Careful variant of NewReno’s Fast Retransmit and Fast Recovery
 algorithms. The base algorithm described in RFC 2582 did not attempt
 to avoid unnecessary multiple Fast Retransmits that can occur after a
 timeout. However, RFC 2582 also defined "Careful" and "Less Careful"
 variants that avoid these unnecessary Fast Retransmits, and
 recommended the Careful variant. This document specifies the
 previously-named "Careful" variant as the basic version of NewReno
 TCP.

Floyd, et al. Standards Track [Page 1]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

1. Introduction

 For the typical implementation of the TCP Fast Recovery algorithm
 described in [RFC2581] (first implemented in the 1990 BSD Reno
 release, and referred to as the Reno algorithm in [FF96]), the TCP
 data sender only retransmits a packet after a retransmit timeout has
 occurred, or after three duplicate acknowledgements have arrived
 triggering the Fast Retransmit algorithm. A single retransmit
 timeout might result in the retransmission of several data packets,
 but each invocation of the Fast Retransmit algorithm in RFC 2581
 leads to the retransmission of only a single data packet.

 Problems can arise, therefore, when multiple packets are dropped from
 a single window of data and the Fast Retransmit and Fast Recovery
 algorithms are invoked. In this case, if the SACK option is
 available, the TCP sender has the information to make intelligent
 decisions about which packets to retransmit and which packets not to
 retransmit during Fast Recovery. This document applies only for TCP
 connections that are unable to use the TCP Selective Acknowledgement
 (SACK) option, either because the option is not locally supported or
 because the TCP peer did not indicate a willingness to use SACK.

 In the absence of SACK, there is little information available to the
 TCP sender in making retransmission decisions during Fast Recovery.
 From the three duplicate acknowledgements, the sender infers a packet
 loss, and retransmits the indicated packet. After this, the data
 sender could receive additional duplicate acknowledgements, as the
 data receiver acknowledges additional data packets that were already
 in flight when the sender entered Fast Retransmit.

 In the case of multiple packets dropped from a single window of data,
 the first new information available to the sender comes when the
 sender receives an acknowledgement for the retransmitted packet (that
 is, the packet retransmitted when Fast Retransmit was first entered).
 If there is a single packet drop and no reordering, then the
 acknowledgement for this packet will acknowledge all of the packets
 transmitted before Fast Retransmit was entered. However, if there
 are multiple packet drops, then the acknowledgement for the
 retransmitted packet will acknowledge some but not all of the packets
 transmitted before the Fast Retransmit. We call this acknowledgement
 a partial acknowledgment.

 Along with several other suggestions, [Hoe95] suggested that during
 Fast Recovery the TCP data sender responds to a partial
 acknowledgment by inferring that the next in-sequence packet has been
 lost, and retransmitting that packet. This document describes a
 modification to the Fast Recovery algorithm in RFC 2581 that
 incorporates a response to partial acknowledgements received during

Floyd, et al. Standards Track [Page 2]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 Fast Recovery. We call this modified Fast Recovery algorithm
 NewReno, because it is a slight but significant variation of the
 basic Reno algorithm in RFC 2581. This document does not discuss the
 other suggestions in [Hoe95] and [Hoe96], such as a change to the
 ssthresh parameter during Slow-Start, or the proposal to send a new
 packet for every two duplicate acknowledgements during Fast Recovery.
 The version of NewReno in this document also draws on other
 discussions of NewReno in the literature [LM97, Hen98].

 We do not claim that the NewReno version of Fast Recovery described
 here is an optimal modification of Fast Recovery for responding to
 partial acknowledgements, for TCP connections that are unable to use
 SACK. Based on our experiences with the NewReno modification in the
 NS simulator [NS] and with numerous implementations of NewReno, we
 believe that this modification improves the performance of the Fast
 Retransmit and Fast Recovery algorithms in a wide variety of
 scenarios.

2. Terminology and Definitions

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119]. This RFC indicates requirement levels for compliant TCP
 implementations implementing the NewReno Fast Retransmit and Fast
 Recovery algorithms described in this document.

 This document assumes that the reader is familiar with the terms
 SENDER MAXIMUM SEGMENT SIZE (SMSS), CONGESTION WINDOW (cwnd), and
 FLIGHT SIZE (FlightSize) defined in [RFC2581]. FLIGHT SIZE is
 defined as in [RFC2581] as follows:

 FLIGHT SIZE:
 The amount of data that has been sent but not yet acknowledged.

3. The Fast Retransmit and Fast Recovery Algorithms in NewReno

 The standard implementation of the Fast Retransmit and Fast Recovery
 algorithms is given in [RFC2581]. This section specifies the basic
 NewReno algorithm. Sections 4 through 6 describe some optional
 variants, and the motivations behind them, that an implementor may
 want to consider when tuning performance for certain network
 scenarios. Sections 7 and 8 provide some guidance to implementors
 based on experience with NewReno implementations.

 The NewReno modification concerns the Fast Recovery procedure that
 begins when three duplicate ACKs are received and ends when either a
 retransmission timeout occurs or an ACK arrives that acknowledges all

Floyd, et al. Standards Track [Page 3]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 of the data up to and including the data that was outstanding when
 the Fast Recovery procedure began.

 The NewReno algorithm specified in this document differs from the
 implementation in [RFC2581] in the introduction of the variable
 "recover" in step 1, in the response to a partial or new
 acknowledgement in step 5, and in modifications to step 1 and the
 addition of step 6 for avoiding multiple Fast Retransmits caused by
 the retransmission of packets already received by the receiver.

 The algorithm specified in this document uses a variable "recover",
 whose initial value is the initial send sequence number.

 1) Three duplicate ACKs:
 When the third duplicate ACK is received and the sender is not
 already in the Fast Recovery procedure, check to see if the
 Cumulative Acknowledgement field covers more than "recover". If
 so, go to Step 1A. Otherwise, go to Step 1B.

 1A) Invoking Fast Retransmit:
 If so, then set ssthresh to no more than the value given in
 equation 1 below. (This is equation 3 from [RFC2581]).

 ssthresh = max (FlightSize / 2, 2*SMSS) (1)

 In addition, record the highest sequence number transmitted in
 the variable "recover", and go to Step 2.

 1B) Not invoking Fast Retransmit:
 Do not enter the Fast Retransmit and Fast Recovery procedure. In
 particular, do not change ssthresh, do not go to Step 2 to
 retransmit the "lost" segment, and do not execute Step 3 upon
 subsequent duplicate ACKs.

 2) Entering Fast Retransmit:
 Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS.
 This artificially "inflates" the congestion window by the number
 of segments (three) that have left the network and the receiver
 has buffered.

 3) Fast Recovery:
 For each additional duplicate ACK received while in Fast
 Recovery, increment cwnd by SMSS. This artificially inflates the
 congestion window in order to reflect the additional segment that
 has left the network.

Floyd, et al. Standards Track [Page 4]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 4) Fast Recovery, continued:
 Transmit a segment, if allowed by the new value of cwnd and the
 receiver’s advertised window.

 5) When an ACK arrives that acknowledges new data, this ACK could be
 the acknowledgment elicited by the retransmission from step 2, or
 elicited by a later retransmission.

 Full acknowledgements:
 If this ACK acknowledges all of the data up to and including
 "recover", then the ACK acknowledges all the intermediate
 segments sent between the original transmission of the lost
 segment and the receipt of the third duplicate ACK. Set cwnd to
 either (1) min (ssthresh, FlightSize + SMSS) or (2) ssthresh,
 where ssthresh is the value set in step 1; this is termed
 "deflating" the window. (We note that "FlightSize" in step 1
 referred to the amount of data outstanding in step 1, when Fast
 Recovery was entered, while "FlightSize" in step 5 refers to the
 amount of data outstanding in step 5, when Fast Recovery is
 exited.) If the second option is selected, the implementation is
 encouraged to take measures to avoid a possible burst of data, in
 case the amount of data outstanding in the network is much less
 than the new congestion window allows. A simple mechanism is to
 limit the number of data packets that can be sent in response to
 a single acknowledgement; this is known as "maxburst_" in the NS
 simulator. Exit the Fast Recovery procedure.

 Partial acknowledgements:
 If this ACK does *not* acknowledge all of the data up to and
 including "recover", then this is a partial ACK. In this case,
 retransmit the first unacknowledged segment. Deflate the
 congestion window by the amount of new data acknowledged by the
 cumulative acknowledgement field. If the partial ACK
 acknowledges at least one SMSS of new data, then add back SMSS
 bytes to the congestion window. As in Step 3, this artificially
 inflates the congestion window in order to reflect the additional
 segment that has left the network. Send a new segment if
 permitted by the new value of cwnd. This "partial window
 deflation" attempts to ensure that, when Fast Recovery eventually
 ends, approximately ssthresh amount of data will be outstanding
 in the network. Do not exit the Fast Recovery procedure (i.e.,
 if any duplicate ACKs subsequently arrive, execute Steps 3 and 4
 above).

 For the first partial ACK that arrives during Fast Recovery, also
 reset the retransmit timer. Timer management is discussed in
 more detail in Section 4.

Floyd, et al. Standards Track [Page 5]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 6) Retransmit timeouts:
 After a retransmit timeout, record the highest sequence number
 transmitted in the variable "recover" and exit the Fast Recovery
 procedure if applicable.

 Step 1 specifies a check that the Cumulative Acknowledgement field
 covers more than "recover". Because the acknowledgement field
 contains the sequence number that the sender next expects to receive,
 the acknowledgement "ack_number" covers more than "recover" when:

 ack_number - 1 > recover;

 i.e., at least one byte more of data is acknowledged beyond the
 highest byte that was outstanding when Fast Retransmit was last
 entered.

 Note that in Step 5, the congestion window is deflated after a
 partial acknowledgement is received. The congestion window was
 likely to have been inflated considerably when the partial
 acknowledgement was received. In addition, depending on the original
 pattern of packet losses, the partial acknowledgement might
 acknowledge nearly a window of data. In this case, if the congestion
 window was not deflated, the data sender might be able to send nearly
 a window of data back-to-back.

 This document does not specify the sender’s response to duplicate
 ACKs when the Fast Retransmit/Fast Recovery algorithm is not invoked.
 This is addressed in other documents, such as those describing the
 Limited Transmit procedure [RFC3042]. This document also does not
 address issues of adjusting the duplicate acknowledgement threshold,
 but assumes the threshold specified in the IETF standards; the
 current standard is RFC 2581, which specifies a threshold of three
 duplicate acknowledgements.

 As a final note, we would observe that in the absence of the SACK
 option, the data sender is working from limited information. When
 the issue of recovery from multiple dropped packets from a single
 window of data is of particular importance, the best alternative
 would be to use the SACK option.

4. Resetting the Retransmit Timer in Response to Partial
 Acknowledgements

 One possible variant to the response to partial acknowledgements
 specified in Section 3 concerns when to reset the retransmit timer
 after a partial acknowledgement. The algorithm in Section 3, Step 5,
 resets the retransmit timer only after the first partial ACK. In
 this case, if a large number of packets were dropped from a window of

Floyd, et al. Standards Track [Page 6]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 data, the TCP data sender’s retransmit timer will ultimately expire,
 and the TCP data sender will invoke Slow-Start. (This is illustrated
 on page 12 of [F98].) We call this the Impatient variant of NewReno.
 We note that the Impatient variant in Section 3 doesn’t follow the
 recommended algorithm in RFC 2988 of restarting the retransmit timer
 after every packet transmission or retransmission [RFC2988, Step
 5.1].

 In contrast, the NewReno simulations in [FF96] illustrate the
 algorithm described above with the modification that the retransmit
 timer is reset after each partial acknowledgement. We call this the
 Slow-but-Steady variant of NewReno. In this case, for a window with
 a large number of packet drops, the TCP data sender retransmits at
 most one packet per roundtrip time. (This behavior is illustrated in
 the New-Reno TCP simulation of Figure 5 in [FF96], and on page 11 of
 [F98]).

 When N packets have been dropped from a window of data for a large
 value of N, the Slow-but-Steady variant can remain in Fast Recovery
 for N round-trip times, retransmitting one more dropped packet each
 round-trip time; for these scenarios, the Impatient variant gives a
 faster recovery and better performance. The tests "ns test-suite-
 newreno.tcl impatient1" and "ns test-suite-newreno.tcl slow1" in the
 NS simulator illustrate such a scenario, where the Impatient variant
 performs better than the Slow-but-Steady variant. The Impatient
 variant can be particularly important for TCP connections with large
 congestion windows, as illustrated by the tests "ns test-suite-
 newreno.tcl impatient4" and "ns test-suite-newreno.tcl slow4" in the
 NS simulator.

 One can also construct scenarios where the Slow-but-Steady variant
 gives better performance than the Impatient variant. As an example,
 this occurs when only a small number of packets are dropped, the RTO
 is sufficiently small that the retransmit timer expires, and
 performance would have been better without a retransmit timeout. The
 tests "ns test-suite-newreno.tcl impatient2" and "ns test-suite-
 newreno.tcl slow2" in the NS simulator illustrate such a scenario.

 The Slow-but-Steady variant can also achieve higher goodput than the
 Impatient variant, by avoiding unnecessary retransmissions. This
 could be of special interest for cellular links, where every
 transmission costs battery power and money. The tests "ns test-
 suite-newreno.tcl impatient3" and "ns test-suite-newreno.tcl slow3"
 in the NS simulator illustrate such a scenario. The Slow-but-Steady
 variant can also be more robust to delay variation in the network,
 where a delay spike might force the Impatient variant into a timeout
 and go-back-N recovery.

Floyd, et al. Standards Track [Page 7]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 Neither of the two variants discussed above are optimal. Our
 recommendation is for the Impatient variant, as specified in Section
 3 of this document, because of the poor performance of the Slow-but-
 Steady variant for TCP connections with large congestion windows.

 One possibility for a more optimal algorithm would be one that
 recovered from multiple packet drops as quickly as does slow-start,
 while resetting the retransmit timers after each partial
 acknowledgement, as described in the section below. We note,
 however, that there is a limitation to the potential performance in
 this case in the absence of the SACK option.

5. Retransmissions after a Partial Acknowledgement

 One possible variant to the response to partial acknowledgements
 specified in Section 3 would be to retransmit more than one packet
 after each partial acknowledgement, and to reset the retransmit timer
 after each retransmission. The algorithm specified in Section 3
 retransmits a single packet after each partial acknowledgement. This
 is the most conservative alternative, in that it is the least likely
 to result in an unnecessarily-retransmitted packet. A variant that
 would recover faster from a window with many packet drops would be to
 effectively Slow-Start, retransmitting two packets after each partial
 acknowledgement. Such an approach would take less than N roundtrip
 times to recover from N losses [Hoe96]. However, in the absence of
 SACK, recovering as quickly as slow-start introduces the likelihood
 of unnecessarily retransmitting packets, and this could significantly
 complicate the recovery mechanisms.

 We note that the response to partial acknowledgements specified in
 Section 3 of this document and in RFC 2582 differs from the response
 in [FF96], even though both approaches only retransmit one packet in
 response to a partial acknowledgement. Step 5 of Section 3 specifies
 that the TCP sender responds to a partial ACK by deflating the
 congestion window by the amount of new data acknowledged, adding back
 SMSS bytes if the partial ACK acknowledges at least SMSS bytes of new
 data, and sending a new segment if permitted by the new value of
 cwnd. Thus, only one previously-sent packet is retransmitted in
 response to each partial acknowledgement, but additional new packets
 might be transmitted as well, depending on the amount of new data
 acknowledged by the partial acknowledgement. In contrast, the
 variant of NewReno illustrated in [FF96] simply set the congestion
 window to ssthresh when a partial acknowledgement was received. The
 approach in [FF96] is more conservative, and does not attempt to
 accurately track the actual number of outstanding packets after a
 partial acknowledgement is received. While either of these
 approaches gives acceptable performance, the variant specified in
 Section 3 recovers more smoothly when multiple packets are dropped

Floyd, et al. Standards Track [Page 8]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 from a window of data. (The [FF96] behavior can be seen in the NS
 simulator by setting the variable "partial_window_deflation_" for
 "Agent/TCP/Newreno" to 0; the behavior specified in Section 3 is
 achieved by setting "partial_window_deflation_" to 1.)

6. Avoiding Multiple Fast Retransmits

 This section describes the motivation for the sender’s state variable
 "recover", and discusses possible heuristics for distinguishing
 between a retransmitted packet that was dropped, and three duplicate
 acknowledgements from the unnecessary retransmission of three
 packets.

 In the absence of the SACK option or timestamps, a duplicate
 acknowledgement carries no information to identify the data packet or
 packets at the TCP data receiver that triggered that duplicate
 acknowledgement. In this case, the TCP data sender is unable to
 distinguish between a duplicate acknowledgement that results from a
 lost or delayed data packet, and a duplicate acknowledgement that
 results from the sender’s unnecessary retransmission of a data packet
 that had already been received at the TCP data receiver. Because of
 this, with the Retransmit and Fast Recovery algorithms in Reno TCP,
 multiple segment losses from a single window of data can sometimes
 result in unnecessary multiple Fast Retransmits (and multiple
 reductions of the congestion window) [F94].

 With the Fast Retransmit and Fast Recovery algorithms in Reno TCP,
 the performance problems caused by multiple Fast Retransmits are
 relatively minor compared to the potential problems with Tahoe TCP,
 which does not implement Fast Recovery. Nevertheless, unnecessary
 Fast Retransmits can occur with Reno TCP unless some explicit
 mechanism is added to avoid this, such as the use of the "recover"
 variable. (This modification is called "bugfix" in [F98], and is
 illustrated on pages 7 and 9 of that document. Unnecessary Fast
 Retransmits for Reno without "bugfix" is illustrated on page 6 of
 [F98].)

 Section 3 of [RFC2582] defined a default variant of NewReno TCP that
 did not use the variable "recover", and did not check if duplicate
 ACKs cover the variable "recover" before invoking Fast Retransmit.
 With this default variant from RFC 2582, the problem of multiple Fast
 Retransmits from a single window of data can occur after a Retransmit
 Timeout (as in page 8 of [F98]) or in scenarios with reordering (as
 in the validation test "./test-all-newreno newreno5_noBF" in
 directory "tcl/test" of the NS simulator. This gives performance
 similar to that on page 8 of [F03].) RFC 2582 also defined Careful
 and Less Careful variants of the NewReno algorithm, and recommended
 the Careful variant.

Floyd, et al. Standards Track [Page 9]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 The algorithm specified in Section 3 of this document corresponds to
 the Careful variant of NewReno TCP from RFC 2582, and eliminates the
 problem of multiple Fast Retransmits. This algorithm uses the
 variable "recover", whose initial value is the initial send sequence
 number. After each retransmit timeout, the highest sequence number
 transmitted so far is recorded in the variable "recover".

 If, after a retransmit timeout, the TCP data sender retransmits three
 consecutive packets that have already been received by the data
 receiver, then the TCP data sender will receive three duplicate
 acknowledgements that do not cover more than "recover". In this
 case, the duplicate acknowledgements are not an indication of a new
 instance of congestion. They are simply an indication that the
 sender has unnecessarily retransmitted at least three packets.

 However, when a retransmitted packet is itself dropped, the sender
 can also receive three duplicate acknowledgements that do not cover
 more than "recover". In this case, the sender would have been better
 off if it had initiated Fast Retransmit. For a TCP that implements
 the algorithm specified in Section 3 of this document, the sender
 does not infer a packet drop from duplicate acknowledgements in this
 scenario. As always, the retransmit timer is the backup mechanism
 for inferring packet loss in this case.

 There are several heuristics, based on timestamps or on the amount of
 advancement of the cumulative acknowledgement field, that allow the
 sender to distinguish, in some cases, between three duplicate
 acknowledgements following a retransmitted packet that was dropped,
 and three duplicate acknowledgements from the unnecessary
 retransmission of three packets [Gur03, GF04]. The TCP sender MAY
 use such a heuristic to decide to invoke a Fast Retransmit in some
 cases, even when the three duplicate acknowledgements do not cover
 more than "recover".

 For example, when three duplicate acknowledgements are caused by the
 unnecessary retransmission of three packets, this is likely to be
 accompanied by the cumulative acknowledgement field advancing by at
 least four segments. Similarly, a heuristic based on timestamps uses
 the fact that when there is a hole in the sequence space, the
 timestamp echoed in the duplicate acknowledgement is the timestamp of
 the most recent data packet that advanced the cumulative
 acknowledgement field [RFC1323]. If timestamps are used, and the
 sender stores the timestamp of the last acknowledged segment, then
 the timestamp echoed by duplicate acknowledgements can be used to
 distinguish between a retransmitted packet that was dropped and three
 duplicate acknowledgements from the unnecessary retransmission of
 three packets. The heuristics are illustrated in the NS simulator in
 the validation test "./test-all-newreno".

Floyd, et al. Standards Track [Page 10]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

6.1. ACK Heuristic

 If the ACK-based heuristic is used, then following the advancement of
 the cumulative acknowledgement field, the sender stores the value of
 the previous cumulative acknowledgement as prev_highest_ack, and
 stores the latest cumulative ACK as highest_ack. In addition, the
 following step is performed if Step 1 in Section 3 fails, before
 proceeding to Step 1B.

 1*) If the Cumulative Acknowledgement field didn’t cover more than
 "recover", check to see if the congestion window is greater than
 SMSS bytes and the difference between highest_ack and
 prev_highest_ack is at most 4*SMSS bytes. If true, duplicate
 ACKs indicate a lost segment (proceed to Step 1A in Section 3).
 Otherwise, duplicate ACKs likely result from unnecessary
 retransmissions (proceed to Step 1B in Section 3).

 The congestion window check serves to protect against fast retransmit
 immediately after a retransmit timeout, similar to the
 "exitFastRetrans_" variable in NS. Examples of applying the ACK
 heuristic are in validation tests "./test-all-newreno
 newreno_rto_loss_ack" and "./test-all-newreno newreno_rto_dup_ack" in
 directory "tcl/test" of the NS simulator.

 If several ACKs are lost, the sender can see a jump in the cumulative
 ACK of more than three segments, and the heuristic can fail. A
 validation test for this scenario is "./test-all-newreno
 newreno_rto_loss_ackf". RFC 2581 recommends that a receiver should
 send duplicate ACKs for every out-of-order data packet, such as a
 data packet received during Fast Recovery. The ACK heuristic is more
 likely to fail if the receiver does not follow this advice, because
 then a smaller number of ACK losses are needed to produce a
 sufficient jump in the cumulative ACK.

6.2. Timestamp Heuristic

 If this heuristic is used, the sender stores the timestamp of the
 last acknowledged segment. In addition, the second paragraph of step
 1 in Section 3 is replaced as follows:

 1**) If the Cumulative Acknowledgement field didn’t cover more than
 "recover", check to see if the echoed timestamp in the last
 non-duplicate acknowledgment equals the stored timestamp. If
 true, duplicate ACKs indicate a lost segment (proceed to Step 1A
 in Section 3). Otherwise, duplicate ACKs likely result from
 unnecessary retransmissions (proceed to Step 1B in Section 3).

Floyd, et al. Standards Track [Page 11]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 Examples of applying the timestamp heuristic are in validation tests
 "./test-all-newreno newreno_rto_loss_tsh" and "./test-all-newreno
 newreno_rto_dup_tsh". The timestamp heuristic works correctly, both
 when the receiver echoes timestamps as specified by [RFC1323], and by
 its revision attempts. However, if the receiver arbitrarily echoes
 timestamps, the heuristic can fail. The heuristic can also fail if a
 timeout was spurious and returning ACKs are not from retransmitted
 segments. This can be prevented by detection algorithms such as
 [RFC3522].

7. Implementation Issues for the Data Receiver

 [RFC2581] specifies that "Out-of-order data segments SHOULD be
 acknowledged immediately, in order to accelerate loss recovery."
 Neal Cardwell has noted that some data receivers do not send an
 immediate acknowledgement when they send a partial acknowledgment,
 but instead wait first for their delayed acknowledgement timer to
 expire [C98]. As [C98] notes, this severely limits the potential
 benefit of NewReno by delaying the receipt of the partial
 acknowledgement at the data sender. Echoing RFC 2581, our
 recommendation is that the data receiver send an immediate
 acknowledgement for an out-of-order segment, even when that out-of-
 order segment fills a hole in the buffer.

8. Implementation Issues for the Data Sender

 In Section 3, Step 5 above, it is noted that implementations should
 take measures to avoid a possible burst of data when leaving Fast
 Recovery, in case the amount of new data that the sender is eligible
 to send due to the new value of the congestion window is large. This
 can arise during NewReno when ACKs are lost or treated as pure window
 updates, thereby causing the sender to underestimate the number of
 new segments that can be sent during the recovery procedure.
 Specifically, bursts can occur when the FlightSize is much less than
 the new congestion window when exiting from Fast Recovery. One
 simple mechanism to avoid a burst of data when leaving Fast Recovery
 is to limit the number of data packets that can be sent in response
 to a single acknowledgment. (This is known as "maxburst_" in the ns
 simulator.) Other possible mechanisms for avoiding bursts include
 rate-based pacing, or setting the slow-start threshold to the
 resultant congestion window and then resetting the congestion window
 to FlightSize. A recommendation on the general mechanism to avoid
 excessively bursty sending patterns is outside the scope of this
 document.

 An implementation may want to use a separate flag to record whether
 or not it is presently in the Fast Recovery procedure. The use of
 the value of the duplicate acknowledgment counter for this purpose is

Floyd, et al. Standards Track [Page 12]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 not reliable because it can be reset upon window updates and out-of-
 order acknowledgments.

 When not in Fast Recovery, the value of the state variable "recover"
 should be pulled along with the value of the state variable for
 acknowledgments (typically, "snd_una") so that, when large amounts of
 data have been sent and acked, the sequence space does not wrap and
 falsely indicate that Fast Recovery should not be entered (Section 3,
 step 1, last paragraph).

 It is important for the sender to respond correctly to duplicate ACKs
 received when the sender is no longer in Fast Recovery (e.g., because
 of a Retransmit Timeout). The Limited Transmit procedure [RFC3042]
 describes possible responses to the first and second duplicate
 acknowledgements. When three or more duplicate acknowledgements are
 received, the Cumulative Acknowledgement field doesn’t cover more
 than "recover", and a new Fast Recovery is not invoked, it is
 important that the sender not execute the Fast Recovery steps (3) and
 (4) in Section 3. Otherwise, the sender could end up in a chain of
 spurious timeouts. We mention this only because several NewReno
 implementations had this bug, including the implementation in the NS
 simulator. (This bug in the NS simulator was fixed in July 2003,
 with the variable "exitFastRetrans_".)

9. Simulations

 Simulations with NewReno are illustrated with the validation test
 "tcl/test/test-all-newreno" in the NS simulator. The command
 "../../ns test-suite-newreno.tcl reno" shows a simulation with Reno
 TCP, illustrating the data sender’s lack of response to a partial
 acknowledgement. In contrast, the command "../../ns test-suite-
 newreno.tcl newreno_B" shows a simulation with the same scenario
 using the NewReno algorithms described in this paper.

10. Comparisons between Reno and NewReno TCP

 As we stated in the introduction, we believe that the NewReno
 modification described in this document improves the performance of
 the Fast Retransmit and Fast Recovery algorithms of Reno TCP in a
 wide variety of scenarios. This has been discussed in some depth in
 [FF96], which illustrates Reno TCP’s poor performance when multiple
 packets are dropped from a window of data and also illustrates
 NewReno TCP’s good performance in that scenario.

 We do, however, know of one scenario where Reno TCP gives better
 performance than NewReno TCP, that we describe here for the sake of
 completeness. Consider a scenario with no packet loss, but with
 sufficient reordering so that the TCP sender receives three duplicate

Floyd, et al. Standards Track [Page 13]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 acknowledgements. This will trigger the Fast Retransmit and Fast
 Recovery algorithms. With Reno TCP or with Sack TCP, this will
 result in the unnecessary retransmission of a single packet, combined
 with a halving of the congestion window (shown on pages 4 and 6 of
 [F03]). With NewReno TCP, however, this reordering will also result
 in the unnecessary retransmission of an entire window of data (shown
 on page 5 of [F03]).

 While Reno TCP performs better than NewReno TCP in the presence of
 reordering, NewReno’s superior performance in the presence of
 multiple packet drops generally outweighs its less optimal
 performance in the presence of reordering. (Sack TCP is the
 preferred solution, with good performance in both scenarios.) This
 document recommends the Fast Retransmit and Fast Recovery algorithms
 of NewReno TCP instead of those of Reno TCP for those TCP connections
 that do not support SACK. We would also note that NewReno’s Fast
 Retransmit and Fast Recovery mechanisms are widely deployed in TCP
 implementations in the Internet today, as documented in [PF01]. For
 example, tests of TCP implementations in several thousand web servers
 in 2001 showed that for those TCP connections where the web browser
 was not SACK-capable, more web servers used the Fast Retransmit and
 Fast Recovery algorithms of NewReno than those of Reno or Tahoe TCP
 [PF01].

11. Changes Relative to RFC 2582

 The purpose of this document is to advance the NewReno’s Fast
 Retransmit and Fast Recovery algorithms in RFC 2582 to Standards
 Track.

 The main change in this document relative to RFC 2582 is to specify
 the Careful variant of NewReno’s Fast Retransmit and Fast Recovery
 algorithms. The base algorithm described in RFC 2582 did not attempt
 to avoid unnecessary multiple Fast Retransmits that can occur after a
 timeout (described in more detail in the section above). However,
 RFC 2582 also defined "Careful" and "Less Careful" variants that
 avoid these unnecessary Fast Retransmits, and recommended the Careful
 variant. This document specifies the previously-named "Careful"
 variant as the basic version of NewReno. As described below, this
 algorithm uses a variable "recover", whose initial value is the send
 sequence number.

 The algorithm specified in Section 3 checks whether the
 acknowledgement field of a partial acknowledgement covers *more* than
 "recover", as defined in Section 3. Another possible variant would
 be to simply require that the acknowledgement field covers *more than
 or equal to* "recover" before initiating another Fast Retransmit. We
 called this the Less Careful variant in RFC 2582.

Floyd, et al. Standards Track [Page 14]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 There are two separate scenarios in which the TCP sender could
 receive three duplicate acknowledgements acknowledging "recover" but
 no more than "recover". One scenario would be that the data sender
 transmitted four packets with sequence numbers higher than "recover",
 that the first packet was dropped in the network, and the following
 three packets triggered three duplicate acknowledgements
 acknowledging "recover". The second scenario would be that the
 sender unnecessarily retransmitted three packets below "recover", and
 that these three packets triggered three duplicate acknowledgements
 acknowledging "recover". In the absence of SACK, the TCP sender is
 unable to distinguish between these two scenarios.

 For the Careful variant of Fast Retransmit, the data sender would
 have to wait for a retransmit timeout in the first scenario, but
 would not have an unnecessary Fast Retransmit in the second scenario.
 For the Less Careful variant to Fast Retransmit, the data sender
 would Fast Retransmit as desired in the first scenario, and would
 unnecessarily Fast Retransmit in the second scenario. This document
 only specifies the Careful variant in Section 3. Unnecessary Fast
 Retransmits with the Less Careful variant in scenarios with
 reordering are illustrated in page 8 of [F03].

 The document also specifies two heuristics that the TCP sender MAY
 use to decide to invoke Fast Retransmit even when the three duplicate
 acknowledgements do not cover more than "recover". These heuristics,
 an ACK-based heuristic and a timestamp heuristic, are described in
 Sections 6.1 and 6.2 respectively.

12. Conclusions

 This document specifies the NewReno Fast Retransmit and Fast Recovery
 algorithms for TCP. This NewReno modification to TCP can even be
 important for TCP implementations that support the SACK option,
 because the SACK option can only be used for TCP connections when
 both TCP end-nodes support the SACK option. NewReno performs better
 than Reno (RFC 2581) in a number of scenarios discussed herein.

 A number of options to the basic algorithm presented in Section 3 are
 also described. These include the handling of the retransmission
 timer (Section 4), the response to partial acknowledgments (Section
 5), and the value of the congestion window when leaving Fast Recovery
 (section 3, step 5). Our belief is that the differences between
 these variants of NewReno are small compared to the differences
 between Reno and NewReno. That is, the important thing is to
 implement NewReno instead of Reno, for a TCP connection without SACK;
 it is less important exactly which of the variants of NewReno is
 implemented.

Floyd, et al. Standards Track [Page 15]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

13. Security Considerations

 RFC 2581 discusses general security considerations concerning TCP
 congestion control. This document describes a specific algorithm
 that conforms with the congestion control requirements of RFC 2581,
 and so those considerations apply to this algorithm, too. There are
 no known additional security concerns for this specific algorithm.

14. Acknowledgements

 Many thanks to Anil Agarwal, Mark Allman, Armando Caro, Jeffrey Hsu,
 Vern Paxson, Kacheong Poon, Keyur Shah, and Bernie Volz for detailed
 feedback on this document or on its precursor, RFC 2582.

15. References

15.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2582] Floyd, S. and T. Henderson, "The NewReno Modification to
 TCP’s Fast Recovery Algorithm", RFC 2582, April 1999.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3042] Allman, M., Balakrishnan, H. and S. Floyd, "Enhancing TCP’s
 Loss Recovery Using Limited Transmit", RFC 3042, January
 2001.

15.2. Informative References

 [C98] Cardwell, N., "delayed ACKs for retransmitted packets:
 ouch!". November 1998, Email to the tcpimpl mailing list,
 Message-ID "Pine.LNX.4.02A.9811021421340.26785-
 100000@sake.cs.washington.edu", archived at "http://tcp-
 impl.lerc.nasa.gov/tcp-impl".

Floyd, et al. Standards Track [Page 16]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 [F98] Floyd, S., Revisions to RFC 2001, "Presentation to the
 TCPIMPL Working Group", August 1998. URLs
 "ftp://ftp.ee.lbl.gov/talks/sf-tcpimpl-aug98.ps" and
 "ftp://ftp.ee.lbl.gov/talks/sf-tcpimpl-aug98.pdf".

 [F03] Floyd, S., "Moving NewReno from Experimental to Proposed
 Standard? Presentation to the TSVWG Working Group", March
 2003. URLs "http://www.icir.org/floyd/talks/newreno-
 Mar03.ps" and "http://www.icir.org/floyd/talks/newreno-
 Mar03.pdf".

 [FF96] Fall, K. and S. Floyd, "Simulation-based Comparisons of
 Tahoe, Reno and SACK TCP", Computer Communication Review,
 July 1996. URL "ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z".

 [F94] Floyd, S., "TCP and Successive Fast Retransmits", Technical
 report, October 1994. URL
 "ftp://ftp.ee.lbl.gov/papers/fastretrans.ps".

 [GF04] Gurtov, A. and S. Floyd, "Resolving Acknowledgment
 Ambiguity in non-SACK TCP", Next Generation Teletraffic and
 Wired/Wireless Advanced Networking (NEW2AN’04), February
 2004. URL "http://www.cs.helsinki.fi/u/gurtov/papers/
 heuristics.html".

 [Gur03] Gurtov, A., "[Tsvwg] resolving the problem of unnecessary
 fast retransmits in go-back-N", email to the tsvwg mailing
 list, message ID <3F25B467.9020609@cs.helsinki.fi>, July
 28, 2003. URL "http://www1.ietf.org/mail-archive/working-
 groups/tsvwg/current/msg04334.html".

 [Hen98] Henderson, T., Re: NewReno and the 2001 Revision. September
 1998. Email to the tcpimpl mailing list, Message ID
 "Pine.BSI.3.95.980923224136.26134A-
 100000@raptor.CS.Berkeley.EDU", archived at "http://tcp-
 impl.lerc.nasa.gov/tcp-impl".

 [Hoe95] Hoe, J., "Startup Dynamics of TCP’s Congestion Control and
 Avoidance Schemes", Master’s Thesis, MIT, 1995.

 [Hoe96] Hoe, J., "Improving the Start-up Behavior of a Congestion
 Control Scheme for TCP", ACM SIGCOMM, August 1996. URL
 "http://www.acm.org/sigcomm/sigcomm96/program.html".

 [LM97] Lin, D. and R. Morris, "Dynamics of Random Early
 Detection", SIGCOMM 97, September 1997. URL
 "http://www.acm.org/sigcomm/sigcomm97/program.html".

Floyd, et al. Standards Track [Page 17]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

 [NS] The Network Simulator (NS). URL
 "http://www.isi.edu/nsnam/ns/".

 [PF01] Padhye, J. and S. Floyd, "Identifying the TCP Behavior of
 Web Servers", June 2001, SIGCOMM 2001.

 [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [RFC3517] Blanton, E., Allman, M., Fall, K. and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm for
 TCP", RFC 3522, April 2003.

Authors’ Addresses

 Sally Floyd
 International Computer Science Institute

 Phone: +1 (510) 666-2989
 EMail: floyd@acm.org
 URL: http://www.icir.org/floyd/

 Tom Henderson
 The Boeing Company

 EMail: thomas.r.henderson@boeing.com

 Andrei Gurtov
 TeliaSonera

 EMail: andrei.gurtov@teliasonera.com

Floyd, et al. Standards Track [Page 18]

RFC 3782 NewReno Modification to Fast Recovery Algorithm April 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it
 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to
 rights in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Floyd, et al. Standards Track [Page 19]

