
Network Working Group D. Atkins
Request for Comments: 3833 IHTFP Consulting
Category: Informational R. Austein
 ISC
 August 2004

 Threat Analysis of the Domain Name System (DNS)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 Although the DNS Security Extensions (DNSSEC) have been under
 development for most of the last decade, the IETF has never written
 down the specific set of threats against which DNSSEC is designed to
 protect. Among other drawbacks, this cart-before-the-horse situation
 has made it difficult to determine whether DNSSEC meets its design
 goals, since its design goals are not well specified. This note
 attempts to document some of the known threats to the DNS, and, in
 doing so, attempts to measure to what extent (if any) DNSSEC is a
 useful tool in defending against these threats.

1. Introduction

 The earliest organized work on DNSSEC within the IETF was an open
 design team meeting organized by members of the DNS working group in
 November 1993 at the 28th IETF meeting in Houston. The broad
 outlines of DNSSEC as we know it today are already clear in Jim
 Galvin’s summary of the results of that meeting [Galvin93]:

 - While some participants in the meeting were interested in
 protecting against disclosure of DNS data to unauthorized parties,
 the design team made an explicit decision that "DNS data is
 ‘public’", and ruled all threats of data disclosure explicitly out
 of scope for DNSSEC.

 - While some participants in the meeting were interested in
 authentication of DNS clients and servers as a basis for access
 control, this work was also ruled out of scope for DNSSEC per se.

Atkins & Austein Informational [Page 1]

RFC 3833 DNS Threat Analysis August 2004

 - Backwards compatibility and co-existence with "insecure DNS" was
 listed as an explicit requirement.

 - The resulting list of desired security services was
 1) data integrity, and
 2) data origin authentication.

 - The design team noted that a digital signature mechanism would
 support the desired services.

 While a number of detail decisions were yet to be made (and in some
 cases remade after implementation experience) over the subsequent
 decade, the basic model and design goals have remained fixed.

 Nowhere, however, does any of the DNSSEC work attempt to specify in
 any detail the sorts of attacks against which DNSSEC is intended to
 protect, or the reasons behind the list of desired security services
 that came out of the Houston meeting. For that, we have to go back
 to a paper originally written by Steve Bellovin in 1990 but not
 published until 1995, for reasons that Bellovin explained in the
 paper’s epilogue [Bellovin95].

 While it may seem a bit strange to publish the threat analysis a
 decade after starting work on the protocol designed to defend against
 it, that is, nevertheless, what this note attempts to do. Better
 late than never.

 This note assumes that the reader is familiar with both the DNS and
 with DNSSEC, and does not attempt to provide a tutorial on either.
 The DNS documents most relevant to the subject of this note are:
 [RFC1034], [RFC1035], section 6.1 of [RFC1123], [RFC2181], [RFC2308],
 [RFC2671], [RFC2845], [RFC2930], [RFC3007], and [RFC2535].

 For purposes of discussion, this note uses the term "DNSSEC" to refer
 to the core hierarchical public key and signature mechanism specified
 in the DNSSEC documents, and refers to TKEY and TSIG as separate
 mechanisms, even though channel security mechanisms such as TKEY and
 TSIG are also part of the larger problem of "securing DNS" and thus
 are often considered part of the overall set of "DNS security
 extensions". This is an arbitrary distinction that in part reflects
 the way in which the protocol has evolved (introduction of a
 putatively simpler channel security model for certain operations such
 as zone transfers and dynamic update requests), and perhaps should be
 changed in a future revision of this note.

Atkins & Austein Informational [Page 2]

RFC 3833 DNS Threat Analysis August 2004

2. Known Threats

 There are several distinct classes of threats to the DNS, most of
 which are DNS-related instances of more general problems, but a few
 of which are specific to peculiarities of the DNS protocol.

2.1. Packet Interception

 Some of the simplest threats against DNS are various forms of packet
 interception: monkey-in-the-middle attacks, eavesdropping on requests
 combined with spoofed responses that beat the real response back to
 the resolver, and so forth. In any of these scenarios, the attacker
 can simply tell either party (usually the resolver) whatever it wants
 that party to believe. While packet interception attacks are far
 from unique to DNS, DNS’s usual behavior of sending an entire query
 or response in a single unsigned, unencrypted UDP packet makes these
 attacks particularly easy for any bad guy with the ability to
 intercept packets on a shared or transit network.

 To further complicate things, the DNS query the attacker intercepts
 may just be a means to an end for the attacker: the attacker might
 even choose to return the correct result in the answer section of a
 reply message while using other parts of the message to set the stage
 for something more complicated, for example, a name chaining attack
 (see section 2.3).

 While it certainly would be possible to sign DNS messages using a
 channel security mechanism such as TSIG or IPsec, or even to encrypt
 them using IPsec, this would not be a very good solution for
 interception attacks. First, this approach would impose a fairly
 high processing cost per DNS message, as well as a very high cost
 associated with establishing and maintaining bilateral trust
 relationships between all the parties that might be involved in
 resolving any particular query. For heavily used name servers (such
 as the servers for the root zone), this cost would almost certainly
 be prohibitively high. Even more important, however, is that the
 underlying trust model in such a design would be wrong, since at best
 it would only provide a hop-by-hop integrity check on DNS messages
 and would not provide any sort of end-to-end integrity check between
 the producer of DNS data (the zone administrator) and the consumer of
 DNS data (the application that triggered the query).

 By contrast, DNSSEC (when used properly) does provide an end-to-end
 data integrity check, and is thus a much better solution for this
 class of problems during basic DNS lookup operations.

Atkins & Austein Informational [Page 3]

RFC 3833 DNS Threat Analysis August 2004

 TSIG does have its place in corners of the DNS protocol where there’s
 a specific trust relationship between a particular client and a
 particular server, such as zone transfer, dynamic update, or a
 resolver (stub or otherwise) that is not going to check all the
 DNSSEC signatures itself.

 Note that DNSSEC does not provide any protection against modification
 of the DNS message header, so any properly paranoid resolver must:

 - Perform all of the DNSSEC signature checking on its own,

 - Use TSIG (or some equivalent mechanism) to ensure the integrity of
 its communication with whatever name servers it chooses to trust,
 or

 - Resign itself to the possibility of being attacked via packet
 interception (and via other techniques discussed below).

2.2. ID Guessing and Query Prediction

 Since DNS is for the most part used over UDP/IP, it is relatively
 easy for an attacker to generate packets which will match the
 transport protocol parameters. The ID field in the DNS header is
 only a 16-bit field and the server UDP port associated with DNS is a
 well-known value, so there are only 2**32 possible combinations of ID
 and client UDP port for a given client and server. This is not a
 particularly large range, and is not sufficient to protect against a
 brute force search; furthermore, in practice both the client UDP port
 and the ID can often be predicted from previous traffic, and it is
 not uncommon for the client port to be a known fixed value as well
 (due to firewalls or other restrictions), thus frequently reducing
 the search space to a range smaller than 2**16.

 By itself, ID guessing is not enough to allow an attacker to inject
 bogus data, but combined with knowledge (or guesses) about QNAMEs and
 QTYPEs for which a resolver might be querying, this leaves the
 resolver only weakly defended against injection of bogus responses.

 Since this attack relies on predicting a resolver’s behavior, it’s
 most likely to be successful when the victim is in a known state,
 whether because the victim rebooted recently, or because the victim’s
 behavior has been influenced by some other action by the attacker, or
 because the victim is responding (in a predictable way) to some third
 party action known to the attacker.

Atkins & Austein Informational [Page 4]

RFC 3833 DNS Threat Analysis August 2004

 This attack is both more and less difficult for the attacker than the
 simple interception attack described above: more difficult, because
 the attack only works when the attacker guesses correctly; less
 difficult, because the attacker doesn’t need to be on a transit or
 shared network.

 In most other respects, this attack is similar to a packet
 interception attack. A resolver that checks DNSSEC signatures will
 be able to detect the forged response; resolvers that do not perform
 DNSSEC signature checking themselves should use TSIG or some
 equivalent mechanism to ensure the integrity of their communication
 with a recursive name server that does perform DNSSEC signature
 checking.

2.3. Name Chaining

 Perhaps the most interesting class of DNS-specific threats are the
 name chaining attacks. These are a subset of a larger class of
 name-based attacks, sometimes called "cache poisoning" attacks. Most
 name-based attacks can be partially mitigated by the long-standing
 defense of checking RRs in response messages for relevance to the
 original query, but such defenses do not catch name chaining attacks.
 There are several variations on the basic attack, but what they all
 have in common is that they all involve DNS RRs whose RDATA portion
 (right hand side) includes a DNS name (or, in a few cases, something
 that is not a DNS name but which directly maps to a DNS name). Any
 such RR is, at least in principle, a hook that lets an attacker feed
 bad data into a victim’s cache, thus potentially subverting
 subsequent decisions based on DNS names.

 The worst examples in this class of RRs are CNAME, NS, and DNAME RRs
 because they can redirect a victim’s query to a location of the
 attacker’s choosing. RRs like MX and SRV are somewhat less
 dangerous, but in principle they can also be used to trigger further
 lookups at a location of the attacker’s choosing. Address RR types
 such as A or AAAA don’t have DNS names in their RDATA, but since the
 IN-ADDR.ARPA and IP6.ARPA trees are indexed using a DNS encoding of
 IPv4 and IPv6 addresses, these record types can also be used in a
 name chaining attack.

 The general form of a name chaining attack is something like this:

 - Victim issues a query, perhaps at the instigation of the attacker
 or some third party; in some cases the query itself may be
 unrelated to the name under attack (that is, the attacker is just
 using this query as a means to inject false information about some
 other name).

Atkins & Austein Informational [Page 5]

RFC 3833 DNS Threat Analysis August 2004

 - Attacker injects response, whether via packet interception, query
 guessing, or by being a legitimate name server that’s involved at
 some point in the process of answering the query that the victim
 issued.

 - Attacker’s response includes one or more RRs with DNS names in
 their RDATA; depending on which particular form this attack takes,
 the object may be to inject false data associated with those names
 into the victim’s cache via the Additional section of this
 response, or may be to redirect the next stage of the query to a
 server of the attacker’s choosing (in order to inject more complex
 lies into the victim’s cache than will fit easily into a single
 response, or in order to place the lies in the Authority or Answer
 section of a response where they will have a better chance of
 sneaking past a resolver’s defenses).

 Any attacker who can insert resource records into a victim’s cache
 can almost certainly do some kind of damage, so there are cache
 poisoning attacks which are not name chaining attacks in the sense
 discussed here. However, in the case of name chaining attacks, the
 cause and effect relationship between the initial attack and the
 eventual result may be significantly more complex than in the other
 forms of cache poisoning, so name chaining attacks merit special
 attention.

 The common thread in all of the name chaining attacks is that
 response messages allow the attacker to introduce arbitrary DNS names
 of the attacker’s choosing and provide further information that the
 attacker claims is associated with those names; unless the victim has
 better knowledge of the data associated with those names, the victim
 is going to have a hard time defending against this class of attacks.

 This class of attack is particularly insidious given that it’s quite
 easy for an attacker to provoke a victim into querying for a
 particular name of the attacker’s choosing, for example, by embedding
 a link to a 1x1-pixel "web bug" graphic in a piece of Text/HTML mail
 to the victim. If the victim’s mail reading program attempts to
 follow such a link, the result will be a DNS query for a name chosen
 by the attacker.

 DNSSEC should provide a good defense against most (all?) variations
 on this class of attack. By checking signatures, a resolver can
 determine whether the data associated with a name really was inserted
 by the delegated authority for that portion of the DNS name space.
 More precisely, a resolver can determine whether the entity that
 injected the data had access to an allegedly secret key whose

Atkins & Austein Informational [Page 6]

RFC 3833 DNS Threat Analysis August 2004

 corresponding public key appears at an expected location in the DNS
 name space with an expected chain of parental signatures that start
 with a public key of which the resolver has prior knowledge.

 DNSSEC signatures do not cover glue records, so there’s still a
 possibility of a name chaining attack involving glue, but with DNSSEC
 it is possible to detect the attack by temporarily accepting the glue
 in order to fetch the signed authoritative version of the same data,
 then checking the signatures on the authoritative version.

2.4. Betrayal By Trusted Server

 Another variation on the packet interception attack is the trusted
 server that turns out not to be so trustworthy, whether by accident
 or by intent. Many client machines are only configured with stub
 resolvers, and use trusted servers to perform all of their DNS
 queries on their behalf. In many cases the trusted server is
 furnished by the user’s ISP and advertised to the client via DHCP or
 PPP options. Besides accidental betrayal of this trust relationship
 (via server bugs, successful server break-ins, etc), the server
 itself may be configured to give back answers that are not what the
 user would expect, whether in an honest attempt to help the user or
 to promote some other goal such as furthering a business partnership
 between the ISP and some third party.

 This problem is particularly acute for frequent travelers who carry
 their own equipment and expect it to work in much the same way
 wherever they go. Such travelers need trustworthy DNS service
 without regard to who operates the network into which their equipment
 is currently plugged or what brand of middle boxes the local
 infrastructure might use.

 While the obvious solution to this problem would be for the client to
 choose a more trustworthy server, in practice this may not be an
 option for the client. In many network environments a client machine
 has only a limited set of recursive name servers from which to
 choose, and none of them may be particularly trustworthy. In extreme
 cases, port filtering or other forms of packet interception may
 prevent the client host from being able to run an iterative resolver
 even if the owner of the client machine is willing and able to do so.
 Thus, while the initial source of this problem is not a DNS protocol
 attack per se, this sort of betrayal is a threat to DNS clients, and
 simply switching to a different recursive name server is not an
 adequate defense.

 Viewed strictly from the DNS protocol standpoint, the only difference
 between this sort of betrayal and a packet interception attack is
 that in this case the client has voluntarily sent its request to the

Atkins & Austein Informational [Page 7]

RFC 3833 DNS Threat Analysis August 2004

 attacker. The defense against this is the same as with a packet
 interception attack: the resolver must either check DNSSEC signatures
 itself or use TSIG (or equivalent) to authenticate the server that it
 has chosen to trust. Note that use of TSIG does not by itself
 guarantee that a name server is at all trustworthy: all TSIG can do
 is help a resolver protect its communication with a name server that
 it has already decided to trust for other reasons. Protecting a
 resolver’s communication with a server that’s giving out bogus
 answers is not particularly useful.

 Also note that if the stub resolver does not trust the name server
 that is doing work on its behalf and wants to check the DNSSEC
 signatures itself, the resolver really does need to have independent
 knowledge of the DNSSEC public key(s) it needs in order to perform
 the check. Usually the public key for the root zone is enough, but
 in some cases knowledge of additional keys may also be appropriate.

 It is difficult to escape the conclusion that a properly paranoid
 resolver must always perform its own signature checking, and that
 this rule even applies to stub resolvers.

2.5. Denial of Service

 As with any network service (or, indeed, almost any service of any
 kind in any domain of discourse), DNS is vulnerable to denial of
 service attacks. DNSSEC does not help this, and may in fact make the
 problem worse for resolvers that check signatures, since checking
 signatures both increases the processing cost per DNS message and in
 some cases can also increase the number of messages needed to answer
 a query. TSIG (and similar mechanisms) have equivalent problems.

 DNS servers are also at risk of being used as denial of service
 amplifiers, since DNS response packets tend to be significantly
 longer than DNS query packets. Unsurprisingly, DNSSEC doesn’t help
 here either.

2.6. Authenticated Denial of Domain Names

 Much discussion has taken place over the question of authenticated
 denial of domain names. The particular question is whether there is
 a requirement for authenticating the non-existence of a name. The
 issue is whether the resolver should be able to detect when an
 attacker removes RRs from a response.

 General paranoia aside, the existence of RR types whose absence
 causes an action other than immediate failure (such as missing MX and
 SRV RRs, which fail over to A RRs) constitutes a real threat.
 Arguably, in some cases, even the absence of an RR might be

Atkins & Austein Informational [Page 8]

RFC 3833 DNS Threat Analysis August 2004

 considered a problem. The question remains: how serious is this
 threat? Clearly the threat does exist; general paranoia says that
 some day it’ll be on the front page of some major newspaper, even if
 we cannot conceive of a plausible scenario involving this attack
 today. This implies that some mitigation of this risk is required.

 Note that it’s necessary to prove the non-existence of applicable
 wildcard RRs as part of the authenticated denial mechanism, and that,
 in a zone that is more than one label deep, such a proof may require
 proving the non-existence of multiple discrete sets of wildcard RRs.

 DNSSEC does include mechanisms which make it possible to determine
 which authoritative names exist in a zone, and which authoritative
 resource record types exist at those names. The DNSSEC protections
 do not cover non-authoritative data such as glue records.

2.7. Wildcards

 Much discussion has taken place over whether and how to provide data
 integrity and data origin authentication for "wildcard" DNS names.
 Conceptually, RRs with wildcard names are patterns for synthesizing
 RRs on the fly according to the matching rules described in section
 4.3.2 of RFC 1034. While the rules that control the behavior of
 wildcard names have a few quirks that can make them a trap for the
 unwary zone administrator, it’s clear that a number of sites make
 heavy use of wildcard RRs, particularly wildcard MX RRs.

 In order to provide the desired services for wildcard RRs, we need to
 do two things:

 - We need a way to attest to the existence of the wildcard RR itself
 (that is, we need to show that the synthesis rule exists), and

 - We need a way to attest to the non-existence of any RRs which, if
 they existed, would make the wildcard RR irrelevant according to
 the synthesis rules that govern the way in which wildcard RRs are
 used (that is, we need to show that the synthesis rule is
 applicable).

 Note that this makes the wildcard mechanisms dependent upon the
 authenticated denial mechanism described in the previous section.

 DNSSEC includes mechanisms along the lines described above, which
 make it possible for a resolver to verify that a name server applied
 the wildcard expansion rules correctly when generating an answer.

Atkins & Austein Informational [Page 9]

RFC 3833 DNS Threat Analysis August 2004

3. Weaknesses of DNSSEC

 DNSSEC has some problems of its own:

 - DNSSEC is complex to implement and includes some nasty edge cases
 at the zone cuts that require very careful coding. Testbed
 experience to date suggests that trivial zone configuration errors
 or expired keys can cause serious problems for a DNSSEC-aware
 resolver, and that the current protocol’s error reporting
 capabilities may leave something to be desired.

 - DNSSEC significantly increases the size of DNS response packets;
 among other issues, this makes DNSSEC-aware DNS servers even more
 effective as denial of service amplifiers.

 - DNSSEC answer validation increases the resolver’s work load, since
 a DNSSEC-aware resolver will need to perform signature validation
 and in some cases will also need to issue further queries. This
 increased workload will also increase the time it takes to get an
 answer back to the original DNS client, which is likely to trigger
 both timeouts and re-queries in some cases. Arguably, many current
 DNS clients are already too impatient even before taking the
 further delays that DNSSEC will impose into account, but that topic
 is beyond the scope of this note.

 - Like DNS itself, DNSSEC’s trust model is almost totally
 hierarchical. While DNSSEC does allow resolvers to have special
 additional knowledge of public keys beyond those for the root, in
 the general case the root key is the one that matters. Thus any
 compromise in any of the zones between the root and a particular
 target name can damage DNSSEC’s ability to protect the integrity of
 data owned by that target name. This is not a change, since
 insecure DNS has the same model.

 - Key rollover at the root is really hard. Work to date has not even
 come close to adequately specifying how the root key rolls over, or
 even how it’s configured in the first place.

 - DNSSEC creates a requirement of loose time synchronization between
 the validating resolver and the entity creating the DNSSEC
 signatures. Prior to DNSSEC, all time-related actions in DNS could
 be performed by a machine that only knew about "elapsed" or
 "relative" time. Because the validity period of a DNSSEC signature
 is based on "absolute" time, a validating resolver must have the
 same concept of absolute time as the zone signer in order to
 determine whether the signature is within its validity period or
 has expired. An attacker that can change a resolver’s opinion of
 the current absolute time can fool the resolver using expired

Atkins & Austein Informational [Page 10]

RFC 3833 DNS Threat Analysis August 2004

 signatures. An attacker that can change the zone signer’s opinion
 of the current absolute time can fool the zone signer into
 generating signatures whose validity period does not match what the
 signer intended.

 - The possible existence of wildcard RRs in a zone complicates the
 authenticated denial mechanism considerably. For most of the
 decade that DNSSEC has been under development these issues were
 poorly understood. At various times there have been questions as
 to whether the authenticated denial mechanism is completely
 airtight and whether it would be worthwhile to optimize the
 authenticated denial mechanism for the common case in which
 wildcards are not present in a zone. However, the main problem is
 just the inherent complexity of the wildcard mechanism itself.
 This complexity probably makes the code for generating and checking
 authenticated denial attestations somewhat fragile, but since the
 alternative of giving up wildcards entirely is not practical due to
 widespread use, we are going to have to live with wildcards. The
 question just becomes one of whether or not the proposed
 optimizations would make DNSSEC’s mechanisms more or less fragile.

 - Even with DNSSEC, the class of attacks discussed in section 2.4 is
 not easy to defeat. In order for DNSSEC to be effective in this
 case, it must be possible to configure the resolver to expect
 certain categories of DNS records to be signed. This may require
 manual configuration of the resolver, especially during the initial
 DNSSEC rollout period when the resolver cannot reasonably expect
 the root and TLD zones to be signed.

4. Topics for Future Work

 This section lists a few subjects not covered above which probably
 need additional study, additional mechanisms, or both.

4.1. Interactions With Other Protocols

 The above discussion has concentrated exclusively on attacks within
 the boundaries of the DNS protocol itself, since those are (some of)
 the problems against which DNSSEC was intended to protect. There
 are, however, other potential problems at the boundaries where DNS
 interacts with other protocols.

4.2. Securing DNS Dynamic Update

 DNS dynamic update opens a number of potential problems when combined
 with DNSSEC. Dynamic update of a non-secure zone can use TSIG to
 authenticate the updating client to the server. While TSIG does not
 scale very well (it requires manual configuration of shared keys

Atkins & Austein Informational [Page 11]

RFC 3833 DNS Threat Analysis August 2004

 between the DNS name server and each TSIG client), it works well in a
 limited or closed environment such as a DHCP server updating a local
 DNS name server.

 Major issues arise when trying to use dynamic update on a secure
 zone. TSIG can similarly be used in a limited fashion to
 authenticate the client to the server, but TSIG only protects DNS
 transactions, not the actual data, and the TSIG is not inserted into
 the DNS zone, so resolvers cannot use the TSIG as a way of verifying
 the changes to the zone. This means that either:

 a) The updating client must have access to a zone-signing key in
 order to sign the update before sending it to the server, or

 b) The DNS name server must have access to an online zone-signing key
 in order to sign the update.

 In either case, a zone-signing key must be available to create signed
 RRsets to place in the updated zone. The fact that this key must be
 online (or at least available) is a potential security risk.

 Dynamic update also requires an update to the SERIAL field of the
 zone’s SOA RR. In theory, this could also be handled via either of
 the above options, but in practice (a) would almost certainly be
 extremely fragile, so (b) is the only workable mechanism.

 There are other threats in terms of describing the policy of who can
 make what changes to which RRsets in the zone. The current access
 control scheme in Secure Dynamic Update is fairly limited. There is
 no way to give fine-grained access to updating DNS zone information
 to multiple entities, each of whom may require different kinds of
 access. For example, Alice may need to be able to add new nodes to
 the zone or change existing nodes, but not remove them; Bob may need
 to be able to remove zones but not add them; Carol may need to be
 able to add, remove, or modify nodes, but only A records.

 Scaling properties of the key management problem here are a
 particular concern that needs more study.

4.3. Securing DNS Zone Replication

 As discussed in previous sections, DNSSEC per se attempts to provide
 data integrity and data origin authentication services on top of the
 normal DNS query protocol. Using the terminology discussed in
 [RFC3552], DNSSEC provides "object security" for the normal DNS query
 protocol. For purposes of replicating entire DNS zones, however,
 DNSSEC does not provide object security, because zones include
 unsigned NS RRs and glue at delegation points. Use of TSIG to

Atkins & Austein Informational [Page 12]

RFC 3833 DNS Threat Analysis August 2004

 protect zone transfer (AXFR or IXFR) operations provides "channel
 security", but still does not provide object security for complete
 zones. The trust relationships involved in zone transfer are still
 very much a hop-by-hop matter of name server operators trusting other
 name server operators rather than an end-to-end matter of name server
 operators trusting zone administrators.

 Zone object security was not an explicit design goal of DNSSEC, so
 failure to provide this service should not be a surprise.
 Nevertheless, there are some zone replication scenarios for which
 this would be a very useful additional service, so this seems like a
 useful area for future work. In theory it should not be difficult to
 add zone object security as a backwards compatible enhancement to the
 existing DNSSEC model, but the DNSEXT WG has not yet discussed either
 the desirability of or the requirements for such an enhancement.

5. Conclusion

 Based on the above analysis, the DNSSEC extensions do appear to solve
 a set of problems that do need to be solved, and are worth deploying.

Security Considerations

 This entire document is about security considerations of the DNS.
 The authors believe that deploying DNSSEC will help to address some,
 but not all, of the known threats to the DNS.

Acknowledgments

 This note is based both on previous published works by others and on
 a number of discussions both public and private over a period of many
 years, but particular thanks go to

 Jaap Akkerhuis,
 Steve Bellovin,
 Dan Bernstein,
 Randy Bush,
 Steve Crocker,
 Olafur Gudmundsson,
 Russ Housley,
 Rip Loomis,
 Allison Mankin,
 Paul Mockapetris,
 Thomas Narten
 Mans Nilsson,
 Pekka Savola,
 Paul Vixie,
 Xunhua Wang,

Atkins & Austein Informational [Page 13]

RFC 3833 DNS Threat Analysis August 2004

 and any other members of the DNS, DNSSEC, DNSIND, and DNSEXT working
 groups whose names and contributions the authors have forgotten, none
 of whom are responsible for what the authors did with their ideas.

 As with any work of this nature, the authors of this note acknowledge
 that we are standing on the toes of those who have gone before us.
 Readers interested in this subject may also wish to read
 [Bellovin95], [Schuba93], and [Vixie95].

Normative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123, October 1989.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, March 1998.

 [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC
 2671, August 1999.

 [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for
 DNS (TSIG)", RFC 2845, May 2000.

 [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS
 (TKEY RR)", RFC 2930, September 2000.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, November 2000.

 [RFC2535] Eastlake 3rd, D., "Domain Name System Security
 Extensions", RFC 2535, March 1999.

Atkins & Austein Informational [Page 14]

RFC 3833 DNS Threat Analysis August 2004

Informative References

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [Bellovin95] Bellovin, S., "Using the Domain Name System for System
 Break-Ins", Proceedings of the Fifth Usenix Unix
 Security Symposium, June 1995.

 [Galvin93] Design team meeting summary message posted to dns-
 security@tis.com mailing list by Jim Galvin on 19
 November 1993.

 [Schuba93] Schuba, C., "Addressing Weaknesses in the Domain Name
 System Protocol", Master’s thesis, Purdue University
 Department of Computer Sciences, August 1993.

 [Vixie95] Vixie, P, "DNS and BIND Security Issues", Proceedings of
 the Fifth Usenix Unix Security Symposium, June 1995.

Authors’ Addresses

 Derek Atkins
 IHTFP Consulting, Inc.
 6 Farragut Ave
 Somerville, MA 02144
 USA

 EMail: derek@ihtfp.com

 Rob Austein
 Internet Systems Consortium
 950 Charter Street
 Redwood City, CA 94063
 USA

 EMail: sra@isc.org

Atkins & Austein Informational [Page 15]

RFC 3833 DNS Threat Analysis August 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Atkins & Austein Informational [Page 16]

