
Network Working Group J. Rosenberg
Request for Comments: 3856 dynamicsoft
Category: Standards Track August 2004

 A Presence Event Package for the Session Initiation Protocol (SIP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document describes the usage of the Session Initiation Protocol
 (SIP) for subscriptions and notifications of presence. Presence is
 defined as the willingness and ability of a user to communicate with
 other users on the network. Historically, presence has been limited
 to "on-line" and "off-line" indicators; the notion of presence here
 is broader. Subscriptions and notifications of presence are
 supported by defining an event package within the general SIP event
 notification framework. This protocol is also compliant with the
 Common Presence Profile (CPP) framework.

Table of Contents

 1. Introduction .. 2
 2. Terminology ... 3
 3. Definitions ... 3
 4. Overview of Operation 4
 5. Usage of Presence URIs 6
 6. Presence Event Package 7
 6.1. Package Name .. 8
 6.2. Event Package Parameters 8
 6.3. SUBSCRIBE Bodies 8
 6.4. Subscription Duration 9
 6.5. NOTIFY Bodies ... 9
 6.6. Notifier Processing of SUBSCRIBE Requests 9
 6.6.1. Authentication 10
 6.6.2. Authorization 10
 6.7. Notifier Generation of NOTIFY Requests 11

Rosenberg Standards Track [Page 1]

RFC 3856 SIP Presence August 2004

 6.8. Subscriber Processing of NOTIFY Requests 13
 6.9. Handling of Forked Requests 13
 6.10. Rate of Notifications 14
 6.11. State Agents .. 14
 6.11.1. Aggregation, Authentication, and Authorization. 14
 6.11.2. Migration 15
 7. Learning Presence State 16
 7.1. Co-location ... 16
 7.2. REGISTER .. 16
 7.3. Uploading Presence Documents 17
 8. Example Message Flow .. 17
 9. Security Considerations 20
 9.1. Confidentiality 20
 9.2. Message Integrity and Authenticity 21
 9.3. Outbound Authentication 22
 9.4. Replay Prevention 22
 9.5. Denial of Service Attacks Against Third Parties 22
 9.6. Denial Of Service Attacks Against Servers 23
 10. IANA Considerations ... 23
 11. Contributors .. 24
 12. Acknowledgements .. 25
 13. Normative References .. 25
 14. Informative References 26
 15. Author’s Address .. 26
 16. Full Copyright Statement 27

1. Introduction

 Presence, also known as presence information, conveys the ability and
 willingness of a user to communicate across a set of devices. RFC
 2778 [10] defines a model and terminology for describing systems that
 provide presence information. In that model, a presence service is a
 system that accepts, stores, and distributes presence information to
 interested parties, called watchers. A presence protocol is a
 protocol for providing a presence service over the Internet or any IP
 network.

 This document proposes the usage of the Session Initiation Protocol
 (SIP) [1] as a presence protocol. This is accomplished through a
 concrete instantiation of the general event notification framework
 defined for SIP [2], and as such, makes use of the SUBSCRIBE and
 NOTIFY methods defined there. Specifically, this document defines an
 event package, as described in RFC 3265 [2]. SIP is particularly
 well suited as a presence protocol. SIP location services already
 contain presence information, in the form of registrations.
 Furthermore, SIP networks are capable of routing requests from any
 user on the network to the server that holds the registration state
 for a user. As this state is a key component of user presence, those

Rosenberg Standards Track [Page 2]

RFC 3856 SIP Presence August 2004

 SIP networks can allow SUBSCRIBE requests to be routed to the same
 server. This means that SIP networks can be reused to establish
 global connectivity for presence subscriptions and notifications.

 This event package is based on the concept of a presence agent, which
 is a new logical entity that is capable of accepting subscriptions,
 storing subscription state, and generating notifications when there
 are changes in presence. The entity is defined as a logical one,
 since it is generally co-resident with another entity.

 This event package is also compliant with the Common Presence Profile
 (CPP) framework that has been defined in [3]. This allows SIP for
 presence to easily interwork with other presence systems compliant to
 CPP.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant implementations.

3. Definitions

 This document uses the terms as defined in RFC 2778 [10].
 Additionally, the following terms are defined and/or additionally
 clarified:

 Presence User Agent (PUA): A Presence User Agent manipulates
 presence information for a presentity. This manipulation can
 be the side effect of some other action (such as sending a SIP
 REGISTER request to add a new Contact) or can be done
 explicitly through the publication of presence documents. We
 explicitly allow multiple PUAs per presentity. This means that
 a user can have many devices (such as a cell phone and Personal
 Digital Assistant (PDA)), each of which is independently
 generating a component of the overall presence information for
 a presentity. PUAs push data into the presence system, but are
 outside of it, in that they do not receive SUBSCRIBE messages
 or send NOTIFY messages.

 Presence Agent (PA): A presence agent is a SIP user agent which is
 capable of receiving SUBSCRIBE requests, responding to them,
 and generating notifications of changes in presence state. A
 presence agent must have knowledge of the presence state of a
 presentity. This means that it must have access to presence
 data manipulated by PUAs for the presentity. One way to do
 this is by co-locating the PA with the proxy/registrar.

Rosenberg Standards Track [Page 3]

RFC 3856 SIP Presence August 2004

 Another way is to co-locate it with the presence user agent of
 the presentity. However, these are not the only ways, and this
 specification makes no recommendations about where the PA
 function should be located. A PA is always addressable with a
 SIP URI that uniquely identifies the presentity (i.e.,
 sip:joe@example.com). There can be multiple PAs for a
 particular presentity, each of which handles some subset of the
 total subscriptions currently active for the presentity. A PA
 is also a notifier (defined in RFC 3265 [2]) that supports the
 presence event package.

 Presence Server: A presence server is a physical entity that can
 act as either a presence agent or as a proxy server for
 SUBSCRIBE requests. When acting as a PA, it is aware of the
 presence information of the presentity through some protocol
 means. When acting as a proxy, the SUBSCRIBE requests are
 proxied to another entity that may act as a PA.

 Edge Presence Server: An edge presence server is a presence agent
 that is co-located with a PUA. It is aware of the presence
 information of the presentity because it is co-located with the
 entity that manipulates this presence information.

4. Overview of Operation

 In this section, we present an overview of the operation of this
 event package. The overview describes behavior that is documented in
 part here, in part within the SIP event framework [2], and in part in
 the SIP specification [1], in order to provide clarity on this
 package for readers only casually familiar with those specifications.
 However, the detailed semantics of this package require the reader to
 be familiar with SIP events and the SIP specification itself.

 When an entity, the subscriber, wishes to learn about presence
 information from some user, it creates a SUBSCRIBE request. This
 request identifies the desired presentity in the Request-URI, using a
 SIP URI, SIPS URI [1] or a presence (pres) URI [3]. The SUBSCRIBE
 request is carried along SIP proxies as any other SIP request would
 be. In most cases, it eventually arrives at a presence server, which
 can either generate a response to the request (in which case it acts
 as the presence agent for the presentity), or proxy it on to an edge
 presence server. If the edge presence server handles the
 subscription, it is acting as the presence agent for the presentity.
 The decision at a presence server about whether to proxy or terminate
 the SUBSCRIBE is a local matter; however, we describe one way to
 effect such a configuration, using REGISTER.

Rosenberg Standards Track [Page 4]

RFC 3856 SIP Presence August 2004

 The presence agent (whether in the presence server or edge presence
 server) first authenticates the subscription, then authorizes it.
 The means for authorization are outside the scope of this protocol,
 and we expect that many mechanisms will be used. If authorized, a
 200 OK response is returned. If authorization could not be obtained
 at this time, the subscription is considered "pending", and a 202
 response is returned. In both cases, the PA sends an immediate
 NOTIFY message containing the state of the presentity and of the
 subscription. The presentity state may be bogus in the case of a
 pending subscription, indicating offline no matter what the actual
 state of the presentity, for example. This is to protect the privacy
 of the presentity, who may not want to reveal that they have not
 provided authorization for the subscriber. As the state of the
 presentity changes, the PA generates NOTIFYs containing those state
 changes to all subscribers with authorized subscriptions. Changes in
 the state of the subscription itself can also trigger NOTIFY
 requests; that state is carried in the Subscription-State header
 field of the NOTIFY, and would typically indicate whether the
 subscription is active or pending.

 The SUBSCRIBE message establishes a "dialog" with the presence agent.
 A dialog is defined in RFC 3261 [1], and it represents the SIP state
 between a pair of entities to facilitate peer-to-peer message
 exchanges. This state includes the sequence numbers for messages in
 both directions (SUBSCRIBE from the subscriber, NOTIFY from the
 presence agent), in addition to a route set and remote target URI.
 The route set is a list of SIP (or SIPS) URIs which identify SIP
 proxy servers that are to be visited along the path of SUBSCRIBE
 refreshes or NOTIFY requests. The remote target URI is the SIP or
 SIPS URI that identifies the target of the message - the subscriber,
 in the case of NOTIFY, or the presence agent, in the case of a
 SUBSCRIBE refresh.

 SIP provides a procedure called record-routing that allows for proxy
 servers to request to be on the path of NOTIFY messages and SUBSCRIBE
 refreshes. This is accomplished by inserting a URI into the
 Record-Route header field in the initial SUBSCRIBE request.

 The subscription persists for a duration that is negotiated as part
 of the initial SUBSCRIBE. The subscriber will need to refresh the
 subscription before its expiration, if they wish to retain the
 subscription. This is accomplished by sending a SUBSCRIBE refresh
 within the same dialog established by the initial SUBSCRIBE. This
 SUBSCRIBE is nearly identical to the initial one, but contains a tag
 in the To header field, a higher CSeq header field value, and
 possibly a set of Route header field values that identify the path of
 proxies the request is to take.

Rosenberg Standards Track [Page 5]

RFC 3856 SIP Presence August 2004

 The subscriber can terminate the subscription by sending a SUBSCRIBE,
 within the dialog, with an Expires header field (which indicates
 duration of the subscription) value of zero. This causes an
 immediate termination of the subscription. A NOTIFY request is then
 generated by the presence agent with the most recent state. In fact,
 behavior of the presence agent for handling a SUBSCRIBE request with
 Expires of zero is no different than for any other expiration value;
 pending or authorized SUBSCRIBE requests result in a triggered NOTIFY
 with the current presentity and subscription state.

 The presence agent can terminate the subscription at any time. To do
 so, it sends a NOTIFY request with a Subscription-State header field
 indicating that the subscription has been terminated. A reason
 parameter can be supplied which provides the reason.

 It is also possible to fetch the current presence state, resulting in
 a one-time notification containing the current state. This is
 accomplished by sending a SUBSCRIBE request with an immediate
 expiration.

5. Usage of Presence URIs

 A presentity is identified in the most general way through a presence
 URI [3], which is of the form pres:user@domain. These URIs are
 resolved to protocol specific URIs, such as the SIP or SIPS URI,
 through domain-specific mapping policies maintained on a server.

 It is very possible that a user will have both a SIP (and/or SIPS)
 URI and a pres URI to identify both themself and other users. This
 leads to questions about how these URI relate and which are to be
 used.

 In some instances, a user starts with one URI format, such as the
 pres URI, and learns a URI in a different format through some
 protocol means. As an example, a SUBSCRIBE request sent to a pres
 URI will result in learning a SIP or SIPS URI for the presentity from
 the Contact header field of the 200 OK to the SUBSCRIBE request. As
 another example, a DNS mechanism might be defined that would allow
 lookup of a pres URI to obtain a SIP or SIPS URI. In cases where one
 URI is learned from another through protocol means, those means will
 often provide some kind of scoping that limit the lifetime of the
 learned URI. DNS, for example, provides a TTL which would limit the
 scope of the URI. These scopes are very useful to avoid stale or
 conflicting URIs for identifying the same resource. To ensure that a
 user can always determine whether a learned URI is still valid, it is
 RECOMMENDED that systems which provide lookup services for presence
 URIs have some kind of scoping mechanism.

Rosenberg Standards Track [Page 6]

RFC 3856 SIP Presence August 2004

 If a subscriber is only aware of the protocol-independent pres URI
 for a presentity, it follows the procedures defined in [5]. These
 procedures will result in the placement of the pres URI in the
 Request-URI of the SIP request, followed by the usage of the DNS
 procedures defined in [5] to determine the host to send the SIP
 request to. Of course, a local outbound proxy may alternatively be
 used, as specified in RFC 3261 [1]. If the subscriber is aware of
 both the protocol-independent pres URI and the SIP or SIPS URI for
 the same presentity, and both are valid (as discussed above) it
 SHOULD use the pres URI format. Of course, if the subscriber only
 knows the SIP URI for the presentity, that URI is used, and standard
 RFC 3261 processing will occur. When the pres URI is used, any
 proxies along the path of the SUBSCRIBE request which do not
 understand the URI scheme will reject the request. As such, it is
 expected that many systems will be initially deployed that only
 provide users with a SIP URI.

 SUBSCRIBE messages also contain logical identifiers that define the
 originator and recipient of the subscription (the To and From header
 fields). These headers can take either a pres or SIP URI. When the
 subscriber is aware of both a pres and SIP URI for its own identity,
 it SHOULD use the pres URI in the From header field. Similarly, when
 the subscriber is aware of both a pres and a SIP URI for the desired
 presentity, it SHOULD use the pres URI in the To header field.

 The usage of the pres URI instead of the SIP URI within the SIP
 message supports interoperability through gateways to other
 CPP-compliant systems. It provides a protocol-independent form of
 identification which can be passed between systems. Without such an
 identity, gateways would be forced to map SIP URIs into the
 addressing format of other protocols. Generally, this is done by
 converting the SIP URI to the form <foreign-protocol-scheme>:<encoded
 SIP URI>@<gateway>. This is commonly done in email systems, and has
 many known problems. The usage of the pres URI is a SHOULD, and not
 a MUST, to allow for cases where it is known that there are no
 gateways present, or where the usage of the pres URI will cause
 interoperability problems with SIP components that do not support the
 pres URI.

 The Contact, Record-Route and Route fields do not identify logical
 entities, but rather concrete ones used for SIP messaging. SIP [1]
 specifies rules for their construction.

6. Presence Event Package

 The SIP event framework [2] defines a SIP extension for subscribing
 to, and receiving notifications of, events. It leaves the definition
 of many aspects of these events to concrete extensions, known as

Rosenberg Standards Track [Page 7]

RFC 3856 SIP Presence August 2004

 event packages. This document qualifies as an event package. This
 section fills in the information required for all event packages by
 RFC 3265 [2].

6.1. Package Name

 The name of this package is "presence". As specified in RFC 3265
 [2], this value appears in the Event header field present in
 SUBSCRIBE and NOTIFY requests.

 Example:

 Event: presence

6.2. Event Package Parameters

 The SIP event framework allows event packages to define additional
 parameters carried in the Event header field. This package,
 presence, does not define any additional parameters.

6.3. SUBSCRIBE Bodies

 A SUBSCRIBE request MAY contain a body. The purpose of the body
 depends on its type. Subscriptions will normally not contain bodies.

 The Request-URI, which identifies the presentity, combined with the
 event package name, is sufficient for presence.

 One type of body that can be included in a SUBSCRIBE request is a
 filter document. These filters request that only certain presence
 events generate notifications, or would ask for a restriction on the
 set of data returned in NOTIFY requests. For example, a presence
 filter might specify that the notifications should only be generated
 when the status of the user’s instant inbox [10] changes. It might
 also say that the content of these notifications should only contain
 the status of the instant inbox. Filter documents are not specified
 in this document, and at the time of writing, are expected to be the
 subject of future standardization activity.

 Honoring of these filters is at the policy discretion of the PA.

 If the SUBSCRIBE request does not contain a filter, this tells the PA
 that no filter is to be applied. The PA SHOULD send NOTIFY requests
 at the discretion of its own policy.

Rosenberg Standards Track [Page 8]

RFC 3856 SIP Presence August 2004

6.4. Subscription Duration

 User presence changes as a result of many events. Some examples are:

 o Turning on and off of a cell phone

 o Modifying the registration from a softphone

 o Changing the status on an instant messaging tool

 These events are usually triggered by human intervention, and occur
 with a frequency on the order of seconds to hours. As such,
 subscriptions should have an expiration in the middle of this range,
 which is roughly one hour. Therefore, the default expiration time
 for subscriptions within this package is 3600 seconds. As per RFC
 3265 [2], the subscriber MAY specify an alternate expiration in the
 Expires header field.

6.5. NOTIFY Bodies

 As described in RFC 3265 [2], the NOTIFY message will contain bodies
 that describe the state of the subscribed resource. This body is in
 a format listed in the Accept header field of the SUBSCRIBE, or a
 package-specific default if the Accept header field was omitted from
 the SUBSCRIBE.

 In this event package, the body of the notification contains a
 presence document. This document describes the presence of the
 presentity that was subscribed to. All subscribers and notifiers
 MUST support the "application/pidf+xml" presence data format
 described in [6]. The subscribe request MAY contain an Accept header
 field. If no such header field is present, it has a default value of
 "application/pidf+xml". If the header field is present, it MUST
 include "application/pidf+xml", and MAY include any other types
 capable of representing user presence.

6.6. Notifier Processing of SUBSCRIBE Requests

 Based on the proxy routing procedures defined in the SIP
 specification, the SUBSCRIBE request will arrive at a presence agent
 (PA). This subsection defines package-specific processing at the PA
 of a SUBSCRIBE request. General processing rules for requests are
 covered in Section 8.2 of RFC 3261 [1], in addition to general
 SUBSCRIBE processing in RFC 3265 [2].

Rosenberg Standards Track [Page 9]

RFC 3856 SIP Presence August 2004

 User presence is highly sensitive information. Because the
 implications of divulging presence information can be severe, strong
 requirements are imposed on the PA regarding subscription processing,
 especially related to authentication and authorization.

6.6.1. Authentication

 A presence agent MUST authenticate all subscription requests. This
 authentication can be done using any of the mechanisms defined in RFC
 3261 [1]. Note that digest is mandatory to implement, as specified
 in RFC 3261.

 In single-domain systems, where the subscribers all have shared
 secrets with the PA, the combination of digest authentication over
 Transport Layer Security (TLS) [7] provides a secure and workable
 solution for authentication. This use case is described in Section
 26.3.2.1 of RFC 3261 [1].

 In inter-domain scenarios, establishing an authenticated identity of
 the subscriber is harder. It is anticipated that authentication will
 often be established through transitive trust. SIP mechanisms for
 network asserted identity can be applied to establish the identity of
 the subscriber [11].

 A presentity MAY choose to represent itself with a SIPS URI. By
 "represent itself", it means that the user represented by the
 presentity hands out, on business cards, web pages, and so on, a SIPS
 URI for their presentity. The semantics associated with this URI, as
 described in RFC 3261 [1], require TLS usage on each hop between the
 subscriber and the server in the domain of the URI. This provides
 additional assurances (but no absolute guarantees) that identity has
 been verified at each hop.

 Another mechanism for authentication is S/MIME. Its usage with SIP
 is described fully in RFC 3261 [1]. It provides an end-to-end
 authentication mechanism that can be used for a PA to establish the
 identity of the subscriber.

6.6.2. Authorization

 Once authenticated, the PA makes an authorization decision. A PA
 MUST NOT accept a subscription unless authorization has been provided
 by the presentity. The means by which authorization are provided are
 outside the scope of this document. Authorization may have been
 provided ahead of time through access lists, perhaps specified in a
 web page. Authorization may have been provided by means of uploading
 of some kind of standardized access control list document. Back end
 authorization servers, such as a DIAMETER [12] server, can also be

Rosenberg Standards Track [Page 10]

RFC 3856 SIP Presence August 2004

 used. It is also useful to be able to query the user for
 authorization following the receipt of a subscription request for
 which no authorization information has been provided. The
 "watcherinfo" event template package for SIP [8] defines a means by
 which a presentity can become aware that a user has attempted to
 subscribe to it, so that it can then provide an authorization
 decision.

 Authorization decisions can be very complex. Ultimately, all
 authorization decisions can be mapped into one of three states:
 rejected, successful, and pending. Any subscription for which the
 client is authorized to receive information about some subset of
 presence state at some points in time is a successful subscription.
 Any subscription for which the client will never receive any
 information about any subset of the presence state is a rejected
 subscription. Any subscription for which it is not yet known whether
 it is successful or rejected is pending. Generally, a pending
 subscription occurs when the server cannot obtain authorization at
 the time of the subscription, but may be able to do so at a later
 time, perhaps when the presentity becomes available.

 The appropriate response codes for conveying a successful, rejected,
 or pending subscription (200, 403 or 603, and 202, respectively) are
 described in RFC 3265 [2].

 If the resource is not in a meaningful state, RFC 3265 [2] allows the
 body of the initial NOTIFY to be empty. In the case of presence,
 that NOTIFY MAY contain a presence document. This document would
 indicate whatever presence state the subscriber has been authorized
 to see; it is interpreted by the subscriber as the current presence
 state of the presentity. For pending subscriptions, the state of the
 presentity SHOULD include some kind of textual note that indicates a
 pending status.

 Polite blocking, as described in [13], is possible by generating a
 200 OK to the subscription even though it has been rejected (or
 marked pending). Of course, an immediate NOTIFY will still be sent.
 The contents of the presence document in such a NOTIFY are at the
 discretion of the implementor, but SHOULD be constructed in such a
 way as to not reveal to the subscriber that their request has
 actually been blocked. Typically, this is done by indicating
 "offline" or equivalent status for a single contact address.

6.7. Notifier Generation of NOTIFY Requests

 RFC 3265 details the formatting and structure of NOTIFY messages.
 However, packages are mandated to provide detailed information on
 when to send a NOTIFY, how to compute the state of the resource, how

Rosenberg Standards Track [Page 11]

RFC 3856 SIP Presence August 2004

 to generate neutral or fake state information, and whether state
 information is complete or partial. This section describes those
 details for the presence event package.

 A PA MAY send a NOTIFY at any time. Typically, it will send one when
 the state of the presentity changes. The NOTIFY request MAY contain
 a body indicating the state of the presentity. The times at which
 the NOTIFY is sent for a particular subscriber, and the contents of
 the body within that notification, are subject to any rules specified
 by the authorization policy that governs the subscription. This
 protocol in no way limits the scope of such policies. As a baseline,
 a reasonable policy is to generate notifications when the state of
 any of the presence tuples changes. These notifications would
 contain the complete and current presence state of the presentity as
 known to the presence agent. Future extensions can be defined that
 allow a subscriber to request that the notifications contain changes
 in presence information only, rather than complete state.

 In the case of a pending subscription, when final authorization is
 determined, a NOTIFY can be sent. If the result of the authorization
 decision was success, a NOTIFY SHOULD be sent and SHOULD contain a
 presence document with the current state of the presentity. If the
 subscription is rejected, a NOTIFY MAY be sent. As described in RFC
 3265 [2], the Subscription-State header field indicates the state of
 the subscription.

 The body of the NOTIFY MUST be sent using one of the types listed in
 the Accept header field in the most recent SUBSCRIBE request, or
 using the type "application/pidf+xml" if no Accept header field was
 present.

 The means by which the PA learns the state of the presentity are also
 outside the scope of this recommendation. Registrations can provide
 a component of the presentity state. However, the means by which a
 PA uses registrations to construct a presence document are an
 implementation choice. If a PUA wishes to explicitly inform the
 presence agent of its presence state, it should explicitly publish
 the presence document (or its piece of it) rather than attempting to
 manipulate their registrations to achieve the desired result.

 For reasons of privacy, it will frequently be necessary to encrypt
 the contents of the notifications. This can be accomplished using
 S/MIME. The encryption can be performed using the key of the
 subscriber as identified in the From field of the SUBSCRIBE request.
 Similarly, integrity of the notifications is important to
 subscribers. As such, the contents of the notifications MAY provide
 authentication and message integrity using S/MIME. Since the NOTIFY
 is generated by the presence server, which may not have access to the

Rosenberg Standards Track [Page 12]

RFC 3856 SIP Presence August 2004

 key of the user represented by the presentity, it will frequently be
 the case that the NOTIFY is signed by a third party. It is
 RECOMMENDED that the signature be by an authority over the domain of
 the presentity. In other words, for a user pres:user@example.com,
 the signator of the NOTIFY SHOULD be the authority for example.com.

6.8. Subscriber Processing of NOTIFY Requests

 RFC 3265 [2] leaves it to event packages to describe the process
 followed by the subscriber upon receipt of a NOTIFY request,
 including any logic required to form a coherent resource state.

 In this specification, each NOTIFY contains either no presence
 document, or a document representing the complete and coherent state
 of the presentity. Within a dialog, the presence document in the
 NOTIFY request with the highest CSeq header field value is the
 current one. When no document is present in that NOTIFY, the
 presence document present in the NOTIFY with the next highest CSeq
 value is used. Extensions which specify the use of partial state for
 presentities will need to dictate how coherent state is achieved.

6.9. Handling of Forked Requests

 RFC 3265 [2] requires each package to describe handling of forked
 SUBSCRIBE requests.

 This specification only allows a single dialog to be constructed as a
 result of emitting an initial SUBSCRIBE request. This guarantees
 that only a single PA is generating notifications for a particular
 subscription to a particular presentity. The result of this is that
 a presentity can have multiple PAs active, but these should be
 homogeneous, so that each can generate the same set of notifications
 for the presentity. Supporting heterogeneous PAs, each of which
 generates notifications for a subset of the presence data, is complex
 and difficult to manage. Doing so would require the subscriber to
 act as the aggregator for presence data. This aggregation function
 can only reasonably be performed by agents representing the
 presentity. Therefore, if aggregation is needed, it MUST be done in
 a PA representing the presentity.

 Section 4.4.9 of RFC 3265 [2] describes the processing that is
 required to guarantee the creation of a single dialog in response to
 a SUBSCRIBE request.

Rosenberg Standards Track [Page 13]

RFC 3856 SIP Presence August 2004

6.10. Rate of Notifications

 RFC 3265 [2] requires each package to specify the maximum rate at
 which notifications can be sent.

 A PA SHOULD NOT generate notifications for a single presentity at a
 rate of more than once every five seconds.

6.11. State Agents

 RFC 3265 [2] requires each package to consider the role of state
 agents in the package, and if they are used, to specify how
 authentication and authorization are done.

 State agents are core to this package. Whenever the PA is not
 co-located with the PUA for the presentity, the PA is acting as a
 state agent. It collects presence state from the PUA, and aggregates
 it into a presence document. Because there can be multiple PUA, a
 centralized state agent is needed to perform this aggregation. That
 is why state agents are fundamental to presence. Indeed, they have a
 specific term that describes them - a presence server.

6.11.1. Aggregation, Authentication, and Authorization

 The means by which aggregation is done in the state agent is purely a
 matter of policy. The policy will typically combine the desires of
 the presentity along with the desires of the provider. This document
 in no way restricts the set of policies which may be applied.

 However, there is clearly a need for the state agent to have access
 to the state of the presentity. This state is manipulated by the
 PUA. One way in which the state agent can obtain this state is to
 subscribe to it. As a result, if there were 5 PUA manipulating
 presence state for a single presentity, the state agent would
 generate 5 subscriptions, one to each PUA. For this mechanism to be
 effective, all PUA SHOULD be capable of acting as a PA for the state
 that they manipulate, and that they authorize subscriptions that can
 be authenticated as coming from the domain of the presentity.

 The usage of state agents does not significantly alter the way in
 which authentication is done by the PA. Any of the SIP
 authentication mechanisms can be used by a state agent. However,
 digest authentication will require the state agent to be aware of the
 shared secret between the presentity and the subscriber. This will
 require some means to securely transfer the shared secrets from the
 presentity to the state agent.

Rosenberg Standards Track [Page 14]

RFC 3856 SIP Presence August 2004

 The usage of state agents does, however, have a significant impact on
 authorization. As stated in Section 6.6, a PA is required to
 authorize all subscriptions. If no explicit authorization policy has
 been defined, the PA will need to query the user for authorization.
 In a presence edge server (where the PUA is co-located with the PUA),
 this is trivially accomplished. However, when state agents are used
 (i.e., a presence server), a means is needed to alert the user that
 an authorization decision is required. This is the reason for the
 watcherinfo event template-package [8]. All state agents SHOULD
 support the watcherinfo template-package.

6.11.2. Migration

 On occasion, it makes sense for the PA function to migrate from one
 server to another. For example, for reasons of scale, the PA
 function may reside in the presence server when the PUA is not
 running, but when the PUA connects to the network, the PA migrates
 subscriptions to it in order to reduce state in the network. The
 mechanism for accomplishing the migration is described in Section
 3.3.5 of RFC 3265 [2]. However, packages need to define under what
 conditions such a migration would take place.

 A PA MAY choose to migrate subscriptions at any time, through
 configuration, or through dynamic means. The REGISTER request
 provides one dynamic means for a presence server to discover that the
 function can migrate to a PUA. Specifically, if a PUA wishes to
 indicate support for the PA function, it SHOULD use the callee
 capabilities specification [9] to indicate that it supports the
 SUBSCRIBE request method and the presence event package. The
 combination of these two define a PA. Of course, a presence server
 can always attempt a migration without these explicit hints. If it
 fails with either a 405 or 489 response code, the server knows that
 the PUA does not support the PA function. In this case, the server
 itself will need to act as a PA for that subscription request. Once
 such a failure has occurred, the server SHOULD NOT attempt further
 migrations to that PUA for the duration of its registration.
 However, to avoid the extra traffic generated by these failed
 requests, a presence server SHOULD support the callee capabilities
 extension.

 Furthermore, indication of support for the SUBSCRIBE request and the
 presence event package is not sufficient for migration of
 subscriptions. A PA SHOULD NOT migrate the subscription if it is
 composing aggregated presence documents received from multiple PUA.

Rosenberg Standards Track [Page 15]

RFC 3856 SIP Presence August 2004

7. Learning Presence State

 Presence information can be obtained by the PA in many ways. No
 specific mechanism is mandated by this specification. This section
 overviews some of the options, for informational purposes only.

7.1. Co-location

 When the PA function is co-located with the PUA, presence is known
 directly by the PA.

7.2. REGISTER

 A UA uses the SIP REGISTER method to inform the SIP network of its
 current communications addresses (i.e., Contact addresses). Multiple
 UA can independently register Contact addresses for the same
 address-of-record. This registration state represents an important
 piece of the overall presence information for a presentity. It is an
 indication of basic reachability for communications.

 Usage of REGISTER information to construct presence is only possible
 if the PA has access to the registration database, and can be
 informed of changes to that database. One way to accomplish that is
 to co-locate the PA with the registrar.

 The means by which registration state is converted into presence
 state is a matter of local policy, and beyond the scope of this
 specification. However, some general guidelines can be provided.
 The address-of-record in the registration (the To header field)
 identifies the presentity. Each registered Contact header field
 identifies a point of communications for that presentity, which can
 be modeled using a tuple. Note that the contact address in the tuple
 need not be the same as the registered contact address. Using an
 address-of-record instead allows subsequent communications from a
 watcher to pass through proxies. This is useful for policy
 processing on behalf of the presentity and the provider.

 A PUA that uses registrations to manipulate presence state SHOULD
 make use of the SIP callee capabilities extension [9]. This allows
 the PUA to provide the PA with richer information about itself. For
 example, the presence of the methods parameter listing the method
 "MESSAGE" indicates support for instant messaging.

 The q values from the Contact header field [1] can be used to
 establish relative priorities amongst the various communications
 addresses in the Contact header fields.

Rosenberg Standards Track [Page 16]

RFC 3856 SIP Presence August 2004

 The usage of registrations to obtain presence information increases
 the requirements for authenticity and integrity of registrations.
 Therefore, REGISTER requests used by presence user agents MUST be
 authenticated.

7.3. Uploading Presence Documents

 If a means exists to upload presence documents from PUA to the PA,
 the PA can act as an aggregator and redistributor of those documents.
 The PA, in this case, would take the presence documents received from
 each PUA for the same presentity, and merge the tuples across all of
 those PUA into a single presence document. Typically, this
 aggregation would be accomplished through administrator or user
 defined policies about how the aggregation should be done.

 The specific means by which a presence document is uploaded to a
 presence agent are outside the scope of this specification. When a
 PUA wishes to have direct manipulation of the presence that is
 distributed to subscribers, direct uploading of presence documents is
 RECOMMENDED.

8. Example Message Flow

 This message flow illustrates how the presence server can be
 responsible for sending notifications for a presentity. This flow
 assumes that the watcher has previously been authorized to subscribe
 to this resource at the server.

 In this flow, the PUA informs the server about the updated presence
 information through some non-SIP means.

 When the value of the Content-Length header field is "..." this means
 that the value should be whatever the computed length of the body is.

Rosenberg Standards Track [Page 17]

RFC 3856 SIP Presence August 2004

 Watcher Server PUA
 | F1 SUBSCRIBE | |
 |------------------>| |
 | F2 200 OK | |
 |<------------------| |
 | F3 NOTIFY | |
 |<------------------| |
 | F4 200 OK | |
 |------------------>| |
 | | |
 | | Update presence |
 | |<------------------ |
 | | |
 | F5 NOTIFY | |
 |<------------------| |
 | F6 200 OK | |
 |------------------>| |

 Message Details

 F1 SUBSCRIBE watcher->example.com server

 SUBSCRIBE sip:resource@example.com SIP/2.0
 Via: SIP/2.0/TCP watcherhost.example.com;branch=z9hG4bKnashds7
 To: <sip:resource@example.com>
 From: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 CSeq: 17766 SUBSCRIBE
 Max-Forwards: 70
 Event: presence
 Accept: application/pidf+xml
 Contact: <sip:user@watcherhost.example.com>
 Expires: 600
 Content-Length: 0

Rosenberg Standards Track [Page 18]

RFC 3856 SIP Presence August 2004

 F2 200 OK example.com server->watcher

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP watcherhost.example.com;branch=z9hG4bKnashds7
 ;received=192.0.2.1
 To: <sip:resource@example.com>;tag=ffd2
 From: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 CSeq: 17766 SUBSCRIBE
 Expires: 600
 Contact: sip:server.example.com
 Content-Length: 0

 F3 NOTIFY example.com server-> watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sk
 From: <sip:resource@example.com>;tag=ffd2
 To: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 Event: presence
 Subscription-State: active;expires=599
 Max-Forwards: 70
 CSeq: 8775 NOTIFY
 Contact: sip:server.example.com
 Content-Type: application/pidf+xml
 Content-Length: ...

 [PIDF Document]

 F4 200 OK watcher-> example.com server

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sk
 ;received=192.0.2.2
 From: <sip:resource@example.com>;tag=ffd2
 To: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 CSeq: 8775 NOTIFY
 Content-Length: 0

Rosenberg Standards Track [Page 19]

RFC 3856 SIP Presence August 2004

 F5 NOTIFY example.com server -> watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sl
 From: <sip:resource@example.com>;tag=ffd2
 To: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 CSeq: 8776 NOTIFY
 Event: presence
 Subscription-State: active;expires=543
 Max-Forwards: 70
 Contact: sip:server.example.com
 Content-Type: application/pidf+xml
 Content-Length: ...

 [New PIDF Document]

 F6 200 OK

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sl
 ;received=192.0.2.2
 From: <sip:resource@example.com>;tag=ffd2
 To: <sip:user@example.com>;tag=xfg9
 Call-ID: 2010@watcherhost.example.com
 CSeq: 8776 NOTIFY
 Content-Length: 0

9. Security Considerations

 There are numerous security considerations for presence. RFC 2779
 [13] outlines many of them, and they are discussed above. This
 section considers them issue by issue.

9.1. Confidentiality

 Confidentiality encompasses many aspects of a presence system:

 o Subscribers may not want to reveal the fact that they have
 subscribed to certain users

 o Users may not want to reveal that they have accepted
 subscriptions from certain users

 o Notifications (and fetch results) may contain sensitive data
 which should not be revealed to anyone but the subscriber

Rosenberg Standards Track [Page 20]

RFC 3856 SIP Presence August 2004

 Confidentiality is provided through a combination of hop-by-hop
 encryption and end-to-end encryption. The hop-by-hop mechanisms
 provide scalable confidentiality services, disable attacks involving
 traffic analysis, and hide all aspects of presence messages.
 However, they operate based on transitivity of trust, and they cause
 message content to be revealed to proxies. The end-to-end mechanisms
 do not require transitivity of trust, and reveal information only to
 the desired recipient. However, end-to-end encryption cannot hide
 all information, and is susceptible to traffic analysis. Strong
 end-to-end authentication and encryption can be done using public
 keys, and end-to-end encryption can be done using private keys [14].
 Both hop-by-hop and end-to-end mechanisms will likely be needed for
 complete privacy services.

 SIP allows any hop by hop encryption scheme, but TLS is mandatory to
 implement for servers. Therefore, it is RECOMMENDED that TLS [7] be
 used between elements to provide this function. The details for
 usage of TLS for server-to-server and client-to-server security are
 detailed in Section 26.3.2 of RFC 3261 [1].

 SIP encryption, using S/MIME, MAY be used end-to-end for the
 transmission of both SUBSCRIBE and NOTIFY requests.

9.2. Message Integrity and Authenticity

 It is important for the message recipient to ensure that the message
 contents are actually what was sent by the originator, and that the
 recipient of the message be able to determine who the originator
 really is. This applies to both requests and responses of SUBSCRIBE
 and NOTIFY. NOTIFY requests are particularly important. Without
 authentication and integrity, presence documents could be forged or
 modified, fooling the watcher into believing incorrect presence
 information.

 RFC 3261 provides many mechanisms to provide these features. In
 order for the PA to authenticate the watcher, it MAY use HTTP Digest
 (Section 22 of RFC 3261). As a result, all watchers MUST support
 HTTP Digest. This is a redundant requirement, however, since all SIP
 user agents are mandated to support it by RFC 3261. To provide
 authenticity and integrity services, a watcher MAY use the SIPS
 scheme when subscribing to the presentity. To support this, all PA
 MUST support TLS and SIPS as if they were a proxy (see Section 26.3.1
 of RFC 3261).

 Furthermore, SMIME MAY be used for integrity and authenticity of
 SUBSCRIBE and NOTIFY requests. This is described in Section 23 of
 RFC 3261.

Rosenberg Standards Track [Page 21]

RFC 3856 SIP Presence August 2004

9.3. Outbound Authentication

 When local proxies are used for transmission of outbound messages,
 proxy authentication is RECOMMENDED. This is useful to verify the
 identity of the originator, and prevent spoofing and spamming at the
 originating network.

9.4. Replay Prevention

 Replay attacks can be used by an attacker to fool a watcher into
 believing an outdated presence state for a presentity. For example,
 a document describing a presentity as being "offline" can be
 replayed, fooling watchers into thinking that the user is never
 online. This may effectively block communications with the
 presentity.

 SIP S/MIME can provide message integrity and authentication over SIP
 request bodies. Watchers and PAs MAY implement S/MIME signatures to
 prevent these replay attacks. When it is used for that purpose, the
 presence document carried in the NOTIFY request MUST contain a
 timestamp. In the case of PIDF, this is accomplished using the
 timestamp element, as described in Section 6 of [6]. Tuples whose
 timestamp is older than the timestamp of the most recently received
 presence document SHOULD be considered stale, and discarded.

 Finally, HTTP digest authentication (which MUST be implemented by
 watchers and PAs) MAY be used to prevent replay attacks, when there
 is a shared secret between the PA and the watcher. In such a case,
 the watcher can challenge the NOTIFY requests with the auth-int
 quality of protection.

9.5. Denial of Service Attacks Against Third Parties

 Denial of Service (DOS) attacks are a critical problem for an open,
 inter-domain, presence protocol. Unfortunately, presence is a good
 candidate for Distributed DoS (DDOS) attacks because of its
 amplification properties. A single SUBSCRIBE message could generate
 a nearly unending stream of notifications, so long as a suitably
 dynamic source of presence data can be found. Thus, a simple way to
 launch an attack against a target is to send subscriptions to a large
 number of users, and in the Contact header field (which is where
 notifications are sent), place the address of the target. RFC 3265
 provides some mechanisms to mitigate these attacks [2]. If a NOTIFY
 is not acknowledged or was not wanted, the subscription that
 generated it is removed. This eliminates the amplification
 properties of providing false Contact addresses.

Rosenberg Standards Track [Page 22]

RFC 3856 SIP Presence August 2004

 Authentication and authorization at the PA can also prevent these
 attacks. Typically, authorization policy will not allow
 subscriptions from unknown watchers. If the attacks are launched
 from watchers unknown to the presentity (a common case), the attacks
 are mitigated.

9.6. Denial Of Service Attacks Against Servers

 Denial of service attacks can also be launched against a presence
 agent itself, in order to disrupt service to a community of users.
 SIP itself, along with RFC 3265 [2], describes several mechanisms to
 mitigate these attacks.

 A server can prevent SYN-attack style attacks through a four-way
 handshake using digest authentication [1]. Even if the server does
 not have a shared secret with the client, it can verify the source IP
 address of the request using the "anonymous" user mechanism described
 in Section 22.1 of RFC 3261 [1]. SIP also allows a server to
 instruct a client to back-off from sending it requests, using the 503
 response code (Section 21.5.4 of RFC 3261 [1]). This can be used to
 fend off floods of SUBSCRIBE requests launched as a result of a
 distributed denial of service attack.

10. IANA Considerations

 This specification registers an event package, based on the
 registration procedures defined in RFC 3265 [2]. The following is
 the information required for such a registration:

 Package Name: presence

 Package or Template-Package: This is a package.

 Published Document: RFC 3856

 Person to Contact: Jonathan Rosenberg, jdrosen@jdrosen.net.

Rosenberg Standards Track [Page 23]

RFC 3856 SIP Presence August 2004

11. Contributors

 The following individuals were part of the initial team that worked
 through the technical design of this specification:

 Jonathan Lennox
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003

 EMail: lennox@cs.columbia.edu

 Robert Sparks
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024

 EMail: rsparks@dynamicsoft.com

 Ben Campbell

 EMail: ben@nostrum.com

 Dean Willis
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024

 EMail: dwillis@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003

 EMail: schulzrinne@cs.columbia.edu

Rosenberg Standards Track [Page 24]

RFC 3856 SIP Presence August 2004

 Christian Huitema
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 EMail: huitema@microsoft.com

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 EMail: bernarda@microsoft.com

 David Gurle
 Reuters Corporation

 EMail: David.Gurle@reuters.com

 David Oran
 Cisco Systems
 170 West Tasman Dr.
 San Jose, CA 95134

 EMail: oran@cisco.com

12. Acknowledgements

 We would like to thank Rick Workman, Adam Roach, Sean Olson, Billy
 Biggs, Stuart Barkley, Mauricio Arango, Richard Shockey, Jorgen
 Bjorkner, Henry Sinnreich, Ronald Akers, Paul Kyzivat, Ya-Ching Tan,
 Patrik Faltstrom, Allison Mankin and Hisham Khartabil for their
 comments and support of this specification.

13. Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, H., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [3] Peterson, J., "Common Profile for Presence (CPP)", RFC 3859,
 August 2004.

 [4] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Rosenberg Standards Track [Page 25]

RFC 3856 SIP Presence August 2004

 [5] Peterson, J., "Address Resolution for Instant Messaging and
 Presence", RFC 3861, August 2004.

 [6] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
 J. Peterson, "Presence Information Data Format (PIDF)", RFC
 3863, August 2004.

 [7] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [8] Rosenberg, J., "A Watcher Information Event Template-Package for
 the Session Initiation Protocol (SIP)", RFC 3857, August 2004.

 [9] Schulzrinne, H. Rosenberg, J., and P. Kyzivat, "Indicating User
 Agent Capabilities in the Session Initiation Protocol (SIP)",
 RFC 3840, August 2004.

14. Informative References

 [10] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000.

 [11] Peterson, J., "Enhancements for Authenticated Identity
 Management in the Session Initiation Protocol (SIP)", Work in
 Progress, May 2004.

 [12] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J. Arkko,
 "Diameter Base Protocol", RFC 3588, September 2003.

 [13] Day, M., Aggarwal, S., Mohr, G., and J. Vincent, "Instant
 Messaging / Presence Protocol Requirements", RFC 2779, February
 2000.

 [14] Gutmann, P., "Password-Based Encryption for CMS", RFC 3211,
 December 2001.

15. Author’s Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054

 EMail: jdrosen@dynamicsoft.com

Rosenberg Standards Track [Page 26]

RFC 3856 SIP Presence August 2004

16. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Standards Track [Page 27]

