
Network Working Group J. Rosenberg
Request for Comments: 3857 dynamicsoft
Category: Standards Track August 2004

 A Watcher Information Event Template-Package for
 the Session Initiation Protocol (SIP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document defines the watcher information template-package for
 the Session Initiation Protocol (SIP) event framework. Watcher
 information refers to the set of users subscribed to a particular
 resource within a particular event package. Watcher information
 changes dynamically as users subscribe, unsubscribe, are approved, or
 are rejected. A user can subscribe to this information, and
 therefore learn about changes to it. This event package is a
 template-package because it can be applied to any event package,
 including itself.

Rosenberg Standards Track [Page 1]

RFC 3857 Watcher Information August 2004

Table of Contents

 1. Introduction .. 2
 2. Terminology ... 3
 3. Usage Scenarios 3
 3.1. Presence Authorization 4
 3.2. Blacklist Alerts 5
 4. Package Definition 5
 4.1. Event Package Name 5
 4.2. Event Package Parameters 5
 4.3. SUBSCRIBE Bodies 6
 4.4. Subscription Duration 6
 4.5. NOTIFY Bodies 7
 4.6. Notifier Processing of SUBSCRIBE Requests...... 7
 4.7. Notifier Generation of NOTIFY Requests 8
 4.7.1. The Subscription State Machine......... 9
 4.7.2. Applying the State Machine............. 11
 4.8. Subscriber Processing of NOTIFY Requests 12
 4.9. Handling of Forked Requests 12
 4.10. Rate of Notifications 13
 4.11. State Agents 13
 5. Example Usage 14
 6. Security Considerations 17
 6.1. Denial of Service Attacks 17
 6.2. Divulging Sensitive Information 17
 7. IANA Considerations 18
 8. Acknowledgements 18
 9. Normative References 18
 10. Informative References 19
 11. Author’s Address 19
 12. Full Copyright Statement 20

1. Introduction

 The Session Initiation Protocol (SIP) event framework is described in
 RFC 3265 [1]. It defines a generic framework for subscription to,
 and notification of, events related to SIP systems. The framework
 defines the methods SUBSCRIBE and NOTIFY, and introduces the notion
 of a package. A package is a concrete application of the event
 framework to a particular class of events. Packages have been
 defined for user presence [5], for example.

 This document defines a "template-package" within the SIP event
 framework. A template-package has all the properties of a regular
 SIP event package. However, it is always associated with some other
 event package, and can always be applied to any event package,
 including the template-package itself.

Rosenberg Standards Track [Page 2]

RFC 3857 Watcher Information August 2004

 The template-package defined here is for watcher information, and is
 denoted with the token "winfo". For any event package, such as
 presence, there exists a set (perhaps an empty set) of subscriptions
 that have been created or requested by users trying to ascertain the
 state of a resource in that package. This set of subscriptions
 changes over time as new subscriptions are requested by users, old
 subscriptions expire, and subscriptions are approved or rejected by
 the owners of that resource. The set of users subscribed to a
 particular resource for a specific event package, and the state of
 their subscriptions, is referred to as watcher information. Since
 this state is itself dynamic, it is reasonable to subscribe to it in
 order to learn about changes to it. The watcher information event
 template-package is meant to facilitate exactly that - tracking the
 state of subscriptions to a resource in another package.

 To denote this template-package, the name is constructed by appending
 ".winfo" to the name of whatever package is being tracked. For
 example, the set of people subscribed to presence is defined by the
 "presence.winfo" package.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP14, RFC 2119
 [2] and indicate requirement levels for compliant implementations.

 This document fundamentally deals with recursion - subscriptions to
 subscriptions. Therefore, the term "subscription" itself can be
 confusing in this document. To reduce confusion, the term
 "watcherinfo subscription" refers to a subscription to watcher
 information, and the term "watcherinfo subscriber" refers to a user
 that has subscribed to watcher information. The term "watcherinfo
 notification" refers to a NOTIFY request sent as part of a
 watcherinfo subscription. When the terms "subscription",
 "subscriber", and "notification" are used unqualified, they refer to
 the "inner" subscriptions, subscribers and notifications - those that
 are being monitored through the watcherinfo subscriptions. We also
 use the term "watcher" to refer to a subscriber to the "inner"
 resource. Information on watchers is reported through watcherinfo
 subscriptions.

3. Usage Scenarios

 There are many useful applications for the watcher information
 template-package.

Rosenberg Standards Track [Page 3]

RFC 3857 Watcher Information August 2004

3.1. Presence Authorization

 The motivating application for this template-package is presence
 authorization. When user A subscribes to the presence of user B, the
 subscription needs to be authorized. Frequently, that authorization
 needs to occur through direct user intervention. For that to happen,
 B’s software needs to become aware that a presence subscription has
 been requested. This is supported through watcher information. B’s
 client software would SUBSCRIBE to the watcher information for the
 presence of B:

 SUBSCRIBE sip:B@example.com SIP/2.0
 Via: SIP/2.0/UDP pc34.example.com;branch=z9hG4bKnashds7
 From: sip:B@example.com;tag=123s8a
 To: sip:B@example.com
 Call-ID: 9987@pc34.example.com
 Max-Forwards: 70
 CSeq: 9887 SUBSCRIBE
 Contact: sip:B@pc34.example.com
 Event: presence.winfo

 The policy of the server is such that it allows B to subscribe to its
 own watcher information. So, when A subscribes to B’s presence, B
 gets a notification of the change in watcher information state:

 NOTIFY sip:B@pc34.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com;branch=z9hG4bKna66g
 From: sip:B@example.com;tag=xyz887
 To: sip:B@example.com;tag=123s8a
 Call-ID: 9987@pc34.example.com
 Max-Forwards: 70
 CSeq: 1288 NOTIFY
 Contact: sip:B@server.example.com
 Event: presence.winfo
 Content-Type: application/watcherinfo+xml
 Content-Length: ...

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:B@example.com" package="presence">
 <watcher id="7768a77s" event="subscribe"
 status="pending">sip:A@example.com</watcher>
 </watcher-list>
 </watcherinfo>

Rosenberg Standards Track [Page 4]

RFC 3857 Watcher Information August 2004

 This indicates to B that A has subscribed, and that the subscription
 is pending (meaning, it is awaiting authorization). B’s software can
 alert B that this subscription is awaiting authorization. B can then
 set policy for that subscription.

3.2. Blacklist Alerts

 Applications can subscribe to watcher information in order to provide
 value-added features. An example application is "blacklist alerts".
 In this scenario, an application server maintains a list of known
 "bad guys". A user, Joe, signs up for service with the application
 provider, presumably by going to a web page and entering in his
 presence URI. The application server subscribes to the watcher
 information for Joe’s presence. When someone attempts to SUBSCRIBE
 to Joe’s user presence, the application learns of this subscription
 as a result of its watcher info subscription. It checks the
 watcher’s URI against the database of known bad guys. If there is a
 match, it sends email to Joe letting him know about this.

 For this application to work, Joe needs to make sure that the
 application is allowed to subscribe to his presence.winfo.

4. Package Definition

 This section fills in the details needed to specify an event package
 as defined in Section 4.4 of RFC 3265 [1].

4.1. Event Package Name

 RFC 3265 [1] requires package definitions to specify the name of
 their package or template-package.

 The name of this template-package is "winfo". It can be applied to
 any other package. Watcher information for any package foo is
 denoted by the name "foo.winfo". Recursive template-packaging is
 explicitly allowed (and useful), so that "foo.winfo.winfo" is a valid
 package name.

4.2. Event Package Parameters

 RFC 3265 [1] requires package and template-package definitions to
 specify any package specific parameters of the Event header field.

 No package specific Event header field parameters are defined for
 this event template-package.

Rosenberg Standards Track [Page 5]

RFC 3857 Watcher Information August 2004

4.3. SUBSCRIBE Bodies

 RFC 3265 [1] requires package or template-package definitions to
 define the usage, if any, of bodies in SUBSCRIBE requests.

 A SUBSCRIBE request for watcher information MAY contain a body. This
 body would serve the purpose of filtering the watcherinfo
 subscription. The definition of such a body is outside the scope of
 this specification. For example, in the case of presence, the body
 might indicate that notifications should contain full state every
 time something changes, and that the time the subscription was first
 made should not be included in the watcherinfo notifications.

 A SUBSCRIBE request for a watcher information package MAY be sent
 without a body. This implies the default watcherinfo subscription
 filtering policy has been requested. The default policy is:

 o Watcherinfo notifications are generated every time there is any
 change in the state of the watcher information.

 o Watcherinfo notifications triggered from a SUBSCRIBE contain full
 state (the list of all watchers that the watcherinfo subscriber is
 permitted to know about). Watcherinfo notifications triggered
 from a change in watcher state only contain information on the
 watcher whose state has changed.

 Of course, the server can apply any policy it likes to the
 subscription.

4.4. Subscription Duration

 RFC 3265 [1] requires package definitions to define a default value
 for subscription durations, and to discuss reasonable choices for
 durations when they are explicitly specified.

 Watcher information changes as users subscribe to a particular
 resource for some package, or their subscriptions time out. As a
 result, the state of watcher information can change very dynamically,
 depending on the number of subscribers for a particular resource in a
 given package. The rate at which subscriptions time out depends on
 how long a user maintains its subscription. Typically, watcherinfo
 subscriptions will be timed to span the lifetime of the subscriptions
 being watched, and therefore range from minutes to days.

 As a result of these factors, it is difficult to define a broadly
 useful default value for the lifetime of a watcherinfo subscription.
 We arbitrarily choose one hour. However, clients SHOULD use an
 Expires header field to specify their preferred duration.

Rosenberg Standards Track [Page 6]

RFC 3857 Watcher Information August 2004

4.5. NOTIFY Bodies

 RFC 3265 [1] requires package definitions to describe the allowed set
 of body types in NOTIFY requests, and to specify the default value to
 be used when there is no Accept header field in the SUBSCRIBE
 request.

 The body of the watcherinfo notification contains a watcher
 information document. This document describes some or all of the
 watchers for a resource within a given package, and the state of
 their subscriptions. All watcherinfo subscribers and notifiers MUST
 support the application/watcherinfo+xml format described in [3], and
 MUST list its MIME type, application/watcherinfo+xml, in any Accept
 header field present in the SUBSCRIBE request.

 Other watcher information formats might be defined in the future. In
 that case, the watcherinfo subscriptions MAY indicate support for
 other formats. However, they MUST always support and list
 application/watcherinfo+xml as an allowed format.

 Of course, the watcherinfo notifications generated by the server MUST
 be in one of the formats specified in the Accept header field in the
 SUBSCRIBE request. If no Accept header field was present, the
 notifications MUST use the application/watcherinfo+xml format
 described in [3].

4.6. Notifier Processing of SUBSCRIBE Requests

 RFC 3265 [1] specifies that packages should define any package-
 specific processing of SUBSCRIBE requests at a notifier, specifically
 with regards to authentication and authorization.

 The watcher information for a particular package contains sensitive
 information. Therefore, all watcherinfo subscriptions SHOULD be
 authenticated and then authorized before approval. Authentication
 MAY be performed using any of the techniques available through SIP,
 including digest, S/MIME, TLS or other transport specific mechanisms
 [4]. Authorization policy is at the discretion of the administrator,
 as always. However, a few recommendations can be made.

 It is RECOMMENDED that user A be allowed to subscribe to their own
 watcher information for any package. This is true recursively, so
 that it is RECOMMENDED that a user be able to subscribe to the
 watcher information for their watcher information for any package.

 It is RECOMMENDED that watcherinfo subscriptions for some package foo
 for user A be allowed from some other user B, if B is an authorized
 subscriber to A within the package foo. However, it is RECOMMENDED

Rosenberg Standards Track [Page 7]

RFC 3857 Watcher Information August 2004

 that the watcherinfo notifications sent to B only contain the state
 of B’s own subscription. In other words, it is RECOMMENDED that a
 user be allowed to monitor the state of their own subscription.

 To avoid infinite recursion of authorization policy, it is
 RECOMMENDED that only user A be allowed to subscribe to
 foo.winfo.winfo for user A, for any foo. It is also RECOMMENDED that
 by default, a server does not authorize any subscriptions to
 foo.winfo.winfo.winfo or any other deeper recursions.

4.7. Notifier Generation of NOTIFY Requests

 The SIP Event framework requests that packages specify the conditions
 under which notifications are sent for that package, and how such
 notifications are constructed.

 Each watcherinfo subscription is associated with a set of "inner"
 subscriptions being watched. This set is defined by the URI in the
 Request URI of the watcherinfo SUBSCRIBE request, along with the
 parent event package of the watcherinfo subscription. The parent
 event package is obtained by removing the trailing ".winfo" from the
 value of the Event header field from the watcherinfo SUBSCRIBE
 request. If the Event header field in the watcherinfo subscription
 has a value of "presence.winfo", the parent event package is
 "presence". If the Event header field has a value of
 "presence.winfo.winfo", the parent event package is "presence.winfo".
 Normally, the URI in the Request URI of the watcherinfo SUBSCRIBE
 identifies an address-of-record within the domain. In that case, the
 set of subscriptions to be watched are all of the subscriptions for
 the parent event package that have been made to the resource in the
 Request URI of the watcherinfo SUBSCRIBE. However, the Request URI
 can contain a URI that identifies any set of subscriptions, including
 the subscriptions to a larger collection of resources. For example,
 sip:all-resources@example.com might be defined within example.com to
 refer to all resources. In that case, a watcherinfo subscription for
 "presence.winfo" to sip:all-resources@example.com is requesting
 notifications any time the state of any presence subscription for any
 resource within example.com changes. A watcherinfo notifier MAY
 generate a notification any time the state of any of the watched
 subscriptions changes.

 Because a watcherinfo subscription is made to a collection of
 subscriptions, the watcher information package needs a model of
 subscription state. This is accomplished by specifying a
 subscription Fine State Machine (FSM), described below, which governs
 the subscription state of a user in any package. Watcherinfo
 notifications MAY be generated on transitions in this state machine.
 It’s important to note that this FSM is just a model of the

Rosenberg Standards Track [Page 8]

RFC 3857 Watcher Information August 2004

 subscription state machinery maintained by a server. An
 implementation would map its own state machines to this one in an
 implementation-specific manner.

4.7.1. The Subscription State Machine

 The underlying state machine for a subscription is shown in Figure 1.
 It derives almost entirely from the descriptions in RFC 3265 [1], but
 adds the notion of a waiting state.

 When a SUBSCRIBE request arrives, the subscription FSM is created in
 the init state. This state is transient. The next state depends on
 whether policy exists for the subscription. If there is an existing
 policy that determines that the subscription is forbidden, it moves
 into the terminated state immediately, where the FSM can be
 destroyed. If there is existing policy that determines that the
 subscription is authorized, the FSM moves into the active state.
 This state indicates that the subscriber will receive notifications.

 If, when a subscription arrives, there is no authorization policy in
 existence, the subscription moves into the pending state. In this
 state, the server is awaiting an authorization decision. No
 notifications are generated on changes in presence state (an initial
 NOTIFY will have been delivered as per RFC 3265 [1]), but the
 subscription FSM is maintained. If the authorization decision comes
 back positive, the subscription is approved, and moves into the
 active state. If the authorization is negative, the subscription is
 rejected, and the FSM goes into the terminated state. It is possible
 that the authorization decision can take a very long time. In fact,
 no authorization decision may arrive until after the subscription
 itself expires. If a pending subscription suffers a timeout, it
 moves into the waiting state. At any time, the server can decide to
 end a pending or waiting subscription because it is concerned about
 allocating memory and CPU resources to unauthorized subscription
 state. If this happens, a "giveup" event is generated by the server,
 moving the subscription to terminated.

 The waiting state is similar to pending, in that no notifications are
 generated. However, if the subscription is approved or denied, the
 FSM enters the terminated state, and is destroyed. Furthermore, if
 another subscription is received to the same resource, from the same
 watcher, for the same event package, event package parameters and
 filter in the body of the SUBSCRIBE request (if one was present
 initially), the FSM enters the terminated state with a "giveup"
 event, and is destroyed. This transition occurs because, on arrival
 of a new subscription with identical parameters, it will enter the
 pending state, making the waiting state for the prior subscription
 redundant. The purpose of the waiting state is so that a user can

Rosenberg Standards Track [Page 9]

RFC 3857 Watcher Information August 2004

 fetch watcherinfo state at any time, and learn of any subscriptions
 that arrived previously (and which may arrive again) which require an
 authorization decision. Consider an example. A subscribes to B. B
 has not defined policy about this subscription, so it moves into the
 pending state. B is not "online", so that B’s software agent cannot
 be contacted to approve the subscription. The subscription expires.
 Let’s say it were destroyed. B logs in, and fetches its watcherinfo
 state. There is no record of the subscription from A, so no policy
 decision is made about subscriptions from A. B logs off. A
 refreshes its subscription. Once more, the subscription is pending
 since no policy is defined for it. This process could continue
 indefinitely. The waiting state ensures that B can find out about
 this subscription attempt.

 subscribe,
 policy= +----------+
 reject | |<------------------------+
 +------------>|terminated|<---------+ |
 | | | | |
 | | | |noresource |
 | +----------+ |rejected |
 | ^noresource |deactivated |
 | |rejected |probation |
 | |deactivated |timeout |noresource
 | |probation | |rejected
 | |giveup | |giveup
 | | | |approved
 +-------+ +-------+ +-------+ |
 | |subscribe| |approved| | |
 | init |-------->|pending|------->|active | |
 | |no policy| | | | |
 | | | | | | |
 +-------+ +-------+ +-------+ |
 | | ^ |
 | subscribe, | | |
 +-----------------------------------+ |
 policy = accept | +-------+ |
 | | | |
 | |waiting|----------+
 +----------->| |
 timeout | |
 +-------+

 Figure 1: Subscription State Machine

 The waiting state is also needed to allow for authorization of fetch
 attempts, which are subscriptions that expire immediately.

Rosenberg Standards Track [Page 10]

RFC 3857 Watcher Information August 2004

 Of course, policy may never be specified for the subscription. As a
 result, the server can generate a giveup event to move the waiting
 subscription to the terminated state. The amount of time to wait
 before issuing a giveup event is system dependent.

 The giveup event is generated in either the waiting or pending states
 to destroy resources associated with unauthorized subscriptions.
 This event is generated when a giveup timer fires. This timer is set
 to a timeout value when entering either the pending or waiting
 states. Servers need to exercise care in selecting this value. It
 needs to be large in order to provide a useful user experience; a
 user should be able to log in days later and see that someone tried
 to subscribe to them. However, allocating state to unauthorized
 subscriptions can be used as a source of DoS attacks. Therefore, it
 is RECOMMENDED that servers that retain state for unauthorized
 subscriptions add policies which prohibit a particular subscriber
 from having more than some number of pending or waiting
 subscriptions.

 At any time, the server can deactivate a subscription. Deactivation
 implies that the subscription is discarded without a change in
 authorization policy. This may be done in order to trigger refreshes
 of subscriptions for a graceful shutdown or subscription migration
 operation. A related event is probation, where a subscription is
 terminated, and the subscriber is requested to wait some amount of
 time before trying again. The meaning of these events is described
 in more detail in Section 3.2.4 of RFC 3265 [1].

 A subscription can be terminated at any time because the resource
 associated with that subscription no longer exists. This corresponds
 to the noresource event.

4.7.2. Applying the State Machine

 The server MAY generate a notification to watcherinfo subscribers on
 a transition of the state machine. Whether it does or not is policy
 dependent. However, several guidelines are defined.

 Consider some event package foo. A subscribes to B for events within
 that package. A also subscribes to foo.winfo for B. In this
 scenario (where the subscriber to foo.winfo is also a subscriber to
 foo for the same resource), it is RECOMMENDED that A receive
 watcherinfo notifications only about the changes in its own
 subscription. Normally, A will receive notifications about changes
 in its subscription to foo through the Subscription-State header
 field. This will frequently obviate the need for a separate
 subscription to foo.winfo. However, if such a subscription is
 performed by A, the foo.winfo notifications SHOULD NOT report any

Rosenberg Standards Track [Page 11]

RFC 3857 Watcher Information August 2004

 state changes which would not be reported (because of authorization
 policy) in the Subscription-State header field in notifications on
 foo.

 As a general rule, when a watcherinfo subscriber is authorized to
 receive watcherinfo notifications about more than one watcher, it is
 RECOMMENDED that watcherinfo notifications contain information about
 those watchers which have changed state (and thus triggered a
 notification), instead of delivering the current state of every
 watcher in every watcherinfo notification. However, watcherinfo
 notifications triggered as a result of a fetch operation (a SUBSCRIBE
 with Expires of 0) SHOULD result in the full state of all watchers
 (of course, only those watchers that have been authorized to be
 divulged to the watcherinfo subscriber) to be present in the NOTIFY.

 Frequently, states in the subscription state machine will be
 transient. For example, if an authorized watcher performs a fetch
 operation, this will cause the state machine to be created,
 transition from init to active, and then from active to terminated,
 followed by a destruction of the FSM. In such cases, watcherinfo
 notifications SHOULD NOT be sent for any transient states. In the
 prior example, the server wouldn’t send any notifications, since all
 of the states are transient.

4.8. Subscriber Processing of NOTIFY Requests

 RFC 3265 [1] expects packages to specify how a subscriber processes
 NOTIFY requests in any package specific ways, and in particular, how
 it uses the NOTIFY requests to construct a coherent view of the state
 of the subscribed resource. Typically, the watcherinfo NOTIFY will
 only contain information about those watchers whose state has
 changed. To construct a coherent view of the total state of all
 watchers, a watcherinfo subscriber will need to combine NOTIFYs
 received over time. This details of this process depend on the
 document format. See [3] for details on the
 application/watcherinfo+xml format.

4.9. Handling of Forked Requests

 The SIP Events framework mandates that packages indicate whether or
 not forked SUBSCRIBE requests can install multiple subscriptions.

 When a user wishes to obtain watcher information for some resource
 for package foo, the SUBSCRIBE to the watcher information will need
 to reach a collection of servers that have, unioned together,
 complete information about all watchers on that resource for package
 foo. If there are a multiplicity of servers handling subscriptions
 for that resource for package foo (for load balancing reasons,

Rosenberg Standards Track [Page 12]

RFC 3857 Watcher Information August 2004

 typically), it is very likely that no single server will have the
 complete set of watcher information. There are several solutions in
 this case. This specification does not mandate a particular one, nor
 does it rule out others. It merely ensures that a broad range of
 solutions can be built.

 One solution is to use forking. The system can be designed so that a
 SUBSCRIBE for watcher information arrives at a special proxy which is
 aware of the requirements for watcher information. This proxy would
 fork the SUBSCRIBE request to all of the servers which could possibly
 maintain subscriptions for that resource for that package. Each of
 these servers, whether or not they have any current subscribers for
 that resource, would accept the watcherinfo subscription. Each needs
 to accept because they may all eventually receive a subscription for
 that resource. The watcherinfo subscriber would receive some number
 of watcherinfo NOTIFY requests, each of which establishes a separate
 dialog. By aggregating the information across each dialog, the
 watcherinfo subscriber can compute full watcherinfo state. In many
 cases, a particular dialog might never generate any watcherinfo
 notifications; this would happen if the servers never receive any
 subscriptions for the resource.

 In order for such a system to be built in an interoperable fashion,
 all watcherinfo subscribers MUST be prepared to install multiple
 subscriptions as a result of a multiplicity of NOTIFY messages in
 response to a single SUBSCRIBE.

 Another approach for handling the server multiplicity problem is to
 use state agents. See Section 4.11 for details.

4.10. Rate of Notifications

 RFC 3265 [1] mandates that packages define a maximum rate of
 notifications for their package.

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the server not generate watcherinfo notifications for a single
 watcherinfo subscriber at a rate faster than once every 5 seconds.

4.11. State Agents

 RFC 3265 [1] asks packages to consider the role of state agents in
 their design.

 State agents play an important role in this package. As discussed in
 Section 4.9, there may be a multiplicity of servers sharing the load
 of subscriptions for a particular package. A watcherinfo

Rosenberg Standards Track [Page 13]

RFC 3857 Watcher Information August 2004

 subscription might require subscription state spread across all of
 those servers. To handle that, a farm of state agents can be used.
 Each of these state agents would know the entire watcherinfo state
 for some set of resources. The means by which the state agents would
 determine the full watcherinfo state is outside the scope of this
 specification. When a watcherinfo subscription is received, it would
 be routed to a state agent that has the full watcherinfo state for
 the requested resource. This server would accept the watcherinfo
 subscription (assuming it was authorized, of course), and generate
 watcherinfo notifications as the watcherinfo state changed. The
 watcherinfo subscriber would only have a single dialog in this case.

5. Example Usage

 The following section discusses an example application and call flows
 using the watcherinfo package.

 In this example, a user Joe, sip:joe@example.com provides presence
 through the example.com presence server. Joe subscribes to his own
 watcher information, in order to learn about people who subscribe to
 his presence, so that he can approve or reject their subscriptions.
 Joe sends the following SUBSCRIBE request:

 SUBSCRIBE sip:joe@example.com SIP/2.0
 Via: SIP/2.0/UDP pc34.example.com;branch=z9hG4bKnashds7
 From: sip:joe@example.com;tag=123aa9
 To: sip:joe@example.com
 Call-ID: 9987@pc34.example.com
 CSeq: 9887 SUBSCRIBE
 Contact: sip:joe@pc34.example.com
 Event: presence.winfo
 Max-Forwards: 70

 The server responds with a 401 to authenticate, and Joe resubmits the
 SUBSCRIBE with credentials (message not shown). The server then
 authorizes the subscription, since it allows Joe to subscribe to his
 own watcher information for presence. It responds with a 200 OK:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pc34.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.8
 From: sip:joe@example.com;tag=123aa9
 To: sip:joe@example.com;tag=xyzygg
 Call-ID: 9987@pc34.example.com
 CSeq: 9988 SUBSCRIBE
 Contact: sip:server19.example.com
 Expires: 3600
 Event: presence.winfo

Rosenberg Standards Track [Page 14]

RFC 3857 Watcher Information August 2004

 The server then sends a NOTIFY with the current state of
 presence.winfo for joe@example.com:

 NOTIFY sip:joe@pc34.example.com SIP/2.0
 Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaii
 From: sip:joe@example.com;tag=xyzygg
 To: sip:joe@example.com;tag=123aa9
 Call-ID: 9987@pc34.example.com
 CSeq: 1288 NOTIFY
 Contact: sip:server19.example.com
 Event: presence.winfo
 Subscription-State: active
 Max-Forwards: 70
 Content-Type: application/watcherinfo+xml
 Content-Length: ...

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:joe@example.com" package="presence">
 <watcher id="77ajsyy76" event="subscribe"
 status="pending">sip:A@example.com</watcher>
 </watcher-list>
 </watcherinfo>

 Joe then responds with a 200 OK to the NOTIFY:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaii
 ;received=192.0.2.7
 From: sip:joe@example.com;tag=xyzygg
 To: sip:joe@example.com;tag=123aa9
 Call-ID: 9987@pc34.example.com
 CSeq: 1288 NOTIFY

Rosenberg Standards Track [Page 15]

RFC 3857 Watcher Information August 2004

 The NOTIFY tells Joe that user A currently has a pending
 subscription. Joe then authorizes A’s subscription through some
 means. This causes a change in the status of the subscription (which
 moves from pending to active), and the delivery of another
 notification:

 NOTIFY sip:joe@pc34.example.com SIP/2.0
 Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaij
 From: sip:joe@example.com;tag=xyzygg
 To: sip:joe@example.com;tag=123aa9
 Call-ID: 9987@pc34.example.com
 CSeq: 1289 NOTIFY
 Contact: sip:server19.example.com
 Event: presence.winfo
 Subscription-State: active
 Max-Forwards: 70
 Content-Type: application/watcherinfo+xml
 Content-Length: ...

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="1" state="partial">
 <watcher-list resource="sip:joe@example.com" package="presence">
 <watcher id="77ajsyy76" event="approved"
 status="active">sip:A@example.com</watcher>
 </watcher-list>
 </watcherinfo>

 B then responds with a 200 OK to the NOTIFY:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server19.example.com;branch=z9hG4bKnasaij
 ;received=192.0.2.7
 From: sip:joe@example.com;tag=xyzygg
 To: sip:joe@example.com;tag=123aa9
 Call-ID: 9987@pc34.example.com
 CSeq: 1289 NOTIFY

Rosenberg Standards Track [Page 16]

RFC 3857 Watcher Information August 2004

6. Security Considerations

6.1. Denial of Service Attacks

 Watcher information generates notifications about changes in the
 state of watchers for a particular resource. It is possible for a
 single resource to have many watchers, resulting in the possibility
 of a large volume of notifications. This makes watcherinfo
 subscription a potential tool for denial of service attacks.
 Preventing these can be done through a combination of sensible
 authorization policies and good operating principles.

 First, when a resource has a lot of watchers, watcherinfo
 subscriptions to that resource should only be allowed from explicitly
 authorized entities, whose identity has been properly authenticated.
 That prevents a watcherinfo NOTIFY stream from being generated from
 subscriptions made by an attacker.

 Even when watcherinfo subscriptions are properly authenticated, there
 are still potential attacks. For example, consider a valid user, T,
 who is to be the target of an attack. T has subscribed to their own
 watcher information. The attacker generates a large number of
 subscriptions (not watcherinfo subscriptions). If the server creates
 subscription state for unauthenticated subscriptions, and reports
 those changes in watcherinfo notifications, user T would receive a
 flood of watcherinfo notifications. In fact, if the server generates
 a watcherinfo notification when the subscription is created, and
 another when it is terminated, there will be an amplification by a
 factor of two. The amplification would actually be substantial if
 the server generates full state in each watcherinfo notification.
 Indeed, the amount of data sent to T would be the square of the data
 generated by the attacker! Each of the N subscriptions generated by
 the attacker would result in a watcherinfo NOTIFY being sent to T,
 each of which would report on up to N watchers. To avoid this,
 servers should never generate subscription state for unauthenticated
 SUBSCRIBE requests, and should never generate watcherinfo
 notifications for them either.

6.2. Divulging Sensitive Information

 Watcher information indicates what users are interested in a
 particular resource. Depending on the package and the resource, this
 can be very sensitive information. For example, in the case of
 presence, the watcher information for some user represents the
 friends, family, and business relations of that person. This
 information can be used for a variety of malicious purposes.

Rosenberg Standards Track [Page 17]

RFC 3857 Watcher Information August 2004

 One way in which this information can be revealed is eavesdropping.
 An attacker can observe watcherinfo notifications, and learn this
 information. To prevent that, watchers MAY use the sips URI scheme
 when subscribing to a watcherinfo resource. Notifiers for
 watcherinfo MUST support TLS and sips as if they were a proxy (see
 Section 26.3.1 of RFC 3261).

 SIP encryption, using S/MIME, MAY be used end-to-end for the
 transmission of both SUBSCRIBE and NOTIFY requests.

 Another way in which this information can be revealed is through
 spoofed subscriptions. These attacks can be prevented by
 authenticating and authorizing all watcherinfo subscriptions. In
 order for the notifier to authenticate the subscriber, it MAY use
 HTTP Digest (Section 22 of RFC 3261). As a result, all watchers MUST
 support HTTP Digest. This is a redundant requirement, however, since
 all SIP user agents are mandated to support it by RFC 3261.

7. IANA Considerations

 This specification registers an event template package as specified
 in Section 6.2 of RFC 3265 [1].

 Package Name: winfo

 Template Package: yes

 Published Specification: RFC 3857

 Person to Contact: Jonathan Rosenberg, jdrosen@jdrosen.net.

8. Acknowledgements

 The authors would like to thank Adam Roach, Allison Mankin and Brian
 Stucker for their detailed comments.

9. Normative References

 [1] Roach, A.B., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [2] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Rosenberg, J., "An Extensible Markup Language (XML) Based Format
 for Watcher Information", RFC 3858, August 2004.

Rosenberg Standards Track [Page 18]

RFC 3857 Watcher Information August 2004

 [4] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

10. Informative References

 [5] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, July 2004.

11. Author’s Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054

 EMail: jdrosen@dynamicsoft.com

Rosenberg Standards Track [Page 19]

RFC 3857 Watcher Information August 2004

12. Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Standards Track [Page 20]

