
Network Working Group M. Stiemerling
Request for Comments: 3989 J. Quittek
Category: Informational NEC
 T. Taylor
 Nortel
 February 2005

 Middlebox Communications (MIDCOM) Protocol Semantics

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This memo specifies semantics for a Middlebox Communication (MIDCOM)
 protocol to be used by MIDCOM agents for interacting with middleboxes
 such as firewalls and Network Address Translators (NATs). The
 semantics discussion does not include any specification of a concrete
 syntax or a transport protocol. However, a concrete protocol is
 expected to implement the specified semantics or, more likely, a
 superset of it. The MIDCOM protocol semantics is derived from the
 MIDCOM requirements, from the MIDCOM framework, and from working
 group decisions.

Table of Contents

 1. Introduction ... 3
 1.1. Terminology .. 4
 1.2. Transaction Definition Template 6
 2. Semantics Specification 7
 2.1. General Protocol Design 7
 2.1.1. Protocol Transactions 8
 2.1.2. Message Types 9
 2.1.3. Session, Policy Rule, and Policy Rule Group 9
 2.1.4. Atomicity 10
 2.1.5. Access Control 11
 2.1.6. Middlebox Capabilities 11
 2.1.7. Agent and Middlebox Identifiers 12
 2.1.8. Conformance 12
 2.2. Session Control Transactions 13

Stiemerling, et al. Informational [Page 1]

RFC 3989 MIDCOM Protocol Semantics February 2005

 2.2.1. Session Establishment (SE) 13
 2.2.2. Session Termination (ST) 15
 2.2.3. Asynchronous Session Termination (AST) 16
 2.2.4. Session Termination by Interruption of
 Connection 17
 2.2.5. Session State Machine 17
 2.3. Policy Rule Transactions 18
 2.3.1. Configuration Transactions 19
 2.3.2. Establishing Policy Rules 19
 2.3.3. Maintaining Policy Rules and Policy Rule Groups 20
 2.3.4. Policy Events and Asynchronous Notifications ... 21
 2.3.5. Address Tuples 21
 2.3.6. Address Parameter Constraints 23
 2.3.7. Interface-specific Policy Rules 25
 2.3.8. Policy Reserve Rule (PRR) 26
 2.3.9. Policy Enable Rule (PER) 30
 2.3.10. Policy Rule Lifetime Change (RLC) 36
 2.3.11. Policy Rule List (PRL) 38
 2.3.12. Policy Rule Status (PRS) 39
 2.3.13. Asynchronous Policy Rule Event (ARE) 41
 2.3.14. Policy Rule State Machine 42
 2.4. Policy Rule Group Transactions 43
 2.4.1. Overview 43
 2.4.2. Group Lifetime Change (GLC) 44
 2.4.3. Group List (GL) 46
 2.4.4. Group Status (GS) 47
 3. Conformance Statements 48
 3.1. General Implementation Conformance 49
 3.2. Middlebox Conformance 50
 3.3. Agent Conformance 50
 4. Transaction Usage Examples 50
 4.1. Exploring Policy Rules and Policy Rule Groups 50
 4.2. Enabling a SIP-Signaled Call 54
 5. Compliance with MIDCOM Requirements 59
 5.1. Protocol Machinery Requirements 59
 5.1.1. Authorized Association 59
 5.1.2. Agent Connects to Multiple Middleboxes 60
 5.1.3. Multiple Agents Connect to Same Middlebox 60
 5.1.4. Deterministic Behavior 60
 5.1.5. Known and Stable State 60
 5.1.6. Status Report 61
 5.1.7. Unsolicited Messages (Asynchronous
 Notifications).................................. 61
 5.1.8. Mutual Authentication 61
 5.1.9. Session Termination by Any Party 62
 5.1.10. Request Result 62
 5.1.11. Version Interworking 62
 5.1.12. Deterministic Handling of Overlapping Rules 62

Stiemerling, et al. Informational [Page 2]

RFC 3989 MIDCOM Protocol Semantics February 2005

 5.2. Protocol Semantics Requirements 63
 5.2.1. Extensible Syntax and Semantics 63
 5.2.2. Policy Rules for Different Types of Middleboxes 63
 5.2.3. Ruleset Groups 63
 5.2.4. Policy Rule Lifetime Extension 63
 5.2.5. Robust Failure Modes 63
 5.2.6. Failure Reasons 63
 5.2.7. Multiple Agents Manipulating Same Policy Rule .. 64
 5.2.8. Carrying Filtering Rules 64
 5.2.9. Parity of Port Numbers 64
 5.2.10. Consecutive Range of Port Numbers 64
 5.2.11. Contradicting Overlapping Policy Rules 64
 5.3. Security Requirements 65
 5.3.1. Authentication, Confidentiality, Integrity 65
 5.3.2. Optional Confidentiality of Control Messages ... 65
 5.3.3. Operation across Untrusted Domains 65
 5.3.4. Mitigate Replay Attacks 65
 6. Security Considerations 65
 7. IAB Considerations on UNSAF 66
 8. Acknowledgments .. 67
 9. References ... 67
 9.1. Normative References 67
 9.2. Informative References 67
 Authors’ Addresses ... 69
 Full Copyright Statement ... 70

1. Introduction

 The MIDCOM working group has defined a framework [MDC-FRM] and a list
 of requirements [MDC-REQ] for middlebox communication. The next step
 toward a MIDCOM protocol is the specification of protocol semantics
 that is constrained, but not completely implied, by the documents
 mentioned above.

 This memo suggests a semantics for the MIDCOM protocol. It is fully
 compliant with the requirements listed in [MDC-REQ] and with the
 working group’s consensus on semantic issues.

 In conformance with the working group charter, the semantics
 description is targeted at packet filters and network address
 translators (NATs), and it supports applications that require dynamic
 configuration of these middleboxes.

 The semantics is defined in terms of transactions. Two basic types
 of transactions are used: request-reply transactions and asynchronous
 transactions. For each transaction, the semantics is specified by
 describing (1) the parameters of the transaction, (2) the processing
 of request messages at the middlebox, and (3) the state transitions

Stiemerling, et al. Informational [Page 3]

RFC 3989 MIDCOM Protocol Semantics February 2005

 at the middlebox caused by the request transactions or indicated by
 the asynchronous transactions, respectively, and (4) the reply and
 notification messages sent from the middlebox to the agent in order
 to inform the agent about the state change.

 The semantics can be implemented by any protocol that supports these
 two transaction types and that is sufficiently flexible concerning
 transaction parameters. Different implementations for different
 protocols might need to extend the semantics described below by
 adding further transactions and/or adding further parameters to
 transactions and/or splitting single transactions into a set of
 transactions. Regardless of such extensions, the semantics below
 provides a minimum necessary subset of what must be implemented.

 The remainder of this document is structured as follows. Section 2
 describes the protocol semantics. It is structured in four
 subsections:

 - General Protocol Issues (section 2.1)
 - Session Control (section 2.2)
 - Policy Rules (section 2.3)
 - Policy Rule Groups (section 2.4)

 Section 3 contains conformance statements for MIDCOM protocol
 definitions and MIDCOM protocol implementations with respect to the
 semantics defined in section 2. Section 4 gives two elaborated usage
 examples. Finally, section 5 explains how the semantics meets the
 MIDCOM requirements.

1.1. Terminology

 The terminology in this memo follows the definitions given in the
 framework [MDC-FRM] and requirements [MDC-REQ] document.

 In addition, the following terms are used:

 request transaction A request transaction consists of a
 request message transfer from the agent to
 the middlebox, processing of the message
 at the middlebox, a reply message transfer
 from the middlebox to the agent, and the
 optional transfer of notification messages
 from the middlebox to agents other than
 the one requesting the transaction. A
 request transaction might cause a state
 transition at the middlebox.

Stiemerling, et al. Informational [Page 4]

RFC 3989 MIDCOM Protocol Semantics February 2005

 configuration transaction A configuration transaction is a request
 transaction containing a request for state
 change in the middlebox. If accepted, it
 causes a state change at the middlebox.

 monitoring transaction A monitoring transaction is a request
 transaction containing a request for state
 information from the middlebox. It does
 not cause a state transition at the
 middlebox.

 asynchronous transaction An asynchronous transaction is not
 triggered by an agent. It may occur
 without any agent participating in a
 session with the middlebox. Potentially,
 an asynchronous transaction includes the
 transfer of notification messages from the
 middlebox to agents that participate in an
 open session. A notification message is
 sent to each agent that needs to be
 notified about the asynchronous event.
 The message indicates the state transition
 at the middlebox.

 agent-unique An agent-unique value is unique in the
 context of the agent. This context
 includes all MIDCOM sessions the agent
 participates in. An agent-unique value is
 assigned by the agent.

 middlebox-unique A middlebox-unique value is unique in the
 context of the middlebox. This context
 includes all MIDCOM sessions the middlebox
 participates in. A middlebox-unique value
 is assigned by the middlebox.

 policy rule In general, a policy rule is "a basic
 building block of a policy-based system.
 It is the binding of a set of actions to a
 set of conditions -- where the conditions
 are evaluated to determine whether the
 actions are performed." [RFC3198]. In
 the MIDCOM context the condition is a
 specification of a set of packets to which
 rules are applied. The set of actions
 always contains just a single element per
 rule, either action "reserve" or action
 "enable".

Stiemerling, et al. Informational [Page 5]

RFC 3989 MIDCOM Protocol Semantics February 2005

 policy reserve rule A policy rule containing a reserve action.
 The policy condition of this rule is
 always true. The action is the
 reservation of just an IP address or a
 combination of an IP address and a range
 of port numbers on neither side, one side,
 or both sides of the middlebox, depending
 on the middlebox configuration.

 policy enable rule A policy rule containing an enable action.
 The policy condition consists of a
 descriptor of one or more unidirectional
 or bidirectional packet flows, and the
 policy action enables packets belonging to
 this flow to traverse the middlebox. The
 descriptor identifies the protocol, the
 flow direction, and the source and
 destination addresses, optionally with a
 range of port numbers.

 NAT binding The term NAT binding as used in this
 document does not necessarily refer to a
 NAT bind as defined in [NAT-TERM]. A NAT
 binding in the MIDCOM semantics refers to
 an abstraction that enables communication
 between two end points through the NAT-
 type middlebox. An enable action may
 result in a NAT bind or a NAT session,
 depending on the request and its
 parameters.

1.2. Transaction Definition Template

 In the following sections, the semantics of the MIDCOM protocol is
 specified per transaction. A transaction specification contains the
 following entries. Parameter entries, failure reason, and
 notification message type are only specified if applicable.

 transaction-name
 A description name for this type of transaction.

 transaction-type
 The transaction type is either ’configuration’, ’monitoring’, or
 ’asynchronous’. See section 1.1 for a description of transaction
 types.

Stiemerling, et al. Informational [Page 6]

RFC 3989 MIDCOM Protocol Semantics February 2005

 transaction-compliance
 This entry contains either ’mandatory’ or ’optional’. For details
 see section 2.1.8.

 request-parameters
 This entry lists all parameters necessary for this request. A
 description for each parameter is given.

 reply-parameters (success)
 This entry lists all parameters sent back from the middlebox to
 the agent as positive response to the prior request. A
 description for each parameter is given.

 failure reason
 All negative replies have two parameters: a request identifier
 identifying the request on which the reply is sent and a parameter
 indicating the failure reason. As these parameters are
 compulsory, they are not listed in the template. But the template
 contains a list of potential failure reasons that may be indicated
 by the second parameter. The list is not exhaustive. A concrete
 protocol specification may extend the list.

 notification message type
 The type of the notification message type that may be used by this
 transaction.

 semantics
 This entry describes the actual semantics of the transaction.
 Particularly, it describes the processing of the request message
 by the middlebox, and middlebox state transitions caused by or
 causing the transaction, respectively.

2. Semantics Specification

2.1. General Protocol Design

 The semantics specification aims at a balance between proper support
 of applications that require dynamic configuration of middleboxes and
 simplicity of specification and implementation of the protocol.

 Protocol interactions are structured into transactions. The state of
 middleboxes is described by state machines. The state machines are
 defined by states and state transitions. A single transaction may
 cause or be caused by state transitions in more than one state
 machine, but per state machine there is no more than one transition
 per transaction.

Stiemerling, et al. Informational [Page 7]

RFC 3989 MIDCOM Protocol Semantics February 2005

2.1.1. Protocol Transactions

 State transitions are initiated either by a request message from the
 agent to the middlebox or by some other event at the middlebox. In
 the first case, the middlebox informs the agent by sending a reply
 message on the actual state transition; in the second, the middlebox
 sends an unsolicited asynchronous notification message to each agent
 affected by the transaction (if it participates in an open session
 with the middlebox).

 Request and reply messages contain an agent-unique request identifier
 that allows the agent to determine to which sent request a received
 reply corresponds.

 An analysis of the requirements showed that four kinds of
 transactions are required:

 - Configuration transactions allowing the agent to request state
 transitions at the middlebox.

 - Asynchronous transactions allowing the middlebox to change state
 without a request by an agent.

 - Monitoring transactions allowing the agent to request state
 information from the middlebox.

 - Convenience transactions combining a set of configuration
 transactions.

 Configuration transactions and asynchronous transactions provide the
 basic MIDCOM protocol functionality. They are related to middlebox
 state transitions, and they concern establishment and termination of
 MIDCOM sessions and of policy rules.

 Monitoring transactions are not related to middlebox state
 transitions. They are used by agents to explore the number, status,
 and properties of policy rules established at the middlebox.

 Convenience transactions simplify MIDCOM sessions by combining a set
 of configuration transactions into a single one. They are not
 necessary for MIDCOM protocol operation.

 As specified in detail in section 3, configuration transactions and
 asynchronous transactions are mandatory. They must be implemented by
 a compliant middlebox. All convenience transactions are optional,
 and some of the monitoring transactions are optional.

Stiemerling, et al. Informational [Page 8]

RFC 3989 MIDCOM Protocol Semantics February 2005

2.1.2. Message Types

 The MIDCOM protocol supports three kinds of messages: request
 messages, reply messages, and notification messages. For each kind,
 different message types exist. In this semantics document, message
 types are only defined by the list of parameters. The order of the
 parameters and their encoding is left to a concrete protocol
 definition. A protocol definition may also add further parameters to
 a message type or combine several parameters into one, as long as the
 information contained in the parameters defined in the semantics is
 still present.

 For request messages and positive reply messages there exists one
 message type per request transaction. Each reply transaction defines
 the parameter list of the request message and of the positive
 (successful) reply message by using the transaction definition
 template defined in section 1.2.

 In case of a failed request transaction, a negative reply message is
 sent from the middlebox to the agent. This message is the same for
 all request transactions; it contains the request identifier
 identifying the request to which the reply is sent and a parameter
 indicating the failure reason.

 There are three notification message types: the Session Termination
 Notification (STN), the Policy Rule Event Notification (REN), and the
 Group Event Notification (GEN). All of these contain a middlebox-
 unique notification identifier.

 STN The Session Termination Notification message additionally
 contains a single parameter indicating the reason for session
 termination by the middlebox.

 REN The Policy Rule Event Notification message contains the
 notification identifier, a policy rule identifier, and the
 remaining policy lifetime.

 GEN The Group Event Notification message contains the notification
 identifier, a policy rule group identifier, and the remaining
 policy rule group lifetime.

2.1.3. Session, Policy Rule, and Policy Rule Group

 All transactions can be further grouped into transactions concerning
 sessions, transactions concerning policy rules, and transactions
 concerning policy rule groups. Policy rule groups can be used to

Stiemerling, et al. Informational [Page 9]

RFC 3989 MIDCOM Protocol Semantics February 2005

 indicate relationships between policy rules and to simplify
 transactions on a set of policy rules by using a single transaction
 per group instead of one per policy rule.

 Sessions and policy rules at the middlebox are stateful. Their
 states are independent of each other, and their state machines (one
 per session and one per policy rule) can be separated. Policy rule
 groups are also stateful, but the middlebox does not need to maintain
 state for policy rule groups, because the semantics were chosen so
 that the policy rule group state is implicitly defined by the state
 of all policy rules belonging to the group (see section 2.4).

 The separation of session state and policy rule state simplifies the
 specification of the semantics as well as a protocol implementation.
 Therefore, the semantics specification is structured accordingly and
 we use two separated state machines to illustrate the semantics.
 Please note that state machines of concrete protocol designs and
 implementations will probably be more complex than the state machines
 presented here. However, the protocol state machines are expected to
 be a superset of the semantics state machines in this document.

2.1.4. Atomicity

 All request transactions are atomic with respect to each other. This
 means that processing of a request at the middlebox is never
 interrupted by another request arriving or already queued. This
 particularly applies when the middlebox concurrently receives
 requests originating in different sessions. However, asynchronous
 transactions may interrupt and/or terminate processing of a request
 at any time.

 All request transactions are atomic from the point of view of the
 agent. The processing of a request does not start before the
 complete request arrives at the middlebox. No intermediate state is
 stable at the middlebox, and no intermediate state is reported to any
 agent.

 The number of transactions specified in this document is rather
 small. Again, for simplicity, we reduced it to a minimal set that
 still meets the requirements. A real implementation of the protocol
 might require splitting some of the transactions specified below into
 two or more transactions of the respective protocol. Reasons for
 this might include constraints of the particular protocol or the
 desire for more flexibility. In general this should not be a
 problem. However, it should be considered that this might change
 atomicity of the affected transactions.

Stiemerling, et al. Informational [Page 10]

RFC 3989 MIDCOM Protocol Semantics February 2005

2.1.5. Access Control

 Ownership determines access to policy rules and policy rule groups.
 When a policy rule is created, a middlebox-unique identifier is
 generated to identify it in further transactions. Beyond the
 identifier, each policy rule has an owner. The owner is the
 authenticated agent that established the policy rule. The middlebox
 uses the owner attribute of a policy rule to control access to it;
 each time an authenticated agent requests to modify an existing
 policy rule, the middlebox determines the owner of the policy rule
 and checks whether the requesting agent is authorized to perform
 transactions on the owning agent’s policy rules.

 All policy rules belonging to the same policy rule group must have
 the same owner. Therefore, authenticated agents have access either
 to all members of a policy rule group, or to none of them.

 The middlebox may be configured to allow specific authenticated
 agents to access and modify policy rules with certain specific
 owners. Certainly, a reasonable default configuration would let each
 agent access its own policy rules. Also, it might be good to
 configure an agent identity to act as administrator, allowing
 modification of all policy rules owned by any agent. However, the
 configuration of authorization at the middlebox is out of scope of
 the MIDCOM semantics and protocol.

2.1.6. Middlebox Capabilities

 For several reasons it is useful that at session establishment the
 agent learns about particular capabilities of the middlebox.
 Therefore, the session establishment procedure described in section
 2.2.1 includes a transfer of capability information from the
 middlebox to the agent. The list of covered middlebox capabilities
 includes the following:

 - Support of firewall function
 - List of supported NAT functions, perhaps including
 - address translation
 - port translation
 - protocol translation
 - twice-NAT
 - Internal IP address wildcard support
 - External IP address wildcard support
 - Port wildcard support
 - Supported IP version(s) for internal network:
 IPv4, IPv6, or both

Stiemerling, et al. Informational [Page 11]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - Supported IP version(s) for external network:
 IPv4, IPv6, or both
 - List of supported optional MIDCOM protocol transactions
 - Optional interface-specific policy rule support: not
 supported or supported
 - Policy rule persistence: persistent or non-persistent
 (a rule is persistent when the middlebox can save the rule to
 a non-volatile memory, e.g., a hard disk or flash memory)
 - Maximum remaining lifetime of a policy rule or policy rule
 group
 - Idle-timeout of policy rules in the middlebox
 (reserved and enabled policy rules not used by any
 data traffic for the time of this idle-timeout are deleted
 automatically by the middlebox; for the deletion of policy
 rules by middleboxes, see section 2.3.13 about Asynchronous
 Policy Rule Event).
 - Maximum number of simultaneous MIDCOM sessions

 The list of middlebox capabilities may be extended by a concrete
 protocol specification with further information useful for the agent.

2.1.7. Agent and Middlebox Identifiers

 To allow both agents and middleboxes to maintain multiple sessions,
 each request message contains a parameter identifying the requesting
 agent, and each reply message and each notification message contains
 a parameter identifying the middlebox. These parameters are not
 explicitly listed in the description of the individual transactions,
 because they are common to all of them. They are not further
 referenced in the individual semantics descriptions. Although, they
 are not necessarily passed explicitly as parameters of the MIDCOM
 protocol, they might be provided by the underlying (secure) transport
 protocol being used. Agent identifiers at the middlebox are
 middlebox-unique, and middlebox identifiers at the agent are agent-
 unique, respectively.

2.1.8. Conformance

 The MIDCOM requirements in [MDC-REQ] demand capabilities of the
 MIDCOM protocol that are met by the set of transactions specified
 below. However, an actual implementation of a middlebox may support
 only a subset of these transactions. The set of announced supported
 transactions may be different for different authenticated agents.
 The middlebox informs the authenticated agent with the capability
 exchange at session establishment about the transactions that the
 agent is authorized to perform. Some transactions need to be offered
 to every authenticated agent.

Stiemerling, et al. Informational [Page 12]

RFC 3989 MIDCOM Protocol Semantics February 2005

 Each transaction definition below has a conformance entry that
 contains either ’mandatory’ or ’optional’. A mandatory transaction
 needs to be implemented by every middlebox offering MIDCOM service
 and must be must be offered to each of the authenticated agents. An
 optional transaction does not necessarily need to be implemented by a
 middlebox; it may offer these optional transactions only to certain
 authenticated agents. The middlebox may offer one, several, all, or
 no optional transactions to the agents. Whether an agent is allowed
 to use an optional request transaction is determined by the
 middlebox’s authorization procedure, which is not further specified
 by this document.

2.2. Session Control Transactions

 Before any transaction on policy rules or policy rule groups is
 possible, a valid MIDCOM session must be established. A MIDCOM
 session is an authenticated and authorized association between agent
 and middlebox. Sessions are initiated by agents and can be
 terminated by either the agent or the middlebox. Both agent and
 middlebox may participate in several sessions (with different
 entities) at the same time. To distinguish different sessions, each
 party uses local session identifiers.

 All transactions are transmitted within this MIDCOM session.

 Session control is supported by three transactions:

 - Session Establishment (SE)
 - Session Termination (ST)
 - Asynchronous Session Termination (AST)

 The first two are configuration transactions initiated by the agent,
 and the last one is an asynchronous transaction initiated by the
 middlebox.

2.2.1. Session Establishment (SE)

 transaction-name: session establishment

 transaction-type: configuration

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

Stiemerling, et al. Informational [Page 13]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - version: The version of the MIDCOM protocol.

 - middlebox authentication challenge (mc): An authentication
 challenge token for authentication of the middlebox. As seen
 below, this is present only in the first iteration of the
 request.

 - agent authentication (aa): An authentication token
 authenticating the agent to the middlebox. As seen below, this
 is updated in the second iteration of the request with material
 responding to the middlebox challenge.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier
 request.

 - middlebox authentication (ma): An authentication token
 authenticating the middlebox to the agent.

 - agent challenge token (ac): An authentication challenge token
 for the agent authentication.

 - middlebox capabilities: A list describing the middlebox’s
 capabilities. See section 2.1.6 for the list of middlebox
 capabilities.

 failure reason:

 - authentication failed
 - no authorization
 - protocol version of agent and middlebox do not match
 - lack of resources

 semantics:

 This session establishment transaction is used to establish a
 MIDCOM session. For mutual authentication of both parties two
 subsequent session establishment transactions are required as
 shown in Figure 1.

Stiemerling, et al. Informational [Page 14]

RFC 3989 MIDCOM Protocol Semantics February 2005

 agent middlebox
 | session establishment request |
 | (with middlebox challenge mc) | CLOSED
 |-->|
 | |
 | successful reply (with middlebox |
 | authentication ma and agent challenge ac) |
 |<--|
 | | NOAUTH
 | session establishment request |
 | (with agent authentication aa) |
 |-->|
 | |
 | successful reply |
 |<--|
 | | OPEN
 | |

 Figure 1: Mutual authentication of agent and middlebox

 Session establishment may be simplified by using only a single
 transaction. In this case, server challenge and agent challenge
 are omitted by the sender or ignored by the receiver, and
 authentication must be provided by other means, for example by TLS
 [RFC2246] or IPsec [RFC2402][RFC2406].

 The middlebox checks with its policy decision point whether the
 requesting agent is authorized to open a MIDCOM session. If it is
 not, the middlebox generates a negative reply with ’no
 authorization’ as failure reason. If authentication and
 authorization are successful, the session is established, and the
 agent may start with requesting transactions on policy rules and
 policy rule groups.

 Part of the successful reply is an indication of the middlebox’s
 capabilities.

2.2.2. Session Termination (ST)

 transaction-name: session termination

 transaction-type: configuration

 transaction-compliance: mandatory

 request-parameters:

Stiemerling, et al. Informational [Page 15]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 reply-parameters (success only):

 - request identifier: An identifier matching the identifier of the
 request.

 semantics:

 This transaction is used to close the MIDCOM session on behalf of
 the agent. After session termination, the middlebox keeps all
 established policy rules until their lifetime expires or until an
 event occurs that causes the middlebox to terminate them.

 The middlebox always generates a successful reply. After sending
 the reply, the middlebox will not send any further messages to the
 agent within the current session. It also will not process any
 further request within this session that it received while
 processing the session termination request, or that it receives
 later.

2.2.3. Asynchronous Session Termination (AST)

 transaction-name: asynchronous session termination

 transaction-type: asynchronous

 transaction-compliance: mandatory

 notification message type: Session Termination Notification (STN)

 reply-parameters (success only):

 - termination reason: The reason why the session is terminated.

 semantics:

 The middlebox may decide to terminate a MIDCOM session at any
 time. Before terminating the actual session the middlebox
 generates a STN message and sends it to the agent. After sending
 the notification, the middlebox will not process any further
 request by the agent, even if it is already queued at the
 middlebox.

 After session termination, the middlebox keeps all established
 policy rules until their lifetime expires or until an event occurs
 for which the middlebox terminates them.

Stiemerling, et al. Informational [Page 16]

RFC 3989 MIDCOM Protocol Semantics February 2005

 Unlike in other asynchronous transactions, no more than one
 notification is sent, because there is only one agent affected by
 the transaction.

2.2.4. Session Termination by Interruption of Connection

 If a MIDCOM session is based on an underlying network connection, the
 session can also be terminated by an interruption of this connection.
 If the middlebox detects this, it immediately terminates the session.
 The effect on established policy rules is the same as for the
 Asynchronous Session Termination.

2.2.5. Session State Machine

 A state machine illustrating the semantics of the session
 transactions is shown in Figure 2. The transaction abbreviations
 used can be found in the headings of the particular transaction
 section.

 All sessions start in state CLOSED. If mutual authentication is
 already provided by other means, a successful SE transaction can
 cause a state transition to state OPEN. Otherwise, it causes a
 transition to state NOAUTH. From this state a failed second SE
 transaction returns to state CLOSED. A successful SE transaction
 causes a transition to state OPEN. At any time, an AST transaction
 or a connection failure may occur, causing a transition to state
 CLOSED. A successful ST transaction from either NOAUTH or OPEN also
 causes a return to CLOSED. The parameters of the transactions are
 explained in Figure 2; the value mc=0 represents an empty middlebox
 challenge.

Stiemerling, et al. Informational [Page 17]

RFC 3989 MIDCOM Protocol Semantics February 2005

 mc = middlebox challenge
 SE/failure ma = middlebox authentication
 +-------+ ac = agent challenge
 | v aa = agent authentication
 +----------+
 | CLOSED |----------------+
 +----------+ | SE(mc!=0)/
 | ^ ^ | success(ma,ac)
 SE(mc=0, | | | AST |
 aa=OK)/ | | | SE/failure v
 success | | | ST/success +----------+
 | | +------------| NOAUTH |
 | | +----------+
 | | AST | SE(mc=0,
 v | ST/success | aa=OK)/
 +----------+ | success
 | OPEN |<---------------+
 +----------+

 Figure 2: Session State Machine

2.3. Policy Rule Transactions

 This section describes the semantics for transactions on policy
 rules. The following transactions are specified:

 - Policy Reserve Rule (PRR)
 - Policy Enable Rule (PER)
 - Policy Rule Lifetime Change (RLC)
 - Policy Rule List (PRL)
 - Policy Rule Status (PRS)
 - Asynchronous Policy Rule Event (ARE)

 The first three transactions (PRR, PER, RLC) are configuration
 transactions initiated by the agent. The fourth and fifth (PRL, PRS)
 are monitoring transactions. The last one (ARE) is an asynchronous
 transaction. The PRL and PRS and transactions do not have any effect
 on the policy rule state machine.

 Before any transaction can start, a valid MIDCOM session must be
 established.

Stiemerling, et al. Informational [Page 18]

RFC 3989 MIDCOM Protocol Semantics February 2005

2.3.1. Configuration Transactions

 Policy Rule transactions PER and RLC constitute the core of the
 MIDCOM protocol. Both are mandatory, and they serve for

 - configuring NAT bindings (PER)
 - configuring firewall pinholes (PER)
 - extending the lifetime of established policy rules (RLC)
 - deleting policy rules (RLC)

 Some cases require knowing in advance which IP address (and port
 number) would be chosen by NAT in a PER transaction. This
 information is required before sufficient information for performing
 a complete PER transaction is available (see example in section 4.2).
 For supporting such cases, the core transactions are extended by the
 Policy Reserve Rule (PRR) transaction serving for

 - reserving addresses and port numbers at NATs (PRR)

2.3.2. Establishing Policy Rules

 Both PRR and PER establish a policy rule. The action within the rule
 is ’reserve’ if set by PRR and ’enable’ if set by PER.

 The Policy Reserve Rule (PRR) transaction is used to establish an
 address reservation on neither side, one side, or both sides of the
 middlebox, depending on the middlebox configuration. The transaction
 returns the reserved IP addresses and the optional ranges of port
 numbers to the agent. No address binding or pinhole configuration is
 performed at the middlebox. Packet processing at the middlebox
 remains unchanged.

 On pure firewalls, the PRR transaction is successfully processed
 without any reservation, but the state transition of the MIDCOM
 protocol engine is exactly the same as on NATs.

 On a traditional NAT (see [NAT-TRAD]), only an external address is
 reserved; on a twice-NAT, an internal and an external address are
 reserved. The reservation at a NAT is for required resources, such
 as IP addresses and port numbers, for future use. How the
 reservation is exactly done depends on the implementation of the NAT.
 In both cases the reservation concerns either an IP address only or a
 combination of an IP address with a range of port numbers.

Stiemerling, et al. Informational [Page 19]

RFC 3989 MIDCOM Protocol Semantics February 2005

 The Policy Enable Rule (PER) transaction is used to establish a
 policy rule that affects packet processing at the middlebox.
 Depending on its input parameters, it may make use of the reservation
 established by a PRR transaction or create a new rule from scratch.

 On a NAT, the enable action is interpreted as a bind action
 establishing bindings between internal and external addresses. At a
 firewall, the enable action is interpreted as one or more allow
 actions configuring pinholes. The number of allow actions depends on
 the parameters of the request and the implementation of the firewall.

 On a combined NAT/firewall, the enable action is interpreted as a
 combination of bind and allow actions.

 The PRR transaction and the PER transaction are described in more
 detail in sections 2.3.8 and 2.3.9 below.

2.3.3. Maintaining Policy Rules and Policy Rule Groups

 Each policy rule has a middlebox-unique identifier.

 Each policy rule has an owner. Access control to the policy rule is
 based on ownership (see section 2.1.5). Ownership of a policy rule
 does not change during lifetime of the policy rule.

 Each policy rule has an individual lifetime. If the policy rule
 lifetime expires, the policy rule will be terminated at the
 middlebox. Typically, the middlebox indicates termination of a
 policy rule by an ARE transaction. A policy rule lifetime change
 (RLC) transaction may extend the lifetime of the policy rule up to
 the limit specified by the middlebox at session setup. Also an RLC
 transaction may be used for shortening a policy rule’s lifetime or
 deleting a policy rule by requesting a lifetime of zero. (Please
 note that policy rule lifetimes may also be modified by the group
 lifetime change (GLC) transaction.)

 Each policy rule is a member of exactly one policy rule group. Group
 membership does not change during the lifetime of a policy rule.
 Selecting the group is part of the transaction establishing the
 policy rule. This transaction implicitly creates a new group if the
 agent does not specify one. The new group identifier is chosen by
 the middlebox. New members are added to an existing group if the
 agent’s request designates one. A group only exists as long as it
 has member policy rules. As soon as all policies belonging to the
 group have reached the ends of their lifetimes, the group does not
 exist anymore.

Stiemerling, et al. Informational [Page 20]

RFC 3989 MIDCOM Protocol Semantics February 2005

 Agents can explore the properties and status of all policy rules they
 are allowed to access by using the Policy Rule Status (PRS)
 transaction.

2.3.4. Policy Events and Asynchronous Notifications

 If a policy rule changes its state or if its remaining lifetime is
 changed in ways other than being decreased by time, then all agents
 that can access this policy rule and that participate in an open
 session with the middlebox are notified by the middlebox. If the
 state or lifetime change was requested explicitly by a request
 message, then the middlebox notifies the requesting agent by
 returning the corresponding reply. All other agents that can access
 the policy are notified by a Policy Rule Event Notification (REN)
 message.

 Note that a middlebox can serve multiple agents at the same time in
 different parallel sessions. Between these agents, the sets of
 policy rules that can be accessed by them may overlap. For example,
 there might be an agent that authenticates as administrator and that
 can access all policies of all agents. Or there could be a backup
 agent running a session in parallel to a main agent and
 authenticating itself as the same entity as the main agent.

 In case of a PER, PRR, or RLC transaction, the requesting agent
 receives a PER, PRR, or RLC reply, respectively. To all other agents
 that can access the created, modified, or terminated policy rule (and
 that participate in an open session with the middlebox) the middlebox
 sends an REN message carrying the policy rule identifier (PID) and
 the remaining lifetime of the policy rule.

 In case of a rule termination by lifetime truncation or other events
 not triggered by an agent, then the middlebox sends an REN message to
 each agent that can access the particular policy rule and that
 participates in an open session with the middlebox. This ensures
 that an agent always knows the most recent state of all policy rules
 it can access.

2.3.5. Address Tuples

 Request and reply messages of the PRR, PER, and PRS transactions
 contain address specifications for IP and transport addresses. These
 parameters include

 - IP version
 - IP address
 - IP address prefix length
 - transport protocol

Stiemerling, et al. Informational [Page 21]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - port number
 - port parity
 - port range

 Additionally, the request message of PER and the reply message of PRS
 contain a direction of flow parameter. This direction of flow
 parameter indicates for UDP and IP the direction of packets
 traversing the middlebox. For ’inbound’, the UDP packets are
 traversing from outside to inside; for ’outbound’, from inside to the
 outside. In both cases, the packets can traverse the middelbox only
 uni-directionally. A bi-directional flow is enabled through ’bi-
 directional’ as direction of flow parameter. For TCP, the packet
 flow is always bi-directional, but the direction of the flow
 parameter is defined as

 - inbound: bi-directional TCP packet flow. First packet, with TCP
 SYN flag set and ACK flag not set, must arrive at the middlebox
 at the outside interface.

 - outbound: bi-directional TCP packet flow. First packet, with
 TCP SYN flag set and ACK flag not set, must arrive at the
 middlebox at the inside interface.

 - bi-directional: bi-directional TCP packet flow. First packet,
 with TCP SYN flag set and ACK flag not set, may arrive at inside
 or outside interface.

 We refer to the set of these parameters as an address tuple. An
 address tuple specifies either a communication endpoint at an
 internal or external device or allocated addresses at the middlebox.
 In this document, we distinguish four kinds of address tuples, as
 shown in Figure 3.

 +----------+ +----------+
 | internal | A0 A1 +-----------+ A2 A3 | external |
 | endpoint +----------+ middlebox +----------+ endpoint |
 +----------+ +-----------+ +----------+

 Figure 3: Address tuples A0 - A3

 - A0 -- internal endpoint: Address tuple A0 specifies a
 communication endpoint of a device within -- with respect to the
 middlebox -- the internal network.

 - A1 -- middlebox inside address: Address tuple A1 specifies a
 virtual communication endpoint at the middlebox within the
 internal network. A1 is the destination address for packets

Stiemerling, et al. Informational [Page 22]

RFC 3989 MIDCOM Protocol Semantics February 2005

 passing from the internal endpoint to the middlebox and is the
 source for packets passing from the middlebox to the internal
 endpoint.

 - A2 -- middlebox outside address: Address tuple A2 specifies a
 virtual communication endpoint at the middlebox within the
 external network. A2 is the destination address for packets
 passing from the external endpoint to the middlebox and is the
 source for packets passing from the middlebox to the external
 endpoint.

 - A3 -- external endpoint: Address tuple A3 specifies a
 communication endpoint of a device within -- with respect to the
 middlebox -- the external network.

 For a firewall, the inside and outside endpoints are identical to the
 corresponding external or internal endpoints, respectively. In this
 case the installed policy rule sets the same value in A2 as in A0
 (A0=A2) and sets the same value in A1 as in A3 (A1=A3).

 For a traditional NAT, A2 is given a value different from that of A0,
 but the NAT binds them. As for the firewall, it is also as it is at
 a traditional NAT: A1 has the same value as A3.

 For a twice-NAT, there are two bindings of address tuples: A1 and A2
 are both assigned values by the NAT. The middlebox outside address
 A2 is bound to the internal endpoint A0, and the middlebox inside
 address A1 is bound to the external endpoint A3.

2.3.6. Address Parameter Constraints

 For transaction parameters belonging to an address tuple, some
 constraints exist that are common for all messages using them.
 Therefore, these constraints are summarized in the following and are
 not repeated again when describing the parameters in the transaction
 descriptions are presented.

 The MIDCOM semantics defined in this document specifies the handling
 of IPv4 and IPv6 as network protocols, and of TCP and UDP (over IPv4
 and IPv6) as transport protocols. The handling of any other
 transport protocol, e.g., SCTP, is not defined within the semantics
 but may be supported by concrete protocol specifications.

 The IP version parameter has either the value ’IPv4’ or ’IPv6’. In a
 policy rule, the value of the IP version parameter must be the same
 for address tuples A0 and A1, and for A2 and A3.

Stiemerling, et al. Informational [Page 23]

RFC 3989 MIDCOM Protocol Semantics February 2005

 The value of the IP address parameter must conform with the specified
 IP version.

 The IP address of an address tuple may be wildcarded. Whether IP
 address wildcarding is allowed or in which range it is allowed
 depends on the local policy of the middlebox; see also section 6,
 "Security Considerations". Wildcarding is specified by the IP
 address prefix length parameter of an address tuple. In line with
 the common use of a prefix length, this parameter indicates the
 number of high significant bits of the IP address that are fixed,
 while the remaining low significant bits of the IP address are
 wildcarded.

 The value of the transport protocol parameter can be either ’TCP’,
 ’UDP’, or ’ANY’. If the transport protocol parameter has the value
 ’ANY’, only IP headers are considered for packet handling in the
 middlebox -- i.e., the transport header is not considered. The
 values of the parameters port number, port range, and port parity are
 irrelevant if the protocol parameter is ’ANY’. In a policy rule, the
 value of the transport protocol parameter must be the same for all
 address tuples A0, A1, A2, and A3.

 The value of the port number parameter is either zero or a positive
 integer. A positive integer specifies a concrete UDP or TCP port
 number. The value zero specifies port wildcarding for the protocol
 specified by the transport protocol parameter. If the port number
 parameter has the value zero, then the value of the port range
 parameter is irrelevant. Depending on the value of the transport
 protocol parameter, this parameter may truly refer to ports or may
 refer to an equivalent concept.

 The port parity parameter is differently used in the context of
 policy reserve rules (PRR) and policy enable rules (PER). In the
 context of a PRR, the value of the parameter may be ’odd’, ’even’, or
 ’any’. It specifies the parity of the first (lowest) reserved port
 number.

 In the context of a PER, the port parity parameter indicates to the
 middlebox whether port numbers allocated at the middlebox should have
 the same parity as the corresponding internal or external port
 numbers, respectively. In this context, the parameter has the value
 ’same’ or ’any’. If the value is ’same’, then the parity of the port
 number of A0 must be the same as the parity of the port number of A2,
 and the parity of the port number of A1 must be the same as the
 parity of the port number of A3. If the port parity parameter has
 the value ’any’, then there are no constraints on the parity of any
 port number.

Stiemerling, et al. Informational [Page 24]

RFC 3989 MIDCOM Protocol Semantics February 2005

 The port range parameter specifies a number of consecutive port
 numbers. Its value is a positive integer. Like the port number
 parameter, this parameter defines a set of consecutive port numbers
 starting with the port number specified by the port number parameter
 as the lowest port number and having as many elements as specified by
 the port range parameter. A value of 1 specifies a single port
 number. The port range parameter must have the same value for each
 address tuple A0, A1, A2, and A3.

 A single policy rule P containing a port range value greater than one
 is equivalent to a set of policy rules containing a number n of
 policies P_1, P_2, ..., P_n where n equals the value of the port
 range parameter. Each policy rule P_1, P_2, ..., P_n has a port
 range parameter value of 1. Policy rule P_1 contains a set of
 address tuples A0_1, A1_1, A2_1, and A3_1, each of which contains the
 first port number of the respective address tuples in P; policy rule
 P_2 contains a set of address tuples A0_2, A1_2, A2_2, and A3_2, each
 of which contains the second port number of the respective address
 tuples in P; and so on.

2.3.7. Interface-specific Policy Rules

 Usually agents request policy rules with the knowledge of A0 and A3
 only, i.e., the address tuples (see section 2.3.5). But in very
 special cases, agents may need to select the interfaces to which the
 requested policy rule is bound. Generally, the middlebox is careful
 about choosing the right interfaces when reserving or enabling a
 policy rule, as it has the overall knowledge about its configuration.
 For agents that want to select the interfaces, optional parameters
 are included in the Policy Reserve Rule (PRR) and Policy Enable Rule
 (PER) transactions. These parameters are called

 - inside interface: The selected interface at the inside of the
 middlebox -- i.e., in the private or protected address realm.

 - outside interface: The selected interface at the outside of the
 middlebox -- i.e., in the public address realm.

 The Policy Rule Status (PRS) transactions include these optional
 parameters in its replies when they are supported.

 Agents can learn at session startup whether interface-specific policy
 rules are supported by the middlebox, by checking the middlebox
 capabilities (see section 2.1.6).

Stiemerling, et al. Informational [Page 25]

RFC 3989 MIDCOM Protocol Semantics February 2005

2.3.8. Policy Reserve Rule (PRR)

 transaction-name: policy reserve rule

 transaction-type: configuration

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 - group identifier: A reference to the group of which the policy
 reserve rule should be a member. As indicated in section 2.3.3,
 if this value is not supplied, the middlebox assigns a new group
 for this policy reserve rule.

 - service: The requested NAT service of the middlebox. Allowed
 values are ’traditional’ or ’twice’.

 - internal IP version: Requested IP version at the inside of the
 middlebox; see section 2.3.5.

 - internal IP address: The IP address of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - internal port number: The port number of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - inside interface (optional): Interface at the inside of the
 middlebox; see section 2.3.7.

 - external IP version: Requested IP version at the outside of the
 middlebox; see section 2.3.5.

 - outside interface (optional): Interface at the outside of the
 middlebox; see Section 2.3.7.

 - transport protocol: See section 2.3.5.

 - port range: The number of consecutive port numbers to be
 reserved; see section 2.3.5.

 - port parity: The requested parity of the first (lowest) port
 number to be reserved; allowed values for this parameter are
 ’odd’, ’even’, and ’any’. See also section 2.3.5.

Stiemerling, et al. Informational [Page 26]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - policy rule lifetime: A lifetime proposal to the middlebox for
 the requested policy rule.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - policy rule identifier: A middlebox-unique policy rule
 identifier. It is assigned by the middlebox and used as policy
 rule handle in further policy rule transactions, particularly to
 refer to the policy reserve rule in a subsequent PER
 transaction.

 - group identifier: A reference to the group of which the policy
 reserve rule is a member.

 - reserved inside IP address: The reserved IPv4 or IPv6 address on
 the internal side of the middlebox. For an outbound flow, this
 will be the destination to which the internal endpoint sends its
 packets (A1 in Figure 3). For an inbound flow, it will be the
 apparent source address of the packets as forwarded to the
 internal endpoint (A0 in Figure 3). The middlebox reserves and
 reports an internal address only in the case where twice-NAT is
 in effect. Otherwise, an empty value for the addresses
 indicates that no internal reservation was made. See also
 Section 2.3.5.

 - reserved inside port number: See section 2.3.5.

 - reserved outside IP address: The reserved IPv4 or IPv6 address
 on the external side of the middlebox. For an inbound flow,
 this will be the destination to which the external endpoint
 sends its packets (A2 in Figure 4). For an outbound flow, it
 will be the apparent source address of the packets as forwarded
 to the external endpoint (A3 in Figure 3). If the middlebox is
 configured as a pure firewall, an empty value for the addresses
 indicates that no external reservation was made. See also
 section 2.3.5.

 - reserved outside port number: See section 2.3.5.

 - policy rule lifetime: The policy rule lifetime granted by the
 middlebox, after which the reservation will be revoked if it has
 not been replaced already by a policy enable rule in a PER
 transaction.

Stiemerling, et al. Informational [Page 27]

RFC 3989 MIDCOM Protocol Semantics February 2005

 failure reason:

 - agent not authorized for this transaction
 - agent not authorized to add members to this group
 - lack of IP addresses
 - lack of port numbers
 - lack of resources
 - specified inside/outside interface does not exist
 - specified inside/outside interface not available for specified
 service

 notification message type: Policy Rule Event Notification (REN)

 semantics:

 The agent can use this transaction type to reserve an IP address
 or a combination of IP address, transport type, port number, and
 port range at neither side, one side, or both sides of the
 middlebox as required to support the enabling of a flow.
 Typically the PRR will be used in scenarios where it is required
 to perform such a reservation before sufficient parameters for a
 complete policy enable rule transaction are available. See
 section 4.2 for an example.

 When receiving the request, the middlebox determines how many
 address (and port) reservations are required based on its
 configuration. If it provides only packet filter services, it
 does not perform any reservation and returns empty values for the
 reserved inside and outside IP addresses and port numbers. If it
 is configured for twice-NAT, it reserves both inside and outside
 IP addresses (and an optional range of port numbers) and returns
 them. Otherwise, it reserves and returns an outside IP address
 (and an optional range of port numbers) and returns empty values
 for the reserved inside address and port range.

 The A0 parameter (inside IP address version, inside IP address,
 and inside port number) can be used by the middlebox to determine
 the correct NAT mapping and thus A2 if necessary. Once a PRR
 transaction has reserved an outside address (A2) for an internal
 end point (A0) at the middlebox, the middlebox must ensure that
 this reserved A2 is available in any subsequent PER and PRR
 transaction.

 For middleboxes supporting interface-specific policy rules, as
 defined in section 2.3.7, the optional inside and outside
 interface parameters must both be included in the request, or
 neither of them should be included. In the presence of these
 parameters, the middlebox uses the outside interface parameter to

Stiemerling, et al. Informational [Page 28]

RFC 3989 MIDCOM Protocol Semantics February 2005

 select the interface at which the outside address tuple (outside
 IP address and port number) is reserved, and the inside interface
 parameter to select the interface at which the inside address
 tuple (inside IP address and port number) is reserved. Without
 the presence of these parameters, the middlebox selects the
 particular interfaces based on its internal configuration.

 If there is a lack of resources, such as available IP addresses,
 port numbers, or storage for further policy rules, then the
 reservation fails, and an appropriate failure reply is generated.

 If a non-existing policy rule group was specified, or if an
 existing policy rule group was specified that is not owned by the
 requesting agent, then no new policy rule is established, and an
 appropriate failure reply is generated.

 In case of success, this transaction creates a new policy reserve
 rule. If an already existing policy rule group is specified, then
 the new policy rule becomes a member of it. If no policy group is
 specified, a new group is created with the new policy rule as its
 only member. The middlebox generates a middlebox-unique
 identifier for the new policy rule. The owner of the new policy
 rule is the authenticated agent that sent the request. The
 middlebox chooses a lifetime value that is greater than zero and
 less than or equal to the minimum of the requested value and the
 maximum lifetime specified by the middlebox at session startup,
 i.e.,

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 where
 - lt_granted is the lifetime actually granted by the middlebox
 - lt_requested is the lifetime the agent requested
 - lt_maximum is the maximum lifetime specified at session
 setup

 A middlebox with NAT capability always reserves a middlebox
 external address tuple (A2) in response to a PRR request. In the
 special case of a combined twice-NAT/NAT middlebox, the agent can
 request only NAT service or twice-NAT service by choosing the
 service parameter ’traditional’ or ’twice’, respectively. An
 agent that does not have any preference chooses ’twice’. The
 ’traditional’ value should only be used in order to select
 traditional NAT service at middleboxes offering both traditional
 NAT and twice NAT. In the ’twice’ case, the combined twice-
 NAT/NAT middlebox reserves A2 and A1; the ’traditional’ case
 results in a reservation of A2 only. An agent

Stiemerling, et al. Informational [Page 29]

RFC 3989 MIDCOM Protocol Semantics February 2005

 must always use the PRR transaction for choosing NAT only or
 twice-NAT service in the special case of a combined twice-NAT/NAT
 middlebox. A firewall middlebox ignores this parameter.

 If the protocol identifier is ’ANY’, then the middlebox reserves
 available inside and/or outside IP address(es) only. The reserved
 address(es) are returned to the agent. In this case, the
 request-parameters "port range" and "port parity" as well as
 reply-parameters "inside port number" and "outside port number",
 are irrelevant.

 If the protocol identifier is ’UDP’ or ’TCP’, then a combination
 of an IP address and a consecutive sequence of port numbers,
 starting with the specified parity, is reserved, on neither side,
 one side, or both sides of the middlebox, as appropriate. The IP
 address(es) and the first (lowest) reserved port number(s) of the
 consecutive sequence are returned to the agent. (This also
 applies to other protocols supporting ports or the equivalent.)

 After a new policy reserve rule is successfully established and
 the reply message has been sent to the requesting agent, the
 middlebox checks whether there are other authenticated agents
 participating in open sessions, which can access the new policy
 rule. If the middlebox finds one or more of these agents, then it
 sends a REN message reporting the new policy rule to each of them.

 MIDCOM agents use the policy enable rule (PER) transaction to enable
 policy reserve rules that have been established beforehand by a
 policy reserve rule (PRR) transaction. See also section 2.3.2.

2.3.9. Policy Enable Rule (PER)

 transaction-name: policy enable rule

 transaction-type: configuration

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 - policy reserve rule identifier: A reference to an already
 existing policy reserve rule created by a PRR transaction. The
 reference may be empty, in which case the middlebox must assign
 any necessary addresses and port numbers within this PER
 transaction. If it is not empty, then the following request

Stiemerling, et al. Informational [Page 30]

RFC 3989 MIDCOM Protocol Semantics February 2005

 parameters are irrelevant: group identifier, transport protocol,
 port range, port parity, internal IP version, external IP
 version.

 - group identifier: A reference to the group of which the policy
 enable rule should be a member. As indicated in section 2.3.3,
 if this value is not supplied, the middlebox assigns a new group
 for this policy reserve rule.

 - transport protocol: See section 2.3.5.

 - port range: The number of consecutive port numbers to be
 reserved; see section 2.3.5.

 - port parity: The requested parity of the port number(s) to be
 mapped. Allowed values of this parameter are ’same’ and ’any’.
 See also section 2.3.5.

 - direction of flow: This parameter specifies the direction of
 enabled communication, either ’inbound’, ’outbound’, or ’bi-
 directional’.

 - internal IP version: Requested IP version at the inside of the
 middlebox; see section 2.3.5.

 - internal IP address: The IP address of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - internal port number: The port number of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - inside interface (optional): Interface at the inside of the
 middlebox; see section 2.3.7.

 - external IP version: Requested IP version at the outside of the
 middlebox; see section 2.3.5.

 - external IP address: The IP address of the external
 communication endpoint (A3 in Figure 3); see section 2.3.5.

 - external port number: The port number of the external
 communication endpoint (A3 in Figure 4), see section 2.3.5.

 - outside interface (optional): Interface at the outside of the
 middlebox; see section 2.3.7.

 - policy rule lifetime: A lifetime proposal to the middlebox for
 the requested policy rule.

Stiemerling, et al. Informational [Page 31]

RFC 3989 MIDCOM Protocol Semantics February 2005

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - policy rule identifier: A middlebox-unique policy rule
 identifier. It is assigned by the middlebox and used as policy
 rule handle in further policy rule transactions. If a policy
 reserve rule identifier was provided in the request, then the
 returned policy rule identifier has the same value.

 - group identifier: A reference to the group of which the policy
 enable rule is a member. If a policy reserve rule identifier
 was provided in the request, then this parameter identifies the
 group of which the policy reserve rule was a member.

 - inside IP address: The IP address provided at the inside of the
 middlebox (A1 in Figure 3). In case of a twice-NAT, this
 parameter will be an internal IP address reserved at the inside
 of the middlebox. In all other cases, this reply-parameter will
 be identical with the external IP address passed with the
 request. If the policy reserve rule identifier parameter was
 supplied in the request and the respective PRR transaction
 reserved an inside IP address, then the inside IP address
 provided in the PER response will be the identical value to that
 returned by the response to the PRR request. See also section
 2.3.5.

 - inside port number: The internal port number provided at the
 inside of the middlebox (A1 in Figure 3); see also section
 2.3.5.

 - outside IP address: The external IP address provided at the
 outside of the middlebox (A2 in Figure 4). In case of a pure
 firewall, this parameter will be identical with the internal IP
 address passed with the request. In all other cases, this
 reply-parameter will be an external IP address reserved at the
 outside of the middlebox. See also section 2.3.5.

 - outside port number: The external port number provided at the
 outside of the NAT (A2 in Figure 3); see section 2.3.5..

 - policy rule lifetime: The policy rule lifetime granted by the
 middlebox.

 failure reason:

 - agent not authorized for this transaction

Stiemerling, et al. Informational [Page 32]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - agent not authorized to add members to this group
 - no such policy reserve rule
 - agent not authorized to replace this policy reserve rule
 - conflict with already existing policy rule (e.g., the same
 internal address-port is being mapped to different outside
 address-port pairs)
 - lack of IP addresses
 - lack of port numbers
 - lack of resources
 - no internal IP wildcarding allowed
 - no external IP wildcarding allowed
 - specified inside/outside interface does not exist
 - specified inside/outside interface not available for specified
 service
 - reserved A0 to requested A0 mismatch

 notification message type: Policy Rule Event Notification (REN)

 semantics:

 This transaction can be used by an agent to enable communication
 between an internal endpoint and an external endpoint
 independently of the type of middlebox (NAT, NAPT, firewall, NAT-
 PT, combined devices), for unidirectional or bi-directional
 traffic.

 The agent sends an enable request specifying the endpoints
 (optionally including wildcards) and the direction of
 communication (inbound, outbound, bi-directional). The
 communication endpoints are displayed in Figure 3. The basic
 operation of the PER transaction can be described by

 1. the agent sending A0 and A3 to the middlebox,

 2. the middlebox reserving A1 and A2 or using A1 and A2 from a
 previous PRR transaction,

 3. the middlebox enabling packet transfer between A0 and A3 by
 binding A0-A2 and A1-A3 and/or by opening the corresponding
 pinholes, both according to the specified direction, and

 4. the middlebox returning A1 and A2 to the agent.

 In case of a pure packet filtering firewall, the returned address
 tuples are the same as those in the request: A2=A0 and A1=A3.
 Each partner uses the other’s real address. In case of a
 traditional NAT, the internal endpoint may use the real address of
 the external endpoint (A1=A3), but the external endpoint uses an

Stiemerling, et al. Informational [Page 33]

RFC 3989 MIDCOM Protocol Semantics February 2005

 address tuple provided by the NAT (A2!=A0). In case of a twice-
 NAT device, both endpoints use address tuples provided by the NAT
 for addressing their communication partner (A3!=A1 and A2!=A0).

 If a firewall is combined with a NAT or a twice-NAT, the replied
 address tuples will be the same as for pure traditional NAT or
 twice-NAT, respectively, but the middlebox will configure its
 packet filter in addition to the performed NAT bindings. In case
 of a firewall combined with a traditional NAT, the policy rule may
 imply more than one enable action for the firewall configuration,
 as incoming and outgoing packets may use different source-
 destination pairs.

 For middleboxes supporting interface specific policy rules, as
 defined in Section 2.3.7, the optional inside and outside
 interface parameters must both be included in the request, or
 neither of them should be included. In the presence of these
 parameters, the middlebox uses the outside interface parameter to
 select the interface at which the outside address tuple (outside
 IP address and port number) is bound, and the inside interface
 parameter to select the interface at which the inside address
 tuple (inside IP address and port number) is bound. Without the
 presence of these parameters, the middlebox selects the particular
 interfaces based on its internal configuration.

 Checking the Policy Reservation Rule Identifier

 If the parameter specifying the policy reservation rule
 identifier is not empty, then the middlebox checks whether the
 referenced policy rule exists, whether the agent is authorized
 to replace this policy rule, and whether this policy rule is a
 policy reserve rule.

 In case of success, this transaction creates a new policy
 enable rule. If a policy reserve rule was referenced, then the
 policy reserve rule is terminated without an explicit
 notification sent to the agent (other than the successful PER
 reply).

 The PRR transaction sets the internal endpoint A0 during the
 reservation process. In the process of creating a new policy
 enable rule, the middlebox may check whether the requested A0
 is equal to the reserved A0. The middlebox may reject a PER
 request with a requested A0 not equal to the reserved A0 and
 must then send an appropriate failure message. Alternatively,
 the middlebox may change A0 due to the PER request.

Stiemerling, et al. Informational [Page 34]

RFC 3989 MIDCOM Protocol Semantics February 2005

 The middlebox generates a middlebox-unique identifier for the
 new policy rule. If a policy reserve rule was referenced, then
 the identifier of the policy reserve rule is reused.

 The owner of the new policy rule is the authenticated agent
 that sent the request.

 Checking the Policy Rule Group Identifier

 If no policy reserve rule was specified, then the policy rule
 group parameter is checked. If a non-existing policy rule
 group is specified, or if an existing policy rule group is
 specified that is not owned by the requesting agent, then no
 new policy rule is established, and an appropriate failure
 reply is generated.

 If an already existing policy rule group is specified, then the
 new policy rule becomes a member. If no policy group is
 specified, then a new group is created with the new policy rule
 as its only member.

 If the transport protocol parameter value is ’ANY’, then the
 middlebox enables communication between the specified external IP
 address and the specified internal IP address. The addresses to
 be used by the communication partners to address each other are
 returned to the agent as inside IP address and outside IP address.
 If the reservation identifier is not empty and if the reservation
 used the same transport protocol type, then the reserved IP
 addresses are used.

 For the transport protocol parameter values ’UDP’ and ’TCP’, the
 middlebox acts analogously as for ’ANY’ but also maps ranges of
 port numbers, keeping the port parity, if requested.

 The configuration of the middlebox may fail because of lack of
 resources, such as available IP addresses, port numbers, or
 storage for further policy rules. It may also fail because of a
 conflict with an established policy rule. In case of a conflict,
 the first-come first-served mechanism is applied. Existing policy
 rules remain unchanged and arriving new ones are rejected.
 However, in case of a non-conflicting overlap of policy rules
 (including identical policy rules), all policy rules are accepted.

 The middlebox chooses a lifetime value that is greater than zero
 and less than or equal to the minimum of the requested value and
 the maximum lifetime specified by the middlebox at session
 startup, i.e.,

Stiemerling, et al. Informational [Page 35]

RFC 3989 MIDCOM Protocol Semantics February 2005

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 where
 - lt_granted is the lifetime actually granted by the middlebox
 - lt_requested is the lifetime the agent requested
 - lt_maximum is the maximum lifetime specified at session
 setup

 In each case of failure, an appropriate failure reply is
 generated. The policy reserve rule that is referenced in the PER
 transaction is not affected in case of a failure within the PER
 transaction -- i.e., the policy reserve rule remains.

 After a new policy enable rule is successfully established and the
 reply message has been sent to the requesting agent, the middlebox
 checks whether there are other authenticated agents participating
 in open sessions that can access the new policy rule. If the
 middlebox finds one or more of these agents, then it sends a REN
 message reporting the new policy rule to each of them.

2.3.10. Policy Rule Lifetime Change (RLC)

 transaction-name: policy rule lifetime change

 transaction-type: configuration

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 - policy rule identifier: Identifying the policy rule for which
 the lifetime is requested to be changed. This may identify
 either a policy reserve rule or a policy enable rule.

 - policy rule lifetime: The new lifetime proposal for the policy
 rule.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - policy rule lifetime: The remaining policy rule lifetime granted
 by the middlebox.

Stiemerling, et al. Informational [Page 36]

RFC 3989 MIDCOM Protocol Semantics February 2005

 failure reason:

 - agent not authorized for this transaction
 - agent not authorized to change lifetime of this policy
 rule
 - no such policy rule
 - lifetime cannot be extended

 notification message type: Policy Rule Event Notification (REN)

 semantics:

 The agent can use this transaction type to request the extension
 of an established policy rule’s lifetime, the shortening of the
 lifetime, or policy rule termination. Policy rule termination is
 requested by suggesting a new policy rule lifetime of zero.

 The middlebox first checks whether the specified policy rule
 exists and whether the agent is authorized to access this policy
 rule. If one of the checks fails, an appropriate failure reply is
 generated. If the requested lifetime is longer than the current
 one, the middlebox also checks whether the lifetime of the policy
 rule may be extended and generates an appropriate failure message
 if it may not.

 A failure reply implies that the new lifetime was not accepted,
 and the policy rule remains unchanged. A success reply is
 generated by the middlebox if the lifetime of the policy rule was
 changed in any way.

 The success reply contains the new lifetime of the policy rule.
 The middlebox chooses a lifetime value that is greater than zero
 and less than or equal to the minimum of the requested value and
 the maximum lifetime specified by the middlebox at session
 startup, i.e.,

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 whereas
 - lt_granted is the lifetime actually granted by the middlebox
 - lt_requested is the lifetime the agent requested
 - lt_maximum is the maximum lifetime specified at session
 setup

Stiemerling, et al. Informational [Page 37]

RFC 3989 MIDCOM Protocol Semantics February 2005

 After sending a success reply with a lifetime of zero, the
 middlebox will consider the policy rule non-existent. Any further
 transaction on this policy rule results in a negative reply,
 indicating that this policy rule does not exist anymore.

 Note that policy rule lifetime may also be changed by the Group
 Lifetime Change (GLC) transaction, if applied to the group of
 which the policy rule is a member.

 After the remaining policy rule lifetime was successfully changed
 and the reply message has been sent to the requesting agent, the
 middlebox checks whether there are other authenticated agents
 participating in open sessions that can access the policy rule.
 If the middlebox finds one or more of these agents, then it sends
 a REN message reporting the new remaining policy rule lifetime to
 each of them.

2.3.11. Policy Rule List (PRL)

 transaction-name: policy rule list

 transaction-type: monitoring

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - policy list: List of policy rule identifiers of all policy rules
 that the agent can access.

 failure reason:

 - transaction not supported
 - agent not authorized for this transaction

Stiemerling, et al. Informational [Page 38]

RFC 3989 MIDCOM Protocol Semantics February 2005

 semantics:

 The agent can use this transaction type to list all policies that
 it can access. Usually, the agent has this information already,
 but in special cases (for example, after an agent fail-over) or
 for special agents (for example, an administrating agent that can
 access all policies) this transaction can be helpful.

 The middlebox first checks whether the agent is authorized to
 request this transaction. If the check fails, an appropriate
 failure reply is generated. Otherwise a list of all policies the
 agent can access is returned indicating the identifier and the
 owner of each policy.

 This transaction does not have any effect on the policy rule
 state.

2.3.12. Policy Rule Status (PRS)

 transaction-name: policy rule status

 transaction-type: monitoring

 transaction-compliance: mandatory

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 - policy rule identifier: The middlebox-unique policy rule
 identifier.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - policy rule owner: An identifier of the agent owning this policy
 rule.

 - group identifier: A reference to the group of which the policy
 rule is a member.

 - policy rule action: This parameter has either the value
 ’reserve’ or the value ’enable’.

Stiemerling, et al. Informational [Page 39]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - transport protocol: Identifies the protocol for which a
 reservation is requested; see section 2.3.5.

 - port range: The number of consecutive port numbers; see section
 2.3.5.

 - direction: The direction of the communication enabled by the
 middlebox. Applicable only to policy enable rules.

 - internal IP address version: The version of the internal IP
 address (IP version of A0 in Figure 3).

 - external IP address version: The version of the external IP
 address (IP version of A3 in Figure 3).

 - internal IP address: The IP address of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - internal port number: The port number of the internal
 communication endpoint (A0 in Figure 3); see section 2.3.5.

 - external IP address: The IP address of the external
 communication endpoint (A3 in Figure 3); see section 2.3.5.

 - external port number: The port number of the external
 communication endpoint (A3 in Figure 3); see section 2.3.5.

 - inside interface (optional): The inside interface at the
 middlebox; see section 2.3.7.

 - inside IP address: The internal IP address provided at the
 inside of the NAT (A1 in Figure 3); see section 2.3.5.

 - inside port number: The internal port number provided at the
 inside of the NAT (A1 in Figure 3); see section 2.3.5.

 - outside interface (optional): The outside interface at the
 middlebox; see section 2.3.7.

 - outside IP address: The external IP address provided at the
 outside of the NAT (A2 in Figure 3); see section 2.3.5.

 - outside port number: The external port number provided at the
 outside of the NAT (A2 in Figure 3); see section 2.3.5.

 - port parity: The parity of the allocated ports.

Stiemerling, et al. Informational [Page 40]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - service: The selected service in the case of mixed traditional
 and twice-NAT middlebox (see section 2.3.8).

 - policy rule lifetime: The remaining lifetime of the policy rule.

 failure reason:

 - transaction not supported
 - agent not authorized for this transaction
 - no such policy rule
 - agent not authorized to access this policy rule

 semantics:

 The agent can use this transaction type to list all properties of
 a policy rule. Usually, the agent has this information already,
 but in special cases (for example, after an agent fail-over) or
 for special agents (for example, an administrating agent that can
 access all policy rules) this transaction can be helpful.

 The middlebox first checks whether the specified policy rule
 exists and whether the agent is authorized to access this group.
 If one of the checks fails, an appropriate failure reply is
 generated. Otherwise all properties of the policy rule are
 returned to the agent. Some of the returned parameters may be
 irrelevant, depending on the policy rule action (’reserve’ or
 ’enable’) and depending on other parameters -- for example, the
 protocol identifier.

 This transaction does not have any effect on the policy rule
 state.

2.3.13. Asynchronous Policy Rule Event (ARE)

 transaction-name: asynchronous policy rule event

 transaction-type: notification

 transaction-compliance: mandatory

 notification message type: Policy Rule Event Notification (REN)

 semantics:

 The middlebox may decide at any point in time to terminate a
 policy rule. This transaction is triggered most frequently by
 lifetime expiration of the policy rule. Among other events that

Stiemerling, et al. Informational [Page 41]

RFC 3989 MIDCOM Protocol Semantics February 2005

 may cause this transaction are changes in the policy rule decision
 point.

 The middlebox sends an REN message to all agents that participate
 in an open session with the middlebox and that are authorized to
 access the policy rule. The notification is sent to the agents
 before the middlebox changes the policy rule’s lifetime. The
 change of lifetime may be triggered by any other authorized agent
 and results in shortening (lt_new < lt_existing), extending
 (lt_new > lt_existing), or terminating the policy rule
 (lt_new = 0).

 The ARE transaction corresponds to the REN message handling described
 in section 2.3.4 for multiple agents.

2.3.14. Policy Rule State Machine

 The state machine for the policy rule transactions is shown in Figure
 4 with all possible state transitions. The used transaction
 abbreviations may be found in the headings of the particular
 transaction section.

 PRR/success +---------------+
 +-----------------+ PRID UNUSED |<-+
 +----+ | +---------------+ |
 | | | ^ | |
 | v v | | |
 | +-------------+ ARE | | PER/ | ARE
 | | RESERVED +------------+ | success | RLC(lt=0)/
 | +-+----+------+ RLC(lt=0)/ | | success
 | | | success | |
 +----+ | v |
 RLC(lt>0)/ | PER/success +---------------+ |
 success +---------------->| ENABLED +--+
 +-+-------------+
 | ^
 lt = lifetime +-----------+
 RLC(lt>0)/success

 Figure 4: Policy Rule State Machine

 This state machine exists per policy rule identifier (PRID).
 Initially all policy rules are in state PRID UNUSED, which means that
 the policy rule does not exist or is not active. After returning to
 state PRID UNUSED, the policy rule identifier is no longer bound to
 an existing policy rule and may be reused by the middlebox.

Stiemerling, et al. Informational [Page 42]

RFC 3989 MIDCOM Protocol Semantics February 2005

 A successful PRR transaction causes a transition from the initial
 state PRID UNUSED to the state RESERVED, where an address reservation
 is established. From there, state ENABLED can be entered by a PER
 transaction. This transaction can also be used for entering state
 ENABLED directly from state PRID UNUSED without a reservation. In
 state ENABLED the requested communication between the internal and
 the external endpoint is enabled.

 The states RESERVED and ENABLED can be maintained by successful RLC
 transactions with a requested lifetime greater than 0. Transitions
 from both of these states back to state PRID UNUSED can be caused by
 an ARE transaction or by a successful RLC transaction with a lifetime
 parameter of 0.

 A failed request transactions does not change state at the middlebox.

 Note that transitions initiated by RLC transactions may also be
 initiated by GLC transactions.

2.4. Policy Rule Group Transactions

 This section describes the semantics for transactions on groups of
 policy rules. These transactions are specified as follows:

 - Group Lifetime Change (GLC)
 - Group List (GL)
 - Group Status (GS)

 All are request transactions initiated by the agent. GLC is a
 convenience transaction. GL and GS are monitoring transactions that
 do not have any effect on the group state machine.

2.4.1. Overview

 A policy rule group has only one attribute: the list of its members.
 All member policies of a single group must be owned by the same
 authenticated agent. Therefore, an implicit property of a group is
 its owner, which is the owner of the member policy rules.

 A group is implicitly created when its first member policy rule is
 established. A group is implicitly terminated when the last
 remaining member policy rule is terminated. Consequently, the
 lifetime of a group is the maximum of the lifetimes of all member
 policy rules.

 A group has a middlebox-unique identifier.

Stiemerling, et al. Informational [Page 43]

RFC 3989 MIDCOM Protocol Semantics February 2005

 Group transactions are declared as ’optional’ by their respective
 compliance entry in section 3. However, they provide some
 functionalities, such as convenience for the agent in sending only
 one request instead of several, that is not available if only
 mandatory transactions are available.

 The Group Lifetime Change (GLC) transaction is equivalent to
 simultaneously performed Policy Rule Lifetime Change (RLC)
 transactions on all members of the group. The result of a successful
 GLC transaction is that all member policy rules have the same
 lifetime. As with the RLC transaction, the GLC transaction can be
 used to delete all member policy rules by requesting a lifetime of
 zero.

 The monitoring transactions Group List (GL) and Group Status (GS) can
 be used by the agent to explore the state of the middlebox and to
 explore its access rights. The GL transaction lists all groups that
 the agent may access, including groups owned by other agents. The GS
 transaction reports the status on an individual group and lists all
 policy rules of this group by their policy rule identifiers. The
 agent can explore the state of the individual policy rules by using
 the policy rule identifiers in a policy rule status (PRS) transaction
 (see section 2.3.12).

 The GL and GS transactions are particularly helpful in case of an
 agent fail-over. The agent taking over the role of a failed one can
 use these transactions retrieve whichever policies have been
 established by the failed agent.

 Notifications on group events are generated analogously to policy
 rule events. To notify agents about group events, the Policy Rule
 Group Event Notification (GEN) message type is used. GEN messages
 contain an agent-unique notification identifier, the policy rule
 group identifier, and the remaining lifetime of the group.

2.4.2. Group Lifetime Change (GLC)

 transaction-name: group lifetime change

 transaction-type: convenience

 transaction-compliance: optional

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

Stiemerling, et al. Informational [Page 44]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - group identifier: A reference to the group for which the
 lifetime is requested to be changed.

 - group lifetime: The new lifetime proposal for the group.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - group lifetime: The group lifetime granted by the middlebox.

 failure reason:

 - transaction not supported
 - agent not authorized for this transaction
 - agent not authorized to change lifetime of this group
 - no such group
 - lifetime cannot be extended

 notification message type: Policy Rule Group Event Notification (GEN)

 semantics:

 The agent can use this transaction type to request an extension of
 the lifetime of all members of a policy rule group, to request
 shortening the lifetime of all members, or to request termination
 of all member policies (which implies termination of the group).
 Termination is requested by suggesting a new group lifetime of
 zero.

 The middlebox first checks whether the specified group exists and
 whether the agent is authorized to access this group. If one of
 the checks fails, an appropriate failure reply is generated. If
 the requested lifetime is longer than the current one, the
 middlebox also checks whether the lifetime of the group may be
 extended and generates an appropriate failure message if it may
 not.

 A failure reply implies that the lifetime of the group remains
 unchanged. A success reply is generated by the middlebox if the
 lifetime of the group was changed in any way.

 The success reply contains the new common lifetime of all member
 policy rules of the group. The middlebox chooses the new lifetime
 less than or equal to the minimum of the requested lifetime and
 the maximum lifetime that the middlebox specified at session setup
 along with its other capabilities, i.e.,

Stiemerling, et al. Informational [Page 45]

RFC 3989 MIDCOM Protocol Semantics February 2005

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 where
 - lt_granted is the lifetime actually granted by the middlebox
 - lt_requested is the lifetime the agent requested
 - lt_maximum is the maximum lifetime specified at session
 setup

 After sending a success reply with a lifetime of zero, the
 middlebox will terminate the member policy rules without any
 further notification to the agent, and will consider the group and
 all of its members non-existent. Any further transaction on this
 policy rule group or on any of its members results in a negative
 reply, indicating that this group or policy rule, respectively,
 does not exist anymore.

 After the remaining policy rule group lifetime is successfully
 changed and the reply message has been sent to the requesting
 agent, the middlebox checks whether there are other authenticated
 agents participating in open sessions that can access the policy
 rule group. If the middlebox finds one or more of these agents,
 it sends a GEN message reporting the new remaining policy rule
 group lifetime to each of them.

2.4.3. Group List (GL)

 transaction-name: group list

 transaction-type: monitoring

 transaction-compliance: optional

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - group list: List of all groups that the agent can access. For
 each listed group, the identifier and the owner are indicated.

Stiemerling, et al. Informational [Page 46]

RFC 3989 MIDCOM Protocol Semantics February 2005

 failure reason:

 - transaction not supported
 - agent not authorized for this transaction

 semantics:

 The agent can use this transaction type to list all groups that it
 can access. Usually, the agent has this information already, but
 in special cases (for example, after an agent fail-over) or for
 special agents (for example, an administrating agent that can
 access all groups) this transaction can be helpful.

 The middlebox first checks whether the agent is authorized to
 request this transaction. If the check fails, an appropriate
 failure reply is generated. Otherwise a list of all groups the
 agent can access is returned indicating the identifier and the
 owner of each group.

 This transaction does not have any effect on the group state.

2.4.4. Group Status (GS)

 transaction-name: group status

 transaction-type: monitoring

 transaction-compliance: optional

 request-parameters:

 - request identifier: An agent-unique identifier for matching
 corresponding request and reply at the agent.

 - group identifier: A reference to the group for which status
 information is requested.

 reply-parameters (success):

 - request identifier: An identifier matching the identifier of the
 request.

 - group owner: An identifier of the agent owning this policy rule
 group.

 - group lifetime: The remaining lifetime of the group. This is
 the maximum of the remaining lifetime of all members, policy
 rules.

Stiemerling, et al. Informational [Page 47]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - member list: List of all policy rules that are members of the
 group. The policy rules are specified by their middlebox-unique
 policy rule identifier.

 failure reason:

 - transaction not supported
 - agent not authorized for this transaction
 - no such group
 - agent not authorized to list members of this group

 semantics:

 The agent can use this transaction type to list all member policy
 rules of a group. Usually, the agent has this information
 already, but in special cases (for example, after an agent fail-
 over) or for special agents (for example, an administrating agent
 that can access all groups) this transaction can be helpful.

 The middlebox first checks whether the specified group exists and
 whether the agent is authorized to access this group. If one of
 the checks fails, an appropriate failure reply is generated.
 Otherwise a list of all group members is returned indicating the
 identifier of each group.

 This transaction does not have any effect on the group state.

3. Conformance Statements

 A protocol definition complies with the semantics defined in section
 2 if the protocol specification includes all specified transactions
 with all their mandatory parameters. However, concrete
 implementations of the protocol may support only some of the optional
 transactions, not all of them. Which transactions are required for
 compliance is different for agent and middlebox.

 This section contains conformance statements for MIDCOM protocol
 implementations related to the semantics. Conformance is specified
 differently for agents and middleboxes. These conformance statements
 will probably be extended by a concrete protocol specification.
 However, such an extension is expected to extend the statements below
 in such a way that all of them still hold.

 The following list shows the transaction-compliance property of all
 transactions as specified in the previous section:

Stiemerling, et al. Informational [Page 48]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - Session Control Transactions
 - Session Establishment (SE) mandatory
 - Session Termination (ST) mandatory
 - Asynchronous Session Termination (AST) mandatory

 - Policy Rule Transactions
 - Policy Reserve Rule (PRR) mandatory
 - Policy Enable Rule (PER) mandatory
 - Policy Rule Lifetime Change (RLC) mandatory
 - Policy Rule List (PRL) mandatory
 - Policy Rule Status (PRS) mandatory
 - Asynchronous Policy Rule Event (ARE) mandatory

 - Policy Rule Group Transactions
 - Group Lifetime Change (GLC) optional
 - Group List (GL) optional
 - Group Status (GS) optional

3.1. General Implementation Conformance

 A compliant implementation of a MIDCOM protocol must support all
 mandatory transactions.

 A compliant implementation of a MIDCOM protocol may support none,
 one, or more of the following transactions: GLC, GL, GS.

 A compliant implementation may extend the protocol semantics by
 further transactions.

 A compliant implementation of a MIDCOM protocol must support all
 mandatory parameters of each transaction concerning the information
 contained. The set of parameters can be redefined per transaction as
 long as the contained information is maintained.

 A compliant implementation of a MIDCOM protocol may support the use
 of interface-specific policy rules. Either both or neither of the
 optional inside and outside interface parameters in PRR, PER, and PRS
 must be included when interface-specific policy rules are supported.

 A compliant implementation may extend the list of parameters of
 transactions.

 A compliant implementation may replace a single transaction by a set
 of more fine-grained transactions. In such a case, it must be
 ensured that requirement 2.1.4 (deterministic behavior) and
 requirement 2.1.5 (known and stable state) of [MDC-REQ] are still
 met. When a single transaction is replaced by a set of multiple
 fine-grained transactions, this set must be equivalent to a single

Stiemerling, et al. Informational [Page 49]

RFC 3989 MIDCOM Protocol Semantics February 2005

 transaction. Furthermore, this set of transactions must further meet
 the atomicity requirement stated in section 2.1.3.

3.2. Middlebox Conformance

 A middlebox implementation of a MIDCOM protocol supports a request
 transaction if it is able to receive and process all possible correct
 message instances of the particular request transaction and if it
 generates a correct reply for any correct request it receives.

 A middlebox implementation of a MIDCOM protocol supports an
 asynchronous transaction if it is able to generate the corresponding
 notification message properly.

 A compliant middlebox implementation of a MIDCOM protocol must inform
 the agent about the list of supported transactions within the SE
 transaction.

3.3. Agent Conformance

 An agent implementation of a MIDCOM protocol supports a request
 transaction if it can generate the corresponding request message
 properly and if it can receive and process all possible correct
 replies to the particular request.

 An agent implementation of a MIDCOM protocol supports an asynchronous
 transaction if it can receive and process all possible correct
 message instances of the particular transaction.

 A compliant agent implementation of a MIDCOM protocol must not use
 any optional transaction that is not supported by the middlebox. The
 middlebox informs the agent about the list of supported transactions
 within the SE transaction.

4. Transaction Usage Examples

 This section gives two usage examples of the transactions specified
 in Section 2. The first shows how an agent can explore all policy
 rules and policy rule groups that it may access at a middlebox. The
 second example shows the configuration of a middlebox in combination
 with the setup of a voice over IP session with the Session Initiation
 Protocol (SIP) [RFC3261].

4.1. Exploring Policy Rules and Policy Rule Groups

 This example assumes an already established session. It shows how an
 agent can find out

Stiemerling, et al. Informational [Page 50]

RFC 3989 MIDCOM Protocol Semantics February 2005

 - which groups it may access and who owns these groups,
 - the status and member list of all accessible groups, and
 - the status and properties of all accessible policy rules.

 If there is just a single session, these actions are not needed,
 because the middlebox informs the agent about each state transition
 of any policy rule or policy rule group. However, after the
 disruption of a session or after an intentional session termination,
 the agent might want to re-establish the session and explore which of
 the groups and policy rules it established are still in place.

 Also, an agent system may fail and another one may take over. Then
 the new agent system needs to find out what has already been
 configured by the failing system and what still needs to be done.

 A third situation where exploring policy rules and groups is useful
 is the case of an agent with ’administrator’ authorization. This
 agent may access and modify any policy rule or group created by any
 other agent.

 All agents will probably start their exploration with the Group List
 (GL) transaction, as shown in Figure 5. On this request, the
 middlebox returns a list of pairs, each containing an agent
 identifier and a group identifier (GID). The agent is informed which
 of its own groups and which other agents’ groups it may access.

 agent middlebox
 | GL |
 |**>|
 |<**|
 | (agent1,GID1) (agent1,GID2) (agent2,GID3) |
 | |
 | GS GID2 |
 |**>|
 |<**|
 | agent1 lifetime PID1 PID2 PID3 PID4 |
 | |

 Figure 5: Using the GL and the GS transaction

 In Figure 5, three groups are accessible to the agent, and the agent
 retrieves information about the second group by using the Group
 Status (GS) transaction. It receives the owner of the group, the
 remaining lifetime, and the list of member policy rules, in this case
 containing four policy rule identifiers (PIDs).

Stiemerling, et al. Informational [Page 51]

RFC 3989 MIDCOM Protocol Semantics February 2005

 In the following, the agent explores these four policy rules. The
 example assumes that the middlebox is a traditional NAPT. Figure 6
 shows the exploration of the first policy rule. In reply to a Policy
 Rule Status (PRS) transaction, the middlebox always returns the
 following list of parameters:

 - policy rule owner
 - group identifier
 - policy rule action (reserve or enable)
 - protocol type
 - port range
 - direction
 - internal IP address
 - internal port number
 - external address
 - external port number
 - middlebox inside IP address
 - middlebox inside port number
 - middlebox outside IP address
 - middlebox outside port number
 - IP address versions (not printed)
 - middlebox service (not printed)
 - inside and outside interface (optional, not printed)

 agent middlebox
 | PRS PID1 |
 |**>|
 |<**|
 | agent1 GID2 RESERVE UDP 1 "" |
 | ANY ANY ANY ANY |
 | ANY ANY IPADR_OUT PORT_OUT1 |
 | |

 Figure 6: Status report for an outside reservation

 The ’ANY’ parameter printed in Figure 6 is used as a placeholder in
 policy rules status replies for policy reserve rules. The policy
 rule with PID1 is a policy reserve rule for UDP traffic at the
 outside of the middlebox. Since this is a reserve rule, direction is
 empty. As there is no internal or external address involved yet,
 these four fields are wildcarded in the reply. The same holds for
 the inside middlebox address and port number. The only address
 information given by the reply is the reserved outside IP address of
 the middlebox (IPADDR_OUT) and the corresponding port number
 (PORT_OUT1). Note that IPADR_OUT and PORT_OUT1 may not be
 wildcarded, as the reserve action does not support this.

Stiemerling, et al. Informational [Page 52]

RFC 3989 MIDCOM Protocol Semantics February 2005

 Applying PRS to PID2 (Figure 7) shows that the second policy rule is
 a policy enable rule for inbound UDP packets. The internal
 destination is fixed concerning IP address, protocol, and port
 number, but for the external source, the port number is wildcarded.
 The outside IP address and port number of the middlebox are what the
 external sender needs to use as destination in the original packet it
 sends. At the middlebox, the destination address is replaced with
 the internal address of the final receiver. During address
 translation, the source IP address and the source port numbers of the
 packets remain unchanged. This is indicated by the inside address,
 which is identical to the external address.

 agent middlebox
 | PRS PID2 |
 |**>|
 |<**|
 | agent1 GID2 ENABLE UDP 1 IN |
 | IPADR_INT PORT_INT1 IPADR_EXT ANY |
 | IPADR_EXT ANY IPADR_OUT PORT_OUT2 |
 | |

 Figure 7: Status report for enabled inbound packets

 For traditional NATs, the identity of the inside IP address and port
 number with the external IP address and port number always holds
 (A1=A3 in Figure 3). For a pure firewall, the outside IP address and
 port number are always identical with the internal IP address and
 port number (A0=A2 in Figure 3).

 agent middlebox
 | PRS PID3 |
 |**>|
 |<**|
 | agent1 GID2 ENABLE UDP 1 OUT |
 | IPADR_INT PORT_INT2 IPADR_EXT PORT_EXT1 |
 | IPADR_EXT PORT_EXT1 IPADR_OUT PORT_OUT3 |
 | |

 Figure 8: Status report for enabled outbound packets

 Figure 8 shows enabled outbound UDP communication between the same
 host. Here all port numbers are known. Since again A1=A3, the
 internal sender uses the external IP address and port number as
 destination in the original packets. At the firewall, the internal
 source IP address and port number are replaced by the shown outside
 IP address and port number of the middlebox.

Stiemerling, et al. Informational [Page 53]

RFC 3989 MIDCOM Protocol Semantics February 2005

 agent middlebox
 | PRS PID4 |
 |**>|
 |<**|
 | agent1 GID2 ENABLE TCP 1 BI |
 | IPADR_INT PORT_INT3 IPADR_EXT PORT_EXT2 |
 | IPADR_EXT PORT_EXT2 IPADR_OUT PORT_OUT4 |
 | |

 Figure 9: Status report for bi-directional TCP traffic

 Finally, Figure 9 shows the status report for enabled bi-directional
 TCP traffic. Note that, still, A1=A3. For outbound packets, only
 the source IP address and port number are replaced at the middlebox,
 and for inbound packets, only the destination IP address and port
 number are replaced.

4.2. Enabling a SIP-Signaled Call

 This elaborated transaction usage example shows the interaction
 between a SIP proxy and a middlebox. The middlebox itself is a
 traditional Network Address and Port Translator (NAPT), and two SIP
 user agents communicate with each other via the SIP proxy and NAPT,
 as shown in Figure 10. The MIDCOM agent is co-located with the SIP
 proxy, and the MIDCOM server is at the middlebox. Thus, the MIDCOM
 protocol runs between the SIP proxy and middlebox.

 +-------------+
 | SIP Proxy |
 | for domain ++++
 | example.com | +
 +-------------+ +
 ^ ^ +
 Private | | + Public Network
 Network | | +
 +----------+ | | +----+------+ +----------------+
 | SIP User |<-+ +->| Middlebox |<------->| SIP User Agent |
 | Agent A |<#######>| NAPT |<#######>| B@example.org |
 +----------+ +-----------+ +----------------+

 <--> SIP Signaling
 <##> RTP Traffic
 ++++ MIDCOM protocol

 Figure 10: Example of a SIP Scenario

Stiemerling, et al. Informational [Page 54]

RFC 3989 MIDCOM Protocol Semantics February 2005

 For the sequence charts below, we make these assumptions:

 - The NAPT is statically configured to forward SIP signaling from
 the outside to the SIP proxy server -- i.e., traffic to the
 NAPT’s external IP address and port 5060 is forwarded to the
 internal SIP proxy.

 - The SIP user agent A, located inside the private network, is
 registered at the SIP proxy with its private IP address.

 - User A knows the general SIP URL of user B. The URL is
 B@example.org. However, the concrete URL of the SIP User Agent
 B, which user B currently uses, is not known.

 - The RTP paths are configured, but not the RTCP paths.

 - The middlebox and the SIP server share an established MIDCOM
 session.

 - Some parameters are omitted, such as the request identifier
 (RID).

 Furthermore, the following abbreviations are used:

 - IP_AI: Internal IP address of user agent A
 - P_AI: Internal port number of user agent A to receive RTP data
 - P_AE: External mapped port number of user agent A
 - IP_AE: External IP address of the middlebox
 - IP_B: IP address of user agent B
 - P_B: Port number of user agent B to receive RTP data
 - GID: Group identifier
 - PID: Policy rule identifier

 The abbreviations of the MIDCOM transactions can be found in the
 particular section headings.

 In our example, user A tries to call user B. The user agent A sends
 an INVITE SIP message to the SIP proxy server (see Figure 10). The
 SDP part of the particular SIP message relevant for the middlebox
 configuration is shown in the sequence chart as follows:

 SDP: m=..P_AI..
 c=IP_AI

 where the m tag is the media tag that contains the receiving UDP port
 number, and the c tag contains the IP address of the terminal
 receiving the media stream.

Stiemerling, et al. Informational [Page 55]

RFC 3989 MIDCOM Protocol Semantics February 2005

 The INVITE message forwarded to user agent B must contain a public IP
 address and a port number to which user agent B can send its RTP
 media stream. The SIP proxy requests a policy enable rule at the
 middlebox with a PER request with the wildcarded IP address and port
 number of user agent B. As neither the IP address nor port numbers
 of user agent B are known at this point, the address of user agent B
 must be wildcarded. The wildcarded IP address and port number
 enables the ’early media’ capability but results in some insecurity,
 as any outside host can reach user agent A on the enabled port number
 through the middlebox.

 User Agent SIP Middlebox User Agent
 A Proxy NAPT B
 | | | |
 | INIVTE | | |
 | B@example.org | | |
 | SDP:m=..P_AI.. | | |
 | c=IP_AI | | |
 |--------------->| | |
 | | | |
 | | PER PID1 UDP 1 EVEN IN | |
 | | IP_AI P_AI ANY ANY 300s | |
 | |*****************************>| |
 | |<*****************************| |
 | | PER OK GID1 PID1 ANY ANY | |
 | | IP_AE P_AE1 300s | |

 Figure 11: PER with wildcard address and port number

 A successful PER reply, as shown in Figure 11, results in an NAT
 binding at the middlebox. This binding enables UDP traffic from any
 host outside user agent A’s private network to reach user agent A.
 So user agent B could start sending traffic immediately after
 receiving the INVITE message, as could any other host -- even hosts
 that are not intended to participate, such as any malicious host.

 If the middlebox does not support or does not permit IP address
 wildcarding for security reasons, the PER request will be rejected
 with an appropriate failure reason, like ’IP wildcarding not
 supported’. Nevertheless, the SIP proxy server needs an outside IP
 address and port number at the middlebox (the NAPT) in order to
 forward the SIP INVITE message.

 If the IP address of user agent B is still not known (it will be sent
 by user agent B in the SIP reply message) and IP address wildcarding
 is not permitted, the SIP proxy server uses the PRR transaction.

Stiemerling, et al. Informational [Page 56]

RFC 3989 MIDCOM Protocol Semantics February 2005

 By using the PRR request, the SIP proxy requests an outside IP
 address and port number (see Figure 12) without already establishing
 a NAT binding or pin hole. The PRR request contains the service
 parameter ’tw’ -- i.e., the MIDCOM agent chooses the default value.
 In this configuration, with NAPT and without a twice NAT, only an
 outside address is reserved. In the SDP payload of the INVITE
 message, the SIP proxy server replaces the IP address and port number
 of user agent A with the reserved IP address and port from PRR reply
 (see Figure 12). The SIP INVITE message is forwarded to user agent B
 with a modified SDP body containing the outside address and port
 number, to which user agent B will send its RTP media stream.

 User Agent SIP Middlebox User Agent
 A Proxy NAPT B
 | | | |
 ...PER in Figure 11 has failed, continuing with PRR ...
 | | | |
 | |PRR tw v4 v4 A UDP 1 EVEN 300s| |
 | |*****************************>| |
 | |<*****************************| |
 | | PRR OK PID1 GID1 EMPTY | |
 | | IP_AE/P_AE 300s | |
 | | | |
 | | INVITE B@example.org SDP:m=..P_AE.. c=IP_AE |
 | |-->|
 | |<--|
 | | 200 OK SDP:m=..P_B.. c=IP_B |

 Figure 12: Address reservation with PRR transaction

 This SIP ’200 OK’ reply contains the IP address and port number at
 which user agent B will receive a media stream. The IP address is
 assumed to be equal to the IP address from which user agent B will
 send its media stream.

 Now, the SIP proxy server has sufficient information for establishing
 the complete NAT binding with a policy enable rule (PER) transaction,
 i.e., the UDP/RTP data of the call can flow from user agent B to user
 agent A. The PER transaction references the reservation by passing
 the PID of the PRR (PID1).

 For the opposite direction, UDP/RTP data from user agent A to B has
 to be enabled also. This is done by a second PER transaction with
 all the necessary parameters (see Figure 13). The request message
 contains the group identifier (GID1) the middlebox has assigned in
 the first PER transaction. Therefore, both policy rules have become

Stiemerling, et al. Informational [Page 57]

RFC 3989 MIDCOM Protocol Semantics February 2005

 members of the same group. After having enabled both UDP/RTP
 streams, the SIP proxy can forward the ’200 OK’ SIP message to user
 agent A to indicate that the telephone call can start.

 User Agent SIP Middlebox User Agent
 A Proxy NAPT B
 | | | |
 | | PER PID1 UDP 1 SAME IN | |
 | | IP_AI P_AI IP_B ANY 300s | |
 | |*****************************>| |
 | |<*****************************| |
 | | PER OK GID1 PID1 IP_B ANY | |
 | | IP_AE P_AE1 300s | |
 | | | |
 ...media stream from user agent B to A enabled...
 | | | |
 | | PER GID1 UDP 1 SAME OUT | |
 | | IP_AI ANY IP_B P_B 300s | |
 | |*****************************>| |
 | |<*****************************| |
 | | PER OK GID1 PID2 IP_B P_B | |
 | | IP_AE P_AE2 300s | |
 | | | |
 ...media streams from both directions enabled...
 | | | |
 | 200 OK | | |
 |<---------------| | |
 | SDP:m=..P_B.. | | |
 | c=IP_B | | |

 Figure 13: Policy rule establishment for UDP flows

 User agent B decides to terminate the call and sends its ’BYE’ SIP
 message to user agent A. The SIP proxy forwards all SIP messages and
 terminates the group afterwards, using a group lifetime change (GLC)
 transaction with a requested remaining lifetime of 0 seconds (see
 Figure 14). Termination of the group includes terminating all member
 policy rules.

Stiemerling, et al. Informational [Page 58]

RFC 3989 MIDCOM Protocol Semantics February 2005

 User Agent SIP Middlebox User Agent
 A Proxy NAPT B
 | | | |
 | BYE | BYE |
 |<---------------|<--|
 | | | |
 | 200 OK | 200 OK |
 |--------------->|-->|
 | | | |
 | | GLC GID1 0s | |
 | |*****************************>| |
 | |<*****************************| |
 | | GLC OK 0s | |
 | | | |
 ...both NAT bindings for the media streams are removed...

 Figure 14: Termination of policy rule groups

5. Compliance with MIDCOM Requirements

 This section explains the compliance of the specified semantics with
 the MIDCOM requirements. It is structured according to [MDC-REQ]:

 - Compliance with Protocol Machinery Requirements (section 5.1)
 - Compliance with Protocol Semantics Requirements (section 5.2)
 - Compliance with Security Requirements (section 5.3)

 The requirements are referred to with the number of the section in
 which they are defined: "requirement x.y.z" refers to the requirement
 specified in section x.y.z of [MDC-REQ].

5.1. Protocol Machinery Requirements

5.1.1. Authorized Association

 The specified semantics enables a MIDCOM agent to establish an
 authorized association between itself and the middlebox. The agent
 identifies itself by the authentication mechanism of the Session
 Establishment transaction described in section 2.2.1. Based on this
 authentication, the middlebox can determine whether or not the agent
 will be permitted to request a service. Thus, requirement 2.1.1 is
 met.

Stiemerling, et al. Informational [Page 59]

RFC 3989 MIDCOM Protocol Semantics February 2005

5.1.2. Agent Connects to Multiple Middleboxes

 As specified in section 2.2, the MIDCOM protocol allows the agent to
 communicate with more than one middlebox simultaneously. The
 selection of a mechanism for separating different sessions is left to
 the concrete protocol definition. It must provide a clear mapping of
 protocol messages to open sessions. Then requirement 2.1.2 is met.

5.1.3. Multiple Agents Connect to same Middlebox

 As specified in section 2.2, the MIDCOM protocol allows the middlebox
 to communicate with more than one agent simultaneously. The
 selection of a mechanism for separating different sessions is left to
 the concrete protocol definition. It must provide a clear mapping of
 protocol messages to open sessions. Then requirement 2.1.3 is met.

5.1.4. Deterministic Behavior

 Section 2.1.2 states that the processing of a request of an agent may
 not be interrupted by any request of the same or another agent. This
 provides atomicity among request transactions and avoids race
 conditions resulting in unpredictable behavior by the middlebox.

 The behavior of the middlebox can only be predictable in the view of
 its administrators. In the view of an agent, the middlebox behavior
 is unpredictable, as the administrator can, for example, modify the
 authorization of the agent at any time without the agent being able
 to observe this change. Consequently, the behavior of the middlebox
 is not necessarily deterministic from the point of view of any agent.

 As predictability of the middlebox behavior is given for its
 administrator, requirement 2.1.4 is met.

5.1.5. Known and Stable State

 Section 2.1 states that request transactions are atomic with respect
 to each other and from the point of view of an agent. All
 transactions are clearly defined as state transitions that either
 leave the current stable, well-defined state and enter a new stable,
 well-defined one or that remain in the current stable, well-defined
 state. Section 2.1 clearly demands that intermediate states are not
 stable and are not reported to any agent.

 Furthermore, for each state transition a message is sent to the
 corresponding agent, either a reply or a notification. The agent can
 uniquely map each reply to one of the requests that it sent to the

Stiemerling, et al. Informational [Page 60]

RFC 3989 MIDCOM Protocol Semantics February 2005

 middlebox, because agent-unique request identifiers are used for this
 purpose. Notifications are self-explanatory by their definition.

 Furthermore, the Group List transaction (section 2.4.3), the Group
 Status transaction (section 2.4.4), the Policy Rule List transaction
 (section 2.3.11), and the Policy Rule Status transaction (section
 2.3.12) allow the agent at any time during a session to retrieve
 information about

 - all policy rule groups it may access,
 - the status and member policy rules of all accessible groups,
 - all policy rules it may access, and
 - the status of all accessible policy rules.

 Therefore, the agent is precisely informed about the state of the
 middlebox (as far as the services requested by the agent are
 affected), and requirement 2.1.5 is met.

5.1.6. Status Report

 As argued in the previous section, the middlebox unambiguously
 informs the agent about every state transition related to any of the
 services requested by the agent. Also, at any time the agent can
 retrieve full status information about all accessible policy rules
 and policy rule groups. Thus, requirement 2.1.6 is met.

5.1.7. Unsolicited Messages (Asynchronous Notifications)

 The semantics includes asynchronous notifications messages from the
 middlebox to the agent, including the Session Termination
 Notification message, the Policy Rule Event Notification (REN)
 message, and the Group Event Notification (GEN) message (see section
 2.1.2). These notifications report every change of state of policy
 rules or policy rule groups that was not explicitly requested by the
 agent. Thus, requirement 2.1.7 is met by the semantics specified
 above.

5.1.8. Mutual Authentication

 As specified in section 2.2.1, the semantics requires mutual
 authentication of agent and middlebox, by using either two subsequent
 Session Establishment transactions or mutual authentication provided
 on a lower protocol layer. Thus, requirement 2.1.8 is met.

Stiemerling, et al. Informational [Page 61]

RFC 3989 MIDCOM Protocol Semantics February 2005

5.1.9. Session Termination by Any Party

 The semantics specification states in section 2.2.2 that the agent
 may request session termination by generating the Session Termination
 request and that the middlebox may not reject this request. In turn,
 section 2.2.3 states that the middlebox may send the Asynchronous
 Session Termination notification at any time and then terminate the
 session. Thus, requirement 2.1.9 is met.

5.1.10. Request Result

 Section 2.1 states that each request of an agent is followed by a
 reply of the middlebox indicating either success or failure. Thus,
 requirement 2.2.10 is met.

5.1.11. Version Interworking

 Section 2.2.1 states that the agent needs to specify the protocol
 version number that it will use during the session. The middlebox
 may accept this and act according to this protocol version or may
 reject the session if it does not support this version. If the
 session setup is rejected, the agent may try again with another
 version. Thus, requirement 2.2.11 is met.

5.1.12. Deterministic Handling of Overlapping Rules

 The only policy rule actions specified are ’reserve’ and ’enable’.
 For firewalls, overlapping enable actions or reserve actions do not
 create any conflict, so a firewall will always accept overlapping
 rules as specified in section 2.3.2 (assuming the required
 authorization is given).

 For NATs, reserve and enable may conflict. If a conflicting request
 arrives, it is rejected, as stated in section 2.3.2. If an
 overlapping request arrives that does not conflict with those it
 overlaps, it is accepted (assuming the required authorization is
 given).

 Therefore, the behavior of the middlebox in the presence of
 overlapping rules can be predicted deterministically, and requirement
 2.1.12 is met.

Stiemerling, et al. Informational [Page 62]

RFC 3989 MIDCOM Protocol Semantics February 2005

5.2. Protocol Semantics Requirements

5.2.1. Extensible Syntax and Semantics

 Requirement 2.2.1 explicitly requests extensibility of protocol
 syntax. This needs to be addressed by the concrete protocol
 definition. The semantics specification is extensible anyway,
 because new transactions may be added.

5.2.2. Policy Rules for Different Types of Middleboxes

 Section 2.3 explains that the semantics uses identical transactions
 for all middlebox types and that the same policy rule can be applied
 to all of them. Thus, requirement 2.2.2 is met.

5.2.3. Ruleset Groups

 The semantics explicitly supports grouping of policy rules and
 transactions on policy rule groups, as described in section 2.4. The
 group transactions can be used for lifetime extension and termination
 of all policy rules that are members of the particular group. Thus,
 requirement 2.2.3 is met.

5.2.4. Policy Rule Lifetime Extension

 The semantics includes a transaction for explicit lifetime extension
 of policy rules, as described in section 2.3.3. Thus, requirement
 2.2.4 is met.

5.2.5. Robust Failure Modes

 The state transitions at the middlebox are clearly specified and
 communicated to the agent. There is no intermediate state reached by
 a partial processing of a request. All requests are always processed
 completely, either successfully or unsuccessfully. All request
 transactions include a list of failure reasons. These failure
 reasons cover indication of invalid parameters where applicable. In
 case of failure, one of the specified reasons is returned from the
 middlebox to the agent. Thus, requirement 2.2.5 is met.

5.2.6. Failure Reasons

 The semantics includes a failure reason parameter in each failure
 reply. Thus, requirement 2.2.6 is met.

Stiemerling, et al. Informational [Page 63]

RFC 3989 MIDCOM Protocol Semantics February 2005

5.2.7. Multiple Agents Manipulating Same Policy Rule

 As specified in sections 2.3 and 2.4, each installed policy rule and
 policy rule group has an owner, which is the authenticated agent that
 created the policy rule or group, respectively. The authenticated
 identity is input to authorize access to policy rules and groups.

 If the middlebox is sufficiently configurable, its administrator can
 configure it so that one authenticated agent is authorized to access
 and modify policy rules and groups owned by another agent. Because
 specified semantics does not preclude this, it meets requirement
 2.2.7.

5.2.8. Carrying Filtering Rules

 The Policy Enable Rule transaction specified in section 2.3.8 can
 carry 5-tuple filtering rules. This meets requirement 2.2.8.

5.2.9. Parity of Port Numbers

 As specified in section 2.3.6, the agent is able to request keeping
 the port parity when reserving port numbers with the PRR transaction
 (see section 2.3.8) and when establishing address bindings with the
 PER transaction (see section 2.3.9). Thus requirement 2.2.9 is met.

5.2.10. Consecutive Range of Port Numbers

 As specified in section 2.3.6, the agent is able to request a
 consecutive range of port numbers when reserving port numbers with
 the PRR transaction (see section 2.3.8) and when establishing address
 bindings or pinholes with the PER transaction (see section 2.3.9).
 Thus requirement 2.2.10 is met.

5.2.11. Contradicting Overlapping Policy Rules

 Requirement 2.2.11 is based on the assumption that contradictory
 policy rule actions, such as ’enable’/’allow’ and
 ’disable’/’disallows’ are supported. In conformance with decisions
 made by the working group after finalizing the requirements document,
 this requirement is not met by the semantics because no
 ’disable’/’disallow’ action is supported.

Stiemerling, et al. Informational [Page 64]

RFC 3989 MIDCOM Protocol Semantics February 2005

5.3. Security Requirements

5.3.1. Authentication, Confidentiality, Integrity

 The semantics definition supports mutual authentication of agent and
 middlebox in the Session Establishment transaction (section 2.2.1).
 The use of an underlying protocol such as TLS or IPsec is mandatory.
 Thus, requirement 2.3.1 is met.

5.3.2. Optional Confidentiality of Control Messages

 The use of IPsec or TLS allows agent and middlebox to use an
 encryption method (including no encryption). Thus, requirement 2.3.2
 is met.

5.3.3. Operation across Untrusted Domains

 Operation across untrusted domains is supported by mutual
 authentication and by the use of TLS or IPsec protection. Thus,
 requirement 2.3.3 is met.

5.3.4. Mitigate Replay Attacks

 The specified semantics mitigates replay attacks and meets
 requirement 2.3.4 by requiring mutual authentication of agent and
 middlebox, and by mandating the use of TLS or IPsec protection.

 Further mitigation can be provided as part of a concrete MIDCOM
 protocol definition -- for example, by requiring consecutively
 increasing numbers for request identifiers.

6. Security Considerations

 The interaction between a middlebox and an agent (see [MDC-FRM]) is a
 very sensitive point with respect to security. The configuration of
 policy rules from a middlebox-external entity appears to contradict
 the nature of a middlebox. Therefore, effective means have to be
 used to ensure

 - mutual authentication between agent and middlebox,
 - authorization,
 - message integrity, and
 - message confidentiality.

 The semantics defines a mechanism to ensure mutual authentication
 between agent and middlebox (see section 2.2.1). In combination with
 the authentication, the middlebox is able to decide whether an agent
 is authorized to request an action at the middlebox. The semantics

Stiemerling, et al. Informational [Page 65]

RFC 3989 MIDCOM Protocol Semantics February 2005

 relies on underlying protocols, such as TLS or IPsec, to maintain
 message integrity and confidentiality of the transferred data between
 both entities.

 For the TLS and IPsec use, both sides must use securely configured
 credentials for authentication and authorization.

 The configuration of policy rules with wildcarded IP addresses and
 port numbers results in certain risks, such as opening overly
 wildcarded policy rules. An excessively wildcarded policy rule would
 be A0 and A3 with IP address set to ’any’ IP address, for instance.
 This type of pinhole would render the middlebox, in the sense of
 security, useless, as any packet could traverse the middlebox without
 further checking. The local policy of the middlebox should reject
 such policy rule enable requests.

 A reasonable default configuration for wildcarding would be that only
 one port number may be wildcarded and all IP addresses must be set
 without wildcarding. However, there are some cases where security
 needs to be balanced with functionality.

 The example described in section 4.2 shows how SIP-signaled calls can
 be served in a secure way without wildcarding IP addresses. But some
 SIP-signaled applications make use of early media (see section 5.5 of
 [RFC3398]). To receive early media, the middleboxes need to be
 configured before the second participant in a session is known. As
 it is not known, the IP address of the second participant needs to be
 wildcarded.

 In such cases and in several similar ones, there is a security policy
 decision to be made by the middlebox operator. The operator can
 configure the middlebox so that it supports more functionality, for
 example, by allowing wildcarded IP addresses, or so that network
 operation is more secure, for example, by disallowing wildcarded IP
 addresses.

7. IAB Considerations on UNSAF

 UNilateral Self-Address Fixing (UNSAF) is described in [RFC3424] as a
 process at originating endpoints that attempt to determine or fix the
 address (and port) by which they are known to another endpoint.
 UNSAF proposals, such as STUN [RFC3489] are considered as a general
 class of workarounds for NAT traversal and as solutions for scenarios
 with no middlebox communication (MIDCOM).

 This document describes the protocol semantics for such a middlebox
 communication (MIDCOM) solution. MIDCOM is not intended as a short-
 term workaround, but more as a long-term solution for middlebox

Stiemerling, et al. Informational [Page 66]

RFC 3989 MIDCOM Protocol Semantics February 2005

 communication. In MIDCOM, endpoints are not involved in allocating,
 maintaining, and deleting addresses and ports at the middlebox. The
 full control of addresses and ports at the middlebox is located at
 the MIDCOM server.

 Therefore, this document addresses the UNSAF considerations in
 [RFC3424] by proposing a long-term alternative solution.

8. Acknowledgements

 We would like to thank all the people contributing to the semantics
 discussion on the mailing list for a lot of valuable comments.

9. References

9.1. Normative References

 [MDC-FRM] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,
 and A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, August 2002.

 [MDC-REQ] Swale, R., Mart, P., Sijben, P., Brim, S., and M. Shore,
 "Middlebox Communications (midcom) Protocol
 Requirements", RFC 3304, August 2002.

 [NAT-TERM] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC
 2663, August 1999.

 [NAT-TRAD] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022, January
 2001.

9.2. Informative References

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
 2402, November 1998.

 [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
 M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
 J., and S. Waldbusser, "Terminology for Policy-Based
 Management", RFC 3198, November 2001.

Stiemerling, et al. Informational [Page 67]

RFC 3989 MIDCOM Protocol Semantics February 2005

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3398] Camarillo, G., Roach, A., Peterson, J., and L. Ong,
 "Integrated Services Digital Network (ISDN) User Part
 (ISUP) to Session Initiation Protocol (SIP) Mapping", RFC
 3398, December 2002.

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

Stiemerling, et al. Informational [Page 68]

RFC 3989 MIDCOM Protocol Semantics February 2005

Authors’ Addresses

 Martin Stiemerling
 NEC Europe Ltd.
 Network Laboratories
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 90511-13
 EMail: stiemerling@netlab.nec.de

 Juergen Quittek
 NEC Europe Ltd.
 Network Laboratories
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 90511-15
 EMail: quittek@netlab.nec.de

 Tom Taylor
 Nortel
 1852 Lorraine Ave.
 Ottawa, Ontario
 Canada K1H 6Z8

 Phone: +1 613 763 1496
 EMail: taylor@nortel.com

Stiemerling, et al. Informational [Page 69]

RFC 3989 MIDCOM Protocol Semantics February 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Stiemerling, et al. Informational [Page 70]

