
Network Working Group                                            J. Park
Request for Comments: 4010                                        S. Lee
Category: Standards Track                                         J. Kim
                                                                  J. Lee
                                                                    KISA
                                                           February 2005

                  Use of the SEED Encryption Algorithm
                 in Cryptographic Message Syntax (CMS)

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document specifies the conventions for using the SEED encryption
   algorithm for encryption with the Cryptographic Message Syntax (CMS).

   SEED is added to the set of optional symmetric encryption algorithms
   in CMS by providing two classes of unique object identifiers (OIDs).
   One OID class defines the content encryption algorithms and the other
   defines the key encryption algorithms.

1.  Introduction

   This document specifies the conventions for using the SEED encryption
   algorithm [SEED][TTASSEED] for encryption with the Cryptographic
   Message Syntax (CMS)[CMS].  The relevant object identifiers (OIDs)
   and processing steps are provided so that SEED may be used in the CMS
   specification (RFC 3852, RFC 3370) for content and key encryption.

Park, et al.                Standards Track                     [Page 1]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

1.1.  SEED

   SEED is a symmetric encryption algorithm developed by KISA (Korea
   Information Security Agency) and a group of experts since 1998.  The
   input/output block size and key length of SEED is 128-bits.  SEED has
   the 16-round Feistel structure.  A 128-bit input is divided into two
   64-bit blocks and the right 64-bit block is an input to the round
   function, with a 64-bit subkey generated from the key scheduling.

   SEED is easily implemented in various software and hardware because
   it takes less memory to implement than other algorithms and generates
   keys without degrading the security of the algorithm.  In particular,
   it can be effectively adopted in a computing environment with a
   restricted resources, such as mobile devices and smart cards.

   SEED is robust against known attacks including DC (Differential
   cryptanalysis), LC (Linear cryptanalysis), and related key attacks.
   SEED has gone through wide public scrutinizing procedures.  It has
   been evaluated and is considered cryptographically secure by credible
   organizations such as ISO/IEC JTC 1/SC 27 and Japan CRYPTREC
   (Cryptography Research and Evaluation Committees)
   [ISOSEED][CRYPTREC].

   SEED is a national industrial association standard [TTASSEED] and is
   widely used in South Korea for electronic commerce and financial
   services operated on wired and wireless communications.

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
   "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,
   as shown) are to be interpreted as described in [RFC2119].

2.  Object Identifiers for Content and Key Encryption

   This section provides the OIDs and processing information necessary
   for SEED to be used for content and key encryption in CMS.  SEED is
   added to the set of optional symmetric encryption algorithms in CMS
   by providing two classes of unique object identifiers (OIDs).  One
   OID class defines the content encryption algorithms and the other
   defines the key encryption algorithms.  Thus, a CMS agent can apply
   SEED either for content or key encryption by selecting the
   corresponding object identifier, supplying the required parameter,
   and starting the program code.

Park, et al.                Standards Track                     [Page 2]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

2.1.  OIDs for Content Encryption

   SEED is added to the set of symmetric content encryption algorithms
   defined in [CMSALG].  The SEED content-encryption algorithm in Cipher
   Block Chaining (CBC) mode has the following object identifier:

      id-seedCBC OBJECT IDENTIFIER ::=
        { iso(1) member-body(2) korea(410) kisa(200004)
          algorithm(1) seedCBC(4) }

   The AlgorithmIdentifier parameters field MUST be present, and the
   parameters field MUST contain the value of Initialization Vector
   (IV):

      SeedCBCParameter ::= SeedIV  --  Initialization Vector

      SeedIV ::= OCTET STRING (SIZE(16))

   The plain text is padded according to Section 6.3 of [CMS].

2.2.  OIDs for Key Encryption

   The key-wrap/unwrap procedures used to encrypt/decrypt a SEED
   content-encryption key (CEK) with a SEED key-encryption key (KEK) are
   specified in Section 3.  Generation and distribution of key-
   encryption keys are beyond the scope of this document.

   The SEED key-encryption algorithm has the following object
   identifier:

      id-npki-app-cmsSeed-wrap OBJECT IDENTIFIER ::=
        { iso(1) member-body(2) korea(410) kisa(200004) npki-app(7)
          smime(1) alg(1) cmsSEED-wrap(1) }

   The parameter associated with this object identifier MUST be absent,
   because the key wrapping procedure itself defines how and when to use
   an IV.

3.  Key Wrap Algorithm

   SEED key wrapping and unwrapping is done in conformance with the AES
   key wrap algorithm [RFC3394].

3.1.  Notation and Definitions

   The following notation is used in the description of the key wrapping
   algorithms:

Park, et al.                Standards Track                     [Page 3]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

         SEED(K, W)    Encrypt W using the SEED codebook with key K
         SEED-1(K, W)  Decrypt W using the SEED codebook with key K
         MSB(j, W)     Return the most significant j bits of W
         LSB(j, W)     Return the least significant j bits of W
         B1 ^ B2       The bitwise exclusive or (XOR) of B1 and B2
         B1 | B2       Concatenate B1 and B2
         K             The key-encryption key K
         n             The number of 64-bit key data blocks
         s             The number of steps in the wrapping process,
                       s = 6n
         P[i]          The ith plaintext key data block
         C[i]          The ith ciphertext data block
         A             The 64-bit integrity check register
         R[i]          An array of 64-bit registers where
                       i = 0, 1, 2, ..., n
         A[t], R[i][t] The contents of registers A and R[i] after
                       encryption step t.
         IV            The 64-bit initial value used during the
                       wrapping process.

   In the key wrap algorithm, the concatenation function will be used to
   concatenate 64-bit quantities to form the 128-bit input to the SEED
   codebook.  The extraction functions will be used to split the 128-bit
   output from the SEED codebook into two 64-bit quantities.

3.2.  SEED Key Wrap

   Key wrapping with SEED is identical to Section 2.2.1 of [RFC3394]
   with "AES" replaced by "SEED".

   The inputs to the key wrapping process are the KEK and the plaintext
   to be wrapped.  The plaintext consists of n 64-bit blocks containing
   the key data being wrapped.  The key wrapping process is described
   below.

     Inputs:  Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}, and
              Key, K (the KEK).
     Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]}.

   1) Initialize variables.

     Set A[0] to an initial value (see Section 3.4)
     For i = 1 to n
       R[0][i] = P[i]

Park, et al.                Standards Track                     [Page 4]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

   2) Calculate intermediate values.

     For t = 1 to s, where s = 6n
       A[t] = MSB(64, SEED(K, A[t-1] | R[t-1][1])) ^ t
       For i = 1 to n-1
         R[t][i] = R[t-1][i+1]
       R[t][n] = LSB(64, SEED(K, A[t-1] | R[t-1][1]))

   3) Output the results.

     Set C[0] = A[s]
     For i = 1 to n
       C[i] = R[s][i]

   An alternative description of the key wrap algorithm involves
   indexing rather than shifting.  This approach allows one to calculate
   the wrapped key in place, avoiding the rotation in the previous
   description.  This produces identical results and is more easily
   implemented in software.

     Inputs:  Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}, and
              Key, K (the KEK).
     Outputs: Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]}.

   1) Initialize variables.

     Set A = IV, an initial value (see Section 3.4)
     For i = 1 to n
       R[i] = P[i]

   2) Calculate intermediate values.

     For j = 0 to 5
       For i=1 to n
         B = SEED(K, A | R[i])
         A = MSB(64, B) ^ t where t = (n*j)+i
         R[i] = LSB(64, B)

   3) Output the results.

      Set C[0] = A
      For i = 1 to n
        C[i] = R[i]

Park, et al.                Standards Track                     [Page 5]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

3.3.  SEED Key Unwrap

   Key unwrapping with SEED is identical to Section 2.2.2 of [RFC3394],
   with "AES" replaced by "SEED".

   The inputs to the unwrap process are the KEK and (n+1) 64-bit blocks
   of ciphertext consisting of previously wrapped key.  It returns n
   blocks of plaintext consisting of the n 64-bit blocks of the
   decrypted key data.

     Inputs:  Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
              and Key, K (the KEK).
     Outputs: Plaintext, n 64-bit values {P[1], P[2], ..., P[n]}.

   1) Initialize variables.

     Set A[s] = C[0] where s = 6n
     For i = 1 to n
       R[s][i] = C[i]

   2) Calculate the intermediate values.

     For t = s to 1
       A[t-1] = MSB(64, SEED-1(K, ((A[t] ^ t) | R[t][n]))
       R[t-1][1] = LSB(64, SEED-1(K, ((A[t]^t) | R[t][n]))
       For i = 2 to n
         R[t-1][i] = R[t][i-1]

   3) Output the results.

     If A[0] is an appropriate initial value (see Section 3.4),
     Then
       For i = 1 to n
         P[i] = R[0][i]
     Else
       Return an error

   The unwrap algorithm can also be specified as an index based
   operation, allowing the calculations to be carried out in place.
   Again, this produces the same results as the register shifting
   approach.

     Inputs:  Ciphertext, (n+1) 64-bit values {C[0], C[1], ..., C[n]},
              and Key, K (the KEK).
     Outputs: Plaintext, n 64-bit values {P[0], P[1], ..., P[n]}.

Park, et al.                Standards Track                     [Page 6]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

   1) Initialize variables.

     Set A = C[0]
     For i = 1 to n
       R[i] = C[i]

   2) Compute intermediate values.

     For j = 5 to 0
       For i = n to 1
         B = SEED-1(K, (A ^ t) | R[i]) where t = n*j+i
         A = MSB(64, B)
         R[i] = LSB(64, B)

   3) Output results.

     If A is an appropriate initial value (see Section 3.4),
     Then
       For i = 1 to n
         P[i] = R[i]
     Else
       Return an error

3.4.  Key Data Integrity -- the Initial Value

   The initial value (IV) refers to the value assigned to A[0] in the
   first step of the wrapping process.  This value is used to obtain an
   integrity check on the key data.  In the final step of the unwrapping
   process, the recovered value of A[0] is compared to the expected
   value of A[0].  If there is a match, the key is accepted as valid,
   and the unwrapping algorithm returns it.  If there is not a match,
   then the key is rejected, and the unwrapping algorithm returns an
   error.

   The exact properties achieved by this integrity check depend on the
   definition of the initial value.  Different applications may call for
   somewhat different properties; for example, whether there is a need
   to determine the integrity of key data throughout its lifecycle or
   just when it is unwrapped.  This specification defines a default
   initial value that supports the integrity of the key data during the
   period it is wrapped (in Section 3.4.1).  Provision is also made to
   support alternative initial values (in Section 3.4.2).

Park, et al.                Standards Track                     [Page 7]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

3.4.1.  Default Initial Value

   The default initial value (IV) is defined to be the hexadecimal
   constant:

     A[0] = IV = A6A6A6A6A6A6A6A6

   The use of a constant as the IV supports a strong integrity check on
   the key data during the period that it is wrapped.  If unwrapping
   produces A[0] = A6A6A6A6A6A6A6A6, then the chance that the key data
   is corrupt is 2^-64.  If unwrapping produces A[0] = any other value,
   then the unwrap must return an error and not return any key data.

3.4.2.  Alternative Initial Values

   When the key wrap is used as part of a larger key management protocol
   or system, the desired scope for data integrity may be more than just
   the key data, and the desired duration may be more than just the
   period that it is wrapped.  Also, if the key data is not just a SEED
   key, it may not always be a multiple of 64 bits.  Alternative
   definitions of the initial value can be used to address such
   problems.  According to RFC 3394 [RFC3394], NIST will define
   alternative initial values in future key management publications as
   they are needed.  To accommodate a set of alternatives that may
   evolve over time, non-application-specific key wrap implementations
   will require some flexibility in the way the initial value is set and
   tested.

4.  SMIMECapabilities Attribute

   An S/MIME client SHOULD announce the set of cryptographic functions
   it supports by using the S/MIME capabilities attribute.  This
   attribute provides a partial list of OIDs of cryptographic functions
   and MUST be signed by the client.  The functions’ OIDs SHOULD be
   logically separated in functional categories and MUST be ordered with
   respect to their preference.

   RFC 3851 [RFC3851], Section 2.5.2 defines the SMIMECapabilities
   signed attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs)
   to be used to specify a partial list of algorithms that the software
   announcing the SMIMECapabilities can support.

   If an S/MIME client is required to support symmetric encryption with
   SEED, the capabilities attribute MUST contain the SEED OID specified
   above in the category of symmetric algorithms.  The parameter
   associated with this OID MUST be SeedSMimeCapability.

     SeedSMimeCapabilty ::= NULL

Park, et al.                Standards Track                     [Page 8]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

   The SMIMECapability SEQUENCE representing SEED MUST be DER-encoded as
   the following hexadecimal strings:

     30 0C 06 08 2A 83 1A 8C 9A 44 01 04 05 00

   When a sending agent creates an encrypted message, it has to decide
   which type of encryption algorithm to use.  In general, the decision
   process involves information obtained from the capabilities lists
   included in messages received from the recipient, as well as other
   information, such as private agreements, user preferences and legal
   restrictions.  If local policy requires the use of SEED for symmetric
   encryption, then both the sending and receiving S/MIME clients must
   support it, and SEED must be configured as the preferred symmetric
   algorithm.

5.  Security Considerations

   This document specifies the use of SEED for encrypting the content of
   a CMS message and for encrypting the symmetric key used to encrypt
   the content of a CMS message, with the other mechanisms being the
   same as the existing ones.  Therefore, the security considerations
   described in the CMS specifications [CMS][CMSALG] and the AES key
   wrap algorithm [RFC3394] can be applied to this document.  No
   security problem has been found on SEED [CRYPTREC].

6.  References

6.1.  Normative References

   [TTASSEED]  Telecommunications Technology Association (TTA), South
               Korea, "128-bit Symmetric Block Cipher (SEED)", TTAS.KO-
               12.0004, September, 1998 (In Korean)
               http://www.tta.or.kr/English/new/main/index.htm

   [CMS]       Housley, R., "Cryptographic Message Syntax (CMS)", RFC
               3852, July 2004.

   [CMSALG]    Housley, R., "Cryptographic Message Syntax (CMS)
               Algorithms", RFC 3370, August 2002.

   [RFC3851]   Ramsdell, B., "Secure/Multipurpose Internet Mail
               Extensions (S/MIME) Version 3.1 Message Specification",
               RFC 3851, July 2004.

   [RFC3394]   Schaad, J. and R. Housley, "Advanced Encryption Standard
               (AES) Key Wrap Algorithm", RFC 3394, September 2002.

Park, et al.                Standards Track                     [Page 9]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

6.2.  Informative References

   [SEED]      Park, J., Lee, S., Kim, J., and J. Lee, "The SEED
               Encryption Algorithm", RFC 4009, February 2005.

   [ISOSEED]   ISO/IEC, ISO/IEC JTC1/SC 27 N 256r1, "National Body
               contributions on NP 18033 Encryption algorithms in
               response to document SC 27 N 2563", October, 2000

   [CRYPTREC]  Information-technology Promotion Agency (IPA), Japan,
               CRYPTREC. "SEED Evaluation Report", February, 2002
               http://www.kisa.or.kr

Park, et al.                Standards Track                    [Page 10]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

Appendix A.  ASN.1 Module

     SeedEncryptionAlgorithmInCMS
         { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
           pkcs9(9) smime(16) modules(0) id-mod-cms-seed(24) }

     DEFINITIONS IMPLICIT TAGS ::=

     BEGIN

       id-seedCBC OBJECT IDENTIFIER ::=
        { iso(1) member-body(2) korea(410) kisa(200004)
          algorithm(1) seedCBC(4) }

       --  Initialization Vector (IV)

       SeedCBCParameter ::= SeedIV
       SeedIV ::= OCTET STRING (SIZE(16))

       -- SEED Key Wrap Algorithm identifiers - Parameter is absent.

       id-npki-app-cmsSeed-wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) korea(410) kisa(200004) npki-app(7)
           smime(1) alg(1) cmsSEED-wrap(1) }

       -- SEED S/MIME Capability parameter

       SeedSMimeCapability ::= NULL

     END

Park, et al.                Standards Track                    [Page 11]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

Authors’ Addresses

   Jongwook Park
   Korea Information Security Agency
   78, Garak-Dong, Songpa-Gu, Seoul, 138-803
   REPUBLIC OF KOREA

   Phone: +82-2-405-5432
   FAX  : +82-2-405-5499
   EMail: khopri@kisa.or.kr

   Sungjae Lee
   Korea Information Security Agency

   Phone: +82-2-405-5243
   FAX  : +82-2-405-5499
   EMail: sjlee@kisa.or.kr

   Jeeyeon Kim
   Korea Information Security Agency

   Phone: +82-2-405-5238
   FAX  : +82-2-405-5499
   EMail: jykim@kisa.or.kr

   Jaeil Lee
   Korea Information Security Agency
   Phone: +82-2-405-5300
   FAX  : +82-2-405-5499
   EMail: jilee@kisa.or.kr

Park, et al.                Standards Track                    [Page 12]



RFC 4010          The SEED Encryption Algorithm in CMS     February 2005

Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the IETF’s procedures with respect to rights in IETF Documents can
   be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Park, et al.                Standards Track                    [Page 13]


