
Network Working Group R. Ludwig
Request for Comments: 4015 Ericsson Research
Category: Standards Track A. Gurtov
 HIIT
 February 2005

 The Eifel Response Algorithm for TCP

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Based on an appropriate detection algorithm, the Eifel response
 algorithm provides a way for a TCP sender to respond to a detected
 spurious timeout. It adapts the retransmission timer to avoid
 further spurious timeouts and (depending on the detection algorithm)
 can avoid the often unnecessary go-back-N retransmits that would
 otherwise be sent. In addition, the Eifel response algorithm
 restores the congestion control state in such a way that packet
 bursts are avoided.

1. Introduction

 The Eifel response algorithm relies on a detection algorithm such as
 the Eifel detection algorithm, defined in [RFC3522]. That document
 contains informative background and motivation context that may be
 useful for implementers of the Eifel response algorithm, but it is
 not necessary to read [RFC3522] in order to implement the Eifel
 response algorithm. Note that alternative response algorithms have
 been proposed [BA02] that could also rely on the Eifel detection
 algorithm, and alternative detection algorithms have been proposed
 [RFC3708], [SK04] that could work together with the Eifel response
 algorithm.

 Based on an appropriate detection algorithm, the Eifel response
 algorithm provides a way for a TCP sender to respond to a detected
 spurious timeout. It adapts the retransmission timer to avoid

Ludwig & Gurtov Standards Track [Page 1]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 further spurious timeouts and (depending on the detection algorithm)
 can avoid the often unnecessary go-back-N retransmits that would
 otherwise be sent. In addition, the Eifel response algorithm
 restores the congestion control state in such a way that packet
 bursts are avoided.

 Note: A previous version of the Eifel response algorithm also
 included a response to a detected spurious fast retransmit.
 However, as a consensus was not reached about how to adapt the
 duplicate acknowledgement threshold in that case, that part of the
 algorithm was removed for the time being.

1.1. Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We refer to the first-time transmission of an octet as the ’original
 transmit’. A subsequent transmission of the same octet is referred
 to as a ’retransmit’. In most cases, this terminology can also be
 applied to data segments. However, when repacketization occurs, a
 segment can contain both first-time transmissions and retransmissions
 of octets. In that case, this terminology is only consistent when
 applied to octets. For the Eifel detection and response algorithms,
 this makes no difference, as they also operate correctly when
 repacketization occurs.

 We use the term ’acceptable ACK’ as defined in [RFC793]. That is an
 ACK that acknowledges previously unacknowledged data. We use the
 term ’bytes_acked’ to refer to the amount (in terms of octets) of
 previously unacknowledged data that is acknowledged by the most
 recently received acceptable ACK. We use the TCP sender state
 variables ’SND.UNA’ and ’SND.NXT’ as defined in [RFC793]. SND.UNA
 holds the segment sequence number of the oldest outstanding segment.
 SND.NXT holds the segment sequence number of the next segment the TCP
 sender will (re-)transmit. In addition, we define as ’SND.MAX’ the
 segment sequence number of the next original transmit to be sent.
 The definition of SND.MAX is equivalent to the definition of
 ’snd_max’ in [WS95].

 We use the TCP sender state variables ’cwnd’ (congestion window), and
 ’ssthresh’ (slow-start threshold), and the term ’FlightSize’ as
 defined in [RFC2581]. FlightSize is the amount (in terms of octets)
 of outstanding data at a given point in time. We use the term
 ’Initial Window’ (IW) as defined in [RFC3390]. The IW is the size of
 the sender’s congestion window after the three-way handshake is
 completed. We use the TCP sender state variables ’SRTT’ and

Ludwig & Gurtov Standards Track [Page 2]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 ’RTTVAR’, and the terms ’RTO’ and ’G’ as defined in [RFC2988]. G is
 the clock granularity of the retransmission timer. In addition, we
 assume that the TCP sender maintains the value of the latest round-
 trip time (RTT) measurement in the (local) variable ’RTT-SAMPLE’.

 We use the TCP sender state variable ’T_last’, and the term ’tcpnow’
 as used in [RFC2861]. T_last holds the system time when the TCP
 sender sent the last data segment, whereas tcpnow is the TCP sender’s
 current system time.

2. Appropriate Detection Algorithms

 If the Eifel response algorithm is implemented at the TCP sender, it
 MUST be implemented together with a detection algorithm that is
 specified in a standards track or experimental RFC.

 Designers of detection algorithms who want their algorithms to work
 together with the Eifel response algorithm should reuse the variable
 "SpuriousRecovery" with the semantics and defined values specified in
 [RFC3522]. In addition, we define the constant LATE_SPUR_TO (set
 equal to -1) as another possible value of the variable
 SpuriousRecovery. Detection algorithms should set the value of
 SpuriousRecovery to LATE_SPUR_TO if the detection of a spurious
 retransmit is based on the ACK for the retransmit (as opposed to an
 ACK for an original transmit). For example, this applies to
 detection algorithms that are based on the DSACK option [RFC3708].

3. The Eifel Response Algorithm

 The complete algorithm is specified in section 3.1. In sections 3.2
 - 3.6, we discuss the different steps of the algorithm.

3.1. The Algorithm

 Given that a TCP sender has enabled a detection algorithm that
 complies with the requirements set in Section 2, a TCP sender MAY use
 the Eifel response algorithm as defined in this subsection.

 If the Eifel response algorithm is used, the following steps MUST be
 taken by the TCP sender, but only upon initiation of a timeout-based
 loss recovery. That is when the first timeout-based retransmit is
 sent. The algorithm MUST NOT be reinitiated after a timeout-based
 loss recovery has already been started but not completed. In
 particular, it may not be reinitiated upon subsequent timeouts for
 the same segment, or upon retransmitting segments other than the
 oldest outstanding segment.

Ludwig & Gurtov Standards Track [Page 3]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 (0) Before the variables cwnd and ssthresh get updated when
 loss recovery is initiated, set a "pipe_prev" variable as
 follows:
 pipe_prev <- max (FlightSize, ssthresh)

 Set a "SRTT_prev" variable and a "RTTVAR_prev" variable as
 follows:
 SRTT_prev <- SRTT + (2 * G)
 RTTVAR_prev <- RTTVAR

 (DET) This is a placeholder for a detection algorithm that must
 be executed at this point, and that sets the variable
 SpuriousRecovery as outlined in Section 2. If
 [RFC3522] is used as the detection algorithm, steps (1) -
 (6) of that algorithm go here.

 (7) If SpuriousRecovery equals SPUR_TO, then
 proceed to step (8);

 else if SpuriousRecovery equals LATE_SPUR_TO, then
 proceed to step (9);

 else
 proceed to step (DONE).

 (8) Resume the transmission with previously unsent data:

 Set
 SND.NXT <- SND.MAX

 (9) Reverse the congestion control state:

 If the acceptable ACK has the ECN-Echo flag [RFC3168] set,
 then
 proceed to step (DONE);

 else set
 cwnd <- FlightSize + min (bytes_acked, IW)
 ssthresh <- pipe_prev

 Proceed to step (DONE).

 (10) Interworking with Congestion Window Validation:

 If congestion window validation is implemented according
 to [RFC2861], then set
 T_last <- tcpnow

Ludwig & Gurtov Standards Track [Page 4]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 (11) Adapt the conservativeness of the retransmission timer:

 Upon the first RTT-SAMPLE taken from new data; i.e., the
 first RTT-SAMPLE that can be derived from an acceptable
 ACK for data that was previously unsent when the spurious
 timeout occurred,

 if the retransmission timer is implemented according
 to [RFC2988], then set
 SRTT <- max (SRTT_prev, RTT-SAMPLE)
 RTTVAR <- max (RTTVAR_prev, RTT-SAMPLE/2)
 RTO <- SRTT + max (G, 4*RTTVAR)

 Run the bounds check on the RTO (rules (2.4) and
 (2.5) in [RFC2988]), and restart the
 retransmission timer;

 else
 appropriately adapt the conservativeness of the
 retransmission timer that is implemented.

 (DONE) No further processing.

3.2. Storing the Current Congestion Control State (Step 0)

 The TCP sender stores in pipe_prev what is considered a safe slow-
 start threshold (ssthresh) before loss recovery is initiated; i.e.,
 before the loss indication is taken into account. This is either the
 current FlightSize, if the TCP sender is in congestion avoidance, or
 the current ssthresh, if the TCP sender is in slow-start. If the TCP
 sender later detects that it has entered loss recovery unnecessarily,
 then pipe_prev is used in step (9) to reverse the congestion control
 state. Thus, until the loss recovery phase is terminated, pipe_prev
 maintains a memory of the congestion control state of the time right
 before the loss recovery phase was initiated. A similar approach is
 proposed in [RFC2861], where this state is stored in ssthresh
 directly after a TCP sender has become idle or application limited.

 There had been debates about whether the value of pipe_prev should be
 decayed over time; e.g., upon subsequent timeouts for the same
 outstanding segment. We do not require decaying pipe_prev for the
 Eifel response algorithm and do not believe that such a conservative
 approach should be in place. Instead, we follow the idea of
 revalidating the congestion window through slow-start, as suggested
 in [RFC2861]. That is, in step (9), the cwnd is reset to a value
 that avoids large packet bursts, and ssthresh is reset to the value
 of pipe_prev. Note that [RFC2581] and [RFC2861] also do not require

Ludwig & Gurtov Standards Track [Page 5]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 a decaying of ssthresh after it has been reset in response to a loss
 indication, or after a TCP sender has become idle or application
 limited.

3.3. Suppressing the Unnecessary go-back-N Retransmits (Step 8)

 Without the use of the TCP timestamps option [RFC1323], the TCP
 sender suffers from the retransmission ambiguity problem [Zh86],
 [KP87]. Therefore, when the first acceptable ACK arrives after a
 spurious timeout, the TCP sender must assume that this ACK was sent
 in response to the retransmit when in fact it was sent in response to
 an original transmit. Furthermore, the TCP sender must further
 assume that all other segments that were outstanding at that point
 were lost.

 Note: Except for certain cases where original ACKs were lost, the
 first acceptable ACK cannot carry a DSACK option [RFC2883].

 Consequently, once the TCP sender’s state has been updated after the
 first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is
 what causes the often unnecessary go-back-N retransmits. From that
 point on every arriving acceptable ACK that was sent in response to
 an original transmit will advance SND.NXT. But as long as SND.NXT is
 smaller than the value that SND.MAX had when the timeout occurred,
 those ACKs will clock out retransmits, whether or not the
 corresponding original transmits were lost.

 In fact, during this phase the TCP sender breaks ’packet
 conservation’ [Jac88]. This is because the go-back-N retransmits are
 sent during slow-start. For each original transmit leaving the
 network, two retransmits are sent into the network as long as SND.NXT
 does not equal SND.MAX (see [LK00] for more detail).

 Once a spurious timeout has been detected (upon receipt of an ACK for
 an original transmit), it is safe to let the TCP sender resume the
 transmission with previously unsent data. Thus, the Eifel response
 algorithm changes the TCP sender’s state by setting SND.NXT to
 SND.MAX. Note that this step is only executed if the variable
 SpuriousRecovery equals SPUR_TO, which in turn requires a detection
 algorithm such as the Eifel detection algorithm [RFC3522] or the F-
 RTO algorithm [SK04] that detects a spurious retransmit based upon
 receiving an ACK for an original transmit (as opposed to the ACK for
 the retransmit [RFC3708]).

Ludwig & Gurtov Standards Track [Page 6]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

3.4. Reversing the Congestion Control State (Step 9)

 When a TCP sender enters loss recovery, it reduces cwnd and ssthresh.
 However, once the TCP sender detects that the loss recovery has been
 falsely triggered, this reduction proves unnecessary. We therefore
 believe that it is safe to revert to the previous congestion control
 state, following the approach of revalidating the congestion window
 as outlined below. This is unless the acceptable ACK signals
 congestion through the ECN-Echo flag [RFC3168]. In that case, the
 TCP sender MUST refrain from reversing congestion control state.

 If the ECN-Echo flag is not set, cwnd is reset to the sum of the
 current FlightSize and the minimum of bytes_acked and IW. In some
 cases, this can mean that the first few acceptable ACKs that arrive
 will not clock out any data segments. Recall that bytes_acked is the
 number of bytes that have been acknowledged by the acceptable ACK.
 Note that the value of cwnd must not be changed any further for that
 ACK, and that the value of FlightSize at this point in time may be
 different from the value of FlightSize in step (0). The value of IW
 puts a limit on the size of the packet burst that the TCP sender may
 send into the network after the Eifel response algorithm has
 terminated. The value of IW is considered an acceptable burst size.
 It is the amount of data that a TCP sender may send into a yet
 "unprobed" network at the beginning of a connection.

 Then ssthresh is reset to the value of pipe_prev. As a result, the
 TCP sender either immediately resumes probing the network for more
 bandwidth in congestion avoidance, or it slow-starts to what is
 considered a safe operating point for the congestion window.

3.5. Interworking with the CWV Algorithm (Step 10)

 An implementation of the Congestion Window Validation (CWV) algorithm
 [RFC2861] could potentially misinterpret a delay spike that caused a
 spurious timeout as a phase where the TCP sender had been idle.
 Therefore, T_last is reset to prevent the triggering of the CWV
 algorithm in this case.

 Note: The term ’idle’ implies that the TCP sender has no data
 outstanding; i.e., all data sent has been acknowledged [Jac88].
 According to this definition, a TCP sender is not idle while it is
 waiting for an acceptable ACK after a timeout. Unfortunately, the
 pseudo-code in [RFC2861] does not include a check for the
 condition "idle" (SND.UNA == SND.MAX). We therefore had to add
 step (10) to the Eifel response algorithm.

Ludwig & Gurtov Standards Track [Page 7]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

3.6. Adapting the Retransmission Timer (Step 11)

 There is currently only one retransmission timer standardized for TCP
 [RFC2988]. We therefore only address that timer explicitly. Future
 standards that might define alternatives to [RFC2988] should propose
 similar measures to adapt the conservativeness of the retransmission
 timer.

 A spurious timeout often results from a delay spike, which is a
 sudden increase of the RTT that usually cannot be predicted. After a
 delay spike, the RTT may have changed permanently; e.g., due to a
 path change, or because the available bandwidth on a bandwidth-
 dominated path has decreased. This may often occur with wide-area
 wireless access links. In this case, the RTT estimators (SRTT and
 RTTVAR) should be reinitialized from the first RTT-SAMPLE taken from
 new data according to rule (2.2) of [RFC2988]. That is, from the
 first RTT-SAMPLE that can be derived from an acceptable ACK for data
 that was previously unsent when the spurious timeout occurred.

 However, a delay spike may only indicate a transient phase, after
 which the RTT returns to its previous range of values, or even to
 smaller values. Also, a spurious timeout may occur because the TCP
 sender’s RTT estimators were only inaccurate enough that the
 retransmission timer expires "a tad too early". We believe that two
 times the clock granularity of the retransmission timer (2 * G) is a
 reasonable upper bound on "a tad too early". Thus, when the new RTO
 is calculated in step (11), we ensure that it is at least (2 * G)
 greater (see also step (0)) than the RTO was before the spurious
 timeout occurred.

 Note that other TCP sender processing will usually take place between
 steps (10) and (11). During this phase (i.e., before step (11) has
 been reached), the RTO is managed according to the rules of
 [RFC2988]. We believe that this is sufficiently conservative for the
 following reasons. First, the retransmission timer is restarted upon
 the acceptable ACK that was used to detect the spurious timeout. As
 a result, the delay spike is already implicitly factored in for
 segments outstanding at that time. This is discussed in more detail
 in [EL04], where this effect is called the "RTO offset".
 Furthermore, if timestamps are enabled, a new and valid RTT-SAMPLE
 can be derived from that acceptable ACK. This RTT-SAMPLE must be
 relatively large, as it includes the delay spike that caused the
 spurious timeout. Consequently, the RTT estimators will be updated
 rather conservatively. Without timestamps the RTO will stay
 conservatively backed-off due to Karn’s algorithm [RFC2988] until the
 first RTT-SAMPLE can be derived from an acceptable ACK for data that
 was previously unsent when the spurious timeout occurred.

Ludwig & Gurtov Standards Track [Page 8]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 For the new RTO to become effective, the retransmission timer has to
 be restarted. This is consistent with [RFC2988], which recommends
 restarting the retransmission timer with the arrival of an acceptable
 ACK.

4. Advanced Loss Recovery is Crucial for the Eifel Response Algorithm

 We have studied environments where spurious timeouts and multiple
 losses from the same flight of packets often coincide [GL02], [GL03].
 In such a case, the oldest outstanding segment arrives at the TCP
 receiver, but one or more packets from the remaining outstanding
 flight are lost. In those environments, end-to-end performance
 suffers if the Eifel response algorithm is operated without an
 advanced loss recovery scheme such as a SACK-based scheme [RFC3517]
 or NewReno [RFC3782]. The reason is TCP-Reno’s aggressiveness after
 a spurious timeout. Even though TCP-Reno breaks ’packet
 conservation’ (see Section 3.3) when blindly retransmitting all
 outstanding segments, it usually recovers all packets lost from that
 flight within a single round-trip time. On the contrary, the more
 conservative TCP-Reno-with-Eifel is often forced into another
 timeout. Thus, we recommend that the Eifel response algorithm always
 be operated in combination with [RFC3517] or [RFC3782]. Additional
 robustness is achieved with the Limited Transmit and Early Retransmit
 algorithms [RFC3042], [AAAB04].

 Note: The SACK-based scheme we used for our simulations in [GL02]
 and [GL03] is different from the SACK-based scheme that later got
 standardized [RFC3517]. The key difference is that [RFC3517] is
 more robust to multiple losses from the same flight. It is less
 conservative in declaring that a packet has left the network, and
 is therefore less dependent on timeouts to recover genuine packet
 losses.

 If the NewReno algorithm [RFC3782] is used in combination with the
 Eifel response algorithm, step (1) of the NewReno algorithm SHOULD be
 modified as follows, but only if SpuriousRecovery equals SPUR_TO:

 (1) Three duplicate ACKs:
 When the third duplicate ACK is received and the sender is
 not already in the Fast Recovery procedure, go to step 1A.

 That is, the entire step 1B of the NewReno algorithm is obsolete
 because step (8) of the Eifel response algorithm avoids the case
 where three duplicate ACKs result from unnecessary go-back-N
 retransmits after a timeout. Step (8) of the Eifel response
 algorithm avoids such unnecessary go-back-N retransmits in the first
 place. However, recall that step (8) is only executed if the
 variable SpuriousRecovery equals SPUR_TO, which in turn requires a

Ludwig & Gurtov Standards Track [Page 9]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 detection algorithm, such as the Eifel detection algorithm [RFC3522]
 or the F-RTO algorithm [SK04], that detects a spurious retransmit
 based upon receiving an ACK for an original transmit (as opposed to
 the ACK for the retransmit [RFC3708]).

5. Security Considerations

 There is a risk that a detection algorithm is fooled by spoofed ACKs
 that make genuine retransmits appear to the TCP sender as spurious
 retransmits. When such a detection algorithm is run together with
 the Eifel response algorithm, this could effectively disable
 congestion control at the TCP sender. Should this become a concern,
 the Eifel response algorithm SHOULD only be run together with
 detection algorithms that are known to be safe against such "ACK
 spoofing attacks".

 For example, the safe variant of the Eifel detection algorithm
 [RFC3522], is a reliable method to protect against this risk.

6. Acknowledgements

 Many thanks to Keith Sklower, Randy Katz, Michael Meyer, Stephan
 Baucke, Sally Floyd, Vern Paxson, Mark Allman, Ethan Blanton, Pasi
 Sarolahti, Alexey Kuznetsov, and Yogesh Swami for many discussions
 that contributed to this work.

7. References

7.1. Normative References

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC3390] Allman, M., Floyd, S., and C. Partridge, "Increasing TCP’s
 Initial Window", RFC 3390, October 2002.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP’s Fast Recovery Algorithm", RFC 3782,
 April 2004.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm for
 TCP", RFC 3522, April 2003.

Ludwig & Gurtov Standards Track [Page 10]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

7.2. Informative References

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [AAAB04] Allman, M., Avrachenkov, K., Ayesta, U., and J. Blanton,
 Early Retransmit for TCP and SCTP, Work in Progress, July
 2004.

 [BA02] Blanton, E. and M. Allman, On Making TCP More Robust to
 Packet Reordering, ACM Computer Communication Review, Vol.
 32, No. 1, January 2002.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [EL04] Ekstrom, H. and R. Ludwig, The Peak-Hopper: A New End-to-
 End Retransmission Timer for Reliable Unicast Transport, In
 Proceedings of IEEE INFOCOM 04, March 2004.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC 2883, July 2000.

 [GL02] Gurtov, A. and R. Ludwig, Evaluating the Eifel Algorithm
 for TCP in a GPRS Network, In Proceedings of the European
 Wireless Conference, February 2002.

 [GL03] Gurtov, A. and R. Ludwig, Responding to Spurious Timeouts
 in TCP, In Proceedings of IEEE INFOCOM 03, April 2003.

Ludwig & Gurtov Standards Track [Page 11]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

 [Jac88] Jacobson, V., Congestion Avoidance and Control, In
 Proceedings of ACM SIGCOMM 88.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [KP87] Karn, P. and C. Partridge, Improving Round-Trip Time
 Estimates in Reliable Transport Protocols, In Proceedings
 of ACM SIGCOMM 87.

 [LK00] Ludwig, R. and R. H. Katz, The Eifel Algorithm: Making TCP
 Robust Against Spurious Retransmissions, ACM Computer
 Communication Review, Vol. 30, No. 1, January 2000.

 [SK04] Sarolahti, P. and M. Kojo, F-RTO: An Algorithm for
 Detecting Spurious Retransmission Timeouts with TCP and
 SCTP, Work in Progress, November 2004.

 [WS95] Wright, G. R. and W. R. Stevens, TCP/IP Illustrated, Volume
 2 (The Implementation), Addison Wesley, January 1995.

 [Zh86] Zhang, L., Why TCP Timers Don’t Work Well, In Proceedings
 of ACM SIGCOMM 88.

Authors’ Addresses

 Reiner Ludwig
 Ericsson Research (EDD)
 Ericsson Allee 1
 52134 Herzogenrath, Germany

 EMail: Reiner.Ludwig@ericsson.com

 Andrei Gurtov
 Helsinki Institute for Information Technology (HIIT)
 P.O. Box 9800, FIN-02015
 HUT, Finland

 EMail: andrei.gurtov@cs.helsinki.fi
 Homepage: http://www.cs.helsinki.fi/u/gurtov

Ludwig & Gurtov Standards Track [Page 12]

RFC 4015 The Eifel Response Algorithm for TCP February 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the IETF’s procedures with respect to rights in IETF Documents can
 be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ludwig & Gurtov Standards Track [Page 13]

