
Network Working Group M. Crispin
Request for Comments: 4042 Panda Programming
Category: Informational 1 April 2005

 UTF-9 and UTF-18
 Efficient Transformation Formats of Unicode

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 ISO-10646 defines a large character set called the Universal
 Character Set (UCS), which encompasses most of the world’s writing
 systems. The same set of codepoints is defined by Unicode, which
 further defines additional character properties and other
 implementation details. By policy of the relevant standardization
 committees, changes to Unicode and amendments and additions to
 ISO/IEC 646 track each other, so that the character repertoires and
 code point assignments remain in synchronization.

 The current representation formats for Unicode (UTF-7, UTF-8, UTF-16)
 are not storage and computation efficient on platforms that utilize
 the 9 bit nonet as a natural storage unit instead of the 8 bit octet.

 This document describes a transformation format of Unicode that takes
 advantage of the nonet so that the format will be storage and
 computation efficient.

1. Introduction

 A number of Internet sites utilize platforms that are not based upon
 the traditional 8-bit byte or octet. One such platform is the PDP-
 10, which is based upon a 36-bit word. On these platforms, it is
 wasteful to represent data in octets, since 4 bits are left unused in
 each word. The 9-bit nonet is a much more sensible representation.

 Although these platforms support IETF standards, many of these
 platforms still utilize a text representation based upon the septet,

Crispin Informational [Page 1]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 which is only suitable for [US-ASCII] (although it has been used for
 various ISO 10646 national variants).

 To maximize international and multi-lingual interoperability, the IAB
 has recommended ([IAB-CHARACTER]) that [ISO-10646] be the default
 coded character set.

 Although other transformation formats of [UNICODE] exist, and
 conceivably can be used on nonet-oriented machines (most notably
 [UTF-8]), they suffer significant disadvantages:

 [UTF-8]
 requires one to three octets to represent codepoints in the
 Basic Multilingual Plane (BMP), four octets to represent
 [UNICODE] codepoints outside the BMP, and six octets to
 represent non-[UNICODE] codepoints. When stored in nonets,
 this results in as many as four wasted bits per [UNICODE]
 character.

 [UTF-16]
 requires a hexadecet to represent codepoints in the BMP, and
 two hexadecets to represent [UNICODE] codepoints outside the
 BMP. When stored in nonet pairs, this results in as many as
 four wasted bits per [UNICODE] character. This transformation
 format requires complex surrogates to represent codepoints
 outside the BMP, and can not represent non-[UNICODE] codepoints
 at all.

 [UTF-7]
 requires one to five septets to represent codepoints in the
 BMP, and as many as eight septets to represent codepoints
 outside the BMP. When stored in nonets, this results in as
 many as sixteen wasted bits per character. This transformation
 format requires very complex and computationally expensive
 shifting and "modified BASE64" processing, and can not
 represent non-[UNICODE] codepoints at all.

 By comparison, UTF-9 uses one to two nonets to represent codepoints
 in the BMP, three nonets to represent [UNICODE] codepoints outside
 the BMP, and three or four nonets to represent non-[UNICODE]
 codepoints. There are no wasted bits, and as the examples in this
 document demonstrate, the computational processing is minimal.

 Transformation between [UTF-8] and UTF-9 is straightforward, with
 most of the complexity in the handling of [UTF-8]. It is hoped that
 future extensions to protocols such as SMTP will permit the use of
 UTF-9 in these protocols between nonet platforms without the use of
 [UTF-8] as an "on the wire" format.

Crispin Informational [Page 2]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 Similarly, transformation between [UNICODE] codepoints and UTF-18 is
 also quite simple. Although (like UCS-2) UTF-18 only represents a
 subset of the available [UNICODE] codepoints, it encompasses the
 non-private codepoints that are currently assigned in [UNICODE].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [KEYWORDS].

2. Overview

 UTF-9 encodes [UNICODE] codepoints in the low order 8 bits of a
 nonet, using the high order bit to indicate continuation. Surrogates
 are not used.

 [UNICODE] codepoints in the range U+0000 - U+00FF ([US-ASCII] and
 Latin 1) are represented by a single nonet; codepoints in the range
 U+0100 - U+FFFF (the remainder of the BMP) are represented by two
 nonets; and codepoints in the range U+1000 - U+10FFFF (remainder of
 [UNICODE]) are represented by three nonets.

 Non-[UNICODE] codepoints in [ISO-10646] (that is, codepoints in the
 range 0x110000 - 0x7fffffff) can also be represented in UTF-9 by
 obvious extension, but this is not discussed further as these
 codepoints have been removed from [ISO-10646] by ISO.

 UTF-18 encodes [UNICODE] codepoints in the Basic Multilingual Plane
 (BMP, plane 0), Supplementary Multilingual Plane (SMP, plane 1),
 Supplementary Ideographic Plane (SIP, plane 2), and Supplementary
 Special-purpose Plane (SSP, plane 14) in a single 18-bit value. It
 does not encode planes 3 though 13, which are currently unused; nor
 planes 15 or 16, which are private spaces.

 Normally, UTF-9 and UTF-18 should only be used in the context of 9
 bit storage and transport. Although some protocols, e.g., [FTP],
 support transport of nonets, the current IETF protocol suite is quite
 deficient in this area. The IETF is urged to take action to improve
 IETF protocol support for nonets.

3. UTF-9 Definition

 A UTF-9 stream represents [ISO-10646] codepoints using 9 bit nonets.
 The low order 8-bits of a nonet is an octet, and the high order bit
 indicates continuation.

Crispin Informational [Page 3]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 UTF-9 does not use surrogates; consequently a UTF-16 value must be
 transformed into the UCS-4 equivalent, and U+D800 - U+DBFF are never
 transmitted in UTF-9.

 Octets of the [UNICODE] codepoint value are then copied into
 successive UTF-9 nonets, starting with the most-significant non-zero
 octet. All but the least significant octet have the continuation bit
 set in the associated nonet.

 Examples:

 Character Name UTF-9 (in octal)
 --------- ---- ----------------
 U+0041 LATIN CAPITAL LETTER A 101
 U+00C0 LATIN CAPITAL LETTER A WITH GRAVE 300
 U+0391 GREEK CAPITAL LETTER ALPHA 403 221
 U+611B <CJK ideograph meaning "love"> 541 33
 U+10330 GOTHIC LETTER AHSA 401 403 60
 U+E0041 TAG LATIN CAPITAL LETTER A 416 400 101
 U+10FFFD <Plane 16 Private Use, Last> 420 777 375
 0x345ecf1b (UCS-4 value not in [UNICODE]) 464 536 717 33

4. UTF-18 Definition

 A UTF-18 stream represents [ISO-10646] codepoints using a pair of 9
 bit nonets to form an 18-bit value.

 UTF-18 does not use surrogates; consequently a UTF-16 value must be
 transformed into the UCS-4 equivalent, and U+D800 - U+DBFF are never
 transmitted in UTF-18.

 [UNICODE] codepoint values in the range U+0000 - U+2FFFF are copied
 as the same value into a UTF-18 value. [UNICODE] codepoint values in
 the range U+E0000 - U+EFFFF are copied as values 0x30000 - 0x3ffff;
 that is, these values are shifted by 0x70000. Other codepoint values
 can not be represented in UTF-18.

 Examples:

 Character Name UTF-18 (in octal)
 --------- ---- ----------------
 U+0041 LATIN CAPITAL LETTER A 000101
 U+00C0 LATIN CAPITAL LETTER A WITH GRAVE 000300
 U+0391 GREEK CAPITAL LETTER ALPHA 001621
 U+611B <CJK ideograph meaning "love"> 060433
 U+10330 GOTHIC LETTER AHSA 201460
 U+E0041 TAG LATIN CAPITAL LETTER A 600101

Crispin Informational [Page 4]

RFC 4042 UTF-9 and UTF-18 1 April 2005

5. Sample Routines

5.1. [UNICODE] Codepoint to UTF-9 Conversion

 The following routines demonstrate conversion from UCS-4 to UTF-9.
 For simplicity, these routines do not do any validity checking.
 Routines used in applications SHOULD reject invalid UTF-9 sequences;
 that is, the first nonet with a value of 400 octal (0x100), or
 sequences that result in an overflow (exceeding 0x10ffff for
 [UNICODE]), or codepoints used for UTF-16 surrogates.

 ; Return UCS-4 value from UTF-9 string (PDP-10 assembly version)
 ; Accepts: P1/ 9-bit byte pointer to UTF-9 string
 ; Returns +1: Always, T1/ UCS-4 value, P1/ updated byte pointer
 ; Clobbers T2

 UT92U4: TDZA T1,T1 ; start with zero
 U92U41: XOR T1,T2 ; insert octet into UCS-4 value
 LSH T1,^D8 ; shift UCS-4 value
 ILDB T2,P1 ; get next nonet
 TRZE T2,400 ; extract octet, any continuation?
 JRST U92U41 ; yes, continue
 XOR T1,T2 ; insert final octet
 POPJ P,

 /* Return UCS-4 value from UTF-9 string (C version)
 * Accepts: pointer to pointer to UTF-9 string
 * Returns: UCS-4 character, nonet pointer updated
 */

 UINT31 UTF9_to_UCS4 (UINT9 **utf9PP)
 {
 UINT9 nonet;
 UINT31 ucs4;
 for (ucs4 = (nonet = *(*utf9PP)++) & 0xff;
 nonet & 0x100;
 ucs4 |= (nonet = *(*utf9PP)++) & 0xff)
 ucs4 <<= 8;
 return ucs4;
 }

5.2. UTF-9 to UCS-4 Conversion

 The following routines demonstrate conversion from UTF-9 to UCS-4.
 For simplicity, these routines do not do any validity checking.
 Routines used in applications SHOULD reject invalid UCS-4 codepoints;
 that is, codepoints used for UTF-16 surrogates or codepoints with
 values exceeding 0x10ffff for [UNICODE].

Crispin Informational [Page 5]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 ; Write UCS-4 character to UTF-9 string (PDP-10 assembly version)
 ; Accepts: P1/ 9-bit byte pointer to UTF-9 string
 ; T1/ UCS-4 character to write
 ; Returns +1: Always, P1/ updated byte pointer
 ; Clobbers T1, T2; (T1, T2) must be an accumulator pair

 U42UT9: SETO T2, ; we’ll need some of these 1-bits later
 ASHC T1,-^D8 ; low octet becomes nonet with high 0-bit
 U32U91: JUMPE T1,U42U9X ; done if no more octets
 LSHC T1,-^D8 ; shift next octet into T2
 ROT T2,-1 ; turn it into nonet with high 1 bit
 PUSHJ P,U42U91 ; recurse for remainder
 U42U9X: LSHC T1,^D9 ; get next nonet back from T2
 IDPB T1,P1 ; write nonet
 POPJ P,

 /* Write UCS-4 character to UTF-9 string (C version)
 * Accepts: pointer to nonet string
 * UCS-4 character to write
 * Returns: updated pointer
 */

 UINT9 *UCS4_to_UTF9 (UINT9 *utf9P,UINT31 ucs4)
 {
 if (ucs4 > 0x100) {
 if (ucs4 > 0x10000) {
 if (ucs4 > 0x1000000)
 *utf9P++ = 0x100 | ((ucs4 >> 24) & 0xff);
 *utf9P++ = 0x100 | ((ucs4 >> 16) & 0xff);
 }
 *utf9P++ = 0x100 | ((ucs4 >> 8) & 0xff);
 }
 *utf9P++ = ucs4 & 0xff;
 return utf9P;
 }

6. Implementation Experience

 As the sample routines demonstrate, it is quite simple to implement
 UTF-9 and UTF-18 on a nonet-based architecture. More sophisticated
 routines can be found in ftp://panda.com/tops-20/utools.mac.txt or
 from lingling.panda.com via the file <UTF9>UTOOLS.MAC via ANONYMOUS
 [FTP].

Crispin Informational [Page 6]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 We are now in the process of implementing support for nonet-based
 text files and automated transformation between septet, octet, and
 nonet textual data.

7. References

7.1. Normative References

 [FTP] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

 [IAB-CHARACTER] Weider, C., Preston, C., Simonsen, K., Alvestrand,
 H., Atkinson, R., Crispin, M., and P. Svanberg, "The
 Report of the IAB Character Set Workshop held 29
 February - 1 March, 1996", RFC 2130, April 1997.

 [ISO-10646] International Organization for Standardization,
 "Information Technology - Universal Multiple-octet
 coded Character Set (UCS)", ISO/IEC Standard 10646,
 comprised of ISO/IEC 10646-1:2000, "Information
 technology - Universal Multiple-Octet Coded Character
 Set (UCS) - Part 1: Architecture and Basic
 Multilingual Plane", ISO/IEC 10646-2:2001,
 "Information technology - Universal Multiple-Octet
 Coded Character Set (UCS) - Part 2: Supplementary
 Planes" and ISO/IEC 10646-1:2000/Amd 1:2002,
 "Mathematical symbols and other characters".

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [UNICODE] The Unicode Consortium, "The Unicode Standard -
 Version 3.2", defined by The Unicode Standard,
 Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN
 0-201-61633-5), as amended by the Unicode Standard
 Annex #27: Unicode 3.1 and by the Unicode Standard
 Annex #28: Unicode 3.2, March 2002.

7.2. Informative References

 [US-ASCII] American National Standards Institute, "Coded
 Character Set - 7-bit American Standard Code for
 Information Interchange", ANSI X3.4, 1986.

 [UTF-16] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of
 ISO 10646", RFC 2781, February 2000.

Crispin Informational [Page 7]

RFC 4042 UTF-9 and UTF-18 1 April 2005

 [UTF-7] Goldsmith, D. and M. Davis, "UTF-7 A Mail-Safe
 Transformation Format of Unicode", RFC 2152, May
 1997.

 [UTF-8] Sollins, K., "Architectural Principles of Uniform
 Resource Name Resolution", RFC 2276, January 1998.

8. Security Considerations

 As with UTF-8, UTF-9 can represent codepoints that are not in
 [UNICODE]. Applications should validate UTF-9 strings to ensure that
 all codepoints do not exceed the [UNICODE] maximum of U+10FFFF.

 The sample routines in this document are for example purposes, and
 make no attempt to validate their arguments, e.g., test for overflow
 ([UNICODE] values great than 0x10ffff) or codepoints used for
 surrogates. Besides resulting in invalid data, this can also create
 covert channels.

9. IANA Considerations

 The IANA shall reserve the charset names "UTF-9" and "UTF-18" for
 future assignment.

Author’s Address

 Mark R. Crispin
 Panda Programming
 6158 NE Lariat Loop
 Bainbridge Island, WA 98110-2098

 Phone: (206) 842-2385
 EMail: UTF9@Lingling.Panda.COM

Crispin Informational [Page 8]

RFC 4042 UTF-9 and UTF-18 1 April 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Crispin Informational [Page 9]

