
Network Working Group A.B. Roach
Request for Comments: 4077 Estacado Systems
Category: Standards Track May 2005

 A Negative Acknowledgement Mechanism for Signaling Compression

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes a mechanism that allows Signaling Compression
 (SigComp) implementations to report precise error information upon
 receipt of a message which cannot be decompressed. This negative
 feedback can be used by the recipient to make fine-grained
 adjustments to the compressed message before retransmitting it,
 allowing for rapid and efficient recovery from error situations.

Roach Standards Track [Page 1]

RFC 4077 SigComp NACK May 2005

Table of Contents

 1. Introduction ..2
 1.1. The Problem ..2
 1.1.1. Compartment Disposal3
 1.1.2. Client Restart3
 1.1.3. Server Failover3
 1.2. The Solution ...4
 2. Node Behavior ...4
 2.1. Normal SigComp Message Transmission4
 2.2. Receiving a "Bad" SigComp Message5
 2.3. Receiving a SigComp NACK6
 2.3.1. Unreliable Transport6
 2.3.2. Reliable Transport6
 2.4. Detecting Support for NACK7
 3. Message Format ..7
 3.1. Message Fields ...8
 3.2. Reason Codes ...9
 4. Security Considerations ..13
 4.1. Reflector Attacks ...13
 4.2. NACK Spoofing ...13
 5. IANA Considerations ..14
 6. Acknowledgements ...14
 7. References ...14
 7.1. Normative References14
 7.2. Informative References14

1. Introduction

 Signaling Compression [1], often called "SigComp", defines a protocol
 for transportation of compressed messages between two network
 elements. One of the key features of SigComp is the ability of the
 sending node to request that the receiving node store state objects
 for later retrieval.

1.1. The Problem

 While the "SigComp - Extended Operations" document [2] defines a
 mechanism that allows for confirmation of state creation, operational
 experience with the SigComp protocol has demonstrated that there are
 still several circumstances in which a sender’s view of the shared
 state differs from the receiver’s view. A non-exhaustive list
 detailing the circumstances in which such failures may occur is
 below.

Roach Standards Track [Page 2]

RFC 4077 SigComp NACK May 2005

1.1.1. Compartment Disposal

 In SigComp, stored states are associated with compartments.
 Conceptually, the compartments represent one instance of a remote
 application. These compartments are used to limit the amount of
 state that each remote application is allowed to store. Compartments
 are created upon receipt of a valid SigComp message from a remote
 application. In the current protocol, applications are expected to
 signal when they are finished with a compartment so that it can be
 deleted (by using the S-bit in requested feedback data).

 Unfortunately, expecting the applications to be well-behaved is not
 sufficient to prevent state from piling up. Unexpected client
 failures, reboots, and loss of connectivity can cause compartments to
 become "stuck" and never removed. To prevent this situation, it
 becomes necessary to implement a scheme by which compartments that
 appear disused may eventually be discarded.

 While the preceding facts make such a practice necessary, discarding
 compartments without explicit signaling can have the unfortunate side
 effect that active compartments are sometimes discarded. This leads
 to a different view of state between the server and the client.

1.1.2. Client Restart

 The prime motivation for SigComp was compression of messages to be
 sent over a radio interface. Consequently, most deployments of
 SigComp will involve a mobile unit as one of the endpoints. Mobile
 terminals are generally not guaranteed to be available for extended
 durations of time. Node restarts (due to, for example, a battery
 running out) will induce situations in which the network-based server
 believes that the client contains several states that are no longer
 actually available.

1.1.3. Server Failover

 Many applications for which SigComp will be used (e.g., SIP [3]) use
 DNS SRV records for server lookup. One of the important features of
 DNS SRV records is the ability to specify multiple servers from which
 clients will select at random, with probabilities determined by the
 q-value weighting. The reason for defining this behavior for SRV
 records is to allow load distribution through a set of equivalent
 servers, and to permit clients to continue to function even if the
 server with which they are communicating fails. When using protocols
 that use SRV for such distribution, the traffic to a failed server is
 typically sent by the client to an equivalent server that can serve

Roach Standards Track [Page 3]

RFC 4077 SigComp NACK May 2005

 the same purpose. From an application perspective, this new server
 often appears to be the same endpoint as the failed server, and will
 consequently resolve to the same compartment.

 Although SigComp state can be replicated amongst such a cluster of
 servers, maintaining integrity of such states requires a two-phase
 commit process that adds a great deal of complexity to the server and
 can degrade performance significantly.

1.2. The Solution

 Although SigComp allows returned SigComp parameters to signal that
 all states have been lost (by setting "state_memory_size" to 0 for
 one message in the reverse direction), such an approach provides an
 incomplete solution to the problem. In addition to wiping out an
 entire compartment when only one state is corrupt or missing, this
 approach suffers from the unfortunate behavior that it requires a
 message in the reverse direction that the remote application will
 authorize. Unless a lower-layer security mechanism is employed
 (e.g., TLS), this would typically mean that a compressed
 application-level message in the reverse direction must be sent
 before recovery can occur. In many cases (such as SIP-based mobile
 terminals), these messages won’t be sent often; in others (pure
 client/server deployments), they won’t ever be sent.

 The proposed solution to this problem is a simple Negative
 Acknowledgement (NACK) mechanism which allows the recipient to
 communicate to the sender that a failure has occurred. This NACK
 contains a reason code that communicates the nature of the failure.
 For certain types of failures, the NACK will also contain additional
 details that might be useful in recovering from the failure.

2. Node Behavior

 The following sections detail the behavior of nodes sending and
 receiving SigComp NACKs. The actual format and values are described
 in Section 3.

2.1. Normal SigComp Message Transmission

 Although normal in all other respects, SigComp implementations that
 use the NACK mechanism need to calculate and store a SHA-1 hash for
 each SigComp message that they send. This must be stored in such a
 way that, given the SHA-1 hash, the implementation is able to locate
 the compartment with which the sent message was associated.

Roach Standards Track [Page 4]

RFC 4077 SigComp NACK May 2005

 In other words, if someone hands the SHA-1 hash back to the
 compressor, it needs to be able to find the compartment with which it
 was working when it sent the message with that hash. This only
 requires that the compressor knows with which compartment it is
 working when it sends a message (which is always the case), and that
 the SHA-1 hash, when stored, points to that compartment in some way.

2.2. Receiving a "Bad" SigComp Message

 When a received SigComp message causes a decompression failure, the
 recipient forms and sends a SigComp NACK message. This NACK message
 contains a SHA-1 hash of the received SigComp message that could not
 be decompressed. It also contains the exact reason decompression
 failed, as well as any additional details that might assist the NACK
 recipient to correct any problems. See Section 3 for more
 information about formatting the NACK message and its fields.

 For a connection-oriented transport, such as TCP, the NACK message is
 sent back to the originator of the failed message over that same
 connection.

 For a stream-based transport, such as TCP, the standard SigComp
 delimiter of 0xFFFF is used to terminate the NACK message.

 For a connectionless transport, such as UDP, the NACK message is sent
 back to the originator of the failed message at the port and IP
 address from which the message was sent. Note that this may or may
 not be the same port on which the application would typically receive
 messages. To accommodate implementations that use connect() or
 similar constructs, the NACK will be sent from the IP address and
 port to which the uninterpretable message was sent. From a practical
 perspective, this is probably easiest to determine by binding
 listening sockets to a specific interface; however, other mechanisms
 may also be employed.

 The behavior specified above is strictly necessary for any generally
 useful form of a NACK mechanism. In the most general case, when an
 implementation receives a message that it cannot decompress, it has
 exactly three useful pieces of information: (1) the contents of the
 message, (2) an indication of why the message cannot be decoded, and
 (3) the IP address and port from which the message originated. Note
 that none of these contains any indication of where the remote
 application is listening for messages, if it differs from the sending
 port.

Roach Standards Track [Page 5]

RFC 4077 SigComp NACK May 2005

2.3. Receiving a SigComp NACK

 The first action taken upon receipt of a NACK is an attempt to find
 the message to which the NACK corresponds. This search is performed
 using the 20-byte SHA-1 hash contained in the NACK. Once the
 matching message is located, further operations are performed based
 on the compartment that was associated with the sent message.

 Further behavior of a node upon receiving a SigComp NACK depends on
 whether a reliable or unreliable transport is being used.

2.3.1. Unreliable Transport

 When SigComp is used over an unreliable transport, the application
 has no reasonable expectation that the transport layer will deliver
 any particular message. It then becomes the application layer’s
 responsibility to ensure that data is retransmitted as necessary. In
 these circumstances, the NACK mechanism relies on such behavior to
 ensure delivery of the message, and never performs retransmissions on
 the application’s behalf.

 When a NACK is received for a message sent over an unreliable
 transport, the NACK recipient uses the contained information to make
 appropriate adjustments to the compressor associated with the proper
 compartment. The exact nature of these adjustments are specific to
 the compression scheme being used, and will vary from implementation
 to implementation. The only requirement on these adjustments is that
 they must have the effect of compensating for the error that has been
 indicated (e.g., by removing the state that the remote node indicates
 it cannot retrieve).

 In particular, when an unreliable transport is used, the original
 message must not be retransmitted by the SigComp layer upon receipt
 of a NACK. Instead, the next application-initiated transmission of a
 message will take advantage of the adjustments made as a result of
 processing the NACK.

2.3.2. Reliable Transport

 When a reliable transport is employed, the application makes a basic
 assumption that any message passed down the stack will be
 retransmitted as necessary to ensure that the remote node receives
 it, unless a failure is indicated by the transport layer. Because
 SigComp acts as a shim between the transport-layer and the
 application, it becomes the responsibility of the SigComp
 implementation to ensure that any failure to transmit a message is
 communicated to the application.

Roach Standards Track [Page 6]

RFC 4077 SigComp NACK May 2005

 When a NACK is received for a message sent over a reliable transport,
 the SigComp layer must indicate to the application that an error has
 occurred. In general, the application should react in the same way
 as it does for any other transport layer error, such as a TCP
 connection reset. For most applications, this reaction will
 initially be an attempt to reset and re-establish the connection, and
 re-initiate the failed transaction. The SigComp layer should also
 use the information contained in the NACK to make appropriate
 adjustments to the compressor associated with the proper compartment
 (similar to the adjustments made for unreliable transport). Thus, if
 the compartment is not reset by resetting the TCP connection, the
 next message will take advantage of the adjustments.

2.4. Detecting Support for NACK

 Detection of support for the NACK mechanism may be beneficial in
 certain circumstances. For example, with the current definition of
 SigComp, acknowledgment of state receipt is required before a sender
 can reference such state. When multiple messages are sent before a
 response is received, the need to wait for such responses can cause
 significant decreases in message compression efficiency. If it is
 known that the receiver supports the NACK mechanism, the sender can
 instead optimistically assume that the state created by a sent
 message has been created, and is allowed to be referenced. If such
 an assumption turns out to be false (due to, for example, packet loss
 or packet reordering), the sender can recover upon receipt of a NACK.

 In order to facilitate such detection, any implementation that will
 send NACK messages upon decompression failure will indicate a SigComp
 version number of 0x02 in its Universal Decompressor Virtual Machine
 (UDVM). The bytecodes sent to such an endpoint can check the version
 number, and send appropriate indication back to their compressor as
 requested feedback. Except for the NACK mechanism described in this
 document, implementations advertising a version of 0x02 behave
 exactly like those advertising a version number of 0x01.

3. Message Format

 SigComp NACK packets are syntactically valid SigComp messages which
 have been specifically designed to be safely ignored by
 implementations that do not support the NACK mechanism.

 In particular, NACK messages are formatted as the second variant of a
 SigComp message (typically used for code upload) with a "code_len"
 field of zero. The NACK information (message identifier, reason for
 failure, and error details) is encoded in the "remaining SigComp

Roach Standards Track [Page 7]

RFC 4077 SigComp NACK May 2005

 message" area, typically used for input data. Further, the
 "destination" field is used as a version identifier to indicate which
 version of NACK is being employed.

3.1. Message Fields

 The format of the NACK message and the use of the fields within it
 are shown in Figure 1.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 | T | 0 |
 +---+---+---+---+---+---+---+---+
 | |
 : returned feedback item :
 | |
 +---+---+---+---+---+---+---+---+
 | code_len = 0 |
 +---+---+---+---+---+---+---+---+
 | code_len = 0 | version = 1 |
 +---+---+---+---+---+---+---+---+
 | Reason Code |
 +---+---+---+---+---+---+---+---+
 | OPCODE of failed instruction |
 +---+---+---+---+---+---+---+---+
 | PC of failed instruction |
 | |
 +---+---+---+---+---+---+---+---+
 | |
 : SHA-1 Hash of failed message :
 | |
 +---+---+---+---+---+---+---+---+
 | |
 : Error Details :
 | |
 +---+---+---+---+---+---+---+---+

 Figure 1: SigComp NACK Message Format

 o "Reason Code" is a one-byte value that indicates the nature of the
 decompression failure. The specific codes are given in
 Section 3.2.

 o "OPCODE of failed instruction" is a one-byte field that includes
 the opcode to which the PC was pointing when the failure occurred.
 If failure occurred before the UDVM began executing any code, this
 field is set to 0.

Roach Standards Track [Page 8]

RFC 4077 SigComp NACK May 2005

 o "PC of failed instruction" is a two-byte field containing the
 value of the program counter when failure occurred (i.e., the
 memory address of the failed UDVM instruction). The field is
 encoded with the most significant byte of the PC first (i.e., in
 network or big endian order). If failure occurred before the UDVM
 began executing any code, this field is set to 0.

 o "SHA-1 Hash of failed message" contains the full 20-byte SHA-1
 hash of the SigComp message that could not be decompressed. This
 information allows the NACK recipient to locate the message that
 failed to decompress so that adjustments to the correct
 compartment can be performed. When performing this hash, the
 entire SigComp message is used, from the header byte (binary
 11111xxx) to the end of the input. Any lower-level protocol
 headers (such as UDP or IP) and message delimiters (the 0xFFFF
 that marks message boundaries in stream protocols) are not
 included in the hash. When used over a stream based protocol, any
 0xFFxx escape sequences are un-escaped before performing the hash
 operation.

 o "Error Details" provides additional information that might be
 useful in correcting the problem that caused decompression
 failure. Its meaning is specific to the "Reason Code". See
 Section 3.2 for specific information on what appears in this
 field.

 o "Code_len" is the "code_len" field from a standard SigComp
 message. It is always set to "0" for NACK messages.

 o "Version" gives the version of the NACK mechanism being employed.
 This document defines version 1.

3.2. Reason Codes

 Note that many of the status codes are more useful in debugging
 interoperability problems than with on-the-fly correction of errors.
 The "STATE_NOT_FOUND" error is a notable exception: it will generally
 cause the NACK recipient to encode future messages so as to not use
 the indicated state.

 Upon receiving the other status messages, an implementation would
 typically be expected either to use a different set of bytecodes or,
 if that is not an option, to send that specific message uncompressed.

Roach Standards Track [Page 9]

RFC 4077 SigComp NACK May 2005

 Error Code Details
 -------------------------- ---- ---------------------------
 STATE_NOT_FOUND 1 State ID (6 - 20 bytes)
 CYCLES_EXHAUSTED 2 Cycles Per Bit (1 byte)
 USER_REQUESTED 3
 SEGFAULT 4
 TOO_MANY_STATE_REQUESTS 5
 INVALID_STATE_ID_LENGTH 6
 INVALID_STATE_PRIORITY 7
 OUTPUT_OVERFLOW 8
 STACK_UNDERFLOW 9
 BAD_INPUT_BITORDER 10
 DIV_BY_ZERO 11
 SWITCH_VALUE_TOO_HIGH 12
 TOO_MANY_BITS_REQUESTED 13
 INVALID_OPERAND 14
 HUFFMAN_NO_MATCH 15
 MESSAGE_TOO_SHORT 16
 INVALID_CODE_LOCATION 17
 BYTECODES_TOO_LARGE 18 Memory size (2 bytes)
 INVALID_OPCODE 19
 INVALID_STATE_PROBE 20
 ID_NOT_UNIQUE 21 State ID (6 - 20 bytes)
 MULTILOAD_OVERWRITTEN 22
 STATE_TOO_SHORT 23 State ID (6 - 20 bytes)
 INTERNAL_ERROR 24
 FRAMING_ERROR 25

 Only the five errors "STATE_NOT_FOUND", "CYCLES_EXHAUSTED",
 "BYTECODES_TOO_LARGE", "ID_NOT_UNIQUE", and "STATE_TOO_SHORT" contain
 details; for all other error codes, the "Error Details" field has
 zero length.

 Figure 2: SigComp NACK Reason Codes

 1. STATE_NOT_FOUND
 A state that was referenced cannot be found. The state may have
 been referenced by the UDVM executing a STATE-ACCESS
 instruction; it also may have been referenced by the "partial
 state identifier" field in a SigComp message. The "details"
 field contains the state identifier for the state that could not
 be found. This is also the proper error to return in the case
 that a unique state item was matched but fewer bytes of state ID
 were sent than required by the minimum_access_length.

Roach Standards Track [Page 10]

RFC 4077 SigComp NACK May 2005

 2. CYCLES_EXHAUSTED
 Decompression of the message has taken more cycles than were
 allocated to it. The "details" field contains a one-byte value
 that communicates the number of cycles per bit. The cycles per
 bit is represented as an unsigned 8-bit integer (i.e., not
 encoded).

 3. USER_REQUESTED
 The DECOMPRESSION-FAILURE opcode has been executed.

 4. SEGFAULT
 An attempt to read from or write to memory that is outside of
 the UDVM’s memory space has been attempted.

 5. TOO_MANY_STATE_REQUESTS
 More than four requests to store or delete state objects have
 been requested.

 6. INVALID_STATE_ID_LENGTH
 A state id length less than 6 or greater than 20 has been
 specified.

 7. INVALID_STATE_PRIORITY
 A state priority of 65535 has been specified when attempting to
 store a state.

 8. OUTPUT_OVERFLOW
 The decompressed message is too large to be decoded by the
 receiving node.

 9. STACK_UNDERFLOW
 An attempt to pop a value off the UDVM stack was made with a
 stack_fill value of 0.

 10. BAD_INPUT_BITORDER
 An INPUT-BITS or INPUT-HUFFMAN instruction was encountered with
 the "input_bit_order" register set to an invalid value (i.e.,
 one of the upper 13 bits is set).

 11. DIV_BY_ZERO
 A DIVIDE or REMAINDER opcode was encountered with a divisor of
 0.

 12. SWITCH_VALUE_TOO_HIGH
 The input to a SWITCH opcode exceeds the number of branches
 defined.

Roach Standards Track [Page 11]

RFC 4077 SigComp NACK May 2005

 13. TOO_MANY_BITS_REQUESTED
 An INPUT-BITS or INPUT-HUFFMAN instruction was encountered that
 attempted to input more than 16 bits.

 14. INVALID_OPERAND
 An operand for an instruction could not be resolved to an
 integer value (e.g., a literal or reference operand beginning
 with 11111111).

 15. HUFFMAN_NO_MATCH
 The input string does not match any of the bitcodes in the
 INPUT-HUFFMAN opcode.

 16. MESSAGE_TOO_SHORT
 When attempting to decode a SigComp message, the recipient
 determined that there were not enough bytes in the message for
 it to be valid.

 17. INVALID_CODE_LOCATION
 The "code location" field in the SigComp message was set to the
 invalid value of 0.

 18. BYTECODES_TOO_LARGE
 The bytecodes that a SigComp message attempted to upload exceed
 the amount of memory available in the receiving UDVM. The
 details field is a two-byte expression of the
 DECOMPRESSION_MEMORY_SIZE of the receiving UDVM. This value is
 communicated most-significant-byte first.

 19. INVALID_OPCODE
 The UDVM attempted to identify an undefined byte value as an
 instruction.

 20. INVALID_STATE_PROBE
 When attempting to retrieve state, the state_length operand is
 set to 0 but the state_begin operand is non-zero.

 21. ID_NOT_UNIQUE
 A partial state identifier that was used to access state matched
 more than one state item. Note that this error might be
 returned as the result of executing a STATE-ACCESS instruction
 or attempting to locate a unique piece of state as identified by
 the "partial state identifier" in a SigComp message. The
 "details" field contains the partial state identifier that was
 requested.

 22. MULTILOAD_OVERWRITTEN
 A MULTILOAD instruction attempted to overwrite itself.

Roach Standards Track [Page 12]

RFC 4077 SigComp NACK May 2005

 23. STATE_TOO_SHORT
 A STATE-ACCESS instruction has attempted to copy more bytes from
 a state item than the state item actually contains. The
 "details" field contains the partial state identifier that was
 requested. Implementors are cautioned to return only the
 partial state identifier that was requested; if the NACK
 contains any state identifier in addition to what was requested,
 attackers may be able to use that additional information to
 access the state.

 24. INTERNAL_ERROR
 The UDVM encountered an unexpected condition that prevented it
 from decompressing the message.

 25. FRAMING_ERROR
 The UDVM encountered a framing error (unquoted 0xFF 80 .. 0xFF
 FE in an input stream.) This error is applicable only to
 messages received on a stream transport. In the case of a
 framing error, a SHA-1 hash for a unique message cannot be
 determined. Consequently, when a FRAMING_ERROR NACK is sent,
 the "SHA-1 Hash of failed message" field should be set to all
 zeros.

4. Security Considerations

4.1. Reflector Attacks

 Because SigComp NACK messages are by necessity sent in response to
 other messages, it is possible to trigger them by intentionally
 sending malformed messages to a SigComp implementation with a spoofed
 IP address. However, because such actions can only generate one
 message for each message sent, they don’t serve as amplifier attacks.
 Further, due to the reasonably small size of NACK packets, there
 cannot be a significant increase in the size of the packet generated.

 It is worth noting that nearly all deployed protocols exhibit this
 same behavior.

4.2. NACK Spoofing

 Although it is possible to forge NACK messages as if they were
 generated by a different node, the damage that can be caused is
 minimal. Reporting a loss of state will typically result in nothing
 more than the re-transmission of that state in a subsequent message.
 Other failure codes would result in the next message being sent using
 an alternate compression mechanism, or possibly uncompressed.

Roach Standards Track [Page 13]

RFC 4077 SigComp NACK May 2005

 Although all of the above consequences result in slightly larger
 messages, none of them have particularly catastrophic implications
 for security.

5. IANA Considerations

 This document defines a new value for the IANA registered attribute
 SigComp_version.

 Value (in hex): 02

 Description: SigComp version 2 (NACK support)

 Reference: [RFC4077]

6. Acknowledgements

 Thanks to Carsten Bormann, Zhigang Liu, Pekka Pessi, and Robert Sugar
 for their comments and suggestions. Special thanks to Abigail
 Surtees and Richard Price for several very detailed reviews and
 suggestions.

7. References

7.1. Normative References

 [1] Price, R., Bormann, C., Christoffersson, J., Hannu, H., Liu, Z.,
 and J. Rosenberg, "Signaling Compression (SigComp)", RFC 3320,
 January 2003.

 [2] Hannu, H., Christoffersson, J., Forsgren, S., Leung, K.-C., Liu,
 Z., and R. Price, "Signaling Compression (SigComp) - Extended
 Operations", RFC 3321, January 2003.

7.2. Informative References

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

Roach Standards Track [Page 14]

RFC 4077 SigComp NACK May 2005

Author’s Address

 Adam Roach
 Estacado Systems
 17210 Campbell Road
 Suite 250
 Dallas, TX 75252
 US

 EMail: adam@estacado.net

Roach Standards Track [Page 15]

RFC 4077 SigComp NACK May 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Roach Standards Track [Page 16]

