
Network Working Group A. Perrig
Request for Comments: 4082 D. Song
Category: Informational Carnegie Mellon University
 R. Canetti
 IBM
 J. D. Tygar
 University of California, Berkeley
 B. Briscoe
 BT
 June 2005

 Timed Efficient Stream Loss-Tolerant Authentication (TESLA):
 Multicast Source Authentication Transform Introduction

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document introduces Timed Efficient Stream Loss-tolerant
 Authentication (TESLA). TESLA allows all receivers to check the
 integrity and authenticate the source of each packet in multicast or
 broadcast data streams. TESLA requires no trust between receivers,
 uses low-cost operations per packet at both sender and receiver, can
 tolerate any level of loss without retransmissions, and requires no
 per-receiver state at the sender. TESLA can protect receivers
 against denial of service attacks in certain circumstances. Each
 receiver must be loosely time-synchronized with the source in order
 to verify messages, but otherwise receivers do not have to send any
 messages. TESLA alone cannot support non-repudiation of the data
 source to third parties.

 This informational document is intended to assist in writing
 standardizable and secure specifications for protocols based on TESLA
 in different contexts.

Perrig, et al. Informational [Page 1]

RFC 4082 TESLA Introduction June 2005

Table of Contents

 1. Introduction ..2
 1.1. Notation ...3
 2. Functionality ...4
 2.1. Threat Model and Security Guarantee5
 2.2. Assumptions ..5
 3. The Basic TESLA Protocol ..6
 3.1. Protocol Sketch ..6
 3.2. Sender Setup ...7
 3.3. Bootstrapping Receivers8
 3.3.1. Time Synchronization9
 3.4. Broadcasting Authenticated Messages10
 3.5. Authentication at Receiver11
 3.6. Determining the Key Disclosure Delay12
 3.7. Denial of Service Protection13
 3.7.1. Additional Group Authentication14
 3.7.2. Not Re-using Keys15
 3.7.3. Sender Buffering17
 3.8. Some Extensions ...17
 4. Layer Placement ..17
 5. Security Considerations ..18
 6. Acknowledgements ...19
 7. Informative References ...19

1. Introduction

 In multicast, a single packet can reach millions of receivers.
 Unfortunately, this introduces the danger that an attacker can
 potentially also reach millions of receivers with a malicious packet.
 Through source authentication, receivers can ensure that a received
 multicast packet originates from the correct source. In these
 respects, a multicast is equivalent to a broadcast to a superset of
 the multicast receivers.

 In unicast communication, we can achieve data authentication through
 a simple mechanism: the sender and the receiver share a secret key to
 compute a message authentication code (MAC) of all communicated data.
 When a message with a correct MAC arrives, the receiver is assured
 that the sender generated that message. Standard mechanisms achieve
 unicast authentication this way; for example, TLS or IPsec [1,2].

 Symmetric MAC authentication is not secure in a broadcast setting.
 Consider a sender that broadcasts authentic data to mutually
 mistrusting receivers. The symmetric MAC is not secure: every
 receiver knows the MAC key and therefore could impersonate the sender
 and forge messages to other receivers. Intuitively, we need an
 asymmetric mechanism to achieve authenticated broadcast, such that

Perrig, et al. Informational [Page 2]

RFC 4082 TESLA Introduction June 2005

 every receiver can verify the authenticity of messages it receives,
 without being able to generate authentic messages. Achieving this in
 an efficient way is a challenging problem [3].

 The standard approach to achieving such asymmetry for authentication
 is to use asymmetric cryptography; e.g., a digital signature.
 Digital signatures have the required asymmetric property: the sender
 generates the signature with its private key, and all receivers can
 verify the signature with the sender’s public key, but a receiver
 with the public key alone cannot generate a digital signature for a
 new message. A digital signature provides non-repudiation, a
 stronger property than authentication. However, digital signatures
 have a high cost: they have a high computation overhead for both the
 sender and the receiver, and most signatures also have a high-
 bandwidth overhead. Since we assume broadcast settings for which the
 sender does not retransmit lost packets, and the receiver still wants
 to authenticate each packet it receives immediately, we would need to
 attach a digital signature to each message. Because of the high
 overhead of asymmetric cryptography, this approach would restrict us
 to low-rate streams, and to senders and receivers with powerful
 workstations. We can try to amortize one digital signature over
 multiple messages. However, this approach is still expensive in
 contrast to symmetric cryptography, since symmetric cryptography is
 in general 3 to 5 orders of magnitude more efficient than asymmetric
 cryptography. In addition, the straight-forward amortization of one
 digital signature over multiple packets requires reliability, as the
 receiver needs to receive all packets to verify the signature. A
 number of schemes that follow this approach are [4,5,6,7]. See [8]
 for more details.

 This document presents the Timed Efficient Stream Loss-tolerant
 Authentication protocol (TESLA). TESLA uses mainly symmetric
 cryptography, and uses time-delayed key disclosure to achieve the
 required asymmetry property. However, TESLA requires loosely
 synchronized clocks between the sender and the receivers. See more
 details in Section 3.3.1. Schemes that follow a similar approach to
 TESLA are [9,10,11].

1.1. Notation

 To denote the subscript or an index of a variable, we use the
 underscore between the variable name and the index; e.g., the key K
 with index i is K_i, and the key K with index i+d is K_{i+d}. To
 write a superscript, we use the caret; e.g., function F with the
 argument x executed i times is F^i(x).

Perrig, et al. Informational [Page 3]

RFC 4082 TESLA Introduction June 2005

2. Functionality

 TESLA provides delayed per-packet data authentication and integrity
 checking. The key idea to providing both efficiency and security is
 a delayed disclosure of keys. The delayed key disclosure results in
 an authentication delay. In practice, the delay is on the order of
 one RTT (round-trip-time).

 TESLA has the following properties:

 o Low computation overhead for generation and verification of
 authentication information.

 o Low communication overhead.

 o Limited buffering required for the sender and the receiver, and
 therefore timely authentication for each individual packet.

 o Strong robustness to packet loss.

 o Scales to a large number of receivers.

 o Protects receivers from denial of service attacks in certain
 circumstances if configured appropriately.

 o Each receiver cannot verify message authenticity unless it is
 loosely time-synchronized with the source, where synchronization
 can take place at session setup. Once the session is in
 progress, receivers need not send any messages or
 acknowledgements.

 o Non-repudiation is not supported; each receiver can know that a
 stream is from an authentic source, but cannot prove this to a
 third party.

 TESLA can be used in the network layer, in the transport layer, or in
 the application layer. Delayed authentication, however, requires
 buffering of packets until authentication is completed. Certain
 applications intolerant of delay may be willing to process packets in
 parallel to being buffered while awaiting authentication, as long as
 roll-back is possible if packets are later found to be
 unauthenticated. For instance, an interactive video may play out
 packets still awaiting authentication, but if they are later found to
 be unauthenticated, it could stop further play-out and warn the
 viewer that the last x msec were unauthenticated and should be
 ignored. However, in the remainder of this document, for brevity, we
 will assume that packets are not processed in parallel to buffering.

Perrig, et al. Informational [Page 4]

RFC 4082 TESLA Introduction June 2005

2.1. Threat Model and Security Guarantee

 We design TESLA to be secure against a powerful adversary with the
 following capabilities:

 o Full control over the network. The adversary can eavesdrop,
 capture, drop, re-send, delay, and alter packets.

 o Access to a fast network with negligible delay.

 o The adversary’s computational resources may be very large, but
 not unbounded. In particular, this means that the adversary can
 perform efficient computations, such as computing a reasonable
 number of pseudo-random function applications and MACs with
 negligible delay. Nonetheless, the adversary cannot find the
 key of a pseudo-random function (or distinguish it from a random
 function) with non-negligible probability.

 The security property of TESLA guarantees that the receiver never
 accepts M_i as an authentic message unless the sender really sent
 M_i. A scheme that provides this guarantee is called a secure
 broadcast authentication scheme.

 Because TESLA expects the receiver to buffer packets before
 authentication, the receiver needs to protect itself from a potential
 denial of service (DoS) attack due to a flood of bogus packets (see
 Section 3.8).

2.2. Assumptions

 TESLA makes the following assumptions in order to provide security:

 1. The sender and the receiver must be loosely time-synchronized.
 Specifically, each receiver must be able to compute an upper
 bound on the lag of the receiver clock relative to the sender
 clock. We denote this quantity with D_t. (That is, D_t =
 sender time - receiver time). We note that an upper bound on
 D_t can easily be obtained via a simple two-message exchange.
 (Such an exchange can be piggybacked on any secure session
 initiation protocol. Alternatively, standard protocols such
 as NTP [15] can be used.

 2. TESLA MUST be bootstrapped at session setup through a regular
 data authentication system. One option is to use a digital
 signature algorithm for this purpose, in which case the
 receiver is required to have an authentic copy of either the
 sender’s public key certificate or a root key certificate in

Perrig, et al. Informational [Page 5]

RFC 4082 TESLA Introduction June 2005

 case of a PKI (public-key infrastructure). Alternatively,
 this initialization step can be done using any secure session
 initiation protocol.

 3. TESLA uses cryptographic MAC and PRF (pseudo-random
 functions). These MUST be cryptographically secure. Further
 details on the instantiation of the MAC and PRF are in Section
 3.4.

 We would like to emphasize that the security of TESLA does NOT rely
 on any assumptions about network propagation delay.

3. The Basic TESLA Protocol

 TESLA is described in several academic publications: A book on
 broadcast security [12], a journal paper [13], and two conference
 papers [7,14]. Please refer to these publications for in-depth
 proofs of security, experimental results, etc.

 We first outline the main ideas behind TESLA.

3.1. Protocol Sketch

 As we argue in the introduction, broadcast authentication requires a
 source of asymmetry. TESLA uses time for asymmetry. We first make
 sure that the sender and receivers are loosely time-synchronized as
 described above. Next, the sender forms a one-way chain of keys, in
 which each key in the chain is associated with a time interval (say,
 a second). Here is the basic approach:

 o The sender attaches a MAC to each packet. The MAC is computed
 over the contents of the packet. For each packet, the sender
 uses the current key from the one-way chain as a cryptographic
 key to compute the MAC.

 o The sender discloses a key from the one-way chain after some
 pre-defined time delay (e.g., the key used in time interval i is
 disclosed at time interval i+3).

 o Each receiver receives the packet. Each receiver knows the
 schedule for disclosing keys and, since it has an upper bound on
 the local time at the sender, it can check that the key used to
 compute the MAC was not yet disclosed by the sender. If it was
 not, then the receiver buffers the packet. Otherwise the packet
 is dropped due to inability to authenticate. Note that we do
 not know for sure whether a "late packet" is a bogus one or

Perrig, et al. Informational [Page 6]

RFC 4082 TESLA Introduction June 2005

 simply a delayed packet. We drop the packet because we are
 unable to authenticate it. (Of course, an implementation may
 choose not to drop packets and to use them unauthenticated.)

 o Each receiver checks that the disclosed key belongs to the
 hash-chain (by checking against previously released keys in the
 chain) and then checks the correctness of the MAC. If the MAC
 is correct, the receiver accepts the packet.

 Note that one-way chains have the property that if intermediate
 values of the one-way chain are lost, they can be recomputed using
 subsequent values in the chain. Even if some key disclosures are
 lost, a receiver can recover the corresponding keys and check the
 correctness of earlier packets.

 We now describe the stages of the basic TESLA protocol in this order:
 sender setup, receiver bootstrap, sender transmission of
 authenticated broadcast messages, and receiver authentication of
 broadcast messages.

3.2. Sender Setup

 The sender divides the time into uniform intervals of duration T_int.
 The sender assigns one key from the one-way chain to each time
 interval in sequence.

 The sender determines the length N of the one-way chain K_0,
 K_1, ..., K_N, and this length limits the maximum transmission
 duration before a new one-way chain must be created. The sender
 picks a random value for K_N. Using a pseudo-random function (PRF),
 f, the sender constructs the one-way function F: F(k) = f_k(0). The
 rest of the chain is computed recursively using K_i = F(K_{i+1}).
 Note that this gives us K_i = F^{N-i}(K_N), so the receiver can
 compute any value in the key chain from K_N, even if it does not have
 intermediate values. The key K_i will be used to authenticate
 packets sent in time interval i.

 Jakobsson [20] and Coppersmith and Jakobsson [21] present a storage-
 and computation-efficient mechanism for one-way chains. For a chain
 of length N, storage is about log(N) elements, and the computation
 overhead to reconstruct each element is also about log(N).

 The sender determines the duration of a time interval, T_int, and the
 key disclosure delay, d. (T_int is measured in time units, say
 milliseconds, and d is measured in number of time intervals. That
 is, a key that is used for time interval i will be disclosed in time
 interval i+d.) It is stressed that the scheme remains secure for any
 values of T_int and d>0. Still, correct choice of T_int and d is

Perrig, et al. Informational [Page 7]

RFC 4082 TESLA Introduction June 2005

 crucial for the usability of the scheme. The choice is influenced by
 the estimated network delay, the length of the transmission, and the
 tolerable delay at the receiver. A T_int that is too short will
 cause the keys to run out too soon. A T_int that is too long will
 cause excessive delay in authentication for some of the packets
 (those that were sent at the beginning of a time period). A delay d
 that is too short will cause too many packets to be unverifiable by
 the receiver. A delay d that is too long will cause excessive delay
 in authentication.

 The sender estimates a reasonable upper bound on the network delay
 between the sender and any receiver as m milliseconds. This includes
 any delay expected in the stack (see Section 4, on layer placement).
 If the sender expects to send a packet every n milliseconds, then a
 reasonable value for T_int is max(n,m). Based on T_int, a rule of
 thumb for determining the key disclosure delay, d, is given in
 Section 3.6.

 The above value for T_int is neither an upper or a lower bound; it is
 merely the value that reduces key change processing to a minimum
 without causing authentication delay to be higher than necessary. If
 the application can tolerate higher authentication delay, then T_int
 can be made appropriately larger. Also, if m (or n) increases during
 the session, perhaps due to congestion or a late joiner on a high
 delay path, T_int need not be revised.

 Finally, the sender needs to allow each receiver to synchronize its
 time with the sender. See more details on how this can be done in
 Section 3.3.1. (It is stressed that estimating the network delay is
 a separate task from the time synchronization between the sender and
 the receivers.)

3.3. Bootstrapping Receivers

 Before a receiver can authenticate messages with TESLA, it needs to
 have the following:

 o An upper bound, D_t, on the lag of its own clock with respect to
 the clock of the sender. (That is, if the local time reading is
 t, the current time reading at the sender is at most t+D_t.).

 o One authenticated key of the one-way key chain. (Typically,
 this will be the last key in the chain; i.e., K_0. This key
 will be signed by the sender, and all receivers will verify the
 signature with the public key of the signer.)

Perrig, et al. Informational [Page 8]

RFC 4082 TESLA Introduction June 2005

 o The disclosure schedule of the following keys:

 - T_int, the interval duration.
 - T_0, the start time of interval 0.
 - N, the length of the one-way key chain.
 - d, the key disclosure delay d (in number of intervals).

 The receiver can perform the time synchronization and get the
 authenticated TESLA parameters in a two-round message exchange, as
 described below. We stress again that time synchronization can be
 performed as part of the registration protocol between any receiver
 (including late joiners) and the sender, or between any receiver and
 a group controller.

3.3.1. Time Synchronization

 Various approaches exist for time synchronization [15,16,17,18].
 TESLA only requires the receiver to know an upper bound on the delay
 of its local clock with respect to the sender’s clock, so a simple
 algorithm is sufficient. TESLA can be used with direct, indirect,
 and delayed synchronization as three default options. The specific
 synchronization method will be part of each instantiation of TESLA.

 For completeness, we sketch a simple method for direct
 synchronization between the sender and a receiver:

 o The receiver sends a (sync t_r) message to the sender and
 records its local time, t_r, at the moment of sending.

 o Upon receipt of the (sync t_r) message, the sender records its
 local time, t_s, and sends (synch, t_r,t_s) to the receiver.

 o Upon receiving (synch,t_r,t_s), the receiver sets D_t = t_s -
 t_r + S, where S is an estimated bound on the clock drift
 throughout the duration of the session.

 Note:

 o Assuming that the messages are authentic (i.e., the message
 received by the receiver was actually sent by the sender), and
 assuming that the clock drift is at most S, then at any point
 throughout the session T_s < T_r + D_t, where T_s is the current
 time at the sender and T_r is the current time at the receiver.

 o The exchange of sync messages needs to be authenticated. This
 can be done in a number of ways; for instance, with a secure NTP
 protocol or in conjunction with a session set-up protocol.

Perrig, et al. Informational [Page 9]

RFC 4082 TESLA Introduction June 2005

 For indirect time synchronization (e.g., synchronization via a group
 controller), the sender and the controller engage in a protocol for
 finding the value D^0_t between them. Next, each receiver, R,
 interacts with the group controller (say, when registering to the
 group) and finds the value D^R_t between the group controller and R.
 The overall value of D_t within R is set to the sum D_t = D^R_t +
 D^0_t.

3.4. Broadcasting Authenticated Messages

 Each key in the one-way key chain corresponds to a time interval.
 Every time a sender broadcasts a message, it appends a MAC to the
 message, using the key corresponding to the current time interval.
 The key remains secret for the next d-1 intervals, so messages that a
 sender broadcasts in interval j effectively disclose key K_j-d. We
 call d the key disclosure delay.

 We do not want to use the same key multiple times in different
 cryptographic operations; that is, using key K_j to derive the
 previous key of the one-way key chain K_{j-1}, and using the same key
 K_j as the key to compute the MACs in time interval j may potentially
 lead to a cryptographic weakness. Using a pseudo-random function
 (PRF), f’, we construct the one-way function F’: F’(k) = f’_k(1). We
 use F’ to derive the key to compute the MAC of messages in each
 interval. The sender derives the MAC key as follows: K’_i = F’(K_i).
 Figure 1 depicts the one-way key chain construction and MAC key
 derivation. To broadcast message M_j in interval i the sender
 constructs the packet

 P_j = {M_j || i || MAC(K’_i,M_j) || K_{i-d}}

 where || denotes concatenation.

 F(K_i) F(K_{i+1}) F(K_{i+2})
 K_{i-1} <------- K_i <------- K_{i+1} <------- K_{i+2}

 | | |
 | F’(K_{i-1}) | F’(K_i) | F’(K_{i+1})
 | | |
 V V V

 K’_{i-1} K’_i K’_{i+1}

 Figure 1: At the top of the figure, we see the one-way key chain
 (derived using the one-way function F), and the derived MAC keys
 (derived using the one-way function F’).

Perrig, et al. Informational [Page 10]

RFC 4082 TESLA Introduction June 2005

3.5. Authentication at Receiver

 Once a sender discloses a key, we must assume that all parties might
 have access to that key. An adversary could create a bogus message
 and forge a MAC using the disclosed key. So whenever a packet
 arrives, the receiver must verify that the MAC is based on a safe
 key; a safe key is one that is still secret (known only by the
 sender). We define a safe packet or safe message as one with a MAC
 that is computed with a safe key.

 If a packet proves safe, it will be buffered, only to be released
 when its own key, disclosed in a later packet, proves its
 authenticity. Although a newly arriving packet cannot immediately be
 authenticated, it may disclose a new key so that earlier, buffered
 packets can be authenticated. Any newly disclosed key must be
 checked to determine whether it is genuine; then authentication of
 buffered packets that have been waiting for it can proceed.

 We now describe TESLA authentication at the receiver with more
 detail, listing all of these steps in the exact order they should be
 carried out:

 1. Safe packet test: When the receiver receives packet P_j, which
 carries an interval index i, and a disclosed key K_{i-d}, it
 first records local time T at which the packet arrived. The
 receiver then computes an upper bound t_j on the sender’s
 clock at the time when the packet arrived: t_j = T + D_t. To
 test whether the packet is safe, the receiver then computes
 the highest interval x the sender could possibly be in; namely
 x = floor((t_j - T_0) / T_int). The receiver verifies that x
 < i + d (where i is the interval index), which implies that
 the sender is not yet in the interval during which it
 discloses the key K_i.

 Even if the packet is safe, the receiver cannot yet verify the
 authenticity of this packet sent in interval i without key
 K_i, which will be disclosed later. Instead, it adds the
 triplet (i, M_j, MAC(K’_i, M_j)) to a buffer and verifies
 the authenticity after it learns K’_i.

 If the packet is unsafe, then the receiver considers the
 packet unauthenticated. It should discard unsafe packets,
 but, at its own risk it may choose to use them unverified.

 2. New key index test: Next the receiver checks whether a key K_v
 has already been disclosed with the same index v as the
 current disclosed key K_{i-d}, or with a later one; that is,
 with v >= i-d.

Perrig, et al. Informational [Page 11]

RFC 4082 TESLA Introduction June 2005

 3. Key verification test: If the disclosed key index is new, the
 receiver checks the legitimacy of K_{i-d} by verifying, for
 some earlier disclosed key K_v (v<i-d), that K_v = F^{i-d-
 v}(K_{i-d}).

 If key verification fails, the newly arrived packet P_j should
 be discarded.

 4. Message verification tests: If the disclosed key is
 legitimate, the receiver then verifies the authenticity of any
 earlier safe, buffered packets of interval i-d. To
 authenticate one of the buffered packets P_h containing
 message M_h protected with a MAC that used key index i-d, the
 receiver will compute K’_{i-d} = F’(K_{i-d}) from which it can
 compute MAC(K’_{i-d}, M_h).

 If this MAC equals the MAC stored in the buffer, the packet is
 authenticated and can be released from the buffer. If the
 MACs do not agree, the buffered packet P_h should be
 discarded.

 The receiver continues to verify and release (or not) any
 remaining buffered packets that depend on the newly disclosed
 key K_{i-d}.

 Using a disclosed key, we can calculate all previous disclosed keys,
 so even if packets are lost, we will still be able to verify
 buffered, safe packets from earlier time intervals. Thus, if i-d-
 v>1, the receiver can also verify the authenticity of the stored
 packets of intervals v+1 ... i-d-1.

3.6. Determining the Key Disclosure Delay

 An important TESLA parameter is the key disclosure delay d. Although
 the choice of the disclosure delay does not affect the security of
 the system, it is an important performance factor. A short
 disclosure delay will cause packets to lose their safety property, so
 receivers will not be able to authenticate them; but a long
 disclosure delay leads to a long authentication delay for receivers.
 We recommend determining the disclosure delay as follows: In direct
 time synchronization, let the RTT, 2m, be a reasonable upper bound on
 the round trip time between the sender and any receiver including
 worst-case congestion delay and worst-case buffering delay in host
 stacks. Then choose d = ceil(2m / T_int) + 1. Note that rounding
 up the quotient ensures that d >= 2. Also note that a disclosure
 delay of one time interval (d=1) does not work. Consider packets
 sent close to the boundary of the time interval: After the network
 propagation delay and the receiver time synchronization error, a

Perrig, et al. Informational [Page 12]

RFC 4082 TESLA Introduction June 2005

 receiver will not be able to authenticate the packet, because the
 sender will already be in the next time interval when it discloses
 the corresponding key.

 Measuring the delay to each receiver before determining m will still
 not adequately predict the upper bound on delay to late joiners, or
 where congestion delay rises later in the session. It may be
 adequate to use a hard-coded historic estimate of worst-case delay
 (e.g., round trip delays to any host on the intra-planetary Internet
 rarely exceed 500msec if routing remains stable).

 We stress that the security of TESLA does not rely on any assumptions
 about network propagation delay: If the delay is longer than
 expected, then authentic packets may be considered unauthenticated.
 Still, no inauthentic packet will be accepted as authentic.

3.7. Denial of Service Protection

 Because TESLA authentication is delayed, receivers seem vulnerable to
 flooding attacks that cause them to buffer excess packets, even
 though they may eventually prove to be inauthentic. When TESLA is
 deployed in an environment with a threat of flooding attacks, the
 receiver can take a number of extra precautions.

 First, we list simple DoS mitigation precautions that can and should
 be taken by any receiver independently of others, thus requiring no
 changes to the protocol or sender behaviour. We precisely specify
 where these extra steps interleave with the receiver authentication
 steps already given in Section 3.5.

 o Session validity test: Before the safe packet test (Step 1),
 check that arriving packets have a valid source IP address and
 port number for the session, that they do not replay a message
 already received in the session, and that they are not
 significantly larger than the packet sizes expected in the
 session.

 o Reasonable misordering test: Before the key verification test
 (Step 3), check whether the disclosed key index i-d of the
 arriving packet is within g of the previous highest disclosed
 key index v; thus, for example, i-d-v <= g. g sets the
 threshold beyond which an out-of-order key index is assumed to
 be malicious rather than just misordered. Without this test, an
 attacker could exploit the iterated test in Step 3 to make
 receivers consume inordinate CPU time checking along the hash
 chain for what appear to be extremely misordered packets.

Perrig, et al. Informational [Page 13]

RFC 4082 TESLA Introduction June 2005

 Each receiver can independently adapt g to prevailing attack
 conditions; for instance, by using the following algorithm.
 Initially, g should be set to g_max (say, 16). But whenever an
 arriving packet fails the reasonable misordering test above or
 the key verification test (Step 3), g should be dropped to g_min
 (>0 and typically 1). At each successful key verification (Step
 3), g should be incremented by 1 unless it is already g_max.
 These precautions will guarantee that sustained attack packets
 cannot cause the receiver to execute more than an average of
 g_min hashes each, unless they are paced against genuine
 packets. In the latter case, attacks are limited to
 g_max/(g_max-g_min) hashes per each genuine packet.

 When choosing g_max and g_min, note that they limit the average
 gap in a packet sequence to g.max(n,m)/n packets (see Section
 3.2 for definitions of n and m). So with g=1, m=100msec RTT,
 and n=4msec inter-packet period, reordering would be limited to
 gaps of 25 packets on average. Bigger naturally occurring gaps
 would have to be written off as if they were losses.

 Stronger DoS protection requires that both senders and receivers
 arrange additional constraints on the protocol. Below, we outline
 three alternative extensions to basic TESLA; the first adding group
 authentication, the second not re-using keys during a time interval,
 and the third moving buffering to the sender.

 It is important to understand the applicability of each scheme, as
 the first two schemes use slightly more (but bounded) resources in
 order to prevent attackers from consuming unbounded resources.
 Adding group authentication requires larger per-packet overhead.
 Never re-using a key requires both ends to process two hashes per
 packet (rather than per time interval), and the sender must store or
 re-generate a longer hash chain. The merits of each scheme,
 summarised after each is described below, must be weighed against
 these additional costs.

3.7.1. Additional Group Authentication

 This scheme simply involves addition of a group MAC to every packet.
 That is, a shared key K_g common to the whole group is communicated
 as an additional step during receiver bootstrap (Section 3.3). Then,
 during broadcast of message M_j (Section 3.4), the sender computes
 the group MAC of each packet MAC(K_g, P_j), which it appends to the
 packet header. Note that the group MAC covers the whole packet P_j;
 that is, the concatenation of the message M_j and the additional
 TESLA authentication material, using the formula in Section 3.4.

Perrig, et al. Informational [Page 14]

RFC 4082 TESLA Introduction June 2005

 Immediately upon packet arrival, each receiver can check that each
 packet came from a group member, by recomputing and comparing the
 group MAC.

 Note that TESLA source authentication is only necessary when other
 group members cannot be trusted to refrain from spoofing the source;
 otherwise, simpler group authentication would be sufficient.
 Therefore, additional group authentication will only make sense in
 scenarios where other group members are trusted to refrain from
 flooding the group, but where they are still not trusted to refrain
 from spoofing the source.

3.7.2. Not Re-using Keys

 In TESLA as described so far, each MAC key was used repeatedly for
 all the packets sent in a time interval. If instead the sender were
 to guarantee never to use a MAC key more than once, each disclosed
 key could assume an additional purpose on top of authenticating a
 previously buffered packet. Each key would also immediately show
 each receiver that the sender of each arriving packet knew the next
 key back along the hash chain, which is now only disclosed once,
 similar to S/KEY [22]. Therefore a reasonable receiver strategy
 would be to discard any arriving packets that disclosed a key seen
 already. The fill rate of the receiver’s buffer would then be
 clocked by each packet revealed by the genuine sender, preventing
 memory flooding attacks.

 An attacker with control of a network element or of a faster bypass
 network could intercept messages and overtake or replace them with
 different messages but with the same keys. However, as long as
 packets are only buffered if they also pass the delay safety test,
 these bogus packets will fail TESLA verification after the disclosure
 delay. Admittedly, receivers could be fooled into discarding genuine
 messages that had been overtaken by bogus ones. But it is hard to
 overtake messages without compromising a network element, and any
 attacker that can compromise a network element can discard genuine
 messages anyway. We will now describe this scheme in more detail.

 For the sender, the scheme is hardly different from TESLA. It merely
 uses an interval duration short enough to ensure a new key back along
 the hash chain for each packet. So the rule of thumb given in
 Section 3.2 for an efficient re-keying interval T_int no longer
 applies. Instead, T_int is simply n, the inter-arrival time between
 packets in milliseconds. The rule of thumb for calculating d, the
 key disclosure delay, remains unchanged from that given in Section
 3.6.

Perrig, et al. Informational [Page 15]

RFC 4082 TESLA Introduction June 2005

 If the packet rate is likely to vary, for safety n should be taken as
 the minimum inter-departure time between any two packets. (In fact,
 n need not be so strict; it can be the minimum average packet inter-
 departure time over any burst of d packets expected throughout the
 session.)

 Note that if the packet rate slows down, whenever no packets are sent
 in a key change interval, the key index must increment along the hash
 chain once for each missed interval. (During a burst, if the less
 strict definition of n above has been used, packets may need to
 depart before their key change interval. The sender can safely
 continue changing the key for each packet, using keys from future key
 intervals, because if n has been chosen as defined above, such bursts
 will never sustain long enough to cause the associated key to be
 disclosed in a period less than the disclosure delay later.)

 To be absolutely clear, the precise guarantees that the sender keeps
 to by following the above guidance are:

 o not to re-use a MAC key,

 o not to use a MAC key K_i after its time interval i, and

 o not to disclose key K_i sooner than the disclosure delay d *
 T_int following the packet it protects.

 Sender setup, receiver bootstrapping, and broadcasting authenticated
 messages are otherwise all identical to the descriptions in Sections
 3.2, 3.3, and 3.4, respectively. However, the following step must be
 added to the receiver authentication steps in Section 3.5:

 o After Step 2, if a packet arrives carrying a key index i-d that
 has already been received, it should not be buffered.

 This simple scheme would suffice against DoS, were it not for the
 fact that a network sometimes misorders packets without being
 compromised. Even without control of a network element, an attacker
 can opportunistically exploit such openings to fool a receiver into
 buffering a bogus packet and discarding a later genuine one. A
 receiver can choose to set aside a fixed size cache and can manage it
 to minimise the chances of discarding a genuine packet. However,
 given such vulnerabilities are rare and unpredictable, it is simpler
 to count these events as additions to the network loss rate. As
 always, TESLA authentication will still uncover any bogus packets
 after the disclosure delay.

 To summarise, avoiding re-using keys has the following properties,
 even under extreme flooding attacks:

Perrig, et al. Informational [Page 16]

RFC 4082 TESLA Introduction June 2005

 o After delayed TESLA authentication, packets arriving within the
 disclosure delay will always be identified as authentic if they
 are and as inauthentic if they are not authentic.

 o The fill rate of the receiver’s buffer is clocked by each packet
 revealed by the genuine sender, preventing memory flooding
 attacks.

 o An attacker with control of a network element can cause any loss
 rate it chooses (but that’s always true anyway).

 o Where attackers do not have control of any network elements, the
 effective loss rate is bounded by the sum of the network’s
 actual loss rate and its re-ordering rate.

3.7.3. Sender Buffering

 Buffering of packets can be moved to the sender side; then receivers
 can authenticate packets immediately upon receipt. This method is
 described in [14].

3.8. Some Extensions

 Let us mention two salient extensions of the basic TESLA scheme. A
 first extension allows having multiple TESLA authentication chains
 for a single stream, where each chain uses a different delay for
 disclosing the keys. This extension is typically used to deal with
 heterogeneous network delays within a single multicast transmission.
 A second extension allows having most of the buffering of packets at
 the sender side (rather than at the receiver side). Both extensions
 are described in [14].

 TESLA’s requirement that a key be received in a later packet for
 authentication prevents a receiver from authenticating the last part
 of a message. Thus, to enable authentication of the last part of a
 message or of the last message before a transmission suspension, the
 sender needs to send an empty message with the key.

4. Layer Placement

 TESLA authentication can be performed at any layer in the networking
 stack. Three natural places are the network, transport, or
 application layer. We list some considerations regarding the choice
 of layer:

 o Performing TESLA in the network layer has the advantage that the
 transport or application layer only receives authenticated data,
 potentially aiding a reliability protocol and mitigating denial

Perrig, et al. Informational [Page 17]

RFC 4082 TESLA Introduction June 2005

 of service attacks. (Indeed, reliable multicast tools based on
 forward error correction are highly susceptible to denial of
 service due to bogus packets.)

 o Performing TESLA in either the transport or the application
 layer has the advantage that the network layer remains
 unchanged, but it has the potential drawback that packets are
 obtained by the application layer only after being processed by
 the transport layer. Consequently, if buffering is used in the
 transport, then this may introduce additional and unpredictable
 delays on top of the unavoidable network delays.

 o Note that because TESLA relies upon timing of packets, deploying
 TESLA on top of a protocol or layer that aggressively buffers
 packets and hides the true packet arrival time will
 significantly reduce TESLA’s performance.

5. Security Considerations

 See the academic publications on TESLA [7,13,19] for several security
 analyses. Regarding the security of implementations, by far the most
 delicate point is the verification of the timing conditions. Care
 should be taken to make sure that (a) the value bound D_t on the
 clock skew is calculated according to the spec at session setup and
 that (b) the receiver records the arrival time of the packet as soon
 as possible after the packet’s arrival, and computes the safety
 condition correctly.

 It should be noted that a change to the key disclosure schedule for a
 message stream should never be declared within the message stream
 itself. This would introduce a vulnerability, because a receiver
 that did not receive the notification of the change would still
 believe in the old key disclosure schedule.

 Finally, in common with all authentication schemes, if verification
 is located separately from the ultimate destination application
 (e.g., an IPSec tunnel end point), a trusted channel must be present
 between verification and the application. For instance, the
 interface between the verifier and the application might simply
 assume that packets received by the application must have been
 verified by the verifier (because otherwise they would have been
 dropped). The application is then vulnerable to reception of packets
 that have managed to bypass the verifier.

Perrig, et al. Informational [Page 18]

RFC 4082 TESLA Introduction June 2005

6. Acknowledgements

 We would like to thank the following for their feedback and support:
 Mike Luby, Mark Baugher, Mats Naslund, Dave McGrew, Ross Finlayson,
 Sylvie Laniepce, Lakshminath Dondeti, Russ Housley, and the IESG
 reviewers.

7. Informative References

 [1] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [2] IPsec, "IP Security Protocol, IETF working group"
 http://www.ietf.org/html.charters/OLD/ipsec-charter.html.

 [3] D. Boneh, G. Durfee, and M. Franklin, "Lower bounds for
 multicast message authentication," in Advances in Cryptology --
 EUROCRYPT 2001 (B. Pfitzmann, ed.), Vol. 2045 of Lecture Notes
 in Computer Science, (Innsbruck, Austria), p. 434-450,
 Springer-Verlag, Berlin Germany, 2001.

 [4] R. Gennaro and P. Rohatgi, "How to Sign Digital Streams", tech.
 rep., IBM T.J.Watson Research Center, 1997.

 [5] P. Rohatgi, "A compact and fast hybrid signature scheme for
 multicast packet authentication", 6th ACM Conference on Computer
 and Communications Security , November 1999.

 [6] C. K. Wong and S. S. Lam, "Digital signatures for flows and
 multicasts," in Proc. IEEE ICNP ‘98, 1998.

 [7] A. Perrig, R. Canetti, J. Tygar, and D. X. Song, "Efficient
 authentication and signing of multicast streams over lossy
 channels", IEEE Symposium on Security and Privacy, May 2000.

 [8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
 Pinkas, "Multicast security: A taxonomy and some efficient
 constructions", Infocom ’99, 1999.

 [9] S. Cheung, "An efficient message authentication scheme for link
 state routing", 13th Annual Computer Security Applications
 Conference, 1997.

 [10] F. Bergadano, D. Cavagnino, and B. Crispo, "Chained stream
 authentication," in Selected Areas in Cryptography 2000,
 (Waterloo, Canada), August 2000. A talk describing this scheme
 was given at IBM Watson in August 1998.

Perrig, et al. Informational [Page 19]

RFC 4082 TESLA Introduction June 2005

 [11] F. Bergadano, D. Cavalino, and B. Crispo, "Individual single
 source authentication on the mbone", ICME 2000, August 2000. A
 talk containing this work was given at IBM Watson, August 1998.

 [12] A. Perrig and J. D. Tygar, Secure Broadcast Communication in
 Wired and Wireless Networks Kluwer Academic Publishers, October
 2002. ISBN 0792376501.

 [13] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, "The tesla
 broadcast authentication protocol," RSA CryptoBytes, Volume 5,
 No. 2 Summer/Fall 2002.

 [14] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, "Efficient and
 secure source authentication for multicast", Network and
 Distributed System Security Symposium, NDSS ’01, p. 35-46,
 February 2001.

 [15] Mills, D., "Network Time Protocol (Version 3) Specification,
 Implementation and Analysis", RFC 1305, March 1992.

 [16] B. Simons, J. Lundelius-Welch, and N. Lynch, "An overview of
 clock synchronization", Fault-Tolerant Distributed Computing (B.
 Simons and A. Spector, eds.), No. 448 in LNCS, p. 84-96,
 Springer-Verlag, Berlin Germany, 1990.

 [17] D. Mills, "Improved algorithms for synchronizing computer
 network clocks", Proceedings of the conference on Communications
 architectures, protocols and applications, SIGCOMM 94, (London,
 England), p. 317-327, 1994.

 [18] L. Lamport and P. Melliar-Smith, "Synchronizing clocks in the
 presence of faults", J. ACM, Volume 32, No. 1, p. 52-78, 1985.

 [19] P. Broadfoot and G. Lowe, "Analysing a Stream Authentication
 Protocol using Model Checking", Proceedings of the 7th European
 Symposium on Research in Computer Security (ESORICS), 2002.

 [20] M. Jakobsson, "Fractal hash sequence representation and
 traversal", Cryptology ePrint Archive,
 http://eprint.iacr.org/2002/001/, January 2002.

 [21] D. Coppersmith and M. Jakobsson, "Almost optimal hash sequence
 traversal", Proceedings of the Sixth International Financial
 Cryptography Conference (FC ’02), March 2002.

 [22] Haller, N., "The S/KEY One-Time Password System", RFC 1760,
 February 1995.

Perrig, et al. Informational [Page 20]

RFC 4082 TESLA Introduction June 2005

Authors’ Addresses

 Adrian Perrig
 ECE Department
 Carnegie Mellon University
 Pittsburgh, PA 15218
 US

 EMail: perrig@cmu.edu

 Ran Canetti
 IBM Research
 30 Saw Mill River Rd
 Hawthorne, NY 10532
 US

 EMail: canetti@watson.ibm.com

 Dawn Song
 ECE Department
 Carnegie Mellon University
 Pittsburgh, PA 15218
 US

 EMail: dawnsong@cmu.edu

 J. D. Tygar
 UC Berkeley - EECS & SIMS
 102 South Hall 4600
 Berkeley, CA 94720-4600
 US

 EMail: doug.tygar@gmail.com

 Bob Briscoe
 BT Research
 B54/77, BT Labs
 Martlesham Heath
 Ipswich, IP5 3RE
 UK

 EMail: bob.briscoe@bt.com

Perrig, et al. Informational [Page 21]

RFC 4082 TESLA Introduction June 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Perrig, et al. Informational [Page 22]

