
Network Working Group P. Leach
Request for Comments: 4122 Microsoft
Category: Standards Track M. Mealling
 Refactored Networks, LLC
 R. Salz
 DataPower Technology, Inc.
 July 2005

 A Universally Unique IDentifier (UUID) URN Namespace

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This specification defines a Uniform Resource Name namespace for
 UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally
 Unique IDentifier). A UUID is 128 bits long, and can guarantee
 uniqueness across space and time. UUIDs were originally used in the
 Apollo Network Computing System and later in the Open Software
 Foundation’s (OSF) Distributed Computing Environment (DCE), and then
 in Microsoft Windows platforms.

 This specification is derived from the DCE specification with the
 kind permission of the OSF (now known as The Open Group).
 Information from earlier versions of the DCE specification have been
 incorporated into this document.

Leach, et al. Standards Track [Page 1]

RFC 4122 A UUID URN Namespace July 2005

Table of Contents

 1. Introduction . 2
 2. Motivation . 3
 3. Namespace Registration Template 3
 4. Specification . 5
 4.1. Format. 5
 4.1.1. Variant. 6
 4.1.2. Layout and Byte Order. 6
 4.1.3. Version. 7
 4.1.4. Timestamp. 8
 4.1.5. Clock Sequence 8
 4.1.6. Node . 9
 4.1.7. Nil UUID . 9
 4.2. Algorithms for Creating a Time-Based UUID 9
 4.2.1. Basic Algorithm. 10
 4.2.2. Generation Details 12
 4.3. Algorithm for Creating a Name-Based UUID. 13
 4.4. Algorithms for Creating a UUID from Truly Random or
 Pseudo-Random Numbers 14
 4.5. Node IDs that Do Not Identify the Host. 15
 5. Community Considerations 15
 6. Security Considerations 16
 7. Acknowledgments . 16
 8. Normative References . 16
 A. Appendix A - Sample Implementation 18
 B. Appendix B - Sample Output of utest 29
 C. Appendix C - Some Name Space IDs 30

1. Introduction

 This specification defines a Uniform Resource Name namespace for
 UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally
 Unique IDentifier). A UUID is 128 bits long, and requires no central
 registration process.

 The information here is meant to be a concise guide for those wishing
 to implement services using UUIDs as URNs. Nothing in this document
 should be construed to override the DCE standards that defined UUIDs.

 There is an ITU-T Recommendation and ISO/IEC Standard [3] that are
 derived from earlier versions of this document. Both sets of
 specifications have been aligned, and are fully technically
 compatible. In addition, a global registration function is being
 provided by the Telecommunications Standardisation Bureau of ITU-T;
 for details see <http://www.itu.int/ITU-T/asn1/uuid.html>.

Leach, et al. Standards Track [Page 2]

RFC 4122 A UUID URN Namespace July 2005

2. Motivation

 One of the main reasons for using UUIDs is that no centralized
 authority is required to administer them (although one format uses
 IEEE 802 node identifiers, others do not). As a result, generation
 on demand can be completely automated, and used for a variety of
 purposes. The UUID generation algorithm described here supports very
 high allocation rates of up to 10 million per second per machine if
 necessary, so that they could even be used as transaction IDs.

 UUIDs are of a fixed size (128 bits) which is reasonably small
 compared to other alternatives. This lends itself well to sorting,
 ordering, and hashing of all sorts, storing in databases, simple
 allocation, and ease of programming in general.

 Since UUIDs are unique and persistent, they make excellent Uniform
 Resource Names. The unique ability to generate a new UUID without a
 registration process allows for UUIDs to be one of the URNs with the
 lowest minting cost.

3. Namespace Registration Template

 Namespace ID: UUID
 Registration Information:
 Registration date: 2003-10-01

 Declared registrant of the namespace:
 JTC 1/SC6 (ASN.1 Rapporteur Group)

 Declaration of syntactic structure:
 A UUID is an identifier that is unique across both space and time,
 with respect to the space of all UUIDs. Since a UUID is a fixed
 size and contains a time field, it is possible for values to
 rollover (around A.D. 3400, depending on the specific algorithm
 used). A UUID can be used for multiple purposes, from tagging
 objects with an extremely short lifetime, to reliably identifying
 very persistent objects across a network.

 The internal representation of a UUID is a specific sequence of
 bits in memory, as described in Section 4. To accurately
 represent a UUID as a URN, it is necessary to convert the bit
 sequence to a string representation.

 Each field is treated as an integer and has its value printed as a
 zero-filled hexadecimal digit string with the most significant
 digit first. The hexadecimal values "a" through "f" are output as
 lower case characters and are case insensitive on input.

Leach, et al. Standards Track [Page 3]

RFC 4122 A UUID URN Namespace July 2005

 The formal definition of the UUID string representation is
 provided by the following ABNF [7]:

 UUID = time-low "-" time-mid "-"
 time-high-and-version "-"
 clock-seq-and-reserved
 clock-seq-low "-" node
 time-low = 4hexOctet
 time-mid = 2hexOctet
 time-high-and-version = 2hexOctet
 clock-seq-and-reserved = hexOctet
 clock-seq-low = hexOctet
 node = 6hexOctet
 hexOctet = hexDigit hexDigit
 hexDigit =
 "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" /
 "a" / "b" / "c" / "d" / "e" / "f" /
 "A" / "B" / "C" / "D" / "E" / "F"

 The following is an example of the string representation of a UUID as
 a URN:

 urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

 Relevant ancillary documentation:
 [1][2]
 Identifier uniqueness considerations:
 This document specifies three algorithms to generate UUIDs: the
 first leverages the unique values of 802 MAC addresses to
 guarantee uniqueness, the second uses pseudo-random number
 generators, and the third uses cryptographic hashing and
 application-provided text strings. As a result, the UUIDs
 generated according to the mechanisms here will be unique from all
 other UUIDs that have been or will be assigned.

 Identifier persistence considerations:
 UUIDs are inherently very difficult to resolve in a global sense.
 This, coupled with the fact that UUIDs are temporally unique
 within their spatial context, ensures that UUIDs will remain as
 persistent as possible.

 Process of identifier assignment:
 Generating a UUID does not require that a registration authority
 be contacted. One algorithm requires a unique value over space
 for each generator. This value is typically an IEEE 802 MAC
 address, usually already available on network-connected hosts.
 The address can be assigned from an address block obtained from
 the IEEE registration authority. If no such address is available,

Leach, et al. Standards Track [Page 4]

RFC 4122 A UUID URN Namespace July 2005

 or privacy concerns make its use undesirable, Section 4.5
 specifies two alternatives. Another approach is to use version 3
 or version 4 UUIDs as defined below.

 Process for identifier resolution:
 Since UUIDs are not globally resolvable, this is not applicable.

 Rules for Lexical Equivalence:
 Consider each field of the UUID to be an unsigned integer as shown
 in the table in section Section 4.1.2. Then, to compare a pair of
 UUIDs, arithmetically compare the corresponding fields from each
 UUID in order of significance and according to their data type.
 Two UUIDs are equal if and only if all the corresponding fields
 are equal.

 As an implementation note, equality comparison can be performed on
 many systems by doing the appropriate byte-order canonicalization,
 and then treating the two UUIDs as 128-bit unsigned integers.

 UUIDs, as defined in this document, can also be ordered
 lexicographically. For a pair of UUIDs, the first one follows the
 second if the most significant field in which the UUIDs differ is
 greater for the first UUID. The second precedes the first if the
 most significant field in which the UUIDs differ is greater for
 the second UUID.

 Conformance with URN Syntax:
 The string representation of a UUID is fully compatible with the
 URN syntax. When converting from a bit-oriented, in-memory
 representation of a UUID into a URN, care must be taken to
 strictly adhere to the byte order issues mentioned in the string
 representation section.

 Validation mechanism:
 Apart from determining whether the timestamp portion of the UUID
 is in the future and therefore not yet assignable, there is no
 mechanism for determining whether a UUID is ’valid’.

 Scope:
 UUIDs are global in scope.

4. Specification

4.1. Format

 The UUID format is 16 octets; some bits of the eight octet variant
 field specified below determine finer structure.

Leach, et al. Standards Track [Page 5]

RFC 4122 A UUID URN Namespace July 2005

4.1.1. Variant

 The variant field determines the layout of the UUID. That is, the
 interpretation of all other bits in the UUID depends on the setting
 of the bits in the variant field. As such, it could more accurately
 be called a type field; we retain the original term for
 compatibility. The variant field consists of a variable number of
 the most significant bits of octet 8 of the UUID.

 The following table lists the contents of the variant field, where
 the letter "x" indicates a "don’t-care" value.

 Msb0 Msb1 Msb2 Description

 0 x x Reserved, NCS backward compatibility.

 1 0 x The variant specified in this document.

 1 1 0 Reserved, Microsoft Corporation backward
 compatibility

 1 1 1 Reserved for future definition.

 Interoperability, in any form, with variants other than the one
 defined here is not guaranteed, and is not likely to be an issue in
 practice.

4.1.2. Layout and Byte Order

 To minimize confusion about bit assignments within octets, the UUID
 record definition is defined only in terms of fields that are
 integral numbers of octets. The fields are presented with the most
 significant one first.

 Field Data Type Octet Note
 #

 time_low unsigned 32 0-3 The low field of the
 bit integer timestamp

 time_mid unsigned 16 4-5 The middle field of the
 bit integer timestamp

 time_hi_and_version unsigned 16 6-7 The high field of the
 bit integer timestamp multiplexed
 with the version number

Leach, et al. Standards Track [Page 6]

RFC 4122 A UUID URN Namespace July 2005

 clock_seq_hi_and_rese unsigned 8 8 The high field of the
 rved bit integer clock sequence
 multiplexed with the
 variant

 clock_seq_low unsigned 8 9 The low field of the
 bit integer clock sequence

 node unsigned 48 10-15 The spatially unique
 bit integer node identifier

 In the absence of explicit application or presentation protocol
 specification to the contrary, a UUID is encoded as a 128-bit object,
 as follows:

 The fields are encoded as 16 octets, with the sizes and order of the
 fields defined above, and with each field encoded with the Most
 Significant Byte first (known as network byte order). Note that the
 field names, particularly for multiplexed fields, follow historical
 practice.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | time_low |
 +-+
 | time_mid | time_hi_and_version |
 +-+
 |clk_seq_hi_res | clk_seq_low | node (0-1) |
 +-+
 | node (2-5) |
 +-+

4.1.3. Version

 The version number is in the most significant 4 bits of the time
 stamp (bits 4 through 7 of the time_hi_and_version field).

 The following table lists the currently-defined versions for this
 UUID variant.

 Msb0 Msb1 Msb2 Msb3 Version Description

 0 0 0 1 1 The time-based version
 specified in this document.

 0 0 1 0 2 DCE Security version, with
 embedded POSIX UIDs.

Leach, et al. Standards Track [Page 7]

RFC 4122 A UUID URN Namespace July 2005

 0 0 1 1 3 The name-based version
 specified in this document
 that uses MD5 hashing.

 0 1 0 0 4 The randomly or pseudo-
 randomly generated version
 specified in this document.

 0 1 0 1 5 The name-based version
 specified in this document
 that uses SHA-1 hashing.

 The version is more accurately a sub-type; again, we retain the term
 for compatibility.

4.1.4. Timestamp

 The timestamp is a 60-bit value. For UUID version 1, this is
 represented by Coordinated Universal Time (UTC) as a count of 100-
 nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of
 Gregorian reform to the Christian calendar).

 For systems that do not have UTC available, but do have the local
 time, they may use that instead of UTC, as long as they do so
 consistently throughout the system. However, this is not recommended
 since generating the UTC from local time only needs a time zone
 offset.

 For UUID version 3 or 5, the timestamp is a 60-bit value constructed
 from a name as described in Section 4.3.

 For UUID version 4, the timestamp is a randomly or pseudo-randomly
 generated 60-bit value, as described in Section 4.4.

4.1.5. Clock Sequence

 For UUID version 1, the clock sequence is used to help avoid
 duplicates that could arise when the clock is set backwards in time
 or if the node ID changes.

 If the clock is set backwards, or might have been set backwards
 (e.g., while the system was powered off), and the UUID generator can
 not be sure that no UUIDs were generated with timestamps larger than
 the value to which the clock was set, then the clock sequence has to
 be changed. If the previous value of the clock sequence is known, it
 can just be incremented; otherwise it should be set to a random or
 high-quality pseudo-random value.

Leach, et al. Standards Track [Page 8]

RFC 4122 A UUID URN Namespace July 2005

 Similarly, if the node ID changes (e.g., because a network card has
 been moved between machines), setting the clock sequence to a random
 number minimizes the probability of a duplicate due to slight
 differences in the clock settings of the machines. If the value of
 clock sequence associated with the changed node ID were known, then
 the clock sequence could just be incremented, but that is unlikely.

 The clock sequence MUST be originally (i.e., once in the lifetime of
 a system) initialized to a random number to minimize the correlation
 across systems. This provides maximum protection against node
 identifiers that may move or switch from system to system rapidly.
 The initial value MUST NOT be correlated to the node identifier.

 For UUID version 3 or 5, the clock sequence is a 14-bit value
 constructed from a name as described in Section 4.3.

 For UUID version 4, clock sequence is a randomly or pseudo-randomly
 generated 14-bit value as described in Section 4.4.

4.1.6. Node

 For UUID version 1, the node field consists of an IEEE 802 MAC
 address, usually the host address. For systems with multiple IEEE
 802 addresses, any available one can be used. The lowest addressed
 octet (octet number 10) contains the global/local bit and the
 unicast/multicast bit, and is the first octet of the address
 transmitted on an 802.3 LAN.

 For systems with no IEEE address, a randomly or pseudo-randomly
 generated value may be used; see Section 4.5. The multicast bit must
 be set in such addresses, in order that they will never conflict with
 addresses obtained from network cards.

 For UUID version 3 or 5, the node field is a 48-bit value constructed
 from a name as described in Section 4.3.

 For UUID version 4, the node field is a randomly or pseudo-randomly
 generated 48-bit value as described in Section 4.4.

4.1.7. Nil UUID

 The nil UUID is special form of UUID that is specified to have all
 128 bits set to zero.

4.2. Algorithms for Creating a Time-Based UUID

 Various aspects of the algorithm for creating a version 1 UUID are
 discussed in the following sections.

Leach, et al. Standards Track [Page 9]

RFC 4122 A UUID URN Namespace July 2005

4.2.1. Basic Algorithm

 The following algorithm is simple, correct, and inefficient:

 o Obtain a system-wide global lock

 o From a system-wide shared stable store (e.g., a file), read the
 UUID generator state: the values of the timestamp, clock sequence,
 and node ID used to generate the last UUID.

 o Get the current time as a 60-bit count of 100-nanosecond intervals
 since 00:00:00.00, 15 October 1582.

 o Get the current node ID.

 o If the state was unavailable (e.g., non-existent or corrupted), or
 the saved node ID is different than the current node ID, generate
 a random clock sequence value.

 o If the state was available, but the saved timestamp is later than
 the current timestamp, increment the clock sequence value.

 o Save the state (current timestamp, clock sequence, and node ID)
 back to the stable store.

 o Release the global lock.

 o Format a UUID from the current timestamp, clock sequence, and node
 ID values according to the steps in Section 4.2.2.

 If UUIDs do not need to be frequently generated, the above algorithm
 may be perfectly adequate. For higher performance requirements,
 however, issues with the basic algorithm include:

 o Reading the state from stable storage each time is inefficient.

 o The resolution of the system clock may not be 100-nanoseconds.

 o Writing the state to stable storage each time is inefficient.

 o Sharing the state across process boundaries may be inefficient.

 Each of these issues can be addressed in a modular fashion by local
 improvements in the functions that read and write the state and read
 the clock. We address each of them in turn in the following
 sections.

Leach, et al. Standards Track [Page 10]

RFC 4122 A UUID URN Namespace July 2005

4.2.1.1. Reading Stable Storage

 The state only needs to be read from stable storage once at boot
 time, if it is read into a system-wide shared volatile store (and
 updated whenever the stable store is updated).

 If an implementation does not have any stable store available, then
 it can always say that the values were unavailable. This is the
 least desirable implementation because it will increase the frequency
 of creation of new clock sequence numbers, which increases the
 probability of duplicates.

 If the node ID can never change (e.g., the net card is inseparable
 from the system), or if any change also reinitializes the clock
 sequence to a random value, then instead of keeping it in stable
 store, the current node ID may be returned.

4.2.1.2. System Clock Resolution

 The timestamp is generated from the system time, whose resolution may
 be less than the resolution of the UUID timestamp.

 If UUIDs do not need to be frequently generated, the timestamp can
 simply be the system time multiplied by the number of 100-nanosecond
 intervals per system time interval.

 If a system overruns the generator by requesting too many UUIDs
 within a single system time interval, the UUID service MUST either
 return an error, or stall the UUID generator until the system clock
 catches up.

 A high resolution timestamp can be simulated by keeping a count of
 the number of UUIDs that have been generated with the same value of
 the system time, and using it to construct the low order bits of the
 timestamp. The count will range between zero and the number of
 100-nanosecond intervals per system time interval.

 Note: If the processors overrun the UUID generation frequently,
 additional node identifiers can be allocated to the system, which
 will permit higher speed allocation by making multiple UUIDs
 potentially available for each time stamp value.

4.2.1.3. Writing Stable Storage

 The state does not always need to be written to stable store every
 time a UUID is generated. The timestamp in the stable store can be
 periodically set to a value larger than any yet used in a UUID. As
 long as the generated UUIDs have timestamps less than that value, and

Leach, et al. Standards Track [Page 11]

RFC 4122 A UUID URN Namespace July 2005

 the clock sequence and node ID remain unchanged, only the shared
 volatile copy of the state needs to be updated. Furthermore, if the
 timestamp value in stable store is in the future by less than the
 typical time it takes the system to reboot, a crash will not cause a
 reinitialization of the clock sequence.

4.2.1.4. Sharing State Across Processes

 If it is too expensive to access shared state each time a UUID is
 generated, then the system-wide generator can be implemented to
 allocate a block of time stamps each time it is called; a per-
 process generator can allocate from that block until it is exhausted.

4.2.2. Generation Details

 Version 1 UUIDs are generated according to the following algorithm:

 o Determine the values for the UTC-based timestamp and clock
 sequence to be used in the UUID, as described in Section 4.2.1.

 o For the purposes of this algorithm, consider the timestamp to be a
 60-bit unsigned integer and the clock sequence to be a 14-bit
 unsigned integer. Sequentially number the bits in a field,
 starting with zero for the least significant bit.

 o Set the time_low field equal to the least significant 32 bits
 (bits zero through 31) of the timestamp in the same order of
 significance.

 o Set the time_mid field equal to bits 32 through 47 from the
 timestamp in the same order of significance.

 o Set the 12 least significant bits (bits zero through 11) of the
 time_hi_and_version field equal to bits 48 through 59 from the
 timestamp in the same order of significance.

 o Set the four most significant bits (bits 12 through 15) of the
 time_hi_and_version field to the 4-bit version number
 corresponding to the UUID version being created, as shown in the
 table above.

 o Set the clock_seq_low field to the eight least significant bits
 (bits zero through 7) of the clock sequence in the same order of
 significance.

Leach, et al. Standards Track [Page 12]

RFC 4122 A UUID URN Namespace July 2005

 o Set the 6 least significant bits (bits zero through 5) of the
 clock_seq_hi_and_reserved field to the 6 most significant bits
 (bits 8 through 13) of the clock sequence in the same order of
 significance.

 o Set the two most significant bits (bits 6 and 7) of the
 clock_seq_hi_and_reserved to zero and one, respectively.

 o Set the node field to the 48-bit IEEE address in the same order of
 significance as the address.

4.3. Algorithm for Creating a Name-Based UUID

 The version 3 or 5 UUID is meant for generating UUIDs from "names"
 that are drawn from, and unique within, some "name space". The
 concept of name and name space should be broadly construed, and not
 limited to textual names. For example, some name spaces are the
 domain name system, URLs, ISO Object IDs (OIDs), X.500 Distinguished
 Names (DNs), and reserved words in a programming language. The
 mechanisms or conventions used for allocating names and ensuring
 their uniqueness within their name spaces are beyond the scope of
 this specification.

 The requirements for these types of UUIDs are as follows:

 o The UUIDs generated at different times from the same name in the
 same namespace MUST be equal.

 o The UUIDs generated from two different names in the same namespace
 should be different (with very high probability).

 o The UUIDs generated from the same name in two different namespaces
 should be different with (very high probability).

 o If two UUIDs that were generated from names are equal, then they
 were generated from the same name in the same namespace (with very
 high probability).

 The algorithm for generating a UUID from a name and a name space are
 as follows:

 o Allocate a UUID to use as a "name space ID" for all UUIDs
 generated from names in that name space; see Appendix C for some
 pre-defined values.

 o Choose either MD5 [4] or SHA-1 [8] as the hash algorithm; If
 backward compatibility is not an issue, SHA-1 is preferred.

Leach, et al. Standards Track [Page 13]

RFC 4122 A UUID URN Namespace July 2005

 o Convert the name to a canonical sequence of octets (as defined by
 the standards or conventions of its name space); put the name
 space ID in network byte order.

 o Compute the hash of the name space ID concatenated with the name.

 o Set octets zero through 3 of the time_low field to octets zero
 through 3 of the hash.

 o Set octets zero and one of the time_mid field to octets 4 and 5 of
 the hash.

 o Set octets zero and one of the time_hi_and_version field to octets
 6 and 7 of the hash.

 o Set the four most significant bits (bits 12 through 15) of the
 time_hi_and_version field to the appropriate 4-bit version number
 from Section 4.1.3.

 o Set the clock_seq_hi_and_reserved field to octet 8 of the hash.

 o Set the two most significant bits (bits 6 and 7) of the
 clock_seq_hi_and_reserved to zero and one, respectively.

 o Set the clock_seq_low field to octet 9 of the hash.

 o Set octets zero through five of the node field to octets 10
 through 15 of the hash.

 o Convert the resulting UUID to local byte order.

4.4. Algorithms for Creating a UUID from Truly Random or
 Pseudo-Random Numbers

 The version 4 UUID is meant for generating UUIDs from truly-random or
 pseudo-random numbers.

 The algorithm is as follows:

 o Set the two most significant bits (bits 6 and 7) of the
 clock_seq_hi_and_reserved to zero and one, respectively.

 o Set the four most significant bits (bits 12 through 15) of the
 time_hi_and_version field to the 4-bit version number from
 Section 4.1.3.

 o Set all the other bits to randomly (or pseudo-randomly) chosen
 values.

Leach, et al. Standards Track [Page 14]

RFC 4122 A UUID URN Namespace July 2005

 See Section 4.5 for a discussion on random numbers.

4.5. Node IDs that Do Not Identify the Host

 This section describes how to generate a version 1 UUID if an IEEE
 802 address is not available, or its use is not desired.

 One approach is to contact the IEEE and get a separate block of
 addresses. At the time of writing, the application could be found at
 <http://standards.ieee.org/regauth/oui/pilot-ind.html>, and the cost
 was US$550.

 A better solution is to obtain a 47-bit cryptographic quality random
 number and use it as the low 47 bits of the node ID, with the least
 significant bit of the first octet of the node ID set to one. This
 bit is the unicast/multicast bit, which will never be set in IEEE 802
 addresses obtained from network cards. Hence, there can never be a
 conflict between UUIDs generated by machines with and without network
 cards. (Recall that the IEEE 802 spec talks about transmission
 order, which is the opposite of the in-memory representation that is
 discussed in this document.)

 For compatibility with earlier specifications, note that this
 document uses the unicast/multicast bit, instead of the arguably more
 correct local/global bit.

 Advice on generating cryptographic-quality random numbers can be
 found in RFC1750 [5].

 In addition, items such as the computer’s name and the name of the
 operating system, while not strictly speaking random, will help
 differentiate the results from those obtained by other systems.

 The exact algorithm to generate a node ID using these data is system
 specific, because both the data available and the functions to obtain
 them are often very system specific. A generic approach, however, is
 to accumulate as many sources as possible into a buffer, use a
 message digest such as MD5 [4] or SHA-1 [8], take an arbitrary 6
 bytes from the hash value, and set the multicast bit as described
 above.

5. Community Considerations

 The use of UUIDs is extremely pervasive in computing. They comprise
 the core identifier infrastructure for many operating systems
 (Microsoft Windows) and applications (the Mozilla browser) and in
 many cases, become exposed to the Web in many non-standard ways.

Leach, et al. Standards Track [Page 15]

RFC 4122 A UUID URN Namespace July 2005

 This specification attempts to standardize that practice as openly as
 possible and in a way that attempts to benefit the entire Internet.

6. Security Considerations

 Do not assume that UUIDs are hard to guess; they should not be used
 as security capabilities (identifiers whose mere possession grants
 access), for example. A predictable random number source will
 exacerbate the situation.

 Do not assume that it is easy to determine if a UUID has been
 slightly transposed in order to redirect a reference to another
 object. Humans do not have the ability to easily check the integrity
 of a UUID by simply glancing at it.

 Distributed applications generating UUIDs at a variety of hosts must
 be willing to rely on the random number source at all hosts. If this
 is not feasible, the namespace variant should be used.

7. Acknowledgments

 This document draws heavily on the OSF DCE specification for UUIDs.
 Ted Ts’o provided helpful comments, especially on the byte ordering
 section which we mostly plagiarized from a proposed wording he
 supplied (all errors in that section are our responsibility,
 however).

 We are also grateful to the careful reading and bit-twiddling of Ralf
 S. Engelschall, John Larmouth, and Paul Thorpe. Professor Larmouth
 was also invaluable in achieving coordination with ISO/IEC.

8. Normative References

 [1] Zahn, L., Dineen, T., and P. Leach, "Network Computing
 Architecture", ISBN 0-13-611674-4, January 1990.

 [2] "DCE: Remote Procedure Call", Open Group CAE Specification C309,
 ISBN 1-85912-041-5, August 1994.

 [3] ISO/IEC 9834-8:2004 Information Technology, "Procedures for the
 operation of OSI Registration Authorities: Generation and
 registration of Universally Unique Identifiers (UUIDs) and their
 use as ASN.1 Object Identifier components" ITU-T Rec. X.667,
 2004.

 [4] Rivest, R., "The MD5 Message-Digest Algorithm ", RFC 1321, April
 1992.

Leach, et al. Standards Track [Page 16]

RFC 4122 A UUID URN Namespace July 2005

 [5] Eastlake, D., 3rd, Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [6] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [7] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [8] National Institute of Standards and Technology, "Secure Hash
 Standard", FIPS PUB 180-1, April 1995,
 <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

Leach, et al. Standards Track [Page 17]

RFC 4122 A UUID URN Namespace July 2005

Appendix A. Appendix A - Sample Implementation

 This implementation consists of 5 files: uuid.h, uuid.c, sysdep.h,
 sysdep.c and utest.c. The uuid.* files are the system independent
 implementation of the UUID generation algorithms described above,
 with all the optimizations described above except efficient state
 sharing across processes included. The code has been tested on Linux
 (Red Hat 4.0) with GCC (2.7.2), and Windows NT 4.0 with VC++ 5.0.
 The code assumes 64-bit integer support, which makes it much clearer.

 All the following source files should have the following copyright
 notice included:

copyrt.h

/*
** Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.
** Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &
** Digital Equipment Corporation, Maynard, Mass.
** Copyright (c) 1998 Microsoft.
** To anyone who acknowledges that this file is provided "AS IS"
** without any express or implied warranty: permission to use, copy,
** modify, and distribute this file for any purpose is hereby
** granted without fee, provided that the above copyright notices and
** this notice appears in all source code copies, and that none of
** the names of Open Software Foundation, Inc., Hewlett-Packard
** Company, Microsoft, or Digital Equipment Corporation be used in
** advertising or publicity pertaining to distribution of the software
** without specific, written prior permission. Neither Open Software
** Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital
** Equipment Corporation makes any representations about the
** suitability of this software for any purpose.
*/

uuid.h

#include "copyrt.h"
#undef uuid_t
typedef struct {
 unsigned32 time_low;
 unsigned16 time_mid;
 unsigned16 time_hi_and_version;
 unsigned8 clock_seq_hi_and_reserved;
 unsigned8 clock_seq_low;
 byte node[6];
} uuid_t;

Leach, et al. Standards Track [Page 18]

RFC 4122 A UUID URN Namespace July 2005

/* uuid_create -- generate a UUID */
int uuid_create(uuid_t * uuid);

/* uuid_create_md5_from_name -- create a version 3 (MD5) UUID using a
 "name" from a "name space" */
void uuid_create_md5_from_name(
 uuid_t *uuid, /* resulting UUID */
 uuid_t nsid, /* UUID of the namespace */
 void *name, /* the name from which to generate a UUID */
 int namelen /* the length of the name */
);

/* uuid_create_sha1_from_name -- create a version 5 (SHA-1) UUID
 using a "name" from a "name space" */
void uuid_create_sha1_from_name(

 uuid_t *uuid, /* resulting UUID */
 uuid_t nsid, /* UUID of the namespace */
 void *name, /* the name from which to generate a UUID */
 int namelen /* the length of the name */
);

/* uuid_compare -- Compare two UUID’s "lexically" and return
 -1 u1 is lexically before u2
 0 u1 is equal to u2
 1 u1 is lexically after u2
 Note that lexical ordering is not temporal ordering!
*/
int uuid_compare(uuid_t *u1, uuid_t *u2);

uuid.c

#include "copyrt.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "sysdep.h"
#include "uuid.h"

/* various forward declarations */
static int read_state(unsigned16 *clockseq, uuid_time_t *timestamp,
 uuid_node_t *node);
static void write_state(unsigned16 clockseq, uuid_time_t timestamp,
 uuid_node_t node);
static void format_uuid_v1(uuid_t *uuid, unsigned16 clockseq,
 uuid_time_t timestamp, uuid_node_t node);

Leach, et al. Standards Track [Page 19]

RFC 4122 A UUID URN Namespace July 2005

static void format_uuid_v3or5(uuid_t *uuid, unsigned char hash[16],
 int v);
static void get_current_time(uuid_time_t *timestamp);
static unsigned16 true_random(void);

/* uuid_create -- generator a UUID */
int uuid_create(uuid_t *uuid)
{
 uuid_time_t timestamp, last_time;
 unsigned16 clockseq;
 uuid_node_t node;
 uuid_node_t last_node;
 int f;

 /* acquire system-wide lock so we’re alone */
 LOCK;
 /* get time, node ID, saved state from non-volatile storage */
 get_current_time(×tamp);
 get_ieee_node_identifier(&node);
 f = read_state(&clockseq, &last_time, &last_node);

 /* if no NV state, or if clock went backwards, or node ID
 changed (e.g., new network card) change clockseq */
 if (!f || memcmp(&node, &last_node, sizeof node))
 clockseq = true_random();
 else if (timestamp < last_time)
 clockseq++;

 /* save the state for next time */
 write_state(clockseq, timestamp, node);

 UNLOCK;

 /* stuff fields into the UUID */
 format_uuid_v1(uuid, clockseq, timestamp, node);
 return 1;
}

/* format_uuid_v1 -- make a UUID from the timestamp, clockseq,
 and node ID */
void format_uuid_v1(uuid_t* uuid, unsigned16 clock_seq,
 uuid_time_t timestamp, uuid_node_t node)
{
 /* Construct a version 1 uuid with the information we’ve gathered
 plus a few constants. */
 uuid->time_low = (unsigned long)(timestamp & 0xFFFFFFFF);
 uuid->time_mid = (unsigned short)((timestamp >> 32) & 0xFFFF);
 uuid->time_hi_and_version =

Leach, et al. Standards Track [Page 20]

RFC 4122 A UUID URN Namespace July 2005

 (unsigned short)((timestamp >> 48) & 0x0FFF);
 uuid->time_hi_and_version |= (1 << 12);
 uuid->clock_seq_low = clock_seq & 0xFF;
 uuid->clock_seq_hi_and_reserved = (clock_seq & 0x3F00) >> 8;
 uuid->clock_seq_hi_and_reserved |= 0x80;
 memcpy(&uuid->node, &node, sizeof uuid->node);
}

/* data type for UUID generator persistent state */
typedef struct {
 uuid_time_t ts; /* saved timestamp */
 uuid_node_t node; /* saved node ID */
 unsigned16 cs; /* saved clock sequence */
} uuid_state;

static uuid_state st;

/* read_state -- read UUID generator state from non-volatile store */
int read_state(unsigned16 *clockseq, uuid_time_t *timestamp,
 uuid_node_t *node)
{
 static int inited = 0;
 FILE *fp;

 /* only need to read state once per boot */
 if (!inited) {
 fp = fopen("state", "rb");
 if (fp == NULL)
 return 0;
 fread(&st, sizeof st, 1, fp);
 fclose(fp);
 inited = 1;
 }
 *clockseq = st.cs;
 *timestamp = st.ts;
 *node = st.node;
 return 1;
}

/* write_state -- save UUID generator state back to non-volatile
 storage */
void write_state(unsigned16 clockseq, uuid_time_t timestamp,
 uuid_node_t node)
{
 static int inited = 0;
 static uuid_time_t next_save;
 FILE* fp;

Leach, et al. Standards Track [Page 21]

RFC 4122 A UUID URN Namespace July 2005

 if (!inited) {
 next_save = timestamp;
 inited = 1;
 }

 /* always save state to volatile shared state */
 st.cs = clockseq;
 st.ts = timestamp;
 st.node = node;
 if (timestamp >= next_save) {
 fp = fopen("state", "wb");
 fwrite(&st, sizeof st, 1, fp);
 fclose(fp);
 /* schedule next save for 10 seconds from now */
 next_save = timestamp + (10 * 10 * 1000 * 1000);
 }
}

/* get-current_time -- get time as 60-bit 100ns ticks since UUID epoch.
 Compensate for the fact that real clock resolution is
 less than 100ns. */
void get_current_time(uuid_time_t *timestamp)
{
 static int inited = 0;
 static uuid_time_t time_last;
 static unsigned16 uuids_this_tick;
 uuid_time_t time_now;

 if (!inited) {
 get_system_time(&time_now);
 uuids_this_tick = UUIDS_PER_TICK;
 inited = 1;
 }

 for (; ;) {
 get_system_time(&time_now);

 /* if clock reading changed since last UUID generated, */
 if (time_last != time_now) {
 /* reset count of uuids gen’d with this clock reading */
 uuids_this_tick = 0;
 time_last = time_now;
 break;
 }
 if (uuids_this_tick < UUIDS_PER_TICK) {
 uuids_this_tick++;
 break;
 }

Leach, et al. Standards Track [Page 22]

RFC 4122 A UUID URN Namespace July 2005

 /* going too fast for our clock; spin */
 }
 /* add the count of uuids to low order bits of the clock reading */
 *timestamp = time_now + uuids_this_tick;
}

/* true_random -- generate a crypto-quality random number.
 This sample doesn’t do that. */
static unsigned16 true_random(void)
{
 static int inited = 0;
 uuid_time_t time_now;

 if (!inited) {
 get_system_time(&time_now);
 time_now = time_now / UUIDS_PER_TICK;
 srand((unsigned int)
 (((time_now >> 32) ^ time_now) & 0xffffffff));
 inited = 1;
 }

 return rand();
}

/* uuid_create_md5_from_name -- create a version 3 (MD5) UUID using a
 "name" from a "name space" */
void uuid_create_md5_from_name(uuid_t *uuid, uuid_t nsid, void *name,
 int namelen)
{
 MD5_CTX c;
 unsigned char hash[16];
 uuid_t net_nsid;

 /* put name space ID in network byte order so it hashes the same
 no matter what endian machine we’re on */
 net_nsid = nsid;
 net_nsid.time_low = htonl(net_nsid.time_low);
 net_nsid.time_mid = htons(net_nsid.time_mid);
 net_nsid.time_hi_and_version = htons(net_nsid.time_hi_and_version);

 MD5Init(&c);
 MD5Update(&c, &net_nsid, sizeof net_nsid);
 MD5Update(&c, name, namelen);
 MD5Final(hash, &c);

 /* the hash is in network byte order at this point */
 format_uuid_v3or5(uuid, hash, 3);
}

Leach, et al. Standards Track [Page 23]

RFC 4122 A UUID URN Namespace July 2005

void uuid_create_sha1_from_name(uuid_t *uuid, uuid_t nsid, void *name,
 int namelen)
{
 SHA_CTX c;
 unsigned char hash[20];
 uuid_t net_nsid;

 /* put name space ID in network byte order so it hashes the same
 no matter what endian machine we’re on */
 net_nsid = nsid;
 net_nsid.time_low = htonl(net_nsid.time_low);
 net_nsid.time_mid = htons(net_nsid.time_mid);
 net_nsid.time_hi_and_version = htons(net_nsid.time_hi_and_version);

 SHA1_Init(&c);
 SHA1_Update(&c, &net_nsid, sizeof net_nsid);
 SHA1_Update(&c, name, namelen);
 SHA1_Final(hash, &c);

 /* the hash is in network byte order at this point */
 format_uuid_v3or5(uuid, hash, 5);
}

/* format_uuid_v3or5 -- make a UUID from a (pseudo)random 128-bit
 number */
void format_uuid_v3or5(uuid_t *uuid, unsigned char hash[16], int v)
{
 /* convert UUID to local byte order */
 memcpy(uuid, hash, sizeof *uuid);
 uuid->time_low = ntohl(uuid->time_low);
 uuid->time_mid = ntohs(uuid->time_mid);
 uuid->time_hi_and_version = ntohs(uuid->time_hi_and_version);

 /* put in the variant and version bits */
 uuid->time_hi_and_version &= 0x0FFF;
 uuid->time_hi_and_version |= (v << 12);
 uuid->clock_seq_hi_and_reserved &= 0x3F;
 uuid->clock_seq_hi_and_reserved |= 0x80;
}

/* uuid_compare -- Compare two UUID’s "lexically" and return */
#define CHECK(f1, f2) if (f1 != f2) return f1 < f2 ? -1 : 1;
int uuid_compare(uuid_t *u1, uuid_t *u2)
{
 int i;

 CHECK(u1->time_low, u2->time_low);
 CHECK(u1->time_mid, u2->time_mid);

Leach, et al. Standards Track [Page 24]

RFC 4122 A UUID URN Namespace July 2005

 CHECK(u1->time_hi_and_version, u2->time_hi_and_version);
 CHECK(u1->clock_seq_hi_and_reserved, u2->clock_seq_hi_and_reserved);
 CHECK(u1->clock_seq_low, u2->clock_seq_low)
 for (i = 0; i < 6; i++) {
 if (u1->node[i] < u2->node[i])
 return -1;
 if (u1->node[i] > u2->node[i])
 return 1;
 }
 return 0;
}
#undef CHECK

sysdep.h

#include "copyrt.h"
/* remove the following define if you aren’t running WIN32 */
#define WININC 0

#ifdef WININC
#include <windows.h>
#else
#include <sys/types.h>
#include <sys/time.h>
#include <sys/sysinfo.h>
#endif

#include "global.h"
/* change to point to where MD5 .h’s live; RFC 1321 has sample
 implementation */
#include "md5.h"

/* set the following to the number of 100ns ticks of the actual
 resolution of your system’s clock */
#define UUIDS_PER_TICK 1024

/* Set the following to a calls to get and release a global lock */
#define LOCK
#define UNLOCK

typedef unsigned long unsigned32;
typedef unsigned short unsigned16;
typedef unsigned char unsigned8;
typedef unsigned char byte;

/* Set this to what your compiler uses for 64-bit data type */
#ifdef WININC

Leach, et al. Standards Track [Page 25]

RFC 4122 A UUID URN Namespace July 2005

#define unsigned64_t unsigned __int64
#define I64(C) C
#else
#define unsigned64_t unsigned long long
#define I64(C) C##LL
#endif

typedef unsigned64_t uuid_time_t;
typedef struct {
 char nodeID[6];
} uuid_node_t;

void get_ieee_node_identifier(uuid_node_t *node);
void get_system_time(uuid_time_t *uuid_time);
void get_random_info(char seed[16]);

sysdep.c

#include "copyrt.h"
#include <stdio.h>
#include "sysdep.h"

/* system dependent call to get IEEE node ID.
 This sample implementation generates a random node ID. */
void get_ieee_node_identifier(uuid_node_t *node)
{
 static inited = 0;
 static uuid_node_t saved_node;
 char seed[16];
 FILE *fp;

 if (!inited) {
 fp = fopen("nodeid", "rb");
 if (fp) {
 fread(&saved_node, sizeof saved_node, 1, fp);
 fclose(fp);
 }
 else {
 get_random_info(seed);
 seed[0] |= 0x01;
 memcpy(&saved_node, seed, sizeof saved_node);
 fp = fopen("nodeid", "wb");
 if (fp) {
 fwrite(&saved_node, sizeof saved_node, 1, fp);
 fclose(fp);
 }
 }

Leach, et al. Standards Track [Page 26]

RFC 4122 A UUID URN Namespace July 2005

 inited = 1;
 }

 *node = saved_node;
}

/* system dependent call to get the current system time. Returned as
 100ns ticks since UUID epoch, but resolution may be less than
 100ns. */
#ifdef _WINDOWS_

void get_system_time(uuid_time_t *uuid_time)
{
 ULARGE_INTEGER time;

 /* NT keeps time in FILETIME format which is 100ns ticks since
 Jan 1, 1601. UUIDs use time in 100ns ticks since Oct 15, 1582.
 The difference is 17 Days in Oct + 30 (Nov) + 31 (Dec)
 + 18 years and 5 leap days. */
 GetSystemTimeAsFileTime((FILETIME *)&time);
 time.QuadPart +=

 (unsigned __int64) (1000*1000*10) // seconds
 * (unsigned __int64) (60 * 60 * 24) // days
 * (unsigned __int64) (17+30+31+365*18+5); // # of days
 *uuid_time = time.QuadPart;
}

/* Sample code, not for use in production; see RFC 1750 */
void get_random_info(char seed[16])
{
 MD5_CTX c;
 struct {
 MEMORYSTATUS m;
 SYSTEM_INFO s;
 FILETIME t;
 LARGE_INTEGER pc;
 DWORD tc;
 DWORD l;
 char hostname[MAX_COMPUTERNAME_LENGTH + 1];
 } r;

 MD5Init(&c);
 GlobalMemoryStatus(&r.m);
 GetSystemInfo(&r.s);
 GetSystemTimeAsFileTime(&r.t);
 QueryPerformanceCounter(&r.pc);
 r.tc = GetTickCount();

Leach, et al. Standards Track [Page 27]

RFC 4122 A UUID URN Namespace July 2005

 r.l = MAX_COMPUTERNAME_LENGTH + 1;
 GetComputerName(r.hostname, &r.l);
 MD5Update(&c, &r, sizeof r);
 MD5Final(seed, &c);
}

#else

void get_system_time(uuid_time_t *uuid_time)
{
 struct timeval tp;

 gettimeofday(&tp, (struct timezone *)0);

 /* Offset between UUID formatted times and Unix formatted times.
 UUID UTC base time is October 15, 1582.
 Unix base time is January 1, 1970.*/
 *uuid_time = ((unsigned64)tp.tv_sec * 10000000)
 + ((unsigned64)tp.tv_usec * 10)
 + I64(0x01B21DD213814000);
}

/* Sample code, not for use in production; see RFC 1750 */
void get_random_info(char seed[16])
{
 MD5_CTX c;
 struct {
 struct sysinfo s;
 struct timeval t;
 char hostname[257];
 } r;

 MD5Init(&c);
 sysinfo(&r.s);
 gettimeofday(&r.t, (struct timezone *)0);
 gethostname(r.hostname, 256);
 MD5Update(&c, &r, sizeof r);
 MD5Final(seed, &c);
}

#endif

utest.c

#include "copyrt.h"
#include "sysdep.h"
#include <stdio.h>
#include "uuid.h"

Leach, et al. Standards Track [Page 28]

RFC 4122 A UUID URN Namespace July 2005

uuid_t NameSpace_DNS = { /* 6ba7b810-9dad-11d1-80b4-00c04fd430c8 */
 0x6ba7b810,
 0x9dad,
 0x11d1,
 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8
};

/* puid -- print a UUID */
void puid(uuid_t u)
{
 int i;

 printf("%8.8x-%4.4x-%4.4x-%2.2x%2.2x-", u.time_low, u.time_mid,
 u.time_hi_and_version, u.clock_seq_hi_and_reserved,
 u.clock_seq_low);
 for (i = 0; i < 6; i++)
 printf("%2.2x", u.node[i]);
 printf("\n");
}

/* Simple driver for UUID generator */
void main(int argc, char **argv)
{
 uuid_t u;
 int f;

 uuid_create(&u);
 printf("uuid_create(): "); puid(u);

 f = uuid_compare(&u, &u);
 printf("uuid_compare(u,u): %d\n", f); /* should be 0 */
 f = uuid_compare(&u, &NameSpace_DNS);
 printf("uuid_compare(u, NameSpace_DNS): %d\n", f); /* s.b. 1 */
 f = uuid_compare(&NameSpace_DNS, &u);
 printf("uuid_compare(NameSpace_DNS, u): %d\n", f); /* s.b. -1 */
 uuid_create_md5_from_name(&u, NameSpace_DNS, "www.widgets.com", 15);
 printf("uuid_create_md5_from_name(): "); puid(u);
}

Appendix B. Appendix B - Sample Output of utest

 uuid_create(): 7d444840-9dc0-11d1-b245-5ffdce74fad2
 uuid_compare(u,u): 0
 uuid_compare(u, NameSpace_DNS): 1
 uuid_compare(NameSpace_DNS, u): -1
 uuid_create_md5_from_name(): e902893a-9d22-3c7e-a7b8-d6e313b71d9f

Leach, et al. Standards Track [Page 29]

RFC 4122 A UUID URN Namespace July 2005

Appendix C. Appendix C - Some Name Space IDs

 This appendix lists the name space IDs for some potentially
 interesting name spaces, as initialized C structures and in the
 string representation defined above.

 /* Name string is a fully-qualified domain name */
 uuid_t NameSpace_DNS = { /* 6ba7b810-9dad-11d1-80b4-00c04fd430c8 */
 0x6ba7b810,
 0x9dad,
 0x11d1,
 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8
 };

 /* Name string is a URL */
 uuid_t NameSpace_URL = { /* 6ba7b811-9dad-11d1-80b4-00c04fd430c8 */
 0x6ba7b811,
 0x9dad,
 0x11d1,
 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8
 };

 /* Name string is an ISO OID */
 uuid_t NameSpace_OID = { /* 6ba7b812-9dad-11d1-80b4-00c04fd430c8 */
 0x6ba7b812,
 0x9dad,
 0x11d1,
 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8
 };

 /* Name string is an X.500 DN (in DER or a text output format) */
 uuid_t NameSpace_X500 = { /* 6ba7b814-9dad-11d1-80b4-00c04fd430c8 */
 0x6ba7b814,
 0x9dad,
 0x11d1,
 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30, 0xc8
 };

Leach, et al. Standards Track [Page 30]

RFC 4122 A UUID URN Namespace July 2005

Authors’ Addresses

 Paul J. Leach
 Microsoft
 1 Microsoft Way
 Redmond, WA 98052
 US

 Phone: +1 425-882-8080
 EMail: paulle@microsoft.com

 Michael Mealling
 Refactored Networks, LLC
 1635 Old Hwy 41
 Suite 112, Box 138
 Kennesaw, GA 30152
 US

 Phone: +1-678-581-9656
 EMail: michael@refactored-networks.com
 URI: http://www.refactored-networks.com

 Rich Salz
 DataPower Technology, Inc.
 1 Alewife Center
 Cambridge, MA 02142
 US

 Phone: +1 617-864-0455
 EMail: rsalz@datapower.com
 URI: http://www.datapower.com

Leach, et al. Standards Track [Page 31]

RFC 4122 A UUID URN Namespace July 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Leach, et al. Standards Track [Page 32]

