Net wor k Wor ki ng Group P. Sarol ahti
Request for Comments: 4138 Noki a Research Center
Cat egory: Experi nental M Koj o
Uni versity of Hel sinki

August 2005

Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransm ssion Tinmeouts with TCP and the
Stream Control Transni ssion Protocol (SCTP)

Status of This Meno

This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenent are requested.
Distribution of this menp is unlimted.

Copyright Notice
Copyright (C The Internet Society (2005).
Abstr act

Spurious retransm ssion tinmeouts cause suboptinal TCP perfornmance
because they often result in unnecessary retransm ssion of the |ast
wi ndow of data. This docunent describes the F-RTO detection

al gorithm for detecting spurious TCP retransm ssion tineouts. F-RTO
is a TCP sender-only algorithmthat does not require any TCP options
to operate. After retransnmitting the first unacknow edged segnent
triggered by a tineout, the F-RTO al gorithm of the TCP sender

moni tors the incom ng acknow edgnents to determ ne whether the

ti meout was spurious. It then decides whether to send new segnents
or retransmt unacknow edged segnents. The algorithmeffectively
hel ps to avoid additional unnecessary retransni ssions and thereby

i mproves TCP performance in the case of a spurious tinmeout. The

F- RTO al gorithm can also be applied to the Stream Control

Transm ssi on Protocol (SCTP).

Sarol ahti & Kojo Experi ment al [Page 1]

RFC 4138 Forward RTO Recovery August 2005

Tabl e of Contents

1. Introduction 2

1.1. Termnol ogy . 4
2. F-RTO A gorithm. . . 4

2.1. The Algorithm. 5

2.2. Discussion . 6
3. SACK- Enhanced Version of the F RTO Algorlthm S 8
4. Taking Actions after Detecting Spurious RTO. 10
5. SCTP Considerations 10
6. Security Considerations 11
7. Acknowl edgenents 12
8. References . . e 4

8.1. Nornative References e V4

8.2. Informative References. 13
Appendi x A: Scenarios 15
Appendi x B: SACK- Enhanced F RTO and Fast Recovery 20
Appendi x C. Discussion of WndowLinmted Cases 21

1. Introduction

The Transmi ssion Control Protocol (TCP) [Pos81] has two nethods for
triggering retransm ssions. First, the TCP sender relies on incom ng
duplicate ACKs, which indicate that the receiver is missing sone of
the data. After a required nunber of successive duplicate ACKs have
arrived at the sender, it retransnits the first unacknow edged
segrment [APS99] and continues with a loss recovery al gorithm such as
NewReno [FHG04] or SACK-based | oss recovery [BAFW3]. Second, the
TCP sender nmaintains a retransmission tiner which triggers
retransm ssi on of segnments, if they have not been acknow edged before
the retransm ssion tineout (RTO expires. Wen the retransm ssion

ti meout occurs, the TCP sender enters the RTO recovery where the
congestion windowis initialized to one segnent and unacknow edged
segnments are retransmitted using the slowstart algorithm The
retransm ssion tiner is adjusted dynam cally, based on the neasured
round-trip times [PAOO].

It has been pointed out that the retransmi ssion tinmer can expire
spuriously and cause unnecessary retransm ssi ons when no segments
have been l[ost [LKOO, G.02, LMD3]. After a spurious retransm ssion
timeout, the | ate acknow edgnents of the original segnents arrive at
the sender, usually triggering unnecessary retransm ssions of a whole
wi ndow of segnments during the RTO recovery. Furthernore, after a
spurious retransm ssion tinmeout, a conventional TCP sender increases
t he congesti on wi ndow on each | ate acknow edgnent in slow start.

This injects a |large nunber of data segnents into the network wthin
one round-trip tine, thus violating the packet conservation principle
[Jac88].

Sarol ahti & Kojo Experi ment al [Page 2]

RFC 4138 Forward RTO Recovery August 2005

There are a nunber of potential reasons for spurious retransm ssion
timeouts. First, some nobile networking technol ogies involve sudden
del ay spi kes on transmi ssion because of actions taken during a
hand-of f. Second, given a | ow bandwi dth |ink or sone other change in
avai |l abl e bandwi dth, arrival of conpeting traffic (possibly with

hi gher priority) can cause a sudden increase of round-trip tine.
This may trigger a spurious retransnission tineout. A persistently
reliable link layer can al so cause a sudden del ay when a data frane
and several retransnmissions of it are lost for sone reason. This
docunent does not distinguish between the different causes of such a
del ay spike. Rather, it discusses the spurious retransm ssion

ti meouts caused by a delay spi ke in general

Thi s docunent describes the F-RTO detection algorithm It is based
on the detection mechani smof the "Forward RTO Recovery" (F-RTO

al gorithm [SKRO3] that is used for detecting spurious retransm ssion
ti meouts and thus avoi ds unnecessary retransm ssions follow ng the
retransm ssion tinmeout. Wien the tineout is not spurious, the F-RTO
algorithmreverts back to the conventional RTO recovery al gorithm
and therefore has sinilar behavior and performance. |n contrast to
alternative algorithnms proposed for detecting unnecessary

retransm ssions (Eifel [LKOO], [LM)3] and DSACK-based al gorithns

[BAO4]), F-RTO does not require any TCP options for its operation
and it can be inplenented by nodifying only the TCP sender. The
Eifel algorithmuses TCP tinmestanps [BBJ92] for detecting a spurious
ti meout upon arrival of the first acknow edgnent after the

retransm ssion. The DSACK-based al gorithns require that the TCP

Sel ective Acknow edgnent Option [MMFRI6], with the DSACK extension
[FMMPOO], is in use. Wth DSACK, the TCP receiver can report if it
has received a duplicate segnent, enabling the sender to detect
afterwards whether it has retransnitted segnents unnecessarily. The
F-RTO algorithmonly attenpts to detect and avoid unnecessary
retransm ssions after an RTO. Eifel and DSACK can al so be used for
det ecti ng unnecessary retransm ssions caused by other events, such as
packet reordering.

When an RTO expires, the F-RTO sender retransnmits the first
unacknow edged segnent as usual [APS99]. Deviating fromthe nornal
operation after a tinmeout, it then tries to transmt new, previously
unsent data, for the first acknow edgnment that arrives after the

ti meout, given that the acknow edgnent advances the window. If the
second acknow edgnent that arrives after the tineout advances the

wi ndow (i.e., acknowl edges data that was not retransmitted), the F-
RTO sender declares the timeout spurious and exits the RTO recovery.
However, if either of these two acknow edgnents is a duplicate ACK
there will not be sufficient evidence of a spurious tineout.
Therefore, the F-RTO sender retransmts the unacknow edged segnents
in slow start simlarly to the traditional algorithm Wth a

Sarol ahti & Kojo Experi ment al [Page 3]

RFC 4138 Forward RTO Recovery August 2005

SACK- enhanced version of the F-RTO al gorithm spurious tinmeouts nay
be detected even if duplicate ACKs arrive after an RTO
retransm ssion.

The F-RTO al gorithmcan al so be applied to the Stream Control

Transm ssion Protocol (SCTP) [Ste00], because SCTP has acknow edgnent
and packet retransnission concepts simlar to TCP. For conveni ence,
this docunent nostly refers to TCP, but the algorithms and ot her

di scussion are valid for SCTP as well.

Thi s docunment is organized as follows. Section 2 describes the basic
F-RTO algorithm Section 3 outlines an optional enhancenent to the
F-RTO al gorithmthat takes advantage of the TCP SACK option. Section
4 di scusses the possible actions to be taken after detecting a
spurious RTO Section 5 gives considerations on applying F-RTO with
SCTP, and Section 6 discusses the security considerations.

1.1. Term nol ogy

The keywords MJUST, MJST NOT, REQUI RED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTI ONAL, when they appear in this
docunent, are to be interpreted as described in [RFC2119].

2. F-RTO Al gorithm

A timeout is considered spurious if it would have been avoi ded had
the sender waited | onger for an acknow edgnment to arrive [LM3].

F- RTO affects the TCP sender behavior only after a retransm ssion
timeout. Oherw se, the TCP behavior remains the sane. Wen the RTO
expires, the F-RTO al gorithm nonitors incom ng acknow edgnents and i f
the TCP sender gets an acknow edgnent for a segnent that was not
retransmtted due to tineout, the F-RTO al gorithm declares a tineout
spurious. The actions taken in response to a spurious tinmeout are
not specified in this docunent, but we discuss sone alternatives in
Section 4. This section introduces the algorithmand then di scusses
the different steps of the algorithmin nore detail.

Fol l owi ng the practice used with the Eifel Detection algorithm
[LMD3], we use the "SpuriousRecovery" variable to indicate whether
the retransm ssion is declared spurious by the sender. This variable
can be used as an input for a corresponding response algorithm Wth
F-RTO, the value of SpuriousRecovery can be either SPUR TO
(indicating a spurious retransm ssion timeout) or FALSE (i ndicating
that the tineout is not declared spurious), and the TCP sender shoul d
foll ow the conventional RTO recovery algorithm

Sarol ahti & Kojo Experi ment al [Page 4]

RFC 4138 Forward RTO Recovery August 2005

2.1. The Al gorithm

A TCP sender MAY inplenment the basic F-RTO algorithm |If it chooses
to apply the algorithm the follow ng steps MIST be taken after the
retransm ssion tiner expires. |If the sender inplenents sone |oss
recovery algorithmother than Reno or NewReno [FHR4], the F-RTO

al gorithm SHOULD NOT be entered when earlier fast recovery is

under way.

1) When RTO expires, retransmt the first unacknow edged segnment and
set SpuriousRecovery to FALSE. Also, store the highest sequence
nunber transnitted so far in variable "recover”.

2) When the first acknow edgnent after the RTO retransm ssion arrives
at the sender, the sender chooses one of the follow ng actions,
dependi ng on whet her the ACK advances the w ndow or whether it is
a duplicate ACK

a) If the acknow edgnent is a duplicate ACK OR it acknow edges a
sequence nunber equal to the value of "recover" OR it does not
acknow edge all of the data that was retransnmitted in step 1,
revert to the conventional RTO recovery and continue by
retransmtting unacknow edged data in slow start. Do not enter
step 3 of this algorithm The SpuriousRecovery variabl e
remai ns as FALSE.

b) Else, if the acknow edgnent advances the wi ndow AND it is bel ow
the value of "recover", transmt up to two new (previously
unsent) segnments and enter step 3 of this algorithm [If the
TCP sender does not have enough unsent data, it can send only
one segnent. In addition, the TCP sender MAY override the
Nagl e al gorithm [Nag84] and i nmedi ately send a segnent if
needed. Note that sending two segnents in this step is allowed
by TCP congestion control requirenents [APS99]: An F-RTO TCP
sender sinply chooses different segnents to transnmit.

If the TCP sender does not have any new data to send, or the
adverti sed wi ndow prohibits new transm ssions, the reconmended
action is to skip step 3 of this algorithmand continue with
slow start retransm ssions, follow ng the conventional RTO
recovery algorithm However, alternative ways of handling the
wi ndowlinmted cases that could result in better perfornance
are di scussed in Appendi x C.

3) When the second acknow edgrment after the RTO retransm ssion

arrives at the sender, the TCP sender either declares the timeout
spurious, or starts retransmtting the unacknow edged segnents.

Sarol ahti & Kojo Experi ment al [Page 5]

RFC 4138 Forward RTO Recovery August 2005

a) If the acknow edgnent is a duplicate ACK, set the congestion
wi ndow to no nore than 3 * MSS, and continue with the slow
start algorithmretransnmitting unacknow edged segnments. The
congesti on wi ndow can be set to 3 * MSS, because two round-trip
ti mes have el apsed since the RTO and a conventional TCP sender
woul d have increased cwnd to 3 during the sane tine. Leave
SpuriousRecovery set to FALSE

b) If the acknow edgnent advances the window (i.e., if it
acknow edges data that was not retransnmitted after the
timeout), declare the tineout spurious, set SpuriousRecovery to
SPUR TO, and set the value of the "recover" variable to SND. UNA
(the ol dest unacknow edged sequence nunber [Pos81]).

2.2. Discussion

The F-RTO sender takes cautious actions when it receives duplicate
acknow edgnents after a retransmi ssion tinmeout. Because duplicate
ACKs may indi cate that segnents have been lost, reliably detecting a
spurious timeout is difficult due to the lack of additiona
information. Therefore, it is prudent to follow the conventional TCP
recovery in those cases.

If the first acknow edgnent after the RTO retransmi ssion covers the
"recover" point at algorithmstep (2a), there is not enough evidence
that a non-retransmitted segnent has arrived at the receiver after
the tineout. This is a comobn case when a fast retransmission is

| ost and has been retransnmitted again after an RTO, while the rest of
t he unacknow edged segnents were successfully delivered to the TCP
receiver before the retransm ssion tinmeout. Therefore, the tinmeout
cannot be declared spurious in this case.

If the first acknow edgnment after the RTO retransnission does not
acknow edge all of the data that was retransmitted in step 1, the TCP
sender reverts to the conventional RTO recovery. Oherw se, a
mal i ci ous recei ver acknow edgi ng partial segnents could cause the
sender to declare the tinmeout spurious in a case where data was | ost.

The TCP sender is allowed to send two new segnents in algorithm
branch (2b) because the conventional TCP sender would transmt two
segnments when the first new ACK arrives after the RTO retransm ssion
If sending new data is not possible in algorithmbranch (2b), or if
the receiver window linits the transm ssion, the TCP sender has to
send sonething in order to prevent the TCP transfer fromstalling.

If no segnments were sent, the pipe between sender and receiver night
run out of segnments, and no further acknow edgnments would arrive.
Therefore, in the windowlinted case, the recormmendation is to

Sarol ahti & Kojo Experi ment al [Page 6]

RFC 4138 Forward RTO Recovery August 2005

revert to the conventional RTO recovery with slow start
retransm ssions. Appendi x C di scusses sone alternative solutions for
wi ndowlinmited situations

If the retransm ssion tinmeout is declared spurious, the TCP sender
sets the value of the "recover"” variable to SND.UNA in order to allow
fast retransnit [FHG04]. The "recover" vari abl e was proposed for
avoi di ng unnecessary, nultiple fast retransnits when RTO expires
during fast recovery with NewReno TCP. Because the sender
retransmts only the segnent that triggered the timeout, the problem
of unnecessary nmultiple fast retransmts [FH&4] cannot occur
Therefore, if three duplicate ACKs arrive at the sender after the
timeout, they probably indicate a packet |oss, and thus fast
retransmt should be used to allow efficient recovery. |If there are
not enough duplicate ACKs arriving at the sender after a packet |oss,
the retransm ssion tinmer expires again and the sender enters step 1
of this algorithm

When the tineout is declared spurious, the TCP sender cannot detect
whet her the unnecessary RTO retransni ssion was lost. In principle,
the I oss of the RTO retransni ssion should be taken as a congestion
signal. Thus, there is a small possibility that the F-RTO sender
will violate the congestion control rules, if it chooses to fully
revert congestion control paraneters after detecting a spurious
timeout. The Eifel detection algorithmhas a sinilar property, while
t he DSACK option can be used to detect whether the retransnitted
segrment was successfully delivered to the receiver

The F-RTO al gorithm has a side-effect on the TCP round-trip tine
nmeasur enent. Because the TCP sender can avoid nost of the
unnecessary retransm ssions after detecting a spurious tineout, the
sender is able to take round-trip tinme sanples on the del ayed
segrments. |If the regular RTO recovery was used w thout TCP

ti mestanps, this would not be possible due to the retransm ssion
anbiguity. As aresult, the RTOis likely to have nore accurate and
| arger values with F-RTO than with the regular TCP after a spurious
timeout that was triggered due to del ayed segnents. W believe this
is an advantage in the networks that are prone to del ay spikes.

There are some situations where the F-RTO al gorithm may not avoid
unnecessary retransm ssions after a spurious tinmeout. |f packet
reordering or packet duplication occurs on the segnent that triggered
the spurious tineout, the F-RTO al gorithm may not detect the spurious
timeout due to inconing duplicate ACKs. Additionally, if a spurious
ti meout occurs during fast recovery, the F-RTO al gorithm often cannot
detect the spurious tineout because the segnents that were
transmtted before the fast recovery trigger duplicate ACKs.

However, we consider these cases rare, and note that in cases where

Sarol ahti & Kojo Experi ment al [Page 7]

RFC 4138 Forward RTO Recovery August 2005

F-RTO fails to detect the spurious tineout, it retransmits the
unacknow edged segnments in slow start, and thus perfornms sinmlarly to
the regul ar RTO recovery.

3. SACK- Enhanced Version of the F-RTO Al gorithm

This section describes an alternative version of the F-RTO al gorithm
that uses the TCP Sel ective Acknow edgnent Option [MVWRI96]. By using
the SACK option, the TCP sender detects spurious tinmeouts in nost of
the cases when packet reordering or packet duplication is present.

If the SACK bl ocks acknowl edge new data that was not transmtted
after the RTO retransm ssion, the sender nay declare the tineout
spurious, even when duplicate ACKs follow the RTO

G ven that the TCP Sel ective Acknow edgnent Option [MWRI6] is

enabl ed for a TCP connection, a TCP sender MAY inplenment the

SACK- enhanced F-RTO algorithm [If the sender applies the

SACK- enhanced F-RTO algorithm it MJUST follow the steps below. This
al gorithm SHOULD NOT be applied if the TCP sender is already in SACK
| oss recovery when retransni ssion tineout occurs. However, when
retransm ssion timeout occurs during existing |oss recovery, it

shoul d be possible to apply the principle of F-RTOw thin certain
limtations. This is a topic for further research. Appendix B
briefly discusses the related issues.

The steps of the SACK-enhanced version of the F-RTO algorithmare as
fol | ows.

1) When the RTO expires, retransmt the first unacknow edged segnent
and set SpuriousRecovery to FALSE. Set variable "recover" to
i ndi cate the highest segnent transmitted so far. Follow ng the
recomendati on in SACK specification [MVFRI6], reset the SACK
scor eboar d.

2) Wait until the acknow edgnment of the data retransmtted due to the
tinmeout arrives at the sender. |If duplicate ACKs arrive before
the cunul ati ve acknow edgnent for retransnitted data, adjust the
scoreboard according to the incomng SACK information. Stay in
step 2 and wait for the next new acknow edgnent. |If RTO expires
again, go to step 1 of the algorithm

a) if a cunulative ACK acknow edges a sequence nunber equal to
"recover", revert to the conventional RTO recovery and set the
congestion window to no nore than 2 * MSS, |like a regular TCP
would do. Do not enter step 3 of this algorithm

Sarol ahti & Kojo Experi ment al [Page 8]

RFC 4138 Forward RTO Recovery August 2005

b) else, if a cunmulative ACK acknow edges a sequence nunber
(smaller than "recover", but larger than SND. UNA) transmit up
to two new (previously unsent) segnents and proceed to step 3.
If the TCP sender is not able to transnit any previously unsent
data -- either due to receiver window limtation, or because it
does not have any new data to send -- the reconmended action is
torefrain fromentering step 3 of this algorithm Rather,
continue with slow start retransnissions follow ng the
conventional RTO recovery algorithm

It is also possible to apply sone of the alternatives for

handl i ng wi ndowlinited cases discussed in Appendix C. In this
case, the TCP sender should follow the reconmendati ons

concer ni ng acknow edgnents of retransnitted segnents given in
Appendi x B.

3) The next acknow edgnent arrives at the sender. Either a duplicate
ACK or a new cunul ati ve ACK (advanci ng the window) applies in this
st ep.

a) if the ACK acknow edges a sequence nunber above "recover",
either in SACK bl ocks or as a cumul ative ACK, set the
congestion window to no nore than 3 * MSS and proceed with the
conventional RTO recovery, retransmtting unacknow edged
segnments. Take this branch al so when the acknow edgnent is a
duplicate ACK and it does not acknow edge any new, previously
unacknowl edged data bel ow "recover" in the SACK bl ocks. Leave
Spuri ousRecovery set to FALSE

b) if the ACK does not acknow edge sequence nunbers above
"recover" AND it acknow edges data that was not acknow edged
earlier (either with cumul ati ve acknow edgnent or usi ng SACK
bl ocks), declare the tineout spurious and set SpuriousRecovery
to SPUR TO. The retransmni ssion tinmeout can be decl ared
spurious, because the segnent acknowl edged with this ACK was
transmtted before the tineout.

If there are unacknow edged hol es between the received SACK bl ocks,
those segnents are retransnitted sinmlarly to the conventional SACK
recovery algorithm[BAFW3]. |If the algorithmexits with
SpuriousRecovery set to SPUR TO "recover" is set to SND. UNA, thus
all owi ng fast recovery on inconing duplicate acknow edgnents.

Sarol ahti & Kojo Experi ment al [Page 9]

RFC 4138 Forward RTO Recovery August 2005

4.

Taki ng Actions after Detecting Spurious RTO

Upon retransmi ssion timeout, a conventional TCP sender assunes that
out standi ng segnents are lost and starts retransmtting the

unacknow edged segnents. Wen the retransm ssion tinmeout is detected
to be spurious, the TCP sender should not continue retransmtting
based on the tineout. For exanple, if the sender was in congestion
avoi dance phase transmitting new, previously unsent segnents, it
shoul d continue transmitting previously unsent segnents after
detecting a spurious RTO This docunment does not describe the
response to spurious tineouts, but a response algorithmis described
in RFC 4015 [LQO4].

Additionally, different response variants to spurious retransm ssion
ti meout have been discussed in various research papers [SKR03, G.03,
Sar 03] and | ETF docunents [SL0O3]. The different response
alternatives vary in whether the spurious retransm ssion tineout
shoul d be taken as a congestion signal, thus causing the congestion
wi ndow or slow start threshold to be reduced at the sender, or

whet her the congestion control state should be fully reverted to the
state valid prior to the retransm ssion timeout.

SCTP Consi der ati ons

SCTP has similar retransm ssion algorithnms and congestion control to
TCP. The SCTP T3-rtx timer for one destination address is maintained
in the same way as the TCP retransmission tiner, and after a T3-rtx
expires, an SCTP sender retransmits unacknow edged data chunks in
slow start |ike TCP does. Therefore, SCTP is vulnerable to the
negative effects of the spurious retransm ssion tineouts simlarly to
TCP. Due to simlar RTO recovery algorithns, F-RTO algorithmlogic
can be applied also to SCTP. Since SCTP uses sel ective

acknow edgnents, the SACK-based variant of the algorithmis
recommended, although the basic version can also be applied to SCTP
However, SCTP contains features that are not present with TCP that
need to be di scussed when applying the F-RTO al gorithm

SCTP associ ations can be multi-homed. The current retransm ssion
policy states that retransni ssions should go to alternative
addresses. If the retransmi ssion was due to spurious tineout caused
by a delay spike, it is possible that the acknow edgnent for the
retransm ssion arrives back at the sender before the acknow edgnents
of the original transmi ssions arrive. |f this happens, a possible

| oss of the original transm ssion of the data chunk that was
retransmtted due to the spurious tineout may remai n undet ected when
applying the F-RTO al gorithm Because the tineout was caused by a
del ay spike, and it was spurious in that respect, a suitable response
is to continue by sending new data. However, if the origina

Sarol ahti & Kojo Experi ment al [Page 10]

RFC 4138 Forward RTO Recovery August 2005

transm ssion was lost, fully reverting the congestion contro
paraneters is too aggressive. Therefore, taking conservative actions
on congestion control is recommended, if the SCTP association is

mul ti-homed and retransnissions go to alternative addresses. The
information in duplicate TSNs can be then used for reverting
congestion control, if desired [BAO4].

Note that the forward transm ssions nade in F-RTO al gorithm step (2b)
shoul d be destined to the primary address, since they are not
retransm ssi ons.

When making a retransm ssion, an SCTP sender can bundl e a nunber of
unacknow edged data chunks and include themin the sane packet. This
needs to be considered when inplenmenting F-RTO for SCTP. The basic

principle of F-RTO still holds: in order to declare the timeout
spurious, the sender nust get an acknow edgnent for a data chunk that
was not retransmitted after the retransmi ssion timeout. |In other

wor ds, acknow edgnents of data chunks that were bundled in RTO
retransm ssi on nust not be used for declaring the tinmeout spurious.

6. Security Considerations

The main security threat regarding F-RTO is the possibility that a
receiver could mslead the sender into setting too |arge a congestion
wi ndow after an RTO. There are two possible ways a nalicious
receiver could trigger a wong output fromthe F-RTO al gorithm

First, the receiver can acknow edge data that it has not received.
Second, it can delay acknow edgnment of a segment it has received
earlier, and acknow edge the segnent after the TCP sender has been
del uded to enter algorithmstep 3.

If the receiver acknowl edges a segnent it has not really received,
the sender can be led to declare spurious timeout in the F-RTO
algorithm step 3. However, because the sender will have an
incorrect state, it cannot retransmt the segnent that has never
reached the receiver. Therefore, this attack is unlikely to be
useful for the receiver to nmaliciously gain a |arger congestion

wi ndow.

A common case for a retransnission tineout is that a fast

retransm ssion of a segnent is lost. |[If all other segnents have been
received, the RTO retransm ssion causes the whole wi ndow to be

acknow edged at once. This case is recognized in F-RTO al gorithm
branch (2a). However, if the receiver only acknow edges one segnent
after receiving the RTO retransnission, and then the rest of the
segrments, it could cause the timeout to be declared spurious when it
is not. Therefore, it is suggested that, when an RTO expires during

Sarol ahti & Kojo Experi ment al [Page 11]

RFC 4138 Forward RTO Recovery August 2005

fast recovery phase, the sender would not fully revert the congestion
wi ndow even if the tinmeout was declared spurious. Instead, the
sender woul d reduce the congestion wi ndow to 1.

If there is nore than one segnent nissing at the tinme of a

retransm ssion tineout, the receiver does not benefit from m sl eadi ng
the sender to declare a spurious tineout because the sender woul d
have to go through another recovery period to retransnit the mssing
segrments, usually after an RTO has el apsed.

7. Acknow edgenents

We are grateful to Reiner Ludwi g, Andrei GQurtov, Josh Blanton, Mrk
Al man, Sally Floyd, Yogesh Swami, MKka Liljeberg, lIvan Arias

Rodri guez, Sourabh Ladha, Martin Duke, Mtoharu Myake, Ted Faber,
Sarmu Konti nen, and Kostas Penti kousis for the discussion and feedback
contributed to this text.

8. References
8.1. Normmtive References

[APS99] Al man, M, Paxson, V., and W Stevens, "TCP Congestion
Control ", RFC 2581, April 1999.

[BAFW3] Blanton, E., Allman, M, Fall, K, and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Algorithmfor TCP', RFC 3517, April 2003.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[FH&04] Fl oyd, S., Henderson, T., and A. CGurtov, "The NewReno
Modi fication to TCP's Fast Recovery Al gorithni, RFC 3782,
April 2004.

[MVFFRO6] WMathis, M, Mhdavi, J., Floyd, S., and A Ronanow, "TCP
Sel ective Acknow edgenent Options", RFC 2018, Cctober 1996.

[PAOO] Paxson, V. and M Al lman, "Conputing TCP's Retransm ssion
Timer", RFC 2988, Novenber 2000.

[Pos81] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981.

Sarol ahti & Kojo Experi ment al [Page 12]

RFC 4138 Forward RTO Recovery August 2005

[St e00] Stewart, R, Xie, Q, Mrneault, K, Sharp, C,
Schwar zbauer, H., Taylor, T., Rytina, |I., Kalla, M, Zhang,
L., and V. Paxson, "Stream Control Transm ssion Protocol",
RFC 2960, Cctober 2000.

8.2. Informative References

[ABFO1] Al man, M, Bal akrishnan, H, and S. Floyd, "Enhancing
TCP's Loss Recovery Using Linmted Transnmit", RFC 3042,
January 2001.

[BAO4] Blanton, EE. and M Al lnman, "Using TCP Duplicate Selective
Acknowl edgenent (DSACKs) and Stream Control Transm ssion
Protocol (SCTP) Duplicate Transm ssion Sequence Nunbers
(TSNs) to Detect Spurious Retransm ssions", RFC 3708,
February 2004.

[BBJ92] Jacobson, V., Braden, R, and D. Bornman, "TCP Extensions
for H gh Performance", RFC 1323, May 1992.

[FMMPOO] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

[GLO2] A. GQurtov and R Ludwig. Evaluating the Eifel Al gorithm
for TCP in a GPRS Network. |In Proc. of European Wreless,
Fl orence, Italy, February 2002.

[GLO3] A. Gurtov and R Ludw g, Responding to Spurious Tineouts in
TCP. I n Proceedings of | EEE | NFOCOM 03, San Franci sco, CA,
USA, March 2003.

[Jac88] V. Jacobson. Congestion Avoidance and Control. In
Proceedi ngs of ACM SI GCOVM 88.

[LGD4] Ludwig, R and A Qurtov, "The Eifel Response Al gorithmfor
TCP", RFC 4015, February 2005.

[LKOO] R Ludwig and R H Katz. The Eifel Al gorithm Mking TCP
Robust Agai nst Spurious Retransm ssions. ACM SI GCOVW
Conmput er Comuni cation Review, 30(1), January 2000.

[LMD3] Ludwig, R and M Meyer, "The Eifel Detection A gorithmfor
TCP', RFC 3522, April 2003.

[Nag84] Nagl e, J., "Congestion Control in I P/ TCP Internetworks",
RFC 896, January 1984.

Sarol ahti & Kojo Experi ment al [Page 13]

RFC 4138

[SKRO3]

[Sar 03]

[SLO3]

Sar ol aht i

Forward RTO Recovery August 2005

P. Sarolahti, M Kojo, and K Raatikainen. F-RTO An
Enhanced Recovery Al gorithm for TCP Retransmi ssion

Ti meouts. ACM SI GCOMM Conput er Comuni cati on Revi ew,
33(2), April 2003.

P. Sarol ahti. Congestion Control on Spurious TCP
Ret ransm ssion Tineouts. In Proceedings of | EEE d obecom
2003, San Francisco, CA, USA. Decenber 2003.

Y. Swam and K. Le, "DCLOR De-correlated Loss Recovery
usi ng SACK Option for Spurious Tineouts”, work in progress,
Sept enber 2003.

& Koj o Experi ment al [Page 14]

RFC 4138 Forward RTO Recovery August 2005

Appendi x A: Scenari os

Thi s section discusses different scenarios where RTGs occur and how
the basic F-RTO al gorithm perforns in those scenarios. The
interesting scenarios are: a sudden delay triggering retransm ssion
tinmeout, loss of a retransmitted packet during fast recovery, link
out age causing the |oss of several packets, and packet reordering. A
performance evaluation with a nore thorough analysis on a rea

i mpl enentation of F-RTO is given in [SKRO3].

A.1. Sudden Del ay

The main notivation behind the F-RTO al gorithmis to inprove TCP
performance when a delay spike triggers a spurious retransm ssion
timeout. The exanple below illustrates the segnents and

acknow edgnments transnmitted by the TCP end hosts when a spurious
ti meout occurs, but no packets are lost. For sinplicity, delayed
acknow edgnents are not used in the exanple. The exanple bel ow
applies the Eifel Response Algorithm[LG&4] after detecting a
spurious timeout.

.kémnd = 6, ssthresh < 6, FlightSize = 6)

1. L ACK 5
2. SEND 10 --------mmmmm i >
(cwnd = 6, ssthresh < 6, FlightSize = 6)
3. S LR R ACK 6
4, SEND 11 ------mmmmmm e - >
(cwnd = 6, ssthresh < 6, FlightSize = 6)
5.
[del ay]
|
[RTO
[F-RTO step (1)]
6. SEND 6 --------mmmmmm e >
(cwnd = 6, ssthresh = 3, FlightSize = 6)
<earlier xmitted SEG 6> --->
7. S T ACK 7
[F-RTO step (2b)]
8., SEND 12 -----mmmmm i - >
9. SEND 13 ------mmmmme i >
(cwnd = 7, ssthresh = 3, FlightSize = 7)
<earlier xmtted SEG 7> --->
10. S LR R ACK 8

[F-RTO step (3b)]
[Spuri ousRecovery <- SPUR_TQ
(cwnd = 7, ssthresh = 6, FlightSize = 6)

Sarol ahti & Kojo Experi ment al [Page 15]

RFC 4138 Forward RTO Recovery August 2005

11. SEND 14 --------mmmmmmme e - >

(cwnd = 7, ssthresh = 6, FlightSize = 7)
12. S ACK 9
13. SEND 15 ------mmmmmm e >

(cwnd = 7, ssthresh = 6, FlightSize = 7)
14. R ACK 10
15, SEND 16 ---------------------------- >

(cwnd = 7, ssthresh = 6, FlightSize = 7)

When a sudden del ay (long enough to trigger timeout) occurs at step
5, the TCP sender retransnits the first unacknow edged segnent (step
6). The next ACK covers the RTO retransm ssion because the
originally transmtted segnent 6 arrived at the receiver, and the TCP
sender continues by sending two new data segnents (steps 8, 9). Note
that on F-RTO steps (1) and (2b), congestion wi ndow and FlightSi ze
are not yet reset because in the case of spurious tinmeout, the
segnments sent before the tineout are still in the network. However,
the sender should still be equally aggressive toward conventiona

TCP. Because the second acknow edgnment arriving after the RTO
retransm ssi on acknow edges data that was not retransnitted due to

ti meout (step 10), the TCP sender declares the tinmeout to be spurious
and continues by sending new data on the next acknow edgnents. Al so,
the congestion control state is reversed, as required by the Eife
Response Al gorithm

A.2. Loss of a Retransmi ssion

If aretransmtted segment is lost, the only way to retransmt it is
to wait for the tinmeout to trigger the retransnission. Once the
segrment is successfully received, the receiver usually acknow edges
several segnments at once, because other segnents in the same w ndow
have been successfully delivered before the retransm ssion arrives at
the receiver. The exanpl e bel ow shows a scenario where

retransm ssion (of segment 6) is lost, as well as a | ater segnent
(segnent 9) in the same window. The limted transnt [ABFO1l] or SACK
TCP [MVFRO6] enhancenents are not in use in this exanple.

(cwnd = 6, ssthresh < 6, FlightSize = 6)
<segnent 6 | ost>
<segnent 9 |ost>
1. e ACK 5
2. SEND 10 ------mmmmmmmmm e >
(cwnd = 6, ssthresh < 6, FlightSize = 6)
3. S ACK 6
4. SEND 11 ---------mmmmmmm oo - >

(cwnd = 6, ssthresh < 6, FlightSize = 6)

Sarol ahti & Kojo Experi ment al [Page 16]

RFC 4138 Forward RTO Recovery August 2005

5 e ACK 6
6 e ACK 6
7 e ACK 6
8. SEND 6 ----=---en--n- X

(cwnd = 6, ssthresh = 3, FlightSize = 6)
<segnent 6 | ost>

. L ACK 6
10. SEND 12 ----mmmmmmmmmmm e >
(cwnd = 7, ssthresh = 3, FlightSize = 7)
11. L ACK 6
12, SEND 13 ------mmmmm i >
(cwnd = 8, ssthresh = 3, FlightSize = 8)
[RTO
TG TS =V Y >
(cwnd = 8, ssthresh = 2, FlightSize = 8)
14. L ACK 9
[F-RTO step (2b)]
15. SEND 14 -------mmmmm i >
16. SEND 15 --------mmmmmm i >
(cwnd = 7, ssthresh = 2, FlightSize = 7)
17. S LR R ACK 9

[F-RTO step (3a)]
[Spuri ousRecovery <- FALSE]
(cwnd = 3, ssthresh = 2, FlightSize = 7)

18. SEND O == -mmmmmaoi oo iiiiiaoaoo >
19. SEND 10 -----mmmmmmmcmmmmmmaaaa o >
71 JRES = 0 J 1 e >

In the exanpl e above, segnent 6 is | ost and the sender retransmits it
after three duplicate ACKs in step 8. However, the retransnission is
al so lost, and the sender has to wait for the RTOto expire before
retransmtting it again. Because the first ACK follow ng the RTO
retransm ssi on acknow edges the RTO retransm ssion (step 14), the
sender transmts two new segnments. The second ACK in step 17 does
not acknow edge any previously unacknowl edged data. Therefore, the
F- RTO sender enters the slow start and sets cwnd to 3 * MSS. The
congestion wi ndow can be set to three segnents, because two round-
trips have el apsed after the retransmission tinmeout. Finally, the
recei ver acknow edges all segments transmitted prior to entering
recovery and the sender can continue transmtting new data in
congesti on avoi dance.

Sarol ahti & Kojo Experi ment al [Page 17]

RFC 4138 Forward RTO Recovery August 2005

A 3. Link Qutage

The exanple below illustrates the F-RTO behavi or when 4 consecutive
packets are lost in the network causing the TCP sender to fall back
to RTO recovery. Limted transmt and SACK are not used in this
exanpl e.

(cwnd = 6, ssthresh < 6, FlightSize = 6)
<segnents 6-9 | ost>
1. S e ACK 5
2. SEND 10 -----------mmmmmm oo - >
(cwnd = 6, ssthresh < 6, FlightSize = 6)
3. e ACK 6
4. SEND 11 ------mmmme oo >
(cwnd = 6, ssthresh < 6, FlightSize = 6)
5. S e ACK 6
|
I
[RTQ
6. SEND 6 --------mmmmi i >
(cwnd = 6, ssthresh = 3, FlightSize = 6)
7. S ACK 7
[F-RTO step (2b)]
8, SEND 12 ---------mmmmmm oo - >
9 SEND 13 ------mmm i e >
(cwnd = 7, ssthresh = 3, FlightSize = 7)
10 S ACK 7

[F-RTO step (3a)]
[Spuri ousRecovery <- FALSE]
(cwnd = 3, ssthresh = 3, FlightSize = 7)

11, SEND 7 = --mmmmmmmcc o mmeaaaaaoas >
12. SEND 8 = ---mmmmmmco oo >
R RS = N < J >

Again, F-RTO sender transmits two new segnents (steps 8 and 9) after
the RTO retransmi ssion is acknow edged. Because the next ACK does
not acknow edge any data that was not retransmtted after the
retransm ssion timeout (step 10), the F-RTO sender proceeds with
conventional recovery and slow start retransmn ssions.

A. 4. Packet Reordering

Because F-RTO nodifies the TCP sender behavior only after a
retransm ssion timeout and it is intended to avoid unnecessary
retransm ssions only after spurious tineout, we linmt the discussion
on the effects of packet reordering on F-RTO behavior to the cases
where it occurs imediately after the retransm ssion tineout. Wen

Sarol ahti & Kojo Experi ment al [Page 18]

RFC 4138

the TCP receiver gets an out-of-order segnent,

duplicate ACK. |f the TCP sender inplenents the basic F-RTO

Forward RTO Recovery

August 2005

it generates a

algorithm this may prevent the sender fromdetecting a spurious
ti meout .

However ,

if the TCP sender applies the SACK-enhanced F-RTO, it is

possi ble to detect a spurious tinmeout when packet reordering occurs.

Bel ow, we illustrate the behavi or of SACK-enhanced F-RTO when segnent
8 arrives before segnents 6 and 7, and segnents starting from segnent

6 are delayed in the network

In this exanple the TCP sender reduces

t he congestion wi ndow and slow start threshold in response to
spurious tinmeout.

Sar ol aht i

(cwnd = 6,
1
2. SEND 10
(cwnd = 6,
3.
4. SEND 11
5.
[RTO
6. SEND 6
(cwnd = 6,
7.
[SACK F-
8.
9.
[SACK F-
10. SEND 12
11. SEND 13
(cwnd = 7,
12.
13.
[SACK F-

ssthresh < 6, FlightSize = 6)

L ACK 5
____________________________ >
ssthresh < 6, FlightSize = 6)
L ACK 6
____________________________ >

|

[del ay]

|
____________________________ >
ssthresh = 3, FlightSize = 6)
<earlier xmtted SEG 8> --->
L ACK 6

[SACK 8]
RTO stays in step 2]
<earlier xmtted SEG 6> --->
o m e ACK 7
[SACK 8]

RTO step (2b)]
____________________________ >
____________________________ >
ssthresh = 3, FlightSize = 7)
<earlier xmtted SEG 7> --->
S LR R ACK 9

RTO step (3b)]

[Spuri ousRecovery <- SPUR_TQ

(cwnd = 7,
14. SEND 14
(cwnd = 7,
15.
16. SEND 15

& Koj o

ssthresh = 6, FlightSize = 6)

ssthresh = 6, FlightSize = 7)

Experi ment al

[Page 19]

RFC 4138 Forward RTO Recovery August 2005

After RTO expires and the sender retransnits segnent 6 (step 6), the
recei ver gets segnent 8 and generates duplicate ACK with SACK for
segment 8. In response to the acknow edgnent, the TCP sender does
not send anything but stays in F-RTO step 2. Because the next
acknow edgnment advances the cunul ati ve ACK point (step 9), the sender
can transmt two new segments accordi ng to SACK-enhanced F-RTO. The
next segment acknow edges new data between 7 and 11 that was not
acknow edged earlier (segment 7), so the F-RTO sender declares the

ti meout spurious.

Appendi x B: SACK- enhanced F- RTO and Fast Recovery

We believe that a slightly nodified, SACK-enhanced F-RTO al gorithm
can be used to detect spurious timeouts al so when RTO expires while
an earlier loss recovery is underway. However, there are issues that
need to be considered if F-RTO is applied in this case.

In step 3, the original SACK-based F-RTO algorithmrequires that an
ACK acknow edges previously unacknow edged non-retransnitted data
bet ween SND. UNA and send_high. |If RTO expires during earlier

(SACK-based) | oss recovery, the F-RTO sender must use only

acknow edgnments for non-retransnmitted segnments transnitted before the
SACK- based | oss recovery started. This neans that in order to

decl are tinmeout spurious, the TCP sender nust receive an

acknow edgnment for non-retransnmitted segnent between SND. UNA and
RecoveryPoint in algorithmstep 3. RecoveryPoint is defined in
conservative SACK-recovery algorithm[BAFW3], and it is set to

i ndi cate the highest segnment transmtted so far when SACK-based | oss
recovery begins. 1In other words, if the TCP sender receives

acknow edgnent for a segnment that was transmtted nore than one RTO
ago, it can declare the tinmeout spurious. Defining an efficient

al gorithm for checking these conditions remains a future work item

When spurious tineout is detected according to the rules given above,
it may be possible that the response algorithmneeds to consider this
case separately, for exanple, in terns of which segnents to
retransmt after RTO expires, and whether it is safe to revert the
congestion control paranmeters. This is considered a topic for future
research.

Sarol ahti & Kojo Experi ment al [Page 20]

RFC 4138 Forward RTO Recovery August 2005

Appendi x C. Discussion of Wndow Linited Cases

Wien the advertised window linmts the transnission of two new
previously unsent segments, or there are no new data to send, it is
recommended in F-RTO al gorithmstep (2b) that the TCP sender continue
with the conventional RTO recovery algorithm The di sadvantage is
that the sender may continue unnecessary retransni ssions due to
possi bl e spurious tineout. This section briefly discusses the
options that can potentially inprove performance when transnitting
previously unsent data is not possible.

- The TCP sender could reserve an unused space of a size of one or
two segnents in the advertised window to ensure the use of
al gorithms such as F-RTO or Linmited Transmit [ABFO1l] in w ndow
limted situations. On the other hand, while doing this, the TCP
sender should ensure that the wi ndow of outstanding segnents is
| arge enough for proper utilization of the avail able pipe.

- Use additional information if available, e.g., TCP tinmestanps wth
the Eifel Detection algorithm for detecting a spurious tineout.
However, Eifel detection may yield different results from F-RTO
when ACK | osses and an RTO occur within the sanme round-trip tinme
[SKRO3] .

- Retransnmit data fromthe tail of the retransni ssion queue and
continue with step 3 of the F-RTO algorithm It is possible that
the retransmi ssion will be made unnecessarily. Thus, this option
is not encouraged, except for hosts that are known to operate in an
environnment that is prone to spurious tineouts. On the other hand,
with this nethod it is possible to limt unnecessary
retransm ssions due to spurious tinmeout to one retransm ssion

- Send a zero-sized segnent bel ow SND. UNA, similar to TCP Keep-Alive
probe, and continue with step 3 of the F-RTO algorithm Because
the receiver replies with a duplicate ACK, the sender is able to
det ect whether the tineout was spurious fromthe incom ng
acknow edgnment. This nethod does not send data unnecessarily, but
it delays the recovery by one round-trip time in cases where the
ti meout was not spurious. Therefore, this nmethod is not
encour aged.

- In receiver-limted cases, send one octet of new data, regardless
of the advertised window limt, and continue with step 3 of the
F-RTO algorithm It is possible that the receiver will have free
buffer space to receive the data by the tinme the segnent has
propagat ed through the network, in which case no harmis done. |If
the receiver is not capable of receiving the segnent, it rejects
the segnent and sends a duplicate ACK

Sarol ahti & Kojo Experi ment al [Page 21]

RFC 4138 Forward RTO Recovery August 2005

Aut hors’ Addr esses

Pasi Sarol ahti

Noki a Research Center
P. O. Box 407

FI N- 00045 NOKI A GROUP
Fi nl and

Phone: +358 50 4876607
EMai | : pasi.sarol ahti @oki a. com
http://ww. cs. hel sinki.fi/u/sarol aht/

Mar kku Koj o
Uni versity of Hel sinki
Department of Conputer Science

P. O Box 68
FI N-00014 UNI VERSI TY OF HELSI NKI
Fi nl and

Phone: +358 9 191 51305
EMai | : koj o@s. hel sinki.fi

Sarol ahti & Kojo Experi ment al [Page 22]

RFC 4138 Forward RTO Recovery August 2005

Ful I Copyright Statenent
Copyright (C The Internet Society (2005).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the infornation to the IETF at ietf-
ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Sarol ahti & Kojo Experi ment al [Page 23]

