
Network Working Group T. Ylonen
Request for Comments: 4253 SSH Communications Security Corp
Category: Standards Track C. Lonvick, Ed.
 Cisco Systems, Inc.
 January 2006

 The Secure Shell (SSH) Transport Layer Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The Secure Shell (SSH) is a protocol for secure remote login and
 other secure network services over an insecure network.

 This document describes the SSH transport layer protocol, which
 typically runs on top of TCP/IP. The protocol can be used as a basis
 for a number of secure network services. It provides strong
 encryption, server authentication, and integrity protection. It may
 also provide compression.

 Key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated.

 This document also describes the Diffie-Hellman key exchange method
 and the minimal set of algorithms that are needed to implement the
 SSH transport layer protocol.

Ylonen & Lonvick Standards Track [Page 1]

RFC 4253 SSH Transport Layer Protocol January 2006

Table of Contents

 1. Introduction ..3
 2. Contributors ..3
 3. Conventions Used in This Document3
 4. Connection Setup ..4
 4.1. Use over TCP/IP ..4
 4.2. Protocol Version Exchange4
 5. Compatibility With Old SSH Versions5
 5.1. Old Client, New Server6
 5.2. New Client, Old Server6
 5.3. Packet Size and Overhead6
 6. Binary Packet Protocol ..7
 6.1. Maximum Packet Length8
 6.2. Compression ..8
 6.3. Encryption ...9
 6.4. Data Integrity ..12
 6.5. Key Exchange Methods13
 6.6. Public Key Algorithms13
 7. Key Exchange ...15
 7.1. Algorithm Negotiation17
 7.2. Output from Key Exchange20
 7.3. Taking Keys Into Use21
 8. Diffie-Hellman Key Exchange21
 8.1. diffie-hellman-group1-sha123
 8.2. diffie-hellman-group14-sha123
 9. Key Re-Exchange ..23
 10. Service Request ...24
 11. Additional Messages ...25
 11.1. Disconnection Message25
 11.2. Ignored Data Message26
 11.3. Debug Message ..26
 11.4. Reserved Messages ..27
 12. Summary of Message Numbers27
 13. IANA Considerations ...27
 14. Security Considerations28
 15. References ..29
 15.1. Normative References29
 15.2. Informative References30
 Authors’ Addresses ..31
 Trademark Notice ..31

Ylonen & Lonvick Standards Track [Page 2]

RFC 4253 SSH Transport Layer Protocol January 2006

1. Introduction

 The SSH transport layer is a secure, low level transport protocol.
 It provides strong encryption, cryptographic host authentication, and
 integrity protection.

 Authentication in this protocol level is host-based; this protocol
 does not perform user authentication. A higher level protocol for
 user authentication can be designed on top of this protocol.

 The protocol has been designed to be simple and flexible to allow
 parameter negotiation, and to minimize the number of round-trips.
 The key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated. It is expected that in most environments, only 2
 round-trips will be needed for full key exchange, server
 authentication, service request, and acceptance notification of
 service request. The worst case is 3 round-trips.

2. Contributors

 The major original contributors of this set of documents have been:
 Tatu Ylonen, Tero Kivinen, Timo J. Rinne, Sami Lehtinen (all of SSH
 Communications Security Corp), and Markku-Juhani O. Saarinen
 (University of Jyvaskyla). Darren Moffat was the original editor of
 this set of documents and also made very substantial contributions.

 Many people contributed to the development of this document over the
 years. People who should be acknowledged include Mats Andersson, Ben
 Harris, Bill Sommerfeld, Brent McClure, Niels Moller, Damien Miller,
 Derek Fawcus, Frank Cusack, Heikki Nousiainen, Jakob Schlyter, Jeff
 Van Dyke, Jeffrey Altman, Jeffrey Hutzelman, Jon Bright, Joseph
 Galbraith, Ken Hornstein, Markus Friedl, Martin Forssen, Nicolas
 Williams, Niels Provos, Perry Metzger, Peter Gutmann, Simon
 Josefsson, Simon Tatham, Wei Dai, Denis Bider, der Mouse, and
 Tadayoshi Kohno. Listing their names here does not mean that they
 endorse this document, but that they have contributed to it.

3. Conventions Used in This Document

 All documents related to the SSH protocols shall use the keywords
 "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" to describe
 requirements. These keywords are to be interpreted as described in
 [RFC2119].

Ylonen & Lonvick Standards Track [Page 3]

RFC 4253 SSH Transport Layer Protocol January 2006

 The keywords "PRIVATE USE", "HIERARCHICAL ALLOCATION", "FIRST COME
 FIRST SERVED", "EXPERT REVIEW", "SPECIFICATION REQUIRED", "IESG
 APPROVAL", "IETF CONSENSUS", and "STANDARDS ACTION" that appear in
 this document when used to describe namespace allocation are to be
 interpreted as described in [RFC2434].

 Protocol fields and possible values to fill them are defined in this
 set of documents. Protocol fields will be defined in the message
 definitions. As an example, SSH_MSG_CHANNEL_DATA is defined as
 follows.

 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

 Throughout these documents, when the fields are referenced, they will
 appear within single quotes. When values to fill those fields are
 referenced, they will appear within double quotes. Using the above
 example, possible values for ’data’ are "foo" and "bar".

4. Connection Setup

 SSH works over any 8-bit clean, binary-transparent transport. The
 underlying transport SHOULD protect against transmission errors, as
 such errors cause the SSH connection to terminate.

 The client initiates the connection.

4.1. Use over TCP/IP

 When used over TCP/IP, the server normally listens for connections on
 port 22. This port number has been registered with the IANA, and has
 been officially assigned for SSH.

4.2. Protocol Version Exchange

 When the connection has been established, both sides MUST send an
 identification string. This identification string MUST be

 SSH-protoversion-softwareversion SP comments CR LF

 Since the protocol being defined in this set of documents is version
 2.0, the ’protoversion’ MUST be "2.0". The ’comments’ string is
 OPTIONAL. If the ’comments’ string is included, a ’space’ character
 (denoted above as SP, ASCII 32) MUST separate the ’softwareversion’
 and ’comments’ strings. The identification MUST be terminated by a
 single Carriage Return (CR) and a single Line Feed (LF) character
 (ASCII 13 and 10, respectively). Implementers who wish to maintain

Ylonen & Lonvick Standards Track [Page 4]

RFC 4253 SSH Transport Layer Protocol January 2006

 compatibility with older, undocumented versions of this protocol may
 want to process the identification string without expecting the
 presence of the carriage return character for reasons described in
 Section 5 of this document. The null character MUST NOT be sent.
 The maximum length of the string is 255 characters, including the
 Carriage Return and Line Feed.

 The part of the identification string preceding the Carriage Return
 and Line Feed is used in the Diffie-Hellman key exchange (see Section
 8).

 The server MAY send other lines of data before sending the version
 string. Each line SHOULD be terminated by a Carriage Return and Line
 Feed. Such lines MUST NOT begin with "SSH-", and SHOULD be encoded
 in ISO-10646 UTF-8 [RFC3629] (language is not specified). Clients
 MUST be able to process such lines. Such lines MAY be silently
 ignored, or MAY be displayed to the client user. If they are
 displayed, control character filtering, as discussed in [SSH-ARCH],
 SHOULD be used. The primary use of this feature is to allow TCP-
 wrappers to display an error message before disconnecting.

 Both the ’protoversion’ and ’softwareversion’ strings MUST consist of
 printable US-ASCII characters, with the exception of whitespace
 characters and the minus sign (-). The ’softwareversion’ string is
 primarily used to trigger compatibility extensions and to indicate
 the capabilities of an implementation. The ’comments’ string SHOULD
 contain additional information that might be useful in solving user
 problems. As such, an example of a valid identification string is

 SSH-2.0-billsSSH_3.6.3q3<CR><LF>

 This identification string does not contain the optional ’comments’
 string and is thus terminated by a CR and LF immediately after the
 ’softwareversion’ string.

 Key exchange will begin immediately after sending this identifier.
 All packets following the identification string SHALL use the binary
 packet protocol, which is described in Section 6.

5. Compatibility With Old SSH Versions

 As stated earlier, the ’protoversion’ specified for this protocol is
 "2.0". Earlier versions of this protocol have not been formally
 documented, but it is widely known that they use ’protoversion’ of
 "1.x" (e.g., "1.5" or "1.3"). At the time of this writing, many
 implementations of SSH are utilizing protocol version 2.0, but it is
 known that there are still devices using the previous versions.
 During the transition period, it is important to be able to work in a

Ylonen & Lonvick Standards Track [Page 5]

RFC 4253 SSH Transport Layer Protocol January 2006

 way that is compatible with the installed SSH clients and servers
 that use the older version of the protocol. Information in this
 section is only relevant for implementations supporting compatibility
 with SSH versions 1.x. For those interested, the only known
 documentation of the 1.x protocol is contained in README files that
 are shipped along with the source code [ssh-1.2.30].

5.1. Old Client, New Server

 Server implementations MAY support a configurable compatibility flag
 that enables compatibility with old versions. When this flag is on,
 the server SHOULD identify its ’protoversion’ as "1.99". Clients
 using protocol 2.0 MUST be able to identify this as identical to
 "2.0". In this mode, the server SHOULD NOT send the Carriage Return
 character (ASCII 13) after the identification string.

 In the compatibility mode, the server SHOULD NOT send any further
 data after sending its identification string until it has received an
 identification string from the client. The server can then determine
 whether the client is using an old protocol, and can revert to the
 old protocol if required. In the compatibility mode, the server MUST
 NOT send additional data before the identification string.

 When compatibility with old clients is not needed, the server MAY
 send its initial key exchange data immediately after the
 identification string.

5.2. New Client, Old Server

 Since the new client MAY immediately send additional data after its
 identification string (before receiving the server’s identification
 string), the old protocol may already be corrupt when the client
 learns that the server is old. When this happens, the client SHOULD
 close the connection to the server, and reconnect using the old
 protocol.

5.3. Packet Size and Overhead

 Some readers will worry about the increase in packet size due to new
 headers, padding, and the Message Authentication Code (MAC). The
 minimum packet size is in the order of 28 bytes (depending on
 negotiated algorithms). The increase is negligible for large
 packets, but very significant for one-byte packets (telnet-type
 sessions). There are, however, several factors that make this a
 non-issue in almost all cases:

 o The minimum size of a TCP/IP header is 32 bytes. Thus, the
 increase is actually from 33 to 51 bytes (roughly).

Ylonen & Lonvick Standards Track [Page 6]

RFC 4253 SSH Transport Layer Protocol January 2006

 o The minimum size of the data field of an Ethernet packet is 46
 bytes [RFC0894]. Thus, the increase is no more than 5 bytes.
 When Ethernet headers are considered, the increase is less than 10
 percent.

 o The total fraction of telnet-type data in the Internet is
 negligible, even with increased packet sizes.

 The only environment where the packet size increase is likely to have
 a significant effect is PPP [RFC1661] over slow modem lines (PPP
 compresses the TCP/IP headers, emphasizing the increase in packet
 size). However, with modern modems, the time needed to transfer is
 in the order of 2 milliseconds, which is a lot faster than people can
 type.

 There are also issues related to the maximum packet size. To
 minimize delays in screen updates, one does not want excessively
 large packets for interactive sessions. The maximum packet size is
 negotiated separately for each channel.

6. Binary Packet Protocol

 Each packet is in the following format:

 uint32 packet_length
 byte padding_length
 byte[n1] payload; n1 = packet_length - padding_length - 1
 byte[n2] random padding; n2 = padding_length
 byte[m] mac (Message Authentication Code - MAC); m = mac_length

 packet_length
 The length of the packet in bytes, not including ’mac’ or the
 ’packet_length’ field itself.

 padding_length
 Length of ’random padding’ (bytes).

 payload
 The useful contents of the packet. If compression has been
 negotiated, this field is compressed. Initially, compression
 MUST be "none".

 random padding
 Arbitrary-length padding, such that the total length of
 (packet_length || padding_length || payload || random padding)
 is a multiple of the cipher block size or 8, whichever is

Ylonen & Lonvick Standards Track [Page 7]

RFC 4253 SSH Transport Layer Protocol January 2006

 larger. There MUST be at least four bytes of padding. The
 padding SHOULD consist of random bytes. The maximum amount of
 padding is 255 bytes.

 mac
 Message Authentication Code. If message authentication has
 been negotiated, this field contains the MAC bytes. Initially,
 the MAC algorithm MUST be "none".

 Note that the length of the concatenation of ’packet_length’,
 ’padding_length’, ’payload’, and ’random padding’ MUST be a multiple
 of the cipher block size or 8, whichever is larger. This constraint
 MUST be enforced, even when using stream ciphers. Note that the
 ’packet_length’ field is also encrypted, and processing it requires
 special care when sending or receiving packets. Also note that the
 insertion of variable amounts of ’random padding’ may help thwart
 traffic analysis.

 The minimum size of a packet is 16 (or the cipher block size,
 whichever is larger) bytes (plus ’mac’). Implementations SHOULD
 decrypt the length after receiving the first 8 (or cipher block size,
 whichever is larger) bytes of a packet.

6.1. Maximum Packet Length

 All implementations MUST be able to process packets with an
 uncompressed payload length of 32768 bytes or less and a total packet
 size of 35000 bytes or less (including ’packet_length’,
 ’padding_length’, ’payload’, ’random padding’, and ’mac’). The
 maximum of 35000 bytes is an arbitrarily chosen value that is larger
 than the uncompressed length noted above. Implementations SHOULD
 support longer packets, where they might be needed. For example, if
 an implementation wants to send a very large number of certificates,
 the larger packets MAY be sent if the identification string indicates
 that the other party is able to process them. However,
 implementations SHOULD check that the packet length is reasonable in
 order for the implementation to avoid denial of service and/or buffer
 overflow attacks.

6.2. Compression

 If compression has been negotiated, the ’payload’ field (and only it)
 will be compressed using the negotiated algorithm. The
 ’packet_length’ field and ’mac’ will be computed from the compressed
 payload. Encryption will be done after compression.

Ylonen & Lonvick Standards Track [Page 8]

RFC 4253 SSH Transport Layer Protocol January 2006

 Compression MAY be stateful, depending on the method. Compression
 MUST be independent for each direction, and implementations MUST
 allow independent choosing of the algorithm for each direction. In
 practice however, it is RECOMMENDED that the compression method be
 the same in both directions.

 The following compression methods are currently defined:

 none REQUIRED no compression
 zlib OPTIONAL ZLIB (LZ77) compression

 The "zlib" compression is described in [RFC1950] and in [RFC1951].
 The compression context is initialized after each key exchange, and
 is passed from one packet to the next, with only a partial flush
 being performed at the end of each packet. A partial flush means
 that the current compressed block is ended and all data will be
 output. If the current block is not a stored block, one or more
 empty blocks are added after the current block to ensure that there
 are at least 8 bits, counting from the start of the end-of-block code
 of the current block to the end of the packet payload.

 Additional methods may be defined as specified in [SSH-ARCH] and
 [SSH-NUMBERS].

6.3. Encryption

 An encryption algorithm and a key will be negotiated during the key
 exchange. When encryption is in effect, the packet length, padding
 length, payload, and padding fields of each packet MUST be encrypted
 with the given algorithm.

 The encrypted data in all packets sent in one direction SHOULD be
 considered a single data stream. For example, initialization vectors
 SHOULD be passed from the end of one packet to the beginning of the
 next packet. All ciphers SHOULD use keys with an effective key
 length of 128 bits or more.

 The ciphers in each direction MUST run independently of each other.
 Implementations MUST allow the algorithm for each direction to be
 independently selected, if multiple algorithms are allowed by local
 policy. In practice however, it is RECOMMENDED that the same
 algorithm be used in both directions.

Ylonen & Lonvick Standards Track [Page 9]

RFC 4253 SSH Transport Layer Protocol January 2006

 The following ciphers are currently defined:

 3des-cbc REQUIRED three-key 3DES in CBC mode
 blowfish-cbc OPTIONAL Blowfish in CBC mode
 twofish256-cbc OPTIONAL Twofish in CBC mode,
 with a 256-bit key
 twofish-cbc OPTIONAL alias for "twofish256-cbc"
 (this is being retained
 for historical reasons)
 twofish192-cbc OPTIONAL Twofish with a 192-bit key
 twofish128-cbc OPTIONAL Twofish with a 128-bit key
 aes256-cbc OPTIONAL AES in CBC mode,
 with a 256-bit key
 aes192-cbc OPTIONAL AES with a 192-bit key
 aes128-cbc RECOMMENDED AES with a 128-bit key
 serpent256-cbc OPTIONAL Serpent in CBC mode, with
 a 256-bit key
 serpent192-cbc OPTIONAL Serpent with a 192-bit key
 serpent128-cbc OPTIONAL Serpent with a 128-bit key
 arcfour OPTIONAL the ARCFOUR stream cipher
 with a 128-bit key
 idea-cbc OPTIONAL IDEA in CBC mode
 cast128-cbc OPTIONAL CAST-128 in CBC mode
 none OPTIONAL no encryption; NOT RECOMMENDED

 The "3des-cbc" cipher is three-key triple-DES (encrypt-decrypt-
 encrypt), where the first 8 bytes of the key are used for the first
 encryption, the next 8 bytes for the decryption, and the following 8
 bytes for the final encryption. This requires 24 bytes of key data
 (of which 168 bits are actually used). To implement CBC mode, outer
 chaining MUST be used (i.e., there is only one initialization
 vector). This is a block cipher with 8-byte blocks. This algorithm
 is defined in [FIPS-46-3]. Note that since this algorithm only has
 an effective key length of 112 bits ([SCHNEIER]), it does not meet
 the specifications that SSH encryption algorithms should use keys of
 128 bits or more. However, this algorithm is still REQUIRED for
 historical reasons; essentially, all known implementations at the
 time of this writing support this algorithm, and it is commonly used
 because it is the fundamental interoperable algorithm. At some
 future time, it is expected that another algorithm, one with better
 strength, will become so prevalent and ubiquitous that the use of
 "3des-cbc" will be deprecated by another STANDARDS ACTION.

 The "blowfish-cbc" cipher is Blowfish in CBC mode, with 128-bit keys
 [SCHNEIER]. This is a block cipher with 8-byte blocks.

Ylonen & Lonvick Standards Track [Page 10]

RFC 4253 SSH Transport Layer Protocol January 2006

 The "twofish-cbc" or "twofish256-cbc" cipher is Twofish in CBC mode,
 with 256-bit keys as described [TWOFISH]. This is a block cipher
 with 16-byte blocks.

 The "twofish192-cbc" cipher is the same as above, but with a 192-bit
 key.

 The "twofish128-cbc" cipher is the same as above, but with a 128-bit
 key.

 The "aes256-cbc" cipher is AES (Advanced Encryption Standard)
 [FIPS-197], in CBC mode. This version uses a 256-bit key.

 The "aes192-cbc" cipher is the same as above, but with a 192-bit key.

 The "aes128-cbc" cipher is the same as above, but with a 128-bit key.

 The "serpent256-cbc" cipher in CBC mode, with a 256-bit key as
 described in the Serpent AES submission.

 The "serpent192-cbc" cipher is the same as above, but with a 192-bit
 key.

 The "serpent128-cbc" cipher is the same as above, but with a 128-bit
 key.

 The "arcfour" cipher is the Arcfour stream cipher with 128-bit keys.
 The Arcfour cipher is believed to be compatible with the RC4 cipher
 [SCHNEIER]. Arcfour (and RC4) has problems with weak keys, and
 should be used with caution.

 The "idea-cbc" cipher is the IDEA cipher in CBC mode [SCHNEIER].

 The "cast128-cbc" cipher is the CAST-128 cipher in CBC mode with a
 128-bit key [RFC2144].

 The "none" algorithm specifies that no encryption is to be done.
 Note that this method provides no confidentiality protection, and it
 is NOT RECOMMENDED. Some functionality (e.g., password
 authentication) may be disabled for security reasons if this cipher
 is chosen.

 Additional methods may be defined as specified in [SSH-ARCH] and in
 [SSH-NUMBERS].

Ylonen & Lonvick Standards Track [Page 11]

RFC 4253 SSH Transport Layer Protocol January 2006

6.4. Data Integrity

 Data integrity is protected by including with each packet a MAC that
 is computed from a shared secret, packet sequence number, and the
 contents of the packet.

 The message authentication algorithm and key are negotiated during
 key exchange. Initially, no MAC will be in effect, and its length
 MUST be zero. After key exchange, the ’mac’ for the selected MAC
 algorithm will be computed before encryption from the concatenation
 of packet data:

 mac = MAC(key, sequence_number || unencrypted_packet)

 where unencrypted_packet is the entire packet without ’mac’ (the
 length fields, ’payload’ and ’random padding’), and sequence_number
 is an implicit packet sequence number represented as uint32. The
 sequence_number is initialized to zero for the first packet, and is
 incremented after every packet (regardless of whether encryption or
 MAC is in use). It is never reset, even if keys/algorithms are
 renegotiated later. It wraps around to zero after every 2^32
 packets. The packet sequence_number itself is not included in the
 packet sent over the wire.

 The MAC algorithms for each direction MUST run independently, and
 implementations MUST allow choosing the algorithm independently for
 both directions. In practice however, it is RECOMMENDED that the
 same algorithm be used in both directions.

 The value of ’mac’ resulting from the MAC algorithm MUST be
 transmitted without encryption as the last part of the packet. The
 number of ’mac’ bytes depends on the algorithm chosen.

 The following MAC algorithms are currently defined:

 hmac-sha1 REQUIRED HMAC-SHA1 (digest length = key
 length = 20)
 hmac-sha1-96 RECOMMENDED first 96 bits of HMAC-SHA1 (digest
 length = 12, key length = 20)
 hmac-md5 OPTIONAL HMAC-MD5 (digest length = key
 length = 16)
 hmac-md5-96 OPTIONAL first 96 bits of HMAC-MD5 (digest
 length = 12, key length = 16)
 none OPTIONAL no MAC; NOT RECOMMENDED

 The "hmac-*" algorithms are described in [RFC2104]. The "*-n" MACs
 use only the first n bits of the resulting value.

Ylonen & Lonvick Standards Track [Page 12]

RFC 4253 SSH Transport Layer Protocol January 2006

 SHA-1 is described in [FIPS-180-2] and MD5 is described in [RFC1321].

 Additional methods may be defined, as specified in [SSH-ARCH] and in
 [SSH-NUMBERS].

6.5. Key Exchange Methods

 The key exchange method specifies how one-time session keys are
 generated for encryption and for authentication, and how the server
 authentication is done.

 Two REQUIRED key exchange methods have been defined:

 diffie-hellman-group1-sha1 REQUIRED
 diffie-hellman-group14-sha1 REQUIRED

 These methods are described in Section 8.

 Additional methods may be defined as specified in [SSH-NUMBERS]. The
 name "diffie-hellman-group1-sha1" is used for a key exchange method
 using an Oakley group, as defined in [RFC2409]. SSH maintains its
 own group identifier space that is logically distinct from Oakley
 [RFC2412] and IKE; however, for one additional group, the Working
 Group adopted the number assigned by [RFC3526], using diffie-
 hellman-group14-sha1 for the name of the second defined group.
 Implementations should treat these names as opaque identifiers and
 should not assume any relationship between the groups used by SSH and
 the groups defined for IKE.

6.6. Public Key Algorithms

 This protocol has been designed to operate with almost any public key
 format, encoding, and algorithm (signature and/or encryption).

 There are several aspects that define a public key type:

 o Key format: how is the key encoded and how are certificates
 represented. The key blobs in this protocol MAY contain
 certificates in addition to keys.

 o Signature and/or encryption algorithms. Some key types may not
 support both signing and encryption. Key usage may also be
 restricted by policy statements (e.g., in certificates). In this
 case, different key types SHOULD be defined for the different
 policy alternatives.

 o Encoding of signatures and/or encrypted data. This includes but
 is not limited to padding, byte order, and data formats.

Ylonen & Lonvick Standards Track [Page 13]

RFC 4253 SSH Transport Layer Protocol January 2006

 The following public key and/or certificate formats are currently
 defined:

 ssh-dss REQUIRED sign Raw DSS Key
 ssh-rsa RECOMMENDED sign Raw RSA Key
 pgp-sign-rsa OPTIONAL sign OpenPGP certificates (RSA key)
 pgp-sign-dss OPTIONAL sign OpenPGP certificates (DSS key)

 Additional key types may be defined, as specified in [SSH-ARCH] and
 in [SSH-NUMBERS].

 The key type MUST always be explicitly known (from algorithm
 negotiation or some other source). It is not normally included in
 the key blob.

 Certificates and public keys are encoded as follows:

 string certificate or public key format identifier
 byte[n] key/certificate data

 The certificate part may be a zero length string, but a public key is
 required. This is the public key that will be used for
 authentication. The certificate sequence contained in the
 certificate blob can be used to provide authorization.

 Public key/certificate formats that do not explicitly specify a
 signature format identifier MUST use the public key/certificate
 format identifier as the signature identifier.

 Signatures are encoded as follows:

 string signature format identifier (as specified by the
 public key/certificate format)
 byte[n] signature blob in format specific encoding.

 The "ssh-dss" key format has the following specific encoding:

 string "ssh-dss"
 mpint p
 mpint q
 mpint g
 mpint y

 Here, the ’p’, ’q’, ’g’, and ’y’ parameters form the signature key
 blob.

Ylonen & Lonvick Standards Track [Page 14]

RFC 4253 SSH Transport Layer Protocol January 2006

 Signing and verifying using this key format is done according to the
 Digital Signature Standard [FIPS-186-2] using the SHA-1 hash
 [FIPS-180-2].

 The resulting signature is encoded as follows:

 string "ssh-dss"
 string dss_signature_blob

 The value for ’dss_signature_blob’ is encoded as a string containing
 r, followed by s (which are 160-bit integers, without lengths or
 padding, unsigned, and in network byte order).

 The "ssh-rsa" key format has the following specific encoding:

 string "ssh-rsa"
 mpint e
 mpint n

 Here the ’e’ and ’n’ parameters form the signature key blob.

 Signing and verifying using this key format is performed according to
 the RSASSA-PKCS1-v1_5 scheme in [RFC3447] using the SHA-1 hash.

 The resulting signature is encoded as follows:

 string "ssh-rsa"
 string rsa_signature_blob

 The value for ’rsa_signature_blob’ is encoded as a string containing
 s (which is an integer, without lengths or padding, unsigned, and in
 network byte order).

 The "pgp-sign-rsa" method indicates the certificates, the public key,
 and the signature are in OpenPGP compatible binary format
 ([RFC2440]). This method indicates that the key is an RSA-key.

 The "pgp-sign-dss" is as above, but indicates that the key is a
 DSS-key.

7. Key Exchange

 Key exchange (kex) begins by each side sending name-lists of
 supported algorithms. Each side has a preferred algorithm in each
 category, and it is assumed that most implementations, at any given
 time, will use the same preferred algorithm. Each side MAY guess

Ylonen & Lonvick Standards Track [Page 15]

RFC 4253 SSH Transport Layer Protocol January 2006

 which algorithm the other side is using, and MAY send an initial key
 exchange packet according to the algorithm, if appropriate for the
 preferred method.

 The guess is considered wrong if:

 o the kex algorithm and/or the host key algorithm is guessed wrong
 (server and client have different preferred algorithm), or

 o if any of the other algorithms cannot be agreed upon (the
 procedure is defined below in Section 7.1).

 Otherwise, the guess is considered to be right, and the
 optimistically sent packet MUST be handled as the first key exchange
 packet.

 However, if the guess was wrong, and a packet was optimistically sent
 by one or both parties, such packets MUST be ignored (even if the
 error in the guess would not affect the contents of the initial
 packet(s)), and the appropriate side MUST send the correct initial
 packet.

 A key exchange method uses explicit server authentication if the key
 exchange messages include a signature or other proof of the server’s
 authenticity. A key exchange method uses implicit server
 authentication if, in order to prove its authenticity, the server
 also has to prove that it knows the shared secret, K, by sending a
 message and a corresponding MAC that the client can verify.

 The key exchange method defined by this document uses explicit server
 authentication. However, key exchange methods with implicit server
 authentication MAY be used with this protocol. After a key exchange
 with implicit server authentication, the client MUST wait for a
 response to its service request message before sending any further
 data.

Ylonen & Lonvick Standards Track [Page 16]

RFC 4253 SSH Transport Layer Protocol January 2006

7.1. Algorithm Negotiation

 Key exchange begins by each side sending the following packet:

 byte SSH_MSG_KEXINIT
 byte[16] cookie (random bytes)
 name-list kex_algorithms
 name-list server_host_key_algorithms
 name-list encryption_algorithms_client_to_server
 name-list encryption_algorithms_server_to_client
 name-list mac_algorithms_client_to_server
 name-list mac_algorithms_server_to_client
 name-list compression_algorithms_client_to_server
 name-list compression_algorithms_server_to_client
 name-list languages_client_to_server
 name-list languages_server_to_client
 boolean first_kex_packet_follows
 uint32 0 (reserved for future extension)

 Each of the algorithm name-lists MUST be a comma-separated list of
 algorithm names (see Algorithm Naming in [SSH-ARCH] and additional
 information in [SSH-NUMBERS]). Each supported (allowed) algorithm
 MUST be listed in order of preference, from most to least.

 The first algorithm in each name-list MUST be the preferred (guessed)
 algorithm. Each name-list MUST contain at least one algorithm name.

 cookie
 The ’cookie’ MUST be a random value generated by the sender.
 Its purpose is to make it impossible for either side to fully
 determine the keys and the session identifier.

 kex_algorithms
 Key exchange algorithms were defined above. The first
 algorithm MUST be the preferred (and guessed) algorithm. If
 both sides make the same guess, that algorithm MUST be used.
 Otherwise, the following algorithm MUST be used to choose a key
 exchange method: Iterate over client’s kex algorithms, one at a
 time. Choose the first algorithm that satisfies the following
 conditions:

 + the server also supports the algorithm,

 + if the algorithm requires an encryption-capable host key,
 there is an encryption-capable algorithm on the server’s
 server_host_key_algorithms that is also supported by the
 client, and

Ylonen & Lonvick Standards Track [Page 17]

RFC 4253 SSH Transport Layer Protocol January 2006

 + if the algorithm requires a signature-capable host key,
 there is a signature-capable algorithm on the server’s
 server_host_key_algorithms that is also supported by the
 client.

 If no algorithm satisfying all these conditions can be found, the
 connection fails, and both sides MUST disconnect.

 server_host_key_algorithms
 A name-list of the algorithms supported for the server host
 key. The server lists the algorithms for which it has host
 keys; the client lists the algorithms that it is willing to
 accept. There MAY be multiple host keys for a host, possibly
 with different algorithms.

 Some host keys may not support both signatures and encryption
 (this can be determined from the algorithm), and thus not all
 host keys are valid for all key exchange methods.

 Algorithm selection depends on whether the chosen key exchange
 algorithm requires a signature or an encryption-capable host
 key. It MUST be possible to determine this from the public key
 algorithm name. The first algorithm on the client’s name-list
 that satisfies the requirements and is also supported by the
 server MUST be chosen. If there is no such algorithm, both
 sides MUST disconnect.

 encryption_algorithms
 A name-list of acceptable symmetric encryption algorithms (also
 known as ciphers) in order of preference. The chosen
 encryption algorithm to each direction MUST be the first
 algorithm on the client’s name-list that is also on the
 server’s name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The defined algorithm names are listed in Section
 6.3.

 mac_algorithms
 A name-list of acceptable MAC algorithms in order of
 preference. The chosen MAC algorithm MUST be the first
 algorithm on the client’s name-list that is also on the
 server’s name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The MAC algorithm names are listed in Section 6.4.

Ylonen & Lonvick Standards Track [Page 18]

RFC 4253 SSH Transport Layer Protocol January 2006

 compression_algorithms
 A name-list of acceptable compression algorithms in order of
 preference. The chosen compression algorithm MUST be the first
 algorithm on the client’s name-list that is also on the
 server’s name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The compression algorithm names are listed in
 Section 6.2.

 languages
 This is a name-list of language tags in order of preference
 [RFC3066]. Both parties MAY ignore this name-list. If there
 are no language preferences, this name-list SHOULD be empty as
 defined in Section 5 of [SSH-ARCH]. Language tags SHOULD NOT
 be present unless they are known to be needed by the sending
 party.

 first_kex_packet_follows
 Indicates whether a guessed key exchange packet follows. If a
 guessed packet will be sent, this MUST be TRUE. If no guessed
 packet will be sent, this MUST be FALSE.

 After receiving the SSH_MSG_KEXINIT packet from the other side,
 each party will know whether their guess was right. If the
 other party’s guess was wrong, and this field was TRUE, the
 next packet MUST be silently ignored, and both sides MUST then
 act as determined by the negotiated key exchange method. If
 the guess was right, key exchange MUST continue using the
 guessed packet.

 After the SSH_MSG_KEXINIT message exchange, the key exchange
 algorithm is run. It may involve several packet exchanges, as
 specified by the key exchange method.

 Once a party has sent a SSH_MSG_KEXINIT message for key exchange or
 re-exchange, until it has sent a SSH_MSG_NEWKEYS message (Section
 7.3), it MUST NOT send any messages other than:

 o Transport layer generic messages (1 to 19) (but
 SSH_MSG_SERVICE_REQUEST and SSH_MSG_SERVICE_ACCEPT MUST NOT be
 sent);

 o Algorithm negotiation messages (20 to 29) (but further
 SSH_MSG_KEXINIT messages MUST NOT be sent);

 o Specific key exchange method messages (30 to 49).

Ylonen & Lonvick Standards Track [Page 19]

RFC 4253 SSH Transport Layer Protocol January 2006

 The provisions of Section 11 apply to unrecognized messages.

 Note, however, that during a key re-exchange, after sending a
 SSH_MSG_KEXINIT message, each party MUST be prepared to process an
 arbitrary number of messages that may be in-flight before receiving a
 SSH_MSG_KEXINIT message from the other party.

7.2. Output from Key Exchange

 The key exchange produces two values: a shared secret K, and an
 exchange hash H. Encryption and authentication keys are derived from
 these. The exchange hash H from the first key exchange is
 additionally used as the session identifier, which is a unique
 identifier for this connection. It is used by authentication methods
 as a part of the data that is signed as a proof of possession of a
 private key. Once computed, the session identifier is not changed,
 even if keys are later re-exchanged.

 Each key exchange method specifies a hash function that is used in
 the key exchange. The same hash algorithm MUST be used in key
 derivation. Here, we’ll call it HASH.

 Encryption keys MUST be computed as HASH, of a known value and K, as
 follows:

 o Initial IV client to server: HASH(K || H || "A" || session_id)
 (Here K is encoded as mpint and "A" as byte and session_id as raw
 data. "A" means the single character A, ASCII 65).

 o Initial IV server to client: HASH(K || H || "B" || session_id)

 o Encryption key client to server: HASH(K || H || "C" || session_id)

 o Encryption key server to client: HASH(K || H || "D" || session_id)

 o Integrity key client to server: HASH(K || H || "E" || session_id)

 o Integrity key server to client: HASH(K || H || "F" || session_id)

 Key data MUST be taken from the beginning of the hash output. As
 many bytes as needed are taken from the beginning of the hash value.
 If the key length needed is longer than the output of the HASH, the
 key is extended by computing HASH of the concatenation of K and H and
 the entire key so far, and appending the resulting bytes (as many as
 HASH generates) to the key. This process is repeated until enough
 key material is available; the key is taken from the beginning of
 this value. In other words:

Ylonen & Lonvick Standards Track [Page 20]

RFC 4253 SSH Transport Layer Protocol January 2006

 K1 = HASH(K || H || X || session_id) (X is e.g., "A")
 K2 = HASH(K || H || K1)
 K3 = HASH(K || H || K1 || K2)
 ...
 key = K1 || K2 || K3 || ...

 This process will lose entropy if the amount of entropy in K is
 larger than the internal state size of HASH.

7.3. Taking Keys Into Use

 Key exchange ends by each side sending an SSH_MSG_NEWKEYS message.
 This message is sent with the old keys and algorithms. All messages
 sent after this message MUST use the new keys and algorithms.

 When this message is received, the new keys and algorithms MUST be
 used for receiving.

 The purpose of this message is to ensure that a party is able to
 respond with an SSH_MSG_DISCONNECT message that the other party can
 understand if something goes wrong with the key exchange.

 byte SSH_MSG_NEWKEYS

8. Diffie-Hellman Key Exchange

 The Diffie-Hellman (DH) key exchange provides a shared secret that
 cannot be determined by either party alone. The key exchange is
 combined with a signature with the host key to provide host
 authentication. This key exchange method provides explicit server
 authentication as defined in Section 7.

 The following steps are used to exchange a key. In this, C is the
 client; S is the server; p is a large safe prime; g is a generator
 for a subgroup of GF(p); q is the order of the subgroup; V_S is S’s
 identification string; V_C is C’s identification string; K_S is S’s
 public host key; I_C is C’s SSH_MSG_KEXINIT message and I_S is S’s
 SSH_MSG_KEXINIT message that have been exchanged before this part
 begins.

 1. C generates a random number x (1 < x < q) and computes
 e = g^x mod p. C sends e to S.

Ylonen & Lonvick Standards Track [Page 21]

RFC 4253 SSH Transport Layer Protocol January 2006

 2. S generates a random number y (0 < y < q) and computes
 f = g^y mod p. S receives e. It computes K = e^y mod p,
 H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K)
 (these elements are encoded according to their types; see below),
 and signature s on H with its private host key. S sends
 (K_S || f || s) to C. The signing operation may involve a
 second hashing operation.

 3. C verifies that K_S really is the host key for S (e.g., using
 certificates or a local database). C is also allowed to accept
 the key without verification; however, doing so will render the
 protocol insecure against active attacks (but may be desirable for
 practical reasons in the short term in many environments). C then
 computes K = f^x mod p, H = hash(V_C || V_S || I_C || I_S || K_S
 || e || f || K), and verifies the signature s on H.

 Values of ’e’ or ’f’ that are not in the range [1, p-1] MUST NOT be
 sent or accepted by either side. If this condition is violated, the
 key exchange fails.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the SSH_MSG_KEXINIT messages.

 First, the client sends the following:

 byte SSH_MSG_KEXDH_INIT
 mpint e

 The server then responds with the following:

 byte SSH_MSG_KEXDH_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

Ylonen & Lonvick Standards Track [Page 22]

RFC 4253 SSH Transport Layer Protocol January 2006

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client’s identification string (CR and LF
 excluded)
 string V_S, the server’s identification string (CR and LF
 excluded)
 string I_C, the payload of the client’s SSH_MSG_KEXINIT
 string I_S, the payload of the server’s SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret.

 The signature algorithm MUST be applied over H, not the original
 data. Most signature algorithms include hashing and additional
 padding (e.g., "ssh-dss" specifies SHA-1 hashing). In that case, the
 data is first hashed with HASH to compute H, and H is then hashed
 with SHA-1 as part of the signing operation.

8.1. diffie-hellman-group1-sha1

 The "diffie-hellman-group1-sha1" method specifies the Diffie-Hellman
 key exchange with SHA-1 as HASH, and Oakley Group 2 [RFC2409] (1024-
 bit MODP Group). This method MUST be supported for interoperability
 as all of the known implementations currently support it. Note that
 this method is named using the phrase "group1", even though it
 specifies the use of Oakley Group 2.

8.2. diffie-hellman-group14-sha1

 The "diffie-hellman-group14-sha1" method specifies a Diffie-Hellman
 key exchange with SHA-1 as HASH and Oakley Group 14 [RFC3526] (2048-
 bit MODP Group), and it MUST also be supported.

9. Key Re-Exchange

 Key re-exchange is started by sending an SSH_MSG_KEXINIT packet when
 not already doing a key exchange (as described in Section 7.1). When
 this message is received, a party MUST respond with its own
 SSH_MSG_KEXINIT message, except when the received SSH_MSG_KEXINIT
 already was a reply. Either party MAY initiate the re-exchange, but
 roles MUST NOT be changed (i.e., the server remains the server, and
 the client remains the client).

Ylonen & Lonvick Standards Track [Page 23]

RFC 4253 SSH Transport Layer Protocol January 2006

 Key re-exchange is performed using whatever encryption was in effect
 when the exchange was started. Encryption, compression, and MAC
 methods are not changed before a new SSH_MSG_NEWKEYS is sent after
 the key exchange (as in the initial key exchange). Re-exchange is
 processed identically to the initial key exchange, except for the
 session identifier that will remain unchanged. It is permissible to
 change some or all of the algorithms during the re-exchange. Host
 keys can also change. All keys and initialization vectors are
 recomputed after the exchange. Compression and encryption contexts
 are reset.

 It is RECOMMENDED that the keys be changed after each gigabyte of
 transmitted data or after each hour of connection time, whichever
 comes sooner. However, since the re-exchange is a public key
 operation, it requires a fair amount of processing power and should
 not be performed too often.

 More application data may be sent after the SSH_MSG_NEWKEYS packet
 has been sent; key exchange does not affect the protocols that lie
 above the SSH transport layer.

10. Service Request

 After the key exchange, the client requests a service. The service
 is identified by a name. The format of names and procedures for
 defining new names are defined in [SSH-ARCH] and [SSH-NUMBERS].

 Currently, the following names have been reserved:

 ssh-userauth
 ssh-connection

 Similar local naming policy is applied to the service names, as is
 applied to the algorithm names. A local service should use the
 PRIVATE USE syntax of "servicename@domain".

 byte SSH_MSG_SERVICE_REQUEST
 string service name

 If the server rejects the service request, it SHOULD send an
 appropriate SSH_MSG_DISCONNECT message and MUST disconnect.

 When the service starts, it may have access to the session identifier
 generated during the key exchange.

Ylonen & Lonvick Standards Track [Page 24]

RFC 4253 SSH Transport Layer Protocol January 2006

 If the server supports the service (and permits the client to use
 it), it MUST respond with the following:

 byte SSH_MSG_SERVICE_ACCEPT
 string service name

 Message numbers used by services should be in the area reserved for
 them (see [SSH-ARCH] and [SSH-NUMBERS]). The transport level will
 continue to process its own messages.

 Note that after a key exchange with implicit server authentication,
 the client MUST wait for a response to its service request message
 before sending any further data.

11. Additional Messages

 Either party may send any of the following messages at any time.

11.1. Disconnection Message

 byte SSH_MSG_DISCONNECT
 uint32 reason code
 string description in ISO-10646 UTF-8 encoding [RFC3629]
 string language tag [RFC3066]

 This message causes immediate termination of the connection. All
 implementations MUST be able to process this message; they SHOULD be
 able to send this message.

 The sender MUST NOT send or receive any data after this message, and
 the recipient MUST NOT accept any data after receiving this message.
 The Disconnection Message ’description’ string gives a more specific
 explanation in a human-readable form. The Disconnection Message
 ’reason code’ gives the reason in a more machine-readable format
 (suitable for localization), and can have the values as displayed in
 the table below. Note that the decimal representation is displayed
 in this table for readability, but the values are actually uint32
 values.

Ylonen & Lonvick Standards Track [Page 25]

RFC 4253 SSH Transport Layer Protocol January 2006

 Symbolic name reason code
 ------------- -----------
 SSH_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1
 SSH_DISCONNECT_PROTOCOL_ERROR 2
 SSH_DISCONNECT_KEY_EXCHANGE_FAILED 3
 SSH_DISCONNECT_RESERVED 4
 SSH_DISCONNECT_MAC_ERROR 5
 SSH_DISCONNECT_COMPRESSION_ERROR 6
 SSH_DISCONNECT_SERVICE_NOT_AVAILABLE 7
 SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 8
 SSH_DISCONNECT_HOST_KEY_NOT_VERIFIABLE 9
 SSH_DISCONNECT_CONNECTION_LOST 10
 SSH_DISCONNECT_BY_APPLICATION 11
 SSH_DISCONNECT_TOO_MANY_CONNECTIONS 12
 SSH_DISCONNECT_AUTH_CANCELLED_BY_USER 13
 SSH_DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE 14
 SSH_DISCONNECT_ILLEGAL_USER_NAME 15

 If the ’description’ string is displayed, the control character
 filtering discussed in [SSH-ARCH] should be used to avoid attacks by
 sending terminal control characters.

 Requests for assignments of new Disconnection Message ’reason code’
 values (and associated ’description’ text) in the range of 0x00000010
 to 0xFDFFFFFF MUST be done through the IETF CONSENSUS method, as
 described in [RFC2434]. The Disconnection Message ’reason code’
 values in the range of 0xFE000000 through 0xFFFFFFFF are reserved for
 PRIVATE USE. As noted, the actual instructions to the IANA are in
 [SSH-NUMBERS].

11.2. Ignored Data Message

 byte SSH_MSG_IGNORE
 string data

 All implementations MUST understand (and ignore) this message at any
 time (after receiving the identification string). No implementation
 is required to send them. This message can be used as an additional
 protection measure against advanced traffic analysis techniques.

11.3. Debug Message

 byte SSH_MSG_DEBUG
 boolean always_display
 string message in ISO-10646 UTF-8 encoding [RFC3629]
 string language tag [RFC3066]

Ylonen & Lonvick Standards Track [Page 26]

RFC 4253 SSH Transport Layer Protocol January 2006

 All implementations MUST understand this message, but they are
 allowed to ignore it. This message is used to transmit information
 that may help debugging. If ’always_display’ is TRUE, the message
 SHOULD be displayed. Otherwise, it SHOULD NOT be displayed unless
 debugging information has been explicitly requested by the user.

 The ’message’ doesn’t need to contain a newline. It is, however,
 allowed to consist of multiple lines separated by CRLF (Carriage
 Return - Line Feed) pairs.

 If the ’message’ string is displayed, the terminal control character
 filtering discussed in [SSH-ARCH] should be used to avoid attacks by
 sending terminal control characters.

11.4. Reserved Messages

 An implementation MUST respond to all unrecognized messages with an
 SSH_MSG_UNIMPLEMENTED message in the order in which the messages were
 received. Such messages MUST be otherwise ignored. Later protocol
 versions may define other meanings for these message types.

 byte SSH_MSG_UNIMPLEMENTED
 uint32 packet sequence number of rejected message

12. Summary of Message Numbers

 The following is a summary of messages and their associated message
 number.

 SSH_MSG_DISCONNECT 1
 SSH_MSG_IGNORE 2
 SSH_MSG_UNIMPLEMENTED 3
 SSH_MSG_DEBUG 4
 SSH_MSG_SERVICE_REQUEST 5
 SSH_MSG_SERVICE_ACCEPT 6
 SSH_MSG_KEXINIT 20
 SSH_MSG_NEWKEYS 21

 Note that numbers 30-49 are used for kex packets. Different kex
 methods may reuse message numbers in this range.

13. IANA Considerations

 This document is part of a set. The IANA considerations for the SSH
 protocol as defined in [SSH-ARCH], [SSH-USERAUTH], [SSH-CONNECT], and
 this document, are detailed in [SSH-NUMBERS].

Ylonen & Lonvick Standards Track [Page 27]

RFC 4253 SSH Transport Layer Protocol January 2006

14. Security Considerations

 This protocol provides a secure encrypted channel over an insecure
 network. It performs server host authentication, key exchange,
 encryption, and integrity protection. It also derives a unique
 session ID that may be used by higher-level protocols.

 Full security considerations for this protocol are provided in
 [SSH-ARCH].

Ylonen & Lonvick Standards Track [Page 28]

RFC 4253 SSH Transport Layer Protocol January 2006

15. References

15.1. Normative References

 [SSH-ARCH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Protocol Architecture", RFC 4251, January 2006.

 [SSH-USERAUTH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Authentication Protocol", RFC 4252, January
 2006.

 [SSH-CONNECT] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Connection Protocol", RFC 4254, January 2006.

 [SSH-NUMBERS] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell
 (SSH) Protocol Assigned Numbers", RFC 4250, January
 2006.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm ", RFC
 1321, April 1992.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data
 Format Specification version 3.3", RFC 1950, May 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3", RFC 1951, May 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2144] Adams, C., "The CAST-128 Encryption Algorithm", RFC
 2144, May 1997.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC
 2434, October 1998.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H., and R.
 Thayer, "OpenPGP Message Format", RFC 2440, November
 1998.

Ylonen & Lonvick Standards Track [Page 29]

RFC 4253 SSH Transport Layer Protocol January 2006

 [RFC3066] Alvestrand, H., "Tags for the Identification of
 Languages", BCP 47, RFC 3066, January 2001.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential
 (MODP) Diffie-Hellman groups for Internet Key Exchange
 (IKE)", RFC 3526, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [FIPS-180-2] US National Institute of Standards and Technology,
 "Secure Hash Standard (SHS)", Federal Information
 Processing Standards Publication 180-2, August 2002.

 [FIPS-186-2] US National Institute of Standards and Technology,
 "Digital Signature Standard (DSS)", Federal
 Information Processing Standards Publication 186-2,
 January 2000.

 [FIPS-197] US National Institute of Standards and Technology,
 "Advanced Encryption Standard (AES)", Federal
 Information Processing Standards Publication 197,
 November 2001.

 [FIPS-46-3] US National Institute of Standards and Technology,
 "Data Encryption Standard (DES)", Federal Information
 Processing Standards Publication 46-3, October 1999.

 [SCHNEIER] Schneier, B., "Applied Cryptography Second Edition:
 protocols algorithms and source in code in C", John
 Wiley and Sons, New York, NY, 1996.

 [TWOFISH] Schneier, B., "The Twofish Encryptions Algorithm: A
 128-Bit Block Cipher, 1st Edition", March 1999.

15.2. Informative References

 [RFC0894] Hornig, C., "Standard for the transmission of IP
 datagrams over Ethernet networks", STD 41, RFC 894,
 April 1984.

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD
 51, RFC 1661, July 1994.

Ylonen & Lonvick Standards Track [Page 30]

RFC 4253 SSH Transport Layer Protocol January 2006

 [RFC2412] Orman, H., "The OAKLEY Key Determination Protocol",
 RFC 2412, November 1998.

 [ssh-1.2.30] Ylonen, T., "ssh-1.2.30/RFC", File within compressed
 tarball ftp://ftp.funet.fi/pub/unix/security/
 login/ssh/ssh-1.2.30.tar.gz, November 1995.

Authors’ Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Valimotie 17
 00380 Helsinki
 Finland

 EMail: ylo@ssh.com

 Chris Lonvick (editor)
 Cisco Systems, Inc.
 12515 Research Blvd.
 Austin 78759
 USA

 EMail: clonvick@cisco.com

Trademark Notice

 "ssh" is a registered trademark in the United States and/or other
 countries.

Ylonen & Lonvick Standards Track [Page 31]

RFC 4253 SSH Transport Layer Protocol January 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Ylonen & Lonvick Standards Track [Page 32]

