Net wor k Wor ki ng Group T. Yl onen

Request for Comments: 4253 SSH Conmmuni cations Security Corp
Cat egory: Standards Track C. Lonvick, Ed
Cisco Systems, Inc.

January 2006

The Secure Shell (SSH) Transport Layer Protoco
Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2006).
Abstr act

The Secure Shell (SSH) is a protocol for secure renote |ogin and
ot her secure network services over an insecure network.

Thi s docunent describes the SSH transport |ayer protocol, which
typically runs on top of TCP/IP. The protocol can be used as a basis
for a nunber of secure network services. It provides strong
encryption, server authentication, and integrity protection. It may
al so provi de conpression

Key exchange nethod, public key algorithm symmetric encryption
al gorithm nessage authentication algorithm and hash algorithmare
all negoti at ed.

Thi s docunent al so describes the D ffie-Hellman key exchange nethod

and the mninml set of algorithms that are needed to inplenment the
SSH transport | ayer protocol

Yl onen & Lonvick St andards Track [Page 1]

RFC 4253 SSH Transport Layer Protocol January 2006

Tabl e of Contents

1. IntroduCti On 3
2. CoNtribUutors ... 3
3. Conventions Used in This Docunment 3
4, ConneCtiOn St UP ..ottt e e e 4
4.1. Use over TCOP I P . 4
4.2. Protocol Version Exchange 4
5. Conmpatibility Wth Ad SSH Versions 5
5.1. AOd dient, NeW Server 6
5.2, New dient, Ad Server 6
5.3. Packet Size and Overhead 6
6. Binary Packet Protocol e 7
6. 1. Maxi mum Packet Length 8
6. 2. CONMPrESSI ON ..ot e 8
6. 3. ENCryption ... 9
6.4. Data Integrity 12
6.5. Key Exchange Methods 13
6.6. Public Key Algorithms 13
7. Key EXchange 15
7.1. Algorithm Negotiation i, 17
7.2. Qutput fromKey Exchange 20
7.3. Taking Keys Into Use 21
8. Diffie-Hellman Key Exchange 21
8.1. diffie-hellman-groupl-shal 23
8.2. diffie-hellman-groupl4-shal 23
9. Key Re-EXchange 23
10. Service ReqUeST 24
11. Additional MeSSagesSt 25
11.1. Disconnection MeSSaQettt e 25
11. 2. Ignored Data MeSSageo vttt e e e 26
11. 3. Debug Message ... 26
11. 4. Reserved MeSSagesSottt 27
12. Summary of Message Nunbers 27
13. TANA Considerati ONSt e e e 27
14. Security Considerati ons, 28
15, Ref erenCes 29
15.1. Normative References 29
15.2. Informative References 30
Aut hor s’ Addr €SS ES 31
Trademark NOti Ce 31

Yl onen & Lonvick St andards Track [Page 2]

RFC 4253 SSH Transport Layer Protocol January 2006

1. Introduction

The SSH transport layer is a secure, low |level transport protocol
It provides strong encryption, cryptographic host authentication, and
integrity protection.

Aut hentication in this protocol |evel is host-based; this protoco
does not performuser authentication. A higher |evel protocol for
user authentication can be designed on top of this protocol

The protocol has been designed to be sinple and flexible to all ow
paraneter negotiation, and to mninize the nunber of round-trips.
The key exchange net hod, public key algorithm symetric encryption
al gorithm nessage authentication algorithm and hash algorithmare
all negotiated. It is expected that in nost environments, only 2
round-trips will be needed for full key exchange, server

aut henti cation, service request, and acceptance notification of
service request. The worst case is 3 round-trips.

2. Contributors

The major original contributors of this set of docunments have been
Tatu Yl onen, Tero Kivinen, Tino J. Rinne, Sam Lehtinen (all of SSH
Conmmmuni cati ons Security Corp), and Markku-Juhani O Saari nen
(University of Jyvaskyla). Darren Mffat was the original editor of
this set of docunents and al so nade very substantial contributions.

Many people contributed to the devel opnment of this docunent over the
years. People who should be acknow edged include Mats Andersson, Ben
Harris, Bill Somerfeld, Brent McClure, Niels Mller, Danmien MIler
Der ek Fawcus, Frank Cusack, Hei kki Nousi ai nen, Jakob Schlyter, Jeff
Van Dyke, Jeffrey Altman, Jeffrey Hutzel man, Jon Bright, Joseph

Gal braith, Ken Hornstein, Markus Friedl, Martin Forssen, Nicolas
WIllianms, N els Provos, Perry Metzger, Peter Gutnmann, Sinon
Josefsson, Sinmon Tatham Wei Dai, Denis Bider, der Muse, and
Tadayoshi Kohno. Listing their nanes here does not nean that they
endorse this docunent, but that they have contributed to it.

3. Conventions Used in This Docunent

Al'l docunents related to the SSH protocols shall use the keywords
"MUST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT", "SHOULD'
"SHOULD NOT", "RECOMMENDED', "MAY", and "OPTI ONAL" to describe
requi renents. These keywords are to be interpreted as described in
[RFC2119] .

Yl onen & Lonvick St andards Track [Page 3]

RFC 4253 SSH Transport Layer Protocol January 2006

The keywords " PRI VATE USE", "H ERARCHI CAL ALLOCATI ON', "FI RST COVE
FI RST SERVED', "EXPERT REVI EW, "SPECI FI CATI ON REQUI RED", "I ESG
APPROVAL", "I ETF CONSENSUS", and " STANDARDS ACTI ON' that appear in
this docunent when used to describe namespace allocation are to be
interpreted as described in [RFC2434].

Protocol fields and possible values to fill themare defined in this
set of docunments. Protocol fields will be defined in the nessage
definitions. As an exanple, SSH MSG CHANNEL DATA is defined as

fol |l ows.
byte SSH_MSG_CHANNEL _DATA
ui nt 32 reci pi ent channe
string dat a

Thr oughout these docunents, when the fields are referenced, they will
appear within single quotes. Wen values to fill those fields are
referenced, they will appear w thin double quotes. Using the above
exanpl e, possible values for 'data’ are "foo" and "bar"

4. Connection Setup

SSH wor ks over any 8-bit clean, binary-transparent transport. The
underlying transport SHOULD protect against transnission errors, as
such errors cause the SSH connection to terninate.

The client initiates the connecti on.
4. 1. Use over TCP/IP

When used over TCP/IP, the server nornally listens for connections on
port 22. This port number has been registered with the | ANA, and has
been officially assigned for SSH

4.2. Protocol Version Exchange

When t he connection has been established, both sides MJST send an
identification string. This identification string MIST be

SSH- pr ot over si on- sof t war ever si on SP conments CR LF

Since the protocol being defined in this set of docunents is version
2.0, the 'protoversion’ MJST be "2.0". The 'comments’ string is
OPTIONAL. |If the '"comments’ string is included, a 'space’ character
(denot ed above as SP, ASCI| 32) MJST separate the ’'softwareversion
and 'comments’ strings. The identification MIST be terminated by a
single Carriage Return (CR) and a single Line Feed (LF) character
(ASCI'l 13 and 10, respectively). Inplenmenters who wish to maintain

Yl onen & Lonvick St andards Track [Page 4]

RFC 4253 SSH Transport Layer Protocol January 2006

conmpatibility with ol der, undocunented versions of this protocol may
want to process the identification string without expecting the
presence of the carriage return character for reasons described in
Section 5 of this docunent. The null character MJST NOT be sent.
The maxi num |l ength of the string is 255 characters, including the
Carriage Return and Li ne Feed.

The part of the identification string preceding the Carriage Return
and Line Feed is used in the Diffie-Hellmn key exchange (see Section
8) .

The server MAY send other lines of data before sending the version
string. Each line SHOULD be term nated by a Carriage Return and Line
Feed. Such lines MJUST NOT begin with "SSH", and SHOULD be encoded
in |1SO 10646 UTF-8 [RFC3629] (language is not specified). dients
MUST be able to process such lines. Such |ines MAY be silently

i gnored, or MAY be displayed to the client user. |If they are

di spl ayed, control character filtering, as discussed in [SSH ARCH|
SHOULD be used. The primary use of this feature is to allow TCP-
wrappers to display an error nessage before disconnecting.

Both the ’'protoversion’ and ’'softwareversion’ strings MJST consist of
printable US-ASCI|I characters, with the exception of whitespace
characters and the minus sign (-). The 'softwareversion’ string is
primarily used to trigger conpatibility extensions and to indicate
the capabilities of an inplenentation. The 'coments’ string SHOULD
contain additional information that mnight be useful in solving user
probl ems. As such, an exanple of a valid identification string is

SSH- 2. 0- bi | | SSSH_3. 6. 3q3<CR><LF>

This identification string does not contain the optional 'coments’
string and is thus termnated by a CR and LF inmedi ately after the
" sof twareversi on’ string.

Key exchange will begin imediately after sending this identifier.
Al'l packets following the identification string SHALL use the binary
packet protocol, which is described in Section 6.

5. Conpatibility Wth AOd SSH Ver si ons

As stated earlier, the "protoversion specified for this protocol is
"2.0". Earlier versions of this protocol have not been fornally
docunmented, but it is widely known that they use ’'protoversion’ of
"1.x" (e.g., "1.5" or "1.3"). At the tinme of this witing, many

i npl enment ations of SSH are utilizing protocol version 2.0, but it is
known that there are still devices using the previous versions.
During the transition period, it is inportant to be able to work in a

Yl onen & Lonvick St andards Track [Page 5]

RFC 4253 SSH Transport Layer Protocol January 2006

5.

5.

way that is conpatible with the installed SSH clients and servers
that use the ol der version of the protocol. Information in this
section is only relevant for inplenentations supporting conpatibility
with SSH versions 1.x. For those interested, the only known
docunentation of the 1.x protocol is contained in READMVE files that
are shipped along with the source code [ssh-1.2.30].

1. dd dient, New Server

Server inplenentations MAY support a configurable conpatibility flag
that enables conpatibility with old versions. When this flag is on
the server SHOULD identify its '"protoversion’ as "1.99". dients
using protocol 2.0 MJUST be able to identify this as identical to
"2.0". In this node, the server SHOULD NOT send the Carriage Return
character (ASCII 13) after the identification string.

In the conpatibility node, the server SHOULD NOT send any further
data after sending its identification string until it has received an
identification string fromthe client. The server can then deterni ne
whet her the client is using an old protocol, and can revert to the
old protocol if required. |In the conmpatibility node, the server MJST
NOT send additional data before the identification string.

When conpatibility with old clients is not needed, the server NMAY
send its initial key exchange data immedi ately after the
identification string.

2. New Client, AOd Server

Since the new client MAY i mmedi ately send additional data after its
identification string (before receiving the server’'s identification
string), the old protocol nmay al ready be corrupt when the client

| earns that the server is old. Wen this happens, the client SHOULD
cl ose the connection to the server, and reconnect using the old

pr ot ocol

5.3. Packet Size and Over head

Sone readers will worry about the increase in packet size due to new
headers, paddi ng, and the Message Authentication Code (MAC). The

m ni mum packet size is in the order of 28 bytes (depending on
negotiated algorithns). The increase is negligible for |arge
packets, but very significant for one-byte packets (telnet-type
sessions). There are, however, several factors that make this a
non-issue in alnost all cases:

o0 The mnimumsize of a TCP/IP header is 32 bytes. Thus, the
increase is actually from 33 to 51 bytes (roughly).

Yl onen & Lonvick St andards Track [Page 6]

RFC 4253 SSH Transport Layer Protocol January 2006

0 The minimumsize of the data field of an Ethernet packet is 46
bytes [RFC0894]. Thus, the increase is no nore than 5 bytes.
When Et hernet headers are considered, the increase is less than 10
percent.

o The total fraction of telnet-type data in the Internet is
negligible, even with increased packet sizes.

The only environment where the packet size increase is likely to have
a significant effect is PPP [RFC1661] over slow nodem|lines (PPP
conpresses the TCP/I P headers, enphasizing the increase in packet
size). However, with nodern nodens, the tine needed to transfer is
in the order of 2 nmlliseconds, which is a lot faster than people can

t ype.

There are also issues related to the nmaxi mum packet size. To

m nimze delays in screen updates, one does not want excessively

| arge packets for interactive sessions. The nmaxi num packet size is
negoti ated separately for each channel

6. Binary Packet Protoco
Each packet is in the follow ng format:

ui nt 32 packet | ength

byte paddi ng_Il engt h

byte[n1] payload; nl = packet length - padding_ length - 1
byt e[n2] random paddi ng; n2 = paddi ng_| ength

byt e[n mac (Message Authentication Code - MAC); m = nmac_| ength

packet | ength
The length of the packet in bytes, not including 'mac’ or the
"packet _length’ field itself.

paddi ng_I ength
Length of ’'random paddi ng’ (bytes).

payl oad
The useful contents of the packet. |[If conpression has been
negotiated, this field is conpressed. Initially, conpression

MJUST be "none"

random paddi ng
Arbitrary-Iength padding, such that the total |ength of
(packet _length || padding_length || payload || random paddi ng)
is amnultiple of the cipher block size or 8, whichever is

Yl onen & Lonvick St andards Track [Page 7]

RFC 4253 SSH Transport Layer Protocol January 2006

| arger. There MUST be at |east four bytes of padding. The
paddi ng SHOULD consi st of random bytes. The nmaxi num anount of
paddi ng i s 255 bytes.

mac
Message Authentication Code. |f nmessage authentication has
been negotiated, this field contains the MAC bytes. Initially,
the MAC al gorithm MJUST be "none"

Note that the Il ength of the concatenation of ’'packet_I|ength’

" paddi ng_l ength’, ’payload’ , and ’'random padding’ MJST be a multiple
of the cipher block size or 8, whichever is larger. This constraint
MUST be enforced, even when using stream ci phers. Note that the
"packet length’ field is also encrypted, and processing it requires
speci al care when sending or receiving packets. Also note that the
insertion of variable anbunts of ’random paddi ng’ may hel p thwart
traffic anal ysis.

The m ni num size of a packet is 16 (or the cipher block size,

whi chever is larger) bytes (plus "mac’). Inplenentations SHOULD
decrypt the length after receiving the first 8 (or cipher block size,
whi chever is larger) bytes of a packet.

6.1. Maxi num Packet Length

Al'l inplenentations MJST be able to process packets with an
unconpressed payl oad | ength of 32768 bytes or |less and a total packet
si ze of 35000 bytes or less (including 'packet |ength’

" paddi ng_l ength’, ’payload’ , ’'random padding’, and 'mac’). The

maxi mum of 35000 bytes is an arbitrarily chosen value that is |arger
than the unconpressed | ength noted above. |npl enentati ons SHOULD
support | onger packets, where they m ght be needed. For exanple, if
an inplenmentation wants to send a very |large nunber of certificates
the | arger packets MAY be sent if the identification string indicates
that the other party is able to process them However,

i mpl enent ati ons SHOULD check that the packet length is reasonable in
order for the inplenentation to avoid denial of service and/or buffer
overfl ow attacks.

6.2. Conpression
I f conpression has been negotiated, the 'payload field (and only it)
will be conpressed using the negotiated algorithm The

"packet length’ field and "mac’ will be conputed fromthe conpressed
payl oad. Encryption will be done after conpression

Yl onen & Lonvick St andards Track [Page 8]

RFC 4253 SSH Transport Layer Protocol January 2006

Conpressi on MAY be stateful, depending on the nethod. Conpression
MUST be independent for each direction, and inplenentations MJST
al I ow i ndependent choosing of the algorithmfor each direction. In
practice however, it is RECOWENDED that the conpression nethod be
the sane in both directions.

The followi ng conpression nethods are currently defined:

none REQUI RED no conpression
zlib OPTI ONAL ZLI B (LZ77) conpression

The "zlib" conpression is described in [RFC1950] and in [RFC1951].
The conpression context is initialized after each key exchange, and
is passed fromone packet to the next, with only a partial flush
being perfornmed at the end of each packet. A partial flush nmeans
that the current conpressed block is ended and all data will be
output. If the current block is not a stored bl ock, one or nore
enpty bl ocks are added after the current block to ensure that there
are at least 8 bits, counting fromthe start of the end-of-block code
of the current block to the end of the packet payl oad.

Addi tional nethods may be defined as specified in [SSH ARCH and
[SSH NUMBERS] .

6.3. Encryption

An encryption algorithmand a key will be negotiated during the key
exchange. \When encryption is in effect, the packet |ength, padding
| engt h, payl oad, and padding fields of each packet MJST be encrypted
with the given al gorithm

The encrypted data in all packets sent in one direction SHOULD be
considered a single data stream For exanple, initialization vectors
SHOULD be passed fromthe end of one packet to the beginning of the
next packet. Al ciphers SHOULD use keys with an effective key

| ength of 128 bits or nore.

The ciphers in each direction MJST run independently of each other
| mpl ement ati ons MJUST all ow the algorithmfor each direction to be

i ndependently selected, if rmultiple algorithns are allowed by |oca
policy. |In practice however, it is RECOMWENDED that the sane

al gorithmbe used in both directions.

Yl onen & Lonvick St andards Track [Page 9]

RFC 4253 SSH Transport Layer Protocol January 2006

The follow ng ciphers are currently defined:

3des-chc REQUI RED t hree-key 3DES in CBC node
bl owfi sh-cbhc OPTI ONAL Bl owfi sh in CBC node
t wof i sh256- cbc OPTI ONAL Twofish in CBC node,
with a 256-bit key
t wof i sh-cbc OPTI ONAL alias for "twofish256-cbc"

(this is being retained
for historical reasons)

twof i sh192-chc OPTI ONAL Twofish with a 192-bit key
t wof i sh128-cbc OPTI ONAL Twofish with a 128-bit key
aes256- chc OPTI ONAL AES i n CBC node,
with a 256-bit key
aes192-chc OPTI ONAL AES with a 192-bit key
aes128-chc RECOMVENDED AES with a 128-bit key
ser pent 256- cbc OPTI ONAL Serpent in CBC node, with
a 256-bit key
ser pent 192- cbc OPTI ONAL Serpent with a 192-bit key
ser pent 128- cbc OPTI ONAL Serpent with a 128-bit key
ar cf our OPTI ONAL t he ARCFOUR stream ci pher
with a 128-bit key
i dea-chc OPTI ONAL | DEA in CBC node
cast 128-chbc OPTI ONAL CAST-128 in CBC node
none OPTIl ONAL no encryption; NOT RECOMVENDED

The "3des-chc" cipher is three-key triple-DES (encrypt-decrypt-
encrypt), where the first 8 bytes of the key are used for the first
encryption, the next 8 bytes for the decryption, and the follow ng 8
bytes for the final encryption. This requires 24 bytes of key data
(of which 168 bits are actually used). To inplenent CBC node, outer
chai ning MUST be used (i.e., there is only one initialization
vector). This is a block cipher with 8-byte blocks. This algorithm
is defined in [FIPS-46-3]. Note that since this algorithmonly has
an effective key length of 112 bits ([SCHNEIER]), it does not neet
the specifications that SSH encryption algorithns should use keys of
128 bits or nore. However, this algorithmis still REQU RED for

hi storical reasons; essentially, all known inplenentations at the
time of this witing support this algorithm and it is comonly used
because it is the fundanental interoperable algorithm At sone
future time, it is expected that another algorithm one with better
strength, will becone so preval ent and ubi qui tous that the use of
"3des-cbc" will be deprecated by another STANDARDS ACTI ON

The "bl owfish-cbc" cipher is Blowfish in CBC nobde, with 128-bit keys
[SCHNEIER]. This is a block cipher with 8-byte bl ocks.

Yl onen & Lonvick St andards Track [Page 10]

RFC 4253 SSH Transport Layer Protocol January 2006

The "twofish-cbc" or "twofish256-cbc" cipher is Twofish in CBC node,
with 256-bit keys as described [TWOFISH . This is a block cipher
with 16-byte bl ocks.

The "twofish192-cbc" cipher is the sane as above, but with a 192-bit
key.

The "twofish128-cbc" cipher is the sane as above, but with a 128-bit
key.

The "aes256-cbc” cipher is AES (Advanced Encryption Standard)
[FIPS-197], in CBC node. This version uses a 256-bit key.

The "aes192-cbc" cipher is the sane as above, but with a 192-bit key.
The "aes128-cbc" cipher is the sanme as above, but with a 128-bit key.

The "serpent 256-cbc" cipher in CBC node, with a 256-bit key as
described in the Serpent AES subm ssion

The "serpent192-cbc" cipher is the sane as above, but with a 192-bit
key.

The "serpent 128-cbhc" cipher is the sane as above, but with a 128-bit
key.

The "arcfour" cipher is the Arcfour streamcipher with 128-bit keys.
The Arcfour cipher is believed to be conpatible with the RC4 cipher
[SCHNEI ER] . Arcfour (and RC4) has problens with weak keys, and
shoul d be used with caution.

The "idea-chc" cipher is the | DEA cipher in CBC node [SCHNEI ER] .

The "cast 128-cbc" cipher is the CAST-128 cipher in CBC node with a
128-bit key [RFC2144].

The "none" al gorithm specifies that no encryption is to be done.
Note that this method provides no confidentiality protection, and it
i's NOT RECOWENDED. Sone functionality (e.g., password

aut hentication) may be disabled for security reasons if this cipher
i s chosen.

Addi tional nethods nay be defined as specified in [SSH ARCH and in
[SSH NUMBERS] .

Yl onen & Lonvick St andards Track [Page 11]

RFC 4253 SSH Transport Layer Protocol January 2006

6.4. Data Integrity
Data integrity is protected by including with each packet a MAC t hat
is conputed froma shared secret, packet sequence nunber, and the
contents of the packet.

The message aut hentication algorithmand key are negotiated during

key exchange. Initially, no MACwill be in effect, and its length
MUST be zero. After key exchange, the 'mac’ for the selected MAC
algorithmw Il be conputed before encryption fromthe concatenation

of packet data:
mac = MAC(key, sequence_nunber || unencrypted packet)

where unencrypted_packet is the entire packet w thout 'mac’ (the
length fields, 'payload” and ’'random padding’), and sequence_nunber
is an inplicit packet sequence nunber represented as uint32. The
sequence_nunber is initialized to zero for the first packet, and is
increnented after every packet (regardl ess of whether encryption or
MAC is inuse). It is never reset, even if keys/algorithnms are
renegotiated later. It waps around to zero after every 2732
packets. The packet sequence_nunber itself is not included in the
packet sent over the wre.

The MAC al gorithns for each direction MJST run independently, and

i mpl ement ati ons MUST al | ow choosing the al gorithmindependently for
both directions. 1In practice however, it is RECOWENDED that the
same al gorithm be used in both directions.

The value of 'mac’ resulting fromthe MAC al gorithm MJUST be
transmtted without encryption as the | ast part of the packet. The
nunber of 'mac’ bytes depends on the al gorithm chosen

The following MAC algorithms are currently defi ned:

hmac- shal REQUI RED HVAC- SHAL (di gest |length = key
| ength = 20)
hmac- shal- 96 RECOMMVENDED first 96 bits of HVAC- SHAl (di gest
length = 12, key length = 20)
hmac- nd5 OPTI ONAL HVAC- MD5 (digest |length = key
I ength = 16)
hmac- nd5- 96 OPTI ONAL first 96 bits of HVAC-MD5 (di gest
length = 12, key length = 16)
none OPTI ONAL no MAC, NOT RECOMVENDED

The "hmac-*" algorithns are described in [RFC2104]. The "*-n" MACs
use only the first n bits of the resulting val ue.

Yl onen & Lonvick St andards Track [Page 12]

RFC 4253 SSH Transport Layer Protocol January 2006

SHA-1 is described in [FIPS-180-2] and MD5 is described in [RFC1321].

Addi tional methods may be defined, as specified in [SSH ARCH and in
[SSH- NUMBERS] .

6.5. Key Exchange Met hods

The key exchange nethod specifies how one-tinme session keys are
generated for encryption and for authentication, and how the server
aut hentication is done.

Two REQUI RED key exchange net hods have been defi ned:

di ffie-hell man-groupl-shal REQUI RED
di ffie-hell man-groupl4-shal REQUI RED

These nethods are described in Section 8.

Addi tional nethods nay be defined as specified in [SSH NUMBERS]. The
name "diffie-hell man-groupl-shal” is used for a key exchange mnet hod
using an Oakley group, as defined in [RFC2409]. SSH nmaintains its
own group identifier space that is logically distinct from Gakl ey

[RFC2412] and | KE; however, for one additional group, the Wrking
Group adopted the nunber assigned by [RFC3526], using diffie-

hel | man- groupl4-shal for the nanme of the second defined group

| mpl enent ati ons should treat these nanes as opaque identifiers and
shoul d not assume any rel ationshi p between the groups used by SSH and
the groups defined for |KE

6.6. Public Key Algorithns

This protocol has been designed to operate with al nbst any public key
format, encoding, and algorithm (signature and/or encryption).

There are several aspects that define a public key type:

0o Key format: how is the key encoded and how are certificates
represented. The key blobs in this protocol MAY contain
certificates in addition to keys.

o Signature and/or encryption algorithnms. Sone key types nmay not
support both signing and encryption. Key usage may al so be
restricted by policy statenments (e.g., in certificates). |In this
case, different key types SHOULD be defined for the different
policy alternatives.

o Encoding of signatures and/or encrypted data. This includes but
is not limted to padding, byte order, and data fornmats.

Yl onen & Lonvick St andards Track [Page 13]

RFC 4253 SSH Transport Layer Protocol January 2006

The followi ng public key and/or certificate formats are currently
defi ned:

ssh-dss REQUI RED si gn Raw DSS Key
ssh-rsa RECOMVENDED si gn Raw RSA Key
pgp- si gn-rsa OPTI ONAL sign QpenPGP certificates (RSA key)
pgp- si gn- dss OPTI ONAL sign QpenPGP certificates (DSS key)

Addi tional key types may be defined, as specified in [SSH ARCH and
i n [SSH NUMBERS] .

The key type MJUST al ways be explicitly known (from al gorithm
negoti ati on or sone other source). It is not nornally included in
t he key bl ob.

Certificates and public keys are encoded as foll ows:

string certificate or public key format identifier
byt e[n] key/certificate data

The certificate part may be a zero length string, but a public key is
required. This is the public key that will be used for

aut hentication. The certificate sequence contained in the
certificate blob can be used to provide authorization

Public key/certificate formats that do not explicitly specify a
signature format identifier MJST use the public key/certificate
format identifier as the signature identifier.

Si gnatures are encoded as foll ows:

string signature format identifier (as specified by the
public key/certificate fornmat)
byt e[n] signature blob in format specific encodi ng.

The "ssh-dss" key format has the follow ng specific encoding:

string "ssh-dss"
npi nt p
npi nt o}
npi nt g
npi nt y

Here, the 'p’, 'q’, 'g', and 'y’ paraneters formthe signature key
bl ob.

Yl onen & Lonvick St andards Track [Page 14]

RFC 4253 SSH Transport Layer Protocol January 2006

Signing and verifying using this key format is done according to the
Digital Signature Standard [FIPS-186-2] using the SHA-1 hash
[FI PS-180-2].

The resulting signature is encoded as foll ows:

string "ssh-dss"
string dss_signature_bl ob

The value for 'dss_signature_blob’ is encoded as a string containing
r, followed by s (which are 160-bit integers, w thout |engths or
paddi ng, unsigned, and in network byte order).

The "ssh-rsa" key format has the follow ng specific encoding:

string "ssh-rsa"
npi nt e
npi nt n

Here the e’ and 'n’ paraneters formthe signature key bl ob
Signing and verifying using this key format is perforned according to
t he RSASSA- PKCS1-v1_ 5 schene in [RFC3447] using the SHA-1 hash

The resulting signature is encoded as foll ows:

string "ssh-rsa"
string rsa_signature_bl ob

The value for ’'rsa_signature_blob’ is encoded as a string containing
s (which is an integer, without |engths or padding, unsigned, and in
network byte order).

The "pgp-sign-rsa"” nethod indicates the certificates, the public key,
and the signature are in OpenPGP conpati bl e binary format
([RFC2440]). This nethod indicates that the key is an RSA-key.

The "pgp-sign-dss" is as above, but indicates that the key is a
DSS- key.

7. Key Exchange
Key exchange (kex) begins by each side sending nane-lists of
supported algorithnms. Each side has a preferred algorithmin each

category, and it is assuned that nost inplenentations, at any given
time, will use the sane preferred algorithm Each side MAY guess

Yl onen & Lonvick St andards Track [Page 15]

RFC 4253 SSH Transport Layer Protocol January 2006

whi ch algorithmthe other side is using, and MAY send an initial key
exchange packet according to the algorithm if appropriate for the
preferred method.

The guess is considered wong if:

o the kex algorithmand/or the host key algorithmis guessed w ong
(server and client have different preferred algorithn), or

o if any of the other algorithms cannot be agreed upon (the
procedure is defined belowin Section 7.1).

O herwi se, the guess is considered to be right, and the
optimstically sent packet MJUST be handl ed as the first key exchange
packet .

However, if the guess was wong, and a packet was optim stically sent
by one or both parties, such packets MJST be ignored (even if the
error in the guess would not affect the contents of the initial
packet (s)), and the appropriate side MJST send the correct initial
packet .

A key exchange net hod uses explicit server authentication if the key
exchange nessages include a signature or other proof of the server’'s
authenticity. A key exchange nethod uses inplicit server
authentication if, in order to prove its authenticity, the server

al so has to prove that it knows the shared secret, K, by sending a
message and a corresponding MAC that the client can verify.

The key exchange net hod defined by this docunent uses explicit server
aut hentication. However, key exchange nethods with inplicit server
aut hentication MAY be used with this protocol. After a key exchange
with inmplicit server authentication, the client MIST wait for a
response to its service request nessage before sendi ng any further
dat a.

Yl onen & Lonvick St andards Track [Page 16]

RFC 4253 SSH Transport Layer Protocol January 2006

7.1. Algorithm Negotiation

Key exchange begi ns by each side sending the follow ng packet:

byte SSH MSG KEXINI' T

byt e[16] cooki e (random byt es)

nane- | i st kex _al gorithns

nane- | i st server _host _key algorithns

nane- | i st encryption_algorithns_client_to_server

name- | i st encryption_algorithms_server_to_client

name- | i st mac_al gorithns_client_to_server

nane- | i st mac_al gorithns_server _to_client

nane- | i st conpression_al gorithns_client _to_server
nane- | i st conpression_al gorithns_server _to _client
nane- | i st | anguages_client _to_server

name- | i st | anguages_server _to_client

bool ean first_kex_packet _foll ows

ui nt 32 0 (reserved for future extension)

Each of the algorithmnane-lists MJUST be a conma-separated |ist of
al gorithm nanmes (see Al gorithm Naming in [SSH ARCH and additiona

information in [SSH NUMBERS]). Each supported (allowed) algorithm
MUST be listed in order of preference, fromnost to | east.

The first algorithmin each name-1ist MJST be the preferred (guessed)
algorithm Each name-list MJST contain at |east one al gorithm nane.

cooki e
The ' cooki e’ MJIST be a random val ue generated by the sender
Its purpose is to make it inpossible for either side to fully
determi ne the keys and the session identifier

kex_al gorit hms
Key exchange al gorithns were defined above. The first
al gorithm MJUST be the preferred (and guessed) algorithm If
both sides nake the sane guess, that al gorithm MJST be used.
O herwi se, the follow ng algorithm MUST be used to choose a key
exchange nmethod: Iterate over client’s kex algorithnms, one at a
time. Choose the first algorithmthat satisfies the follow ng
condi tions:

+ the server al so supports the al gorithm
+ if the algorithmrequires an encryption-capabl e host key,
there is an encryption-capable algorithmon the server’s

server_host_key algorithnms that is al so supported by the
client, and

Yl onen & Lonvick St andards Track [Page 17]

RFC 4253

| f

SSH Transport Layer Protocol January 2006

+ if the algorithmrequires a signature-capabl e host key,
there is a signature-capable algorithmon the server’s
server _host _key_algorithms that is al so supported by the
client.

no algorithmsatisfying all these conditions can be found, the

connection fails, and both sides MJST di sconnect.

server _host _key_al gorithmns

A name-1list of the algorithns supported for the server host
key. The server lists the algorithms for which it has host
keys; the client lists the algorithns that it is willing to
accept. There MAY be nultiple host keys for a host, possibly
with different algorithns.

Some host keys may not support both signatures and encryption
(this can be determned fromthe algorithn), and thus not al
host keys are valid for all key exchange net hods.

Al gorithm sel ecti on depends on whet her the chosen key exchange
algorithmrequires a signature or an encryption-capabl e host
key. It MJIST be possible to determne this fromthe public key
al gorithmnane. The first algorithmon the client’s nane-1li st
that satisfies the requirenents and is also supported by the
server MJST be chosen. |f there is no such algorithm both

si des MJST di sconnect.

encryption_al gorithns

A name-1ist of acceptable symmetric encryption algorithms (al so
known as ci phers) in order of preference. The chosen
encryption algorithmto each direction MJST be the first
algorithmon the client’s nanme-list that is also on the
server’s name-list. |If there is no such algorithm both sides
MUST di sconnect.

Note that "none" nust be explicitly listed if it is to be
acceptable. The defined algorithmnanes are listed in Section
6. 3.

mac_al gorithns

A name-1ist of acceptable MAC algorithms in order of
preference. The chosen MAC al gorithm MJST be the first
algorithmon the client’s nane-list that is also on the
server’s nanme-list. |If there is no such algorithm both sides
MJUST di sconnect.

Note that "none" nust be explicitly listed if it is to be
acceptable. The MAC algorithmnanmes are listed in Section 6. 4.

Yl onen & Lonvick St andards Track [Page 18]

RFC 4253 SSH Transport Layer Protocol January 2006

conpression_al gorithns
A name-1ist of acceptable conpression algorithnms in order of
preference. The chosen conpression al gorithm MIST be the first
algorithmon the client’s nane-list that is also on the
server’s name-list. |If there is no such algorithm both sides
MJUST di sconnect.

Note that "none" nust be explicitly listed if it is to be
acceptable. The conpression algorithmnanes are listed in
Section 6. 2.

| anguages
This is a nanme-1list of |anguage tags in order of preference
[RFC3066]. Both parties MAY ignore this nane-list. |If there
are no | anguage preferences, this name-list SHOULD be enpty as
defined in Section 5 of [SSH ARCH]. Language tags SHOULD NOT
be present unless they are known to be needed by the sending

party.

first_kex_packet _foll ows
I ndi cat es whet her a guessed key exchange packet follows. |If a
guessed packet will be sent, this MJST be TRUE. If no guessed
packet will be sent, this MJST be FALSE

After receiving the SSH MsG KEXI NI T packet fromthe other side
each party will know whether their guess was right. |If the
other party’s guess was wong, and this field was TRUE, the
next packet MUIST be silently ignored, and both sides MJST then
act as determ ned by the negotiated key exchange method. |If
the guess was right, key exchange MJUST continue using the
guessed packet.

After the SSH MSG KEXINI T nmessage exchange, the key exchange
algorithmis run. It may involve several packet exchanges, as
specified by the key exchange net hod.

Once a party has sent a SSH MSG KEXINI T nessage for key exchange or
re-exchange, until it has sent a SSH MSG NEVKEYS nessage (Section
7.3), it MUST NOT send any nessages other than
o Transport |layer generic nessages (1 to 19) (but
SSH_MSG_SERVI CE_REQUEST and SSH_MSG_SERVI CE_ACCEPT MUST NOT be
sent);

0 Algorithmnegotiation nessages (20 to 29) (but further
SSH M5G KEXI NI T nmessages MUST NOT be sent);

o Specific key exchange nethod nmessages (30 to 49).

Yl onen & Lonvick St andards Track [Page 19]

RFC 4253 SSH Transport Layer Protocol January 2006

The provisions of Section 11 apply to unrecogni zed nessages.

Not e, however, that during a key re-exchange, after sending a

SSH M5G KEXI NI T nessage, each party MJST be prepared to process an
arbitrary nunber of nessages that may be in-flight before receiving a
SSH MSG KEXI NI T nessage fromthe other party.

7.2. CQutput from Key Exchange

The key exchange produces two val ues: a shared secret K, and an
exchange hash H Encryption and authentication keys are derived from
these. The exchange hash H fromthe first key exchange is
additionally used as the session identifier, which is a unique
identifier for this connection. It is used by authentication nethods
as a part of the data that is signed as a proof of possession of a
private key. Once computed, the session identifier is not changed,
even if keys are | ater re-exchanged.

Each key exchange nethod specifies a hash function that is used in
the key exchange. The sanme hash al gorithm MJST be used in key
derivation. Here, we'll call it HASH

Encryption keys MJST be conputed as HASH, of a known value and K, as
fol | ows:

o Initial IVclient to server: HASH(K || H|| "A" || session_id)
(Here K is encoded as nmpint and "A" as byte and session_id as raw
data. "A" means the single character A, ASCI | 65).

o Initial IV server to client: HASH(K || H|| "B" || session_id)

o Encryption key client to server: HASH(K || H|] "C" || session_id)
0o Encryption key server to client: HASH(K || H|] "D" || session_id)
0o Integrity key client to server: HASH(K || H || "E" || session_id)
o Integrity key server to client: HASH(K || H || "F" || session_id)

Key data MJST be taken fromthe begi nning of the hash output. As
many bytes as needed are taken fromthe begi nning of the hash val ue.
If the key I ength needed is |onger than the output of the HASH, the
key is extended by conmputing HASH of the concatenation of K and H and
the entire key so far, and appending the resulting bytes (as nmany as
HASH generates) to the key. This process is repeated until enough
key material is available; the key is taken fromthe begi nning of
this value. In other words:

Yl onen & Lonvick St andards Track [Page 20]

RFC 4253 SSH Transport Layer Protocol January 2006

KlI = HASH(K || H || X || session_id) (Xis e.g., "A")
K2 = HASH(K || H || K1)
K3 = HASH(K || H|] KL || K2)
key = KL || K2 || K3 []
This process will lose entropy if the ambunt of entropy in Kis

larger than the internal state size of HASH.
7.3. Taking Keys Into Use

Key exchange ends by each side sending an SSH MSG NEWKEYS nessage.
This nmessage is sent with the old keys and algorithnms. Al nessages
sent after this nmessage MJUST use the new keys and al gorithns.

When this nessage is received, the new keys and al gorithnms MJST be
used for receiving.

The purpose of this nessage is to ensure that a party is able to
respond with an SSH MSG DI SCONNECT nessage that the other party can
understand if somet hing goes wong with the key exchange.

byt e SSH_MSG_NEVKEYS
8. Diffie-Hell man Key Exchange

The Diffie-Hell man (DH) key exchange provides a shared secret that
cannot be determ ned by either party alone. The key exchange is
conbined with a signature with the host key to provi de host

aut hentication. This key exchange nethod provides explicit server
aut hentication as defined in Section 7.

The followi ng steps are used to exchange a key. In this, Cis the
client; Sis the server; pis alarge safe prine; g is a generator
for a subgroup of GF(p); g is the order of the subgroup; V.Sis Ss
identification string; V.Cis Cs identification string; KSis Ss
public host key; I Cis Cs SSH MSG KEXINIT nessage and | _Sis S's
SSH MSG KEXI NI T nessage that have been exchanged before this part
begi ns.

1. C generates a random nunber x (1 < x < q) and conputes
e = g™x nod p. Csends e to S.

Yl onen & Lonvick St andards Track [Page 21]

RFC 4253 SSH Transport Layer Protocol January 2006

2. S generates a random nunber y (0 <y <) and conputes
f =g*y nod p. S receives e. It conputes K = ey nod p,
H=hash(V.C|| V.S|| I_C|] I_S]|] KS|] el f] K
(these el enents are encoded according to their types; see bel ow,
and signature s on Hwith its private host key. S sends
(K.S|| f || s) to C The signing operation may involve a
second hashi ng operation

3. Cverifies that K Sreally is the host key for S (e.g., using
certificates or a local database). Cis also allowed to accept
the key without verification; however, doing so will render the
protocol insecure against active attacks (but may be desirable for
practical reasons in the short termin many environnents). C then
computes K = fAx nod p, H= hash(V.C||] V.S]|| I_C|] I_S|] KS
[| e]] f || K, and verifies the signature s on H

Values of e’ or 'f’ that are not in the range [1, p-1] MJST NOT be
sent or accepted by either side. |If this condition is violated, the
key exchange fails.

This is inplemented with the foll owi ng nessages. The hash al gorithm
for conputing the exchange hash is defined by the nethod nanme, and is
called HASH The public key algorithmfor signing is negotiated with
the SSH MSG KEXI NI T nessages.

First, the client sends the follow ng:

byt e SSH_MSG KEXDH_INI'T
npi nt e

The server then responds with the foll ow ng:

byte SSH _MSG_KEXDH _REPLY

string server public host key and certificates (K_S)
npi nt f

string signature of H

Yl onen & Lonvick St andards Track [Page 22]

RFC 4253 SSH Transport Layer Protocol January 2006

The hash His conputed as the HASH hash of the concatenation of the
fol | owi ng:

string V. C, the client’s identification string (CR and LF
e

xcl uded)
string V_S, the server’s identification string (CR and LF
excl uded)
string | C, the payload of the client’'s SSH MSG KEXINI T
string | _S, the payload of the server’'s SSH MSG KEXINI T
string K_S, the host key
npi nt e, exchange value sent by the client
npi nt f, exchange val ue sent by the server
npi nt K, the shared secret

This value is called the exchange hash, and it is used to
aut henticate the key exchange. The exchange hash SHOULD be kept
secret.

The signature al gorithm MUST be applied over H, not the origina

data. Most signature al gorithns include hashing and additiona
padding (e.g., "ssh-dss" specifies SHA-1 hashing). In that case, the
data is first hashed with HASH to conpute H, and H is then hashed
with SHA-1 as part of the signing operation

8.1. diffie-hellnman-groupl-shal

The "diffie-hell man-groupl-shal” method specifies the D ffie-Hellman
key exchange with SHA-1 as HASH, and Oakley Goup 2 [RFC2409] (1024-
bit MODP Group). This nethod MIST be supported for interoperability
as all of the known inplenentations currently support it. Note that
this method is named using the phrase "groupl", even though it
specifies the use of Cakley G oup 2.

8.2. diffie-hellman-groupl4-shal

The "diffie-hell man-groupl4-shal” nethod specifies a Diffie-Hellnman
key exchange with SHA-1 as HASH and GCakl ey Goup 14 [RFC3526] (2048-
bit MODP Group), and it MJST al so be support ed.

9. Key Re-Exchange

Key re-exchange is started by sending an SSH MSG KEXI NI T packet when
not al ready doing a key exchange (as described in Section 7.1). Wen
this message is received, a party MJST respond with its own

SSH MSG KEXI NI T nessage, except when the received SSH MSG KEXINI T
already was a reply. Either party MAY initiate the re-exchange, but
rol es MUST NOT be changed (i.e., the server remains the server, and
the client remains the client).

Yl onen & Lonvick St andards Track [Page 23]

RFC 4253 SSH Transport Layer Protocol January 2006

10.

Key re-exchange is perforned using whatever encryption was in effect
when t he exchange was started. Encryption, conpression, and MAC

nmet hods are not changed before a new SSH M5G NEVWKEYS is sent after
the key exchange (as in the initial key exchange). Re-exchange is
processed identically to the initial key exchange, except for the
session identifier that will remain unchanged. It is pernmissible to
change sone or all of the algorithns during the re-exchange. Host
keys can al so change. Al keys and initialization vectors are
reconputed after the exchange. Conpression and encryption contexts
are reset.

It is RECOWENDED that the keys be changed after each gi gabyte of
transmtted data or after each hour of connection time, whichever
cones sooner. However, since the re-exchange is a public key
operation, it requires a fair anmount of processing power and shoul d
not be performed too often

More application data may be sent after the SSH MSG NEVWKEYS packet
has been sent; key exchange does not affect the protocols that lie
above the SSH transport |ayer.

Servi ce Request
After the key exchange, the client requests a service. The service
is identified by a name. The format of names and procedures for
defining new nanmes are defined in [SSH ARCH and [SSH NUMBERS] .

Currently, the follow ng nanes have been reserved

ssh-userauth
ssh-connecti on

Simlar local naming policy is applied to the service nanes, as is
applied to the algorithmnanes. A |ocal service should use the
PRI VATE USE syntax of "servicenane@onai n"

byte SSH _MSG_SERVI CE_REQUEST
string servi ce nane

If the server rejects the service request, it SHOULD send an
appropriate SSH MSG DI SCONNECT message and MUST di sconnect.

When the service starts, it nmay have access to the session identifier
generated during the key exchange.

Yl onen & Lonvick St andards Track [Page 24]

RFC 4253 SSH Transport Layer Protocol January 2006

11.

11.

If the server supports the service (and pernits the client to use
it), it MJUST respond with the foll ow ng:

byt e SSH_MSG_SERVI CE_ACCEPT
string servi ce name

Message nunbers used by services should be in the area reserved for
them (see [SSH ARCH] and [SSH NUMBERS]). The transport level wll
continue to process its own nessages.
Note that after a key exchange with inplicit server authentication
the client MUST wait for a response to its service request nessage
bef ore sendi ng any further data.

Addi tional Messages
Ei ther party may send any of the foll ow ng nessages at any tine.

1. Disconnection Message

byte SSH_MSG_DI SCONNECT

ui nt 32 reason code

string description in |1 SO 10646 UTF-8 encodi ng [RFC3629]
string | anguage tag [RFC3066]

Thi s message causes i medi ate termination of the connection. Al
i mpl enent ati ons MJUST be able to process this nessage; they SHOULD be
able to send this nmessage.

The sender MUST NOT send or receive any data after this nessage, and
the recipient MUST NOT accept any data after receiving this nessage.
The Di sconnection Message 'description’ string gives a nore specific
explanation in a human-readable form The Di sconnecti on Message
"reason code’ gives the reason in a nore nmachi ne-readabl e format
(suitable for localization), and can have the values as displayed in
the table below. Note that the decinal representation is displayed
inthis table for readability, but the values are actually uint32
val ues.

Yl onen & Lonvick St andards Track [Page 25]

RFC 4253 SSH Transport Layer Protocol January 2006

11.

11.

Synbol i ¢ nane reason code
SSH_DI SCONNECT_HOST_NOT_ALLONED _TO_CONNECT 1
SSH_DI SCONNECT _PROTOCOL_ERROR 2
SSH_DI SCONNECT_KEY_EXCHANGE_FAI LED 3
SSH_DI SCONNECT _RESERVED 4
SSH_DI SCONNECT_MAC_ERROR 5
SSH_DI SCONNECT_COVPRESSI ON_ERROR 6
SSH DI SCONNECT_SERVI CE_NOT_AVAI LABLE 7
SSH_DI SCONNECT_PROTOCOL_VERSI ON_NOT_SUPPORTED 8
SSH_DI SCONNECT_HOST_KEY_NOT_VERI FI ABLE 9

SSH_DI SCONNECT_CONNECT! ON_LOST 10
SSH_DI SCONNECT_BY_APPLI CATI ON 11
SSH_DI SCONNECT_TOO_MANY_CONNECTI ONS 12
SSH_DI SCONNECT_AUTH_CANCELLED_BY_USER 13
SSH_DI SCONNECT_NO_MORE_AUTH_METHODS_AVAI LABLE 14
SSH_DI SCONNECT_| LLEGAL_USER_NAVE 15

If the "description’ string is displayed, the control character
filtering discussed in [SSH ARCH] should be used to avoid attacks by
sending term nal control characters.

Requests for assignments of new D sconnection Message ’'reason code
val ues (and associ ated 'description’ text) in the range of 0x00000010
to OXxFDFFFFFF MUST be done through the | ETF CONSENSUS net hod, as
described in [RFC2434]. The Di sconnection Message 'reason code

val ues in the range of OxFEO00000 through OxFFFFFFFF are reserved for
PRI VATE USE. As noted, the actual instructions to the IANA are in

[SSH NUMBERS] .

2. lgnored Data Message

byte SSH_MSG_| GNORE
string dat a

Al'l i nplenentations MJST understand (and ignore) this nessage at any
time (after receiving the identification string). No inplenentation
is required to send them This nessage can be used as an additiona
protection neasure agai nst advanced traffic anal ysis techni ques.

3. Debug Message

byt e SSH MG _DEBUG

bool ean al ways_di spl ay

string nmessage in | SO 10646 UTF-8 encodi ng [RFC3629]
string | anguage tag [RFC3066]

Yl onen & Lonvick St andards Track [Page 26]

RFC 4253 SSH Transport Layer Protocol January 2006

11.

12.

13.

Al'l i nplenmentations MJST understand this nessage, but they are
allowed to ignore it. This nmessage is used to transnmit infornmation
that may hel p debugging. |[If ’always_display’ is TRUE, the nessage
SHOULD be di spl ayed. Oherwi se, it SHOULD NOT be displ ayed unl ess
debuggi ng i nformati on has been explicitly requested by the user.

The 'nmessage’ doesn’t need to contain a newine. It is, however,
all owed to consist of nultiple lines separated by CRLF (Carri age
Return - Line Feed) pairs.

If the "'nmessage’ string is displayed, the term nal control character
filtering discussed in [SSH ARCH] should be used to avoid attacks by
sending term nal control characters.

4. Reserved Messages

An inmpl enentation MIST respond to all unrecogni zed nessages with an
SSH MSG_UNI MPLEMENTED nessage in the order in which the nessages were
recei ved. Such nessages MJST be otherwi se ignored. Later protocol
versi ons nmay define other nmeanings for these nessage types.

byt e SSH_MSG_UNI MPLEMENTED
ui nt 32 packet sequence nunber of rejected nessage

Summary of Message Numbers

The following is a summary of nessages and their associ ated nmessage
nurnber .

SSH_MSG_DI SCONNECT
SSH_MSG_| GNORE
SSH_MSG_UNI MPLEMENTED
SSH_MSG_DEBUG
SSH_MSG_SERVI CE_REQUEST
SSH_MSG_SERVI CE_ACCEPT
SSH_MSG_KEXI NI T
SSH_MSG_NEVKEYS

NN WNPE

0
1
Not e that nunbers 30-49 are used for kex packets. Different kex
nmet hods may reuse nessage nunbers in this range.

| ANA Consi derati ons
Thi s docunent is part of a set. The | ANA considerations for the SSH

protocol as defined in [SSH ARCH], [SSH USERAUTH], [SSH CONNECT], and
this docunent, are detailed in [SSH NUMBERS] .

Yl onen & Lonvick St andards Track [Page 27]

RFC 4253 SSH Transport Layer Protocol January 2006

14. Security Considerations

Thi s protocol provides a secure encrypted channel over an insecure
network. It performs server host authentication, key exchange,
encryption, and integrity protection. It also derives a unique
session I D that may be used by higher-level protocols.

Full security considerations for this protocol are provided in

[SSH ARCH] .

Yl onen & Lonvick St andards Track [Page 28]

RFC 4253

15. References

SSH Transport Layer Protocol January 2006

15.1. Normative References

[SSH ARCH|

[SSH USERAUTH]

[SSH CONNECT]

[SSH NUVBERS]

[RFC1321]

[RFC1950]

[RFC1951]

[RFC2104]

[RFC2119]

[RFC2144]

[RFC2409]

[RFC2434]

[RFC2440]

Yl onen & Lonvick

Ylonen, T. and C. Lonvick, Ed., "The Secure Shel
(SSH) Protocol Architecture", RFC 4251, January 2006.

Yl onen, T. and C. Lonvick, Ed., "The Secure Shel
(SSH) Authentication Protocol", RFC 4252, January
2006.

Yl onen, T. and C. Lonvick, Ed., "The Secure Shel
(SSH) Connection Protocol", RFC 4254, January 2006.

Lehtinen, S. and C. Lonvick, Ed., "The Secure Shel
(SSH) Protocol Assigned Nunbers", RFC 4250, January
2006.

Rivest, R, "The MD5 Message-Digest Algorithm", RFC
1321, April 1992.

Deutsch, P. and J-L. Gailly, "ZLIB Conpressed Data
For mat Specification version 3.3", RFC 1950, May 1996.

Deut sch, P., "DEFLATE Conpressed Data For nat
Specification version 1.3", RFC 1951, My 1996.

Krawczyk, H., Bellare, M, and R Canetti, "HWMAC
Keyed- Hashi ng for Message Authentication", RFC 2104,
February 1997.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Adans, C., "The CAST-128 Encryption Al gorithn, RFC
2144, May 1997.

Harkins, D. and D. Carrel, "The Internet Key Exchange
(IKE)", RFC 2409, Novenber 1998.

Narten, T. and H Alvestrand, "Cuidelines for Witing
an | ANA Consi derations Section in RFCs", BCP 26, RFC
2434, Cctober 1998.

Callas, J., Donnerhacke, L., Finney, H, and R

Thayer, "QpenPGP Message Format", RFC 2440, Novenber
1998.

St andards Track [Page 29]

RFC 4253

[RFC3066]

[RFC3447]

[RFC3526]

[RFC3629]

[FI PS- 180- 2]

[FI PS- 186- 2]

[FI PS-197]

[FI PS- 46- 3]

[SCHNEI ER]

[TWOFI SH

SSH Transport Layer Protocol January 2006

Al vestrand, H, "Tags for the ldentification of
Languages”, BCP 47, RFC 3066, January 2001.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

Kivinen, T. and M Kojo, "Mre Mdul ar Exponenti al
(MCDP) Diffie-Hellman groups for Internet Key Exchange
(IKE)", RFC 3526, May 2003.

Yergeau, F., "UTF-8, a transfornmation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

US National Institute of Standards and Technol ogy,
"Secure Hash Standard (SHS)", Federal Infornmation
Processi ng Standards Publication 180-2, August 2002.

US National Institute of Standards and Technol ogy,
"Digital Signature Standard (DSS)", Federal

I nformation Processing Standards Publication 186-2,
January 2000.

US National Institute of Standards and Technol ogy,
"Advanced Encryption Standard (AES)", Federal

I nformation Processing Standards Publication 197,
Novernber 2001.

US National Institute of Standards and Technol ogy,
"Data Encryption Standard (DES)", Federal Information
Processi ng Standards Publication 46-3, Cctober 1999.

Schneier, B., "Applied Cryptography Second Edition:
protocol s al gorithnms and source in code in C', John
Wl ey and Sons, New York, NY, 1996.

Schnei er, B., "The Twofish Encryptions Al gorithm A
128-Bit Bl ock G pher, 1st Edition", March 1999.

15. 2. I nformati ve References

[RFCD894]

[RFC1661]

Yl onen & Lonvick

Hornig, C., "Standard for the transnission of IP
dat agrans over Ethernet networks", STD 41, RFC 894,
April 1984.

Si mpson, W, "The Point-to-Point Protocol (PPP)", STD
51, RFC 1661, July 1994.

St andards Track [Page 30]

RFC 4253

[RFC2412]

[ssh-1.2.30]

Aut hors’ Addr esses

Tatu Yl onen
SSH Communi cat i
Valinmotie 17
00380 Hel si nki
Fi nl and

EMai | : yl o@sh.

SSH Transport Layer Protocol January 2006

O man, H., "The QAKLEY Key Determ nation Protocol",
RFC 2412, Novenber 1998.

Yl onen, T., "ssh-1.2.30/RFC', File within conpressed
tarball ftp://ftp.funet.fi/pub/unix/security/
| ogi n/ ssh/ssh-1.2.30.tar. gz, Novenber 1995.

ons Security Corp

com

Chris Lonvick (editor)

Ci sco Systens,
12515 Research
Austin 78759
USA

EMmi | : cl onvi ck

Trademark Notice

I nc.
Bl vd.

@i sco. com

"ssh" is a registered trademark in the United States and/or other

countri es.

Yl onen & Lonvick

St andards Track [Page 31]

RFC 4253 SSH Transport Layer Protocol January 2006

Ful I Copyright Statenent
Copyright (C) The Internet Society (2006).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the | ETF
Admini strative Support Activity (IASA)

Yl onen & Lonvick St andards Track [Page 32]

