
Network Working Group B. Hoehrmann
Request for Comments: 4329 April 2006
Category: Informational

 Scripting Media Types

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes the registration of media types for the
 ECMAScript and JavaScript programming languages and conformance
 requirements for implementations of these types.

Table of Contents

 1. Introduction ..2
 2. Conformance and Document Conventions2
 3. Deployed Scripting Media Types and Compatibility2
 4. Character Encoding Scheme Handling4
 4.1. Charset Parameter ..4
 4.2. Character Encoding Scheme Detection4
 4.3. Character Encoding Scheme Error Handling6
 5. Security Considerations ...6
 6. IANA Considerations ...8
 7. JavaScript Media Types ..9
 7.1. text/javascript (obsolete)9
 7.2. application/javascript10
 8. ECMAScript Media Types ...11
 8.1. text/ecmascript (obsolete)11
 8.2. application/ecmascript12
 9. References ...13
 9.1. Normative References13
 9.2. Informative References13

Hoehrmann Informational [Page 1]

RFC 4329 Scripting Media Types April 2006

1. Introduction

 This memo describes media types for the JavaScript and ECMAScript
 programming languages. Refer to "Brief History" and "Overview" in
 [ECMA] for background information on these languages.

 Programs written in these programming languages have historically
 been interchanged using inapplicable, experimental, and unregistered
 media types. This document defines four of the most commonly used
 media types for such programs to reflect this usage in the IANA media
 type registry, to foster interoperability by defining underspecified
 aspects, and to provide general security considerations.

2. Conformance and Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, [RFC2119] and
 indicate requirement levels for compliant implementations.
 Requirements apply to all implementations unless otherwise stated.

 An implementation is a software module that supports one of the media
 types defined in this document. Software modules may support
 multiple media types but conformance is considered individually for
 each type.

 Implementations that fail to satisfy one or more "MUST" requirements
 are considered non-compliant. Implementations that satisfy all
 "MUST" requirements, but fail to satisfy one or more "SHOULD"
 requirements, are said to be "conditionally compliant". All other
 implementations are "unconditionally compliant".

3. Deployed Scripting Media Types and Compatibility

 Various unregistered media types have been used in an ad-hoc fashion
 to label and exchange programs written in ECMAScript and JavaScript.
 These include:

 +---+
 | text/javascript | text/ecmascript |
 | text/javascript1.0 | text/javascript1.1 |
 | text/javascript1.2 | text/javascript1.3 |
 | text/javascript1.4 | text/javascript1.5 |
 | text/jscript | text/livescript |
 | text/x-javascript | text/x-ecmascript |
 | application/x-javascript | application/x-ecmascript |
 | application/javascript | application/ecmascript |
 +---+

Hoehrmann Informational [Page 2]

RFC 4329 Scripting Media Types April 2006

 Use of the "text" top-level type for this kind of content is known to
 be problematic. This document thus defines text/javascript and text/
 ecmascript but marks them as "obsolete". Use of experimental and
 unregistered media types, as listed in part above, is discouraged.
 The media types,

 * application/javascript
 * application/ecmascript

 which are also defined in this document, are intended for common use
 and should be used instead.

 This document defines equivalent processing requirements for the
 types text/javascript, text/ecmascript, and application/javascript.
 Use of and support for the media type application/ecmascript is
 considerably less widespread than for other media types defined in
 this document. Using that to its advantage, this document defines
 stricter processing rules for this type to foster more interoperable
 processing.

 The types defined in this document are applicable to scripts written
 in [JS15] and [ECMA], respectively, as well as to scripts written in
 a compatible language or profile such as [EcmaCompact].

 This document does not address scripts written in other languages.
 In particular, future versions of JavaScript, future editions of
 [ECMA], and extensions to [ECMA], such as [E4X], are not directly
 addressed. This document may be updated to take other content into
 account.

 Updates of this document may introduce new optional parameters;
 implementations MUST consider the impact of such an update. For the
 application/ecmascript media type, implementations MUST NOT process
 content labeled with a "version" parameter as if no such parameter
 had been specified; this is typically achieved by treating the
 content as unsupported. This error handling behavior allows
 extending the definition of the media type for content that cannot be
 processed by implementations of [ECMA].

 The programming languages defined in [JS15] and [ECMA] share a common
 subset. Choice of a type for scripts compatible with both languages
 is out of the scope of this document.

 This document does not define how fragment identifiers in resource
 identifiers ([RFC3986], [RFC3987]) for documents labeled with one of

Hoehrmann Informational [Page 3]

RFC 4329 Scripting Media Types April 2006

 the media types defined in this document are resolved. An update of
 this document may define processing of fragment identifiers.

4. Character Encoding Scheme Handling

 Refer to [RFC3536] for a discussion of terminology used in this
 section. Source text (as defined in [ECMA], section 6) can be binary
 source text. Binary source text is a textual data object that
 represents source text encoded using a character encoding scheme. A
 textual data object is a whole text protocol message or a whole text
 document, or a part of it, that is treated separately for purposes of
 external storage and retrieval. An implementation’s internal
 representation of source text and source text are not considered
 binary source text.

 Implementations need to determine a character encoding scheme in
 order to decode binary source text to source text. The media types
 defined in this document allow an optional charset parameter to
 explicitly specify the character encoding scheme used to encode the
 source text.

 How implementations determine the character encoding scheme can be
 subject to processing rules that are out of the scope of this
 document. For example, transport protocols can require that a
 specific character encoding scheme is to be assumed if the optional
 charset parameter is not specified, or they can require that the
 charset parameter is used in certain cases. Such requirements are
 not considered part of this document.

 Implementations that support binary source text MUST support binary
 source text encoded using the UTF-8 [RFC3629] character encoding
 scheme. Other character encoding schemes MAY be supported. Use of
 UTF-8 to encode binary source text is encouraged but not required.

4.1. Charset Parameter

 The charset parameter provides a means to specify the character
 encoding scheme of binary source text. Its value MUST match the
 mime-charset production defined in [RFC2978], section 2.3, and SHOULD
 be a registered charset [CHARSETS]. An illegal value is a value that
 does not match that production.

4.2. Character Encoding Scheme Detection

 It is possible that implementations cannot interoperably determine a
 single character encoding scheme simply by complying with all
 requirements of the applicable specifications. To foster
 interoperability in such cases, the following algorithm is defined.

Hoehrmann Informational [Page 4]

RFC 4329 Scripting Media Types April 2006

 Implementations apply this algorithm until a single character
 encoding scheme is determined.

 1. If a charset parameter with a legal value is specified, the value
 determines the character encoding scheme.

 2. If the binary source text starts with a Unicode encoding form
 signature, the signature determines the encoding. The following
 octet sequences, at the very beginning of the binary source text,
 are considered with their corresponding character encoding
 schemes:

 +------------------+----------+
 | Leading sequence | Encoding |
 +------------------+----------+
 | FF FE 00 00 | UTF-32LE |
 | 00 00 FE FF | UTF-32BE |
 | FF FE | UTF-16LE |
 | FE FF | UTF-16BE |
 | EF BB BF | UTF-8 |
 +------------------+----------+

 The longest matching octet sequence determines the encoding.
 Implementations of this step MUST use these octet sequences to
 determine the character encoding scheme, even if the determined
 scheme is not supported. If this step determines the character
 encoding scheme, the octet sequence representing the Unicode
 encoding form signature MUST be ignored when decoding the binary
 source text to source text.

 3. The character encoding scheme is determined to be UTF-8.

 If the character encoding scheme is determined to be UTF-8 through
 any means other than step 2 as defined above and the binary source
 text starts with the octet sequence EF BB BF, the octet sequence is
 ignored when decoding the binary source text to source text. (The
 sequence will also be ignored if step 2 determines the character
 encoding scheme per the requirements in step 2).

 In the cited case, implementations of the types text/javascript,
 text/ecmascript, and application/javascript SHOULD and
 implementations of the type application/ecmascript MUST implement the
 requirements defined in this section.

Hoehrmann Informational [Page 5]

RFC 4329 Scripting Media Types April 2006

4.3. Character Encoding Scheme Error Handling

 The following error processing behavior is RECOMMENDED for the media
 types text/javascript, text/ecmascript, and application/javascript,
 and REQUIRED for the media type application/ecmascript.

 o If the value of a charset parameter is illegal, implementations
 MUST either recover from the error by ignoring the parameter or
 consider the character encoding scheme unsupported.

 o If binary source text is determined to have been encoded using a
 certain character encoding scheme that the implementation is
 unable to process, implementations MUST consider the resource
 unsupported (i.e., they MUST NOT decode the binary source text
 using a different character encoding scheme).

 o Binary source text can be determined to have been encoded using a
 certain character encoding scheme but contain octet sequences that
 are not legal according to that scheme. This is typically caused
 by a lack of proper character encoding scheme information; such
 errors can pose a security risk, as discussed in section 5.

 Implementations SHOULD detect such errors as early as possible; in
 particular, they SHOULD detect them before interpreting any of the
 source text. Implementations MUST detect such errors and MUST NOT
 interpret any source text after detecting such an error. Such
 errors MAY be reported, e.g., as syntax errors as defined in
 [ECMA], section 16.

 This document does not define facilities that allow specification of
 the character encoding scheme used to encode binary source text in a
 conflicting manner. There are only two sources for character
 encoding scheme information: the charset parameter and the Unicode
 encoding form signature. If a charset parameter is specified, binary
 source text is processed as defined for that character encoding
 scheme.

5. Security Considerations

 Refer to [RFC3552] for a discussion of terminology used in this
 section. Examples in this section and discussions of interactions of
 host environments with scripts and extensions to [ECMA] are to be
 understood as non-exhaustive and of a purely illustrative nature.

 The programming language defined in [ECMA] is not intended to be
 computationally self-sufficient, rather it is expected that the
 computational environment provides facilities to programs to enable

Hoehrmann Informational [Page 6]

RFC 4329 Scripting Media Types April 2006

 specific functionality. Such facilities constitute unknown factors
 and are thus considered out of the scope of this document.

 Derived programming languages are permitted to include additional
 functionality that is not described in [ECMA]; such functionality
 constitutes an unknown factor and is thus considered out of the scope
 of this document. In particular, extensions to [ECMA] defined for
 the JavaScript programming language are not discussed in this
 document.

 Uncontrolled execution of scripts can be exceedingly dangerous.
 Implementations that execute scripts MUST give consideration to their
 application’s threat models and those of the individual features they
 implement; in particular, they MUST ensure that untrusted content is
 not executed in an unprotected environment.

 Specifications for host environment facilities and for derived
 programming languages should include security considerations. If an
 implementation supports such facilities, the respective security
 considerations apply. In particular, if scripts can be referenced
 from or included in specific document formats, the considerations for
 the embedding or referencing document format apply.

 For example, scripts embedded in application/xhtml+xml [RFC3236]
 documents could be enabled through the host environment to manipulate
 the document instance, which could cause the retrieval of remote
 resources; security considerations regarding retrieval of remote
 resources of the embedding document would apply in this case.

 This circumstance can further be used to make information, that is
 normally only available to the script, available to a web server by
 encoding the information in the resource identifier of the resource,
 which can further enable eavesdropping attacks. Implementation of
 such facilities is subject to the security considerations of the host
 environment, as discussed above.

 The facilities defined in [ECMA] do not include provisions for input
 of external data, output of computed results, or modification of
 aspects of the host environment. An implementation of only the
 facilities defined in [ECMA] is not considered to support dangerous
 operations.

 The programming language defined in [ECMA] does include facilities to
 loop, cause computationally complex operations, or consume large
 amounts of memory; this includes, but is not limited to, facilities
 that allow dynamically generated source text to be executed (e.g.,
 the eval() function); uncontrolled execution of such features can
 cause denial of service, which implementations MUST protect against.

Hoehrmann Informational [Page 7]

RFC 4329 Scripting Media Types April 2006

 A host environment can provide facilities to access external input.
 Scripts that pass such input to the eval() function or similar
 language features can be vulnerable to code injection attacks.
 Scripts are expected to protect against such attacks.

 A host environment can provide facilities to output computed results
 in a user-visible manner. For example, host environments supporting
 a graphical user interface can provide facilities that enable scripts
 to present certain messages to the user. Implementations MUST take
 steps to avoid confusion of the origin of such messages. In general,
 the security considerations for the host environment apply in such a
 case as discussed above.

 Implementations are required to support the UTF-8 character encoding
 scheme; the security considerations of [RFC3629] apply. Additional
 character encoding schemes may be supported; support for such schemes
 is subject to the security considerations of those schemes.

 Source text is expected to be in Unicode Normalization Form C.
 Scripts and implementations MUST consider security implications of
 unnormalized source text and data. For a detailed discussion of such
 implications refer to the security considerations in [RFC3629].

 Scripts can be executed in an environment that is vulnerable to code
 injection attacks. For example, a CGI script [RFC3875] echoing user
 input could allow the inclusion of untrusted scripts that could be
 executed in an otherwise trusted environment. This threat scenario
 is subject to security considerations that are out of the scope of
 this document.

 The "data" resource identifier scheme [RFC2397], in combination with
 the types defined in this document, could be used to cause execution
 of untrusted scripts through the inclusion of untrusted resource
 identifiers in otherwise trusted content. Security considerations of
 [RFC2397] apply.

 Implementations can fail to implement a specific security model or
 other means to prevent possibly dangerous operations. Such failure
 could possibly be exploited to gain unauthorized access to a system
 or sensitive information; such failure constitutes an unknown factor
 and is thus considered out of the scope of this document.

6. IANA Considerations

 This document registers four new media types as defined in the
 following sections.

Hoehrmann Informational [Page 8]

RFC 4329 Scripting Media Types April 2006

7. JavaScript Media Types

7.1. text/javascript (obsolete)

 Type name: text
 Subtype name: javascript
 Required parameters: none
 Optional parameters: charset, see section 4.1.
 Encoding considerations:
 The same as the considerations in section 3.1 of [RFC3023].

 Security considerations: See section 5.
 Interoperability considerations:
 None, except as noted in other sections of this document.

 Published specification: [JS15]
 Applications which use this media type:
 Script interpreters as discussed in this document.

 Additional information:

 Magic number(s): n/a
 File extension(s): .js
 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information:
 See Author’s Address section.

 Intended usage: OBSOLETE
 Restrictions on usage: n/a
 Author: See Author’s Address section.
 Change controller: The IESG.

Hoehrmann Informational [Page 9]

RFC 4329 Scripting Media Types April 2006

7.2. application/javascript

 Type name: application
 Subtype name: javascript
 Required parameters: none
 Optional parameters: charset, see section 4.1.
 Encoding considerations:
 The same as the considerations in section 3.2 of [RFC3023].

 Security considerations: See section 5.
 Interoperability considerations:
 None, except as noted in other sections of this document.

 Published specification: [JS15]
 Applications which use this media type:
 Script interpreters as discussed in this document.

 Additional information:

 Magic number(s): n/a
 File extension(s): .js
 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information:
 See Author’s Address section.

 Intended usage: COMMON
 Restrictions on usage: n/a
 Author: See Author’s Address section.
 Change controller: The IESG.

Hoehrmann Informational [Page 10]

RFC 4329 Scripting Media Types April 2006

8. ECMAScript Media Types

8.1. text/ecmascript (obsolete)

 Type name: text
 Subtype name: ecmascript
 Required parameters: none
 Optional parameters: charset, see section 4.1.
 Encoding considerations:
 The same as the considerations in section 3.1 of [RFC3023].

 Security considerations: See section 5.
 Interoperability considerations:
 None, except as noted in other sections of this document.

 Published specification: [ECMA]
 Applications which use this media type:
 Script interpreters as discussed in this document.

 Additional information:

 Magic number(s): n/a
 File extension(s): .es
 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information:
 See Author’s Address section.

 Intended usage: OBSOLETE
 Restrictions on usage: n/a
 Author: See Author’s Address section.
 Change controller: The IESG.

Hoehrmann Informational [Page 11]

RFC 4329 Scripting Media Types April 2006

8.2. application/ecmascript

 Type name: application
 Subtype name: ecmascript
 Required parameters: none
 Optional parameters: charset, see section 4.1.

 Note: Section 3 defines error handling behavior for content
 labeled with a "version" parameter.

 Encoding considerations:
 The same as the considerations in section 3.2 of [RFC3023].

 Security considerations: See section 5.
 Interoperability considerations:
 None, except as noted in other sections of this document.

 Published specification: [ECMA]
 Applications which use this media type:
 Script interpreters as discussed in this document.

 Additional information:

 Magic number(s): n/a
 File extension(s): .es
 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information:
 See Author’s Address section.

 Intended usage: COMMON
 Restrictions on usage: n/a
 Author: See Author’s Address section.
 Change controller: The IESG.

Hoehrmann Informational [Page 12]

RFC 4329 Scripting Media Types April 2006

9. References

9.1. Normative References

 [CHARSETS] IANA, "Assigned character sets",
 <http://www.iana.org/assignments/character-sets>.

 [ECMA] European Computer Manufacturers Association,
 "ECMAScript Language Specification 3rd Edition",
 December 1999, <http://www.ecma-international.org/
 publications/standards/Ecma-262.htm>

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2978] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3536] Hoffman, P., "Terminology Used in Internationalization
 in the IETF", RFC 3536, May 2003.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing
 RFC Text on Security Considerations", BCP 72, RFC
 3552, July 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

9.2. Informative References

 [E4X] European Computer Manufacturers Association,
 "ECMAScript for XML (E4X)", June 2004,
 <http://www.ecma-international.org/
 publications/standards/Ecma-357.htm>

 [EcmaCompact] European Computer Manufacturers Association,
 "ECMAScript 3rd Edition Compact Profile", June 2001,
 <http://www.ecma-international.org/
 publications/standards/Ecma-327.htm>

 [JS15] Netscape Communications Corp., "Core JavaScript
 Reference 1.5", September 2000,
 <http://web.archive.org/*/http://
 devedge.netscape.com/library/manuals/2000
 /javascript/1.5/reference/>.

Hoehrmann Informational [Page 13]

RFC 4329 Scripting Media Types April 2006

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397,
 August 1998.

 [RFC3236] Baker, M. and P. Stark, "The ’application/xhtml+xml’
 Media Type", RFC 3236, January 2002.

 [RFC3875] Robinson, D. and K. Coar, "The Common Gateway
 Interface (CGI) Version 1.1", RFC 3875, October 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 STD 66, RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized
 Resource Identifiers (IRIs)", RFC 3987, January 2005.

Author’s Address

 Bjoern Hoehrmann
 Weinheimer Strasse 22
 Mannheim D-68309
 Germany

 EMail: bjoern@hoehrmann.de
 URI: http://bjoern.hoehrmann.de

 Note: Please write "Bjoern Hoehrmann" with o-umlaut (U+00F6) wherever
 possible, e.g., as "Björn Höhrmann" in HTML and XML.

Hoehrmann Informational [Page 14]

RFC 4329 Scripting Media Types April 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Hoehrmann Informational [Page 15]

