
Network Working Group E. Kohler
Request for Comments: 4340 UCLA
Category: Standards Track M. Handley
 UCL
 S. Floyd
 ICIR
 March 2006

 Datagram Congestion Control Protocol (DCCP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The Datagram Congestion Control Protocol (DCCP) is a transport
 protocol that provides bidirectional unicast connections of
 congestion-controlled unreliable datagrams. DCCP is suitable for
 applications that transfer fairly large amounts of data and that can
 benefit from control over the tradeoff between timeliness and
 reliability.

Table of Contents

 1. Introduction ..5
 2. Design Rationale ..6
 3. Conventions and Terminology7
 3.1. Numbers and Fields ...7
 3.2. Parts of a Connection8
 3.3. Features ...9
 3.4. Round-Trip Times ...9
 3.5. Security Limitation ..9
 3.6. Robustness Principle10
 4. Overview ...10
 4.1. Packet Types ..10
 4.2. Packet Sequencing ...11
 4.3. States ..12
 4.4. Congestion Control Mechanisms14

Kohler, et al. Standards Track [Page 1]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 4.5. Feature Negotiation Options15
 4.6. Differences from TCP16
 4.7. Example Connection ..17
 5. Packet Formats ...18
 5.1. Generic Header ..19
 5.2. DCCP-Request Packets22
 5.3. DCCP-Response Packets23
 5.4. DCCP-Data, DCCP-Ack, and DCCP-DataAck Packets23
 5.5. DCCP-CloseReq and DCCP-Close Packets25
 5.6. DCCP-Reset Packets ..25
 5.7. DCCP-Sync and DCCP-SyncAck Packets28
 5.8. Options ...29
 5.8.1. Padding Option31
 5.8.2. Mandatory Option31
 6. Feature Negotiation ..32
 6.1. Change Options ..32
 6.2. Confirm Options ...33
 6.3. Reconciliation Rules33
 6.3.1. Server-Priority34
 6.3.2. Non-Negotiable34
 6.4. Feature Numbers ...35
 6.5. Feature Negotiation Examples36
 6.6. Option Exchange ...37
 6.6.1. Normal Exchange38
 6.6.2. Processing Received Options38
 6.6.3. Loss and Retransmission40
 6.6.4. Reordering ...41
 6.6.5. Preference Changes42
 6.6.6. Simultaneous Negotiation42
 6.6.7. Unknown Features43
 6.6.8. Invalid Options43
 6.6.9. Mandatory Feature Negotiation44
 7. Sequence Numbers ...44
 7.1. Variables ...45
 7.2. Initial Sequence Numbers45
 7.3. Quiet Time ..46
 7.4. Acknowledgement Numbers47
 7.5. Validity and Synchronization47
 7.5.1. Sequence and Acknowledgement Number Windows48
 7.5.2. Sequence Window Feature49
 7.5.3. Sequence-Validity Rules49
 7.5.4. Handling Sequence-Invalid Packets51
 7.5.5. Sequence Number Attacks52
 7.5.6. Sequence Number Handling Examples54
 7.6. Short Sequence Numbers55
 7.6.1. Allow Short Sequence Numbers Feature55
 7.6.2. When to Avoid Short Sequence Numbers56
 7.7. NDP Count and Detecting Application Loss56

Kohler, et al. Standards Track [Page 2]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 7.7.1. NDP Count Usage Notes57
 7.7.2. Send NDP Count Feature57
 8. Event Processing ...58
 8.1. Connection Establishment58
 8.1.1. Client Request58
 8.1.2. Service Codes59
 8.1.3. Server Response61
 8.1.4. Init Cookie Option62
 8.1.5. Handshake Completion63
 8.2. Data Transfer ...63
 8.3. Termination ...64
 8.3.1. Abnormal Termination66
 8.4. DCCP State Diagram ..66
 8.5. Pseudocode ..67
 9. Checksums ..72
 9.1. Header Checksum Field73
 9.2. Header Checksum Coverage Field73
 9.2.1. Minimum Checksum Coverage Feature74
 9.3. Data Checksum Option75
 9.3.1. Check Data Checksum Feature76
 9.3.2. Checksum Usage Notes76
 10. Congestion Control ..76
 10.1. TCP-like Congestion Control77
 10.2. TFRC Congestion Control78
 10.3. CCID-Specific Options, Features, and Reset Codes78
 10.4. CCID Profile Requirements80
 10.5. Congestion State ...81
 11. Acknowledgements ..81
 11.1. Acks of Acks and Unidirectional Connections82
 11.2. Ack Piggybacking ...83
 11.3. Ack Ratio Feature ..84
 11.4. Ack Vector Options85
 11.4.1. Ack Vector Consistency88
 11.4.2. Ack Vector Coverage89
 11.5. Send Ack Vector Feature90
 11.6. Slow Receiver Option90
 11.7. Data Dropped Option91
 11.7.1. Data Dropped and Normal Congestion Response94
 11.7.2. Particular Drop Codes95
 12. Explicit Congestion Notification96
 12.1. ECN Incapable Feature96
 12.2. ECN Nonces ...97
 12.3. Aggression Penalties98
 13. Timing Options ..99
 13.1. Timestamp Option ...99
 13.2. Elapsed Time Option99
 13.3. Timestamp Echo Option100
 14. Maximum Packet Size ..101

Kohler, et al. Standards Track [Page 3]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 14.1. Measuring PMTU ..102
 14.2. Sender Behavior ...103
 15. Forward Compatibility ..104
 16. Middlebox Considerations105
 17. Relations to Other Specifications106
 17.1. RTP ...106
 17.2. Congestion Manager and Multiplexing108
 18. Security Considerations108
 18.1. Security Considerations for Partial Checksums109
 19. IANA Considerations ..110
 19.1. Packet Types Registry110
 19.2. Reset Codes Registry110
 19.3. Option Types Registry110
 19.4. Feature Numbers Registry111
 19.5. Congestion Control Identifiers Registry111
 19.6. Ack Vector States Registry111
 19.7. Drop Codes Registry112
 19.8. Service Codes Registry112
 19.9. Port Numbers Registry112
 20. Thanks ...114
 A. Appendix: Ack Vector Implementation Notes116
 A.1. Packet Arrival ..118
 A.1.1. New Packets118
 A.1.2. Old Packets119
 A.2. Sending Acknowledgements120
 A.3. Clearing State ..120
 A.4. Processing Acknowledgements122
 B. Appendix: Partial Checksumming Design Motivation123
 Normative References ...124
 Informative References ...125

List of Tables

 Table 1: DCCP Packet Types21
 Table 2: DCCP Reset Codes ..28
 Table 3: DCCP Options ..30
 Table 4: DCCP Feature Numbers.....................................35
 Table 5: DCCP Congestion Control Identifiers77
 Table 6: DCCP Ack Vector States86
 Table 7: DCCP Drop Codes ...92

Kohler, et al. Standards Track [Page 4]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

1. Introduction

 The Datagram Congestion Control Protocol (DCCP) is a transport
 protocol that implements bidirectional, unicast connections of
 congestion-controlled, unreliable datagrams. Specifically, DCCP
 provides the following:

 o Unreliable flows of datagrams.

 o Reliable handshakes for connection setup and teardown.

 o Reliable negotiation of options, including negotiation of a
 suitable congestion control mechanism.

 o Mechanisms allowing servers to avoid holding state for
 unacknowledged connection attempts and already-finished
 connections.

 o Congestion control incorporating Explicit Congestion Notification
 (ECN) [RFC3168] and the ECN Nonce [RFC3540].

 o Acknowledgement mechanisms communicating packet loss and ECN
 information. Acks are transmitted as reliably as the relevant
 congestion control mechanism requires, possibly completely
 reliably.

 o Optional mechanisms that tell the sending application, with high
 reliability, which data packets reached the receiver, and whether
 those packets were ECN marked, corrupted, or dropped in the
 receive buffer.

 o Path Maximum Transmission Unit (PMTU) discovery [RFC1191].

 o A choice of modular congestion control mechanisms. Two mechanisms
 are currently specified: TCP-like Congestion Control [RFC4341] and
 TCP-Friendly Rate Control (TFRC) [RFC4342]. DCCP is easily
 extensible to further forms of unicast congestion control.

 DCCP is intended for applications such as streaming media that can
 benefit from control over the tradeoffs between delay and reliable
 in-order delivery. TCP is not well suited for these applications,
 since reliable in-order delivery and congestion control can cause
 arbitrarily long delays. UDP avoids long delays, but UDP
 applications that implement congestion control must do so on their
 own. DCCP provides built-in congestion control, including ECN

Kohler, et al. Standards Track [Page 5]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 support, for unreliable datagram flows, avoiding the arbitrary delays
 associated with TCP. It also implements reliable connection setup,
 teardown, and feature negotiation.

2. Design Rationale

 One DCCP design goal was to give most streaming UDP applications
 little reason not to switch to DCCP, once it is deployed. To
 facilitate this, DCCP was designed to have as little overhead as
 possible, both in terms of the packet header size and in terms of the
 state and CPU overhead required at end hosts. Only the minimal
 necessary functionality was included in DCCP, leaving other
 functionality, such as forward error correction (FEC), semi-
 reliability, and multiple streams, to be layered on top of DCCP as
 desired.

 Different forms of conformant congestion control are appropriate for
 different applications. For example, on-line games might want to
 make quick use of any available bandwidth, while streaming media
 might trade off this responsiveness for a steadier, less bursty rate.
 (Sudden rate changes can cause unacceptable UI glitches such as
 audible pauses or clicks in the playout stream.) DCCP thus allows
 applications to choose from a set of congestion control mechanisms.
 One alternative, TCP-like Congestion Control, halves the congestion
 window in response to a packet drop or mark, as in TCP. Applications
 using this congestion control mechanism will respond quickly to
 changes in available bandwidth, but must tolerate the abrupt changes
 in congestion window typical of TCP. A second alternative, TCP-
 Friendly Rate Control (TFRC) [RFC3448], a form of equation-based
 congestion control, minimizes abrupt changes in the sending rate
 while maintaining longer-term fairness with TCP. Other alternatives
 can be added as future congestion control mechanisms are
 standardized.

 DCCP also lets unreliable traffic safely use ECN. A UDP kernel
 Application Programming Interface (API) might not allow applications
 to set UDP packets as ECN capable, since the API could not guarantee
 that the application would properly detect or respond to congestion.
 DCCP kernel APIs will have no such issues, since DCCP implements
 congestion control itself.

 We chose not to require the use of the Congestion Manager [RFC3124],
 which allows multiple concurrent streams between the same sender and
 receiver to share congestion control. The current Congestion Manager
 can only be used by applications that have their own end-to-end
 feedback about packet losses, but this is not the case for many of
 the applications currently using UDP. In addition, the current
 Congestion Manager does not easily support multiple congestion

Kohler, et al. Standards Track [Page 6]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 control mechanisms or mechanisms where the state about past packet
 drops or marks is maintained at the receiver rather than the sender.
 DCCP should be able to make use of CM where desired by the
 application, but we do not see any benefit in making the deployment
 of DCCP contingent on the deployment of CM itself.

 We intend for DCCP’s protocol mechanisms, which are described in this
 document, to suit any application desiring unicast congestion-
 controlled streams of unreliable datagrams. However, the congestion
 control mechanisms currently approved for use with DCCP, which are
 described in separate Congestion Control ID Profiles [RFC4341,
 RFC4342], may cause problems for some applications, including high-
 bandwidth interactive video. These applications should be able to
 use DCCP once suitable Congestion Control ID Profiles are
 standardized.

3. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3.1. Numbers and Fields

 All multi-byte numerical quantities in DCCP, such as port numbers,
 Sequence Numbers, and arguments to options, are transmitted in
 network byte order (most significant byte first).

 We occasionally refer to the "left" and "right" sides of a bit field.
 "Left" means towards the most significant bit, and "right" means
 towards the least significant bit.

 Random numbers in DCCP are used for their security properties and
 SHOULD be chosen according to the guidelines in [RFC4086].

 All operations on DCCP sequence numbers use circular arithmetic
 modulo 2^48, as do comparisons such as "greater" and "greatest".
 This form of arithmetic preserves the relationships between sequence
 numbers as they roll over from 2^48 - 1 to 0. Implementation
 strategies for DCCP sequence numbers will resemble those for other
 circular arithmetic spaces, including TCP’s sequence numbers [RFC793]
 and DNS’s serial numbers [RFC1982]. It may make sense to store DCCP
 sequence numbers in the most significant 48 bits of 64-bit integers
 and set the least significant 16 bits to zero, since this supports a
 common technique that implements circular comparison A < B by testing
 whether (A - B) < 0 using conventional two’s-complement arithmetic.

Kohler, et al. Standards Track [Page 7]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Reserved bitfields in DCCP packet headers MUST be set to zero by
 senders and MUST be ignored by receivers, unless otherwise specified.
 This allows for future protocol extensions. In particular, DCCP
 processors MUST NOT reset a DCCP connection simply because a Reserved
 field has non-zero value [RFC3360].

3.2. Parts of a Connection

 Each DCCP connection runs between two hosts, which we often name DCCP
 A and DCCP B. Each connection is actively initiated by one of the
 hosts, which we call the client; the other, initially passive host is
 called the server. The term "DCCP endpoint" is used to refer to
 either of the two hosts explicitly named by the connection (the
 client and the server). The term "DCCP processor" refers more
 generally to any host that might need to process a DCCP header; this
 includes the endpoints and any middleboxes on the path, such as
 firewalls and network address translators.

 DCCP connections are bidirectional: data may pass from either
 endpoint to the other. This means that data and acknowledgements may
 flow in both directions simultaneously. Logically, however, a DCCP
 connection consists of two separate unidirectional connections,
 called half-connections. Each half-connection consists of the
 application data sent by one endpoint and the corresponding
 acknowledgements sent by the other endpoint. We can illustrate this
 as follows:

 +--------+ A-to-B half-connection: +--------+
 | | --> application data --> | |
 | | <-- acknowledgements <-- | |
 | DCCP A | | DCCP B |
 | | B-to-A half-connection: | |
 | | <-- application data <-- | |
 +--------+ --> acknowledgements --> +--------+

 Although they are logically distinct, in practice the half-
 connections overlap; a DCCP-DataAck packet, for example, contains
 application data relevant to one half-connection and acknowledgement
 information relevant to the other.

 In the context of a single half-connection, the terms "HC-Sender" and
 "HC-Receiver" denote the endpoints sending application data and
 acknowledgements, respectively. For example, DCCP A is the
 HC-Sender and DCCP B is the HC-Receiver in the A-to-B
 half-connection.

Kohler, et al. Standards Track [Page 8]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

3.3. Features

 A DCCP feature is a connection attribute on whose value the two
 endpoints agree. Many properties of a DCCP connection are controlled
 by features, including the congestion control mechanisms in use on
 the two half-connections. The endpoints achieve agreement through
 the exchange of feature negotiation options in DCCP headers.

 DCCP features are identified by a feature number and an endpoint.
 The notation "F/X" represents the feature with feature number F
 located at DCCP endpoint X. Each valid feature number thus
 corresponds to two features, which are negotiated separately and need
 not have the same value. The two endpoints know, and agree on, the
 value of every valid feature. DCCP A is the "feature location" for
 all features F/A, and the "feature remote" for all features F/B.

3.4. Round-Trip Times

 DCCP round-trip time measurements are performed by congestion control
 mechanisms; different mechanisms may measure round-trip time in
 different ways, or not measure it at all. However, the main DCCP
 protocol does use round-trip times occasionally, such as in the
 initial values for certain timers. Each DCCP implementation thus
 defines a default round-trip time for use when no estimate is
 available. This parameter should default to not less than 0.2
 seconds, a reasonably conservative round-trip time for Internet TCP
 connections. Protocol behavior specified in terms of "round-trip
 time" values actually refers to "a current round-trip time estimate
 taken by some CCID, or, if no estimate is available, the default
 round-trip time parameter".

 The maximum segment lifetime, or MSL, is the maximum length of time a
 packet can survive in the network. The DCCP MSL should equal that of
 TCP, which is normally two minutes.

3.5. Security Limitation

 DCCP provides no protection against attackers who can snoop on a
 connection in progress, or who can guess valid sequence numbers in
 other ways. Applications desiring stronger security should use IPsec
 [RFC2401]; depending on the level of security required, application-
 level cryptography may also suffice. These issues are discussed
 further in Sections 7.5.5 and 18.

Kohler, et al. Standards Track [Page 9]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

3.6. Robustness Principle

 DCCP implementations will follow TCP’s "general principle of
 robustness": "be conservative in what you do, be liberal in what you
 accept from others" [RFC793].

4. Overview

 DCCP’s high-level connection dynamics echo those of TCP. Connections
 progress through three phases: initiation, including a three-way
 handshake; data transfer; and termination. Data can flow both ways
 over the connection. An acknowledgement framework lets senders
 discover how much data has been lost and thus avoid unfairly
 congesting the network. Of course, DCCP provides unreliable datagram
 semantics, not TCP’s reliable bytestream semantics. The application
 must package its data into explicit frames and must retransmit its
 own data as necessary. It may be useful to think of DCCP as TCP
 minus bytestream semantics and reliability, or as UDP plus congestion
 control, handshakes, and acknowledgements.

4.1. Packet Types

 Ten packet types implement DCCP’s protocol functions. For example,
 every new connection attempt begins with a DCCP-Request packet sent
 by the client. In this way a DCCP-Request packet resembles a TCP
 SYN, but since DCCP-Request is a packet type there is no way to send
 an unexpected flag combination, such as TCP’s SYN+FIN+ACK+RST.

 Eight packet types occur during the progress of a typical connection,
 shown here. Note the three-way handshakes during initiation and
 termination.

 Client Server
 ------ ------
 (1) Initiation
 DCCP-Request -->
 <-- DCCP-Response
 DCCP-Ack -->
 (2) Data transfer
 DCCP-Data, DCCP-Ack, DCCP-DataAck -->
 <-- DCCP-Data, DCCP-Ack, DCCP-DataAck
 (3) Termination
 <-- DCCP-CloseReq
 DCCP-Close -->
 <-- DCCP-Reset

 The two remaining packet types are used to resynchronize after bursts
 of loss.

Kohler, et al. Standards Track [Page 10]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Every DCCP packet starts with a fixed-size generic header.
 Particular packet types include additional fixed-size header data;
 for example, DCCP-Acks include an Acknowledgement Number. DCCP
 options and any application data follow the fixed-size header.

 The packet types are as follows:

 DCCP-Request
 Sent by the client to initiate a connection (the first part of the
 three-way initiation handshake).

 DCCP-Response
 Sent by the server in response to a DCCP-Request (the second part
 of the three-way initiation handshake).

 DCCP-Data
 Used to transmit application data.

 DCCP-Ack
 Used to transmit pure acknowledgements.

 DCCP-DataAck
 Used to transmit application data with piggybacked acknowledgement
 information.

 DCCP-CloseReq
 Sent by the server to request that the client close the
 connection.

 DCCP-Close
 Used by the client or the server to close the connection; elicits
 a DCCP-Reset in response.

 DCCP-Reset
 Used to terminate the connection, either normally or abnormally.

 DCCP-Sync, DCCP-SyncAck
 Used to resynchronize sequence numbers after large bursts of loss.

4.2. Packet Sequencing

 Each DCCP packet carries a sequence number so that losses can be
 detected and reported. Unlike TCP sequence numbers, which are byte-
 based, DCCP sequence numbers increment by one per packet. For
 example:

Kohler, et al. Standards Track [Page 11]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 DCCP A DCCP B
 ------ ------
 DCCP-Data(seqno 1) -->
 DCCP-Data(seqno 2) -->
 <-- DCCP-Ack(seqno 10, ackno 2)
 DCCP-DataAck(seqno 3, ackno 10) -->
 <-- DCCP-Data(seqno 11)

 Every DCCP packet increments the sequence number, whether or not it
 contains application data. DCCP-Ack pure acknowledgements increment
 the sequence number; for instance, DCCP B’s second packet above uses
 sequence number 11, since sequence number 10 was used for an
 acknowledgement. This lets endpoints detect all packet loss,
 including acknowledgement loss. It also means that endpoints can get
 out of sync after long bursts of loss. The DCCP-Sync and DCCP-
 SyncAck packet types are used to recover (Section 7.5).

 Since DCCP provides unreliable semantics, there are no
 retransmissions, and having a TCP-style cumulative acknowledgement
 field doesn’t make sense. DCCP’s Acknowledgement Number field equals
 the greatest sequence number received, rather than the smallest
 sequence number not received. Separate options indicate any
 intermediate sequence numbers that weren’t received.

4.3. States

 DCCP endpoints progress through different states during the course of
 a connection, corresponding roughly to the three phases of
 initiation, data transfer, and termination. The figure below shows
 the typical progress through these states for a client and server.

Kohler, et al. Standards Track [Page 12]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Client Server
 ------ ------
 (0) No connection
 CLOSED LISTEN

 (1) Initiation
 REQUEST DCCP-Request -->
 <-- DCCP-Response RESPOND
 PARTOPEN DCCP-Ack or DCCP-DataAck -->

 (2) Data transfer
 OPEN <-- DCCP-Data, Ack, DataAck --> OPEN

 (3) Termination
 <-- DCCP-CloseReq CLOSEREQ
 CLOSING DCCP-Close -->
 <-- DCCP-Reset CLOSED
 TIMEWAIT
 CLOSED

 The nine possible states are as follows. They are listed in
 increasing order, so that "state >= CLOSEREQ" means the same as
 "state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
 describes the states in more detail.

 CLOSED
 Represents nonexistent connections.

 LISTEN
 Represents server sockets in the passive listening state. LISTEN
 and CLOSED are not associated with any particular DCCP connection.

 REQUEST
 A client socket enters this state, from CLOSED, after sending a
 DCCP-Request packet to try to initiate a connection.

 RESPOND
 A server socket enters this state, from LISTEN, after receiving a
 DCCP-Request from a client.

 PARTOPEN
 A client socket enters this state, from REQUEST, after receiving a
 DCCP-Response from the server. This state represents the third
 phase of the three-way handshake. The client may send application
 data in this state, but it MUST include an Acknowledgement Number
 on all of its packets.

Kohler, et al. Standards Track [Page 13]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 OPEN
 The central data transfer portion of a DCCP connection. Client
 and server sockets enter this state from PARTOPEN and RESPOND,
 respectively. Sometimes we speak of SERVER-OPEN and CLIENT-OPEN
 states, corresponding to the server’s OPEN state and the client’s
 OPEN state.

 CLOSEREQ
 A server socket enters this state, from SERVER-OPEN, to order the
 client to close the connection and to hold TIMEWAIT state.

 CLOSING
 Server and client sockets can both enter this state to close the
 connection.

 TIMEWAIT
 A server or client socket remains in this state for 2MSL (4
 minutes) after the connection has been torn down, to prevent
 mistakes due to the delivery of old packets. Only one of the
 endpoints has to enter TIMEWAIT state (the other can enter CLOSED
 state immediately), and a server can request its client to hold
 TIMEWAIT state using the DCCP-CloseReq packet type.

4.4. Congestion Control Mechanisms

 DCCP connections are congestion controlled, but unlike in TCP, DCCP
 applications have a choice of congestion control mechanism. In fact,
 the two half-connections can be governed by different mechanisms.
 Mechanisms are denoted by one-byte congestion control identifiers, or
 CCIDs. The endpoints negotiate their CCIDs during connection
 initiation. Each CCID describes how the HC-Sender limits data packet
 rates, how the HC-Receiver sends congestion feedback via
 acknowledgements, and so forth. CCIDs 2 and 3 are currently defined;
 CCIDs 0, 1, and 4-255 are reserved. Other CCIDs may be defined in
 the future.

 CCID 2 provides TCP-like Congestion Control, which is similar to that
 of TCP. The sender maintains a congestion window and sends packets
 until that window is full. Packets are acknowledged by the receiver.
 Dropped packets and ECN [RFC3168] indicate congestion; the response
 to congestion is to halve the congestion window. Acknowledgements in
 CCID 2 contain the sequence numbers of all received packets within
 some window, similar to a selective acknowledgement (SACK) [RFC2018].

 CCID 3 provides TCP-Friendly Rate Control (TFRC), an equation-based
 form of congestion control intended to respond to congestion more
 smoothly than CCID 2. The sender maintains a transmit rate, which it
 updates using the receiver’s estimate of the packet loss and mark

Kohler, et al. Standards Track [Page 14]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 rate. CCID 3 behaves somewhat differently than TCP in the short
 term, but is designed to operate fairly with TCP over the long term.

 Section 10 describes DCCP’s CCIDs in more detail. The behaviors of
 CCIDs 2 and 3 are fully defined in separate profile documents
 [RFC4341, RFC4342].

4.5. Feature Negotiation Options

 DCCP endpoints use Change and Confirm options to negotiate and agree
 on feature values. Feature negotiation will almost always happen on
 the connection initiation handshake, but it can begin at any time.

 There are four feature negotiation options in all: Change L, Confirm
 L, Change R, and Confirm R. The "L" options are sent by the feature
 location and the "R" options are sent by the feature remote. A
 Change R option says to the feature location, "change this feature
 value as follows". The feature location responds with Confirm L,
 meaning, "I’ve changed it". Some features allow Change R options to
 contain multiple values sorted in preference order. For example:

 Client Server
 ------ ------
 Change R(CCID, 2) -->
 <-- Confirm L(CCID, 2)
 * agreement that CCID/Server = 2 *

 Change R(CCID, 3 4) -->
 <-- Confirm L(CCID, 4, 4 2)
 * agreement that CCID/Server = 4 *

 Both exchanges negotiate the CCID/Server feature’s value, which is
 the CCID in use on the server-to-client half-connection. In the
 second exchange, the client requests that the server use either CCID
 3 or CCID 4, with 3 preferred; the server chooses 4 and supplies its
 preference list, "4 2".

 The Change L and Confirm R options are used for feature negotiations
 initiated by the feature location. In the following example, the
 server requests that CCID/Server be set to 3 or 2, with 3 preferred,
 and the client agrees.

Kohler, et al. Standards Track [Page 15]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Client Server
 ------ ------
 <-- Change L(CCID, 3 2)
 Confirm R(CCID, 3, 3 2) -->
 * agreement that CCID/Server = 3 *

 Section 6 describes the feature negotiation options further,
 including the retransmission strategies that make negotiation
 reliable.

4.6. Differences from TCP

 DCCP’s differences from TCP apart from those discussed so far include
 the following:

 o Copious space for options (up to 1008 bytes or the PMTU).

 o Different acknowledgement formats. The CCID for a connection
 determines how much acknowledgement information needs to be
 transmitted. For example, in CCID 2 (TCP-like), this is about one
 ack per 2 packets, and each ack must declare exactly which packets
 were received. In CCID 3 (TFRC), it is about one ack per round-
 trip time, and acks must declare at minimum just the lengths of
 recent loss intervals.

 o Denial of Service (DoS) protection. Several mechanisms help limit
 the amount of state that possibly-misbehaving clients can force
 DCCP servers to maintain. An Init Cookie option analogous to
 TCP’s SYN Cookies [SYNCOOKIES] avoids SYN-flood-like attacks.
 Only one connection endpoint has to hold TIMEWAIT state; the
 DCCP-CloseReq packet, which may only be sent by the server, passes
 that state to the client. Various rate limits let servers avoid
 attacks that might force extensive computation or packet
 generation.

 o Distinguishing different kinds of loss. A Data Dropped option
 (Section 11.7) lets an endpoint declare that a packet was dropped
 because of corruption, because of receive buffer overflow, and so
 on. This facilitates research into more appropriate rate-control
 responses for these non-network-congestion losses (although
 currently such losses will cause a congestion response).

 o Acknowledgeability. In TCP, a packet may be acknowledged only
 once the data is reliably queued for application delivery. This
 does not make sense in DCCP, where an application might, for
 example, request a drop-from-front receive buffer. A DCCP packet
 may be acknowledged as soon as its header has been successfully
 processed. Concretely, a packet becomes acknowledgeable at Step 8

Kohler, et al. Standards Track [Page 16]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 of Section 8.5’s packet processing pseudocode. Acknowledgeability
 does not guarantee data delivery, however: the Data Dropped option
 may later report that the packet’s application data was discarded.

 o No receive window. DCCP is a congestion control protocol, not a
 flow control protocol.

 o No simultaneous open. Every connection has one client and one
 server.

 o No half-closed states. DCCP has no states corresponding to TCP’s
 FINWAIT and CLOSEWAIT, where one half-connection is explicitly
 closed while the other is still active. The Data Dropped option’s
 Drop Code 1, Application Not Listening (Section 11.7), can achieve
 a similar effect, however.

4.7. Example Connection

 The progress of a typical DCCP connection is as follows. (This
 description is informative, not normative.)

 Client Server
 ------ ------
 0. [CLOSED] [LISTEN]
 1. DCCP-Request -->
 2. <-- DCCP-Response
 3. DCCP-Ack -->
 4. DCCP-Data, DCCP-Ack, DCCP-DataAck -->
 <-- DCCP-Data, DCCP-Ack, DCCP-DataAck
 5. <-- DCCP-CloseReq
 6. DCCP-Close -->
 7. <-- DCCP-Reset
 8. [TIMEWAIT]

 1. The client sends the server a DCCP-Request packet specifying the
 client and server ports, the service being requested, and any
 features being negotiated, including the CCID that the client
 would like the server to use. The client may optionally piggyback
 an application request on the DCCP-Request packet. The server may
 ignore this application request.

 2. The server sends the client a DCCP-Response packet indicating that
 it is willing to communicate with the client. This response
 indicates any features and options that the server agrees to,
 begins other feature negotiations as desired, and optionally
 includes Init Cookies that wrap up all this information and that
 must be returned by the client for the connection to complete.

Kohler, et al. Standards Track [Page 17]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 3. The client sends the server a DCCP-Ack packet that acknowledges
 the DCCP-Response packet. This acknowledges the server’s initial
 sequence number and returns any Init Cookies in the DCCP-Response.
 It may also continue feature negotiation. The client may
 piggyback an application-level request on this ack, producing a
 DCCP-DataAck packet.

 4. The server and client then exchange DCCP-Data packets, DCCP-Ack
 packets acknowledging that data, and, optionally, DCCP-DataAck
 packets containing data with piggybacked acknowledgements. If the
 client has no data to send, then the server will send DCCP-Data
 and DCCP-DataAck packets, while the client will send DCCP-Acks
 exclusively. (However, the client may not send DCCP-Data packets
 before receiving at least one non-DCCP-Response packet from the
 server.)

 5. The server sends a DCCP-CloseReq packet requesting a close.

 6. The client sends a DCCP-Close packet acknowledging the close.

 7. The server sends a DCCP-Reset packet with Reset Code 1, "Closed",
 and clears its connection state. DCCP-Resets are part of normal
 connection termination; see Section 5.6.

 8. The client receives the DCCP-Reset packet and holds state for two
 maximum segment lifetimes, or 2MSL, to allow any remaining packets
 to clear the network.

 An alternative connection closedown sequence is initiated by the
 client:

 5b. The client sends a DCCP-Close packet closing the connection.

 6b. The server sends a DCCP-Reset packet with Reset Code 1, "Closed",
 and clears its connection state.

 7b. The client receives the DCCP-Reset packet and holds state for
 2MSL to allow any remaining packets to clear the network.

5. Packet Formats

 The DCCP header can be from 12 to 1020 bytes long. The initial part
 of the header has the same semantics for all currently defined packet
 types. Following this comes any additional fixed-length fields
 required by the packet type, and then a variable-length list of
 options. The application data area follows the header. In some
 packet types, this area contains data for the application; in other
 packet types, its contents are ignored.

Kohler, et al. Standards Track [Page 18]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +---------------------------------------+ -.
 | Generic Header | |
 +---------------------------------------+ |
 | Additional Fields (depending on type) | +- DCCP Header
 +---------------------------------------+ |
 | Options (optional) | |
 +=======================================+ -’
 | Application Data Area |
 +---------------------------------------+

5.1. Generic Header

 The DCCP generic header takes different forms depending on the value
 of X, the Extended Sequence Numbers bit. If X is one, the Sequence
 Number field is 48 bits long, and the generic header takes 16 bytes,
 as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Dest Port |
 +-+
 | Data Offset | CCVal | CsCov | Checksum |
 +-+
 | | |X| | .
 | Res | Type |=| Reserved | Sequence Number (high bits) .
 | | |1| | .
 +-+
 . Sequence Number (low bits) |
 +-+

 If X is zero, only the low 24 bits of the Sequence Number are
 transmitted, and the generic header is 12 bytes long.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Dest Port |
 +-+
 | Data Offset | CCVal | CsCov | Checksum |
 +-+
 | | |X| |
 | Res | Type |=| Sequence Number (low bits) |
 | | |0| |
 +-+

Kohler, et al. Standards Track [Page 19]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 The generic header fields are defined as follows.

 Source and Destination Ports: 16 bits each
 These fields identify the connection, similar to the corresponding
 fields in TCP and UDP. The Source Port represents the relevant
 port on the endpoint that sent this packet, and the Destination
 Port represents the relevant port on the other endpoint. When
 initiating a connection, the client SHOULD choose its Source Port
 randomly to reduce the likelihood of attack.

 DCCP APIs should treat port numbers similarly to TCP and UDP port
 numbers. For example, machines that distinguish between
 "privileged" and "unprivileged" ports for TCP and UDP should do
 the same for DCCP.

 Data Offset: 8 bits
 The offset from the start of the packet’s DCCP header to the start
 of its application data area, in 32-bit words. The receiver MUST
 ignore packets whose Data Offset is smaller than the minimum-sized
 header for the given Type or larger than the DCCP packet itself.

 CCVal: 4 bits
 Used by the HC-Sender CCID. For example, the A-to-B CCID’s
 sender, which is active at DCCP A, MAY send 4 bits of information
 per packet to its receiver by encoding that information in CCVal.
 The sender MUST set CCVal to zero unless its HC-Sender CCID
 specifies otherwise, and the receiver MUST ignore the CCVal field
 unless its HC-Receiver CCID specifies otherwise.

 Checksum Coverage (CsCov): 4 bits
 Checksum Coverage determines the parts of the packet that are
 covered by the Checksum field. This always includes the DCCP
 header and options, but some or all of the application data may be
 excluded. This can improve performance on noisy links for
 applications that can tolerate corruption. See Section 9.

 Checksum: 16 bits
 The Internet checksum of the packet’s DCCP header (including
 options), a network-layer pseudoheader, and, depending on Checksum
 Coverage, all, some, or none of the application data. See Section
 9.

 Reserved (Res): 3 bits
 Senders MUST set this field to all zeroes on generated packets,
 and receivers MUST ignore its value.

Kohler, et al. Standards Track [Page 20]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Type: 4 bits
 The Type field specifies the type of the packet. The following
 values are defined:

 Type Meaning
 ---- -------
 0 DCCP-Request
 1 DCCP-Response
 2 DCCP-Data
 3 DCCP-Ack
 4 DCCP-DataAck
 5 DCCP-CloseReq
 6 DCCP-Close
 7 DCCP-Reset
 8 DCCP-Sync
 9 DCCP-SyncAck
 10-15 Reserved

 Table 1: DCCP Packet Types

 Receivers MUST ignore any packets with reserved type. That is,
 packets with reserved type MUST NOT be processed, and they MUST
 NOT be acknowledged as received.

 Extended Sequence Numbers (X): 1 bit
 Set to one to indicate the use of an extended generic header with
 48-bit Sequence and Acknowledgement Numbers. DCCP-Data, DCCP-
 DataAck, and DCCP-Ack packets MAY set X to zero or one. All
 DCCP-Request, DCCP-Response, DCCP-CloseReq, DCCP-Close, DCCP-
 Reset, DCCP-Sync, and DCCP-SyncAck packets MUST set X to one;
 endpoints MUST ignore any such packets with X set to zero. High-
 rate connections SHOULD set X to one on all packets to gain
 increased protection against wrapped sequence numbers and attacks.
 See Section 7.6.

 Sequence Number: 48 or 24 bits
 Identifies the packet uniquely in the sequence of all packets the
 source sent on this connection. Sequence Number increases by one
 with every packet sent, including packets such as DCCP-Ack that
 carry no application data. See Section 7.

 All currently defined packet types except DCCP-Request and DCCP-Data
 carry an Acknowledgement Number Subheader in the four or eight bytes
 immediately following the generic header. When X=1, its format is:

Kohler, et al. Standards Track [Page 21]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +-+
 | Reserved | Acknowledgement Number .
 | | (high bits) .
 +-+
 . Acknowledgement Number (low bits) |
 +-+

 When X=0, only the low 24 bits of the Acknowledgement Number are
 transmitted, giving the Acknowledgement Number Subheader this format:

 +-+
 | Reserved | Acknowledgement Number (low bits) |
 +-+

 Reserved: 16 or 8 bits
 Senders MUST set this field to all zeroes on generated packets,
 and receivers MUST ignore its value.

 Acknowledgement Number: 48 or 24 bits
 Generally contains GSR, the Greatest Sequence Number Received on
 any acknowledgeable packet so far. A packet is acknowledgeable
 if and only if its header was successfully processed by the
 receiver; Section 7.4 describes this further. Options such as
 Ack Vector (Section 11.4) combine with the Acknowledgement
 Number to provide precise information about which packets have
 arrived.

 Acknowledgement Numbers on DCCP-Sync and DCCP-SyncAck packets
 need not equal GSR. See Section 5.7.

5.2. DCCP-Request Packets

 A client initiates a DCCP connection by sending a DCCP-Request
 packet. These packets MAY contain application data and MUST use
 48-bit sequence numbers (X=1).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header with X=1 (16 bytes) /
 / with Type=0 (DCCP-Request) /
 +-+
 | Service Code |
 +-+
 / Options and Padding /
 +=+
 / Application Data /
 +-+

Kohler, et al. Standards Track [Page 22]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Service Code: 32 bits
 Describes the application-level service to which the client
 application wants to connect. Service Codes are intended to
 provide information about which application protocol a connection
 intends to use, thus aiding middleboxes and reducing reliance on
 globally well-known ports. See Section 8.1.2.

5.3. DCCP-Response Packets

 The server responds to valid DCCP-Request packets with DCCP-Response
 packets. This is the second phase of the three-way handshake.
 DCCP-Response packets MAY contain application data and MUST use
 48-bit sequence numbers (X=1).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header with X=1 (16 bytes) /
 / with Type=1 (DCCP-Response) /
 +-+
 / Acknowledgement Number Subheader (8 bytes) /
 +-+
 | Service Code |
 +-+
 / Options and Padding /
 +=+
 / Application Data /
 +-+

 Acknowledgement Number: 48 bits
 Contains GSR. Since DCCP-Responses are only sent during
 connection initiation, this will always equal the Sequence Number
 on a received DCCP-Request.

 Service Code: 32 bits
 MUST equal the Service Code on the corresponding DCCP-Request.

5.4. DCCP-Data, DCCP-Ack, and DCCP-DataAck Packets

 The central data transfer portion of every DCCP connection uses
 DCCP-Data, DCCP-Ack, and DCCP-DataAck packets. These packets MAY use
 24-bit sequence numbers, depending on the value of the Allow Short
 Sequence Numbers feature (Section 7.6.1). DCCP-Data packets carry
 application data without acknowledgements.

Kohler, et al. Standards Track [Page 23]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header (16 or 12 bytes) /
 / with Type=2 (DCCP-Data) /
 +-+
 / Options and Padding /
 +=+
 / Application Data /
 +-+

 DCCP-Ack packets dispense with the data but contain an
 Acknowledgement Number. They are used for pure acknowledgements.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header (16 or 12 bytes) /
 / with Type=3 (DCCP-Ack) /
 +-+
 / Acknowledgement Number Subheader (8 or 4 bytes) /
 +-+
 / Options and Padding /
 +=+
 / Application Data Area (Ignored) /
 +-+

 DCCP-DataAck packets carry both application data and an
 Acknowledgement Number. This piggybacks acknowledgement information
 on a data packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header (16 or 12 bytes) /
 / with Type=4 (DCCP-DataAck) /
 +-+
 / Acknowledgement Number Subheader (8 or 4 bytes) /
 +-+
 / Options and Padding /
 +=+
 / Application Data /
 +-+

 A DCCP-Data or DCCP-DataAck packet may have a zero-length application
 data area, which indicates that the application sent a zero-length
 datagram. This differs from DCCP-Request and DCCP-Response packets,
 where an empty application data area indicates the absence of

Kohler, et al. Standards Track [Page 24]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 application data (not the presence of zero-length application data).
 The API SHOULD report any received zero-length datagrams to the
 receiving application.

 A DCCP-Ack packet MAY have a non-zero-length application data area,
 which essentially pads the DCCP-Ack to a desired length. Receivers
 MUST ignore the content of the application data area in DCCP-Ack
 packets.

 DCCP-Ack and DCCP-DataAck packets often include additional
 acknowledgement options, such as Ack Vector, as required by the
 congestion control mechanism in use.

5.5. DCCP-CloseReq and DCCP-Close Packets

 DCCP-CloseReq and DCCP-Close packets begin the handshake that
 normally terminates a connection. Either client or server may send a
 DCCP-Close packet, which will elicit a DCCP-Reset packet. Only the
 server can send a DCCP-CloseReq packet, which indicates that the
 server wants to close the connection but does not want to hold its
 TIMEWAIT state. Both packet types MUST use 48-bit sequence numbers
 (X=1).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header with X=1 (16 bytes) /
 / with Type=5 (DCCP-CloseReq) or 6 (DCCP-Close) /
 +-+
 / Acknowledgement Number Subheader (8 bytes) /
 +-+
 / Options and Padding /
 +=+
 / Application Data Area (Ignored) /
 +-+

 As with DCCP-Ack packets, DCCP-CloseReq and DCCP-Close packets MAY
 have non-zero-length application data areas, whose contents receivers
 MUST ignore.

5.6. DCCP-Reset Packets

 DCCP-Reset packets unconditionally shut down a connection.
 Connections normally terminate with a DCCP-Reset, but resets may be
 sent for other reasons, including bad port numbers, bad option
 behavior, incorrect ECN Nonce Echoes, and so forth. DCCP-Resets MUST
 use 48-bit sequence numbers (X=1).

Kohler, et al. Standards Track [Page 25]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header with X=1 (16 bytes) /
 / with Type=7 (DCCP-Reset) /
 +-+
 / Acknowledgement Number Subheader (8 bytes) /
 +-+
 | Reset Code | Data 1 | Data 2 | Data 3 |
 +-+
 / Options and Padding /
 +=+
 / Application Data Area (Error Text) /
 +-+

 Reset Code: 8 bits
 Represents the reason that the sender reset the DCCP connection.

 Data 1, Data 2, and Data 3: 8 bits each
 The Data fields provide additional information about why the
 sender reset the DCCP connection. The meanings of these fields
 depend on the value of Reset Code.

 Application Data Area: Error Text
 If present, Error Text is a human-readable text string encoded in
 Unicode UTF-8, and preferably in English, that describes the error
 in more detail. For example, a DCCP-Reset with Reset Code 11,
 "Aggression Penalty", might contain Error Text such as "Aggression
 Penalty: Received 3 bad ECN Nonce Echoes, assuming misbehavior".

 The following Reset Codes are currently defined. Unless otherwise
 specified, the Data 1, 2, and 3 fields MUST be set to 0 by the sender
 of the DCCP-Reset and ignored by its receiver. Section references
 describe concrete situations that will cause each Reset Code to be
 generated; they are not meant to be exhaustive.

 0, "Unspecified"
 Indicates the absence of a meaningful Reset Code. Use of Reset
 Code 0 is NOT RECOMMENDED: the sender should choose a Reset Code
 that more clearly defines why the connection is being reset.

 1, "Closed"
 Normal connection close. See Section 8.3.

 2, "Aborted"
 The sending endpoint gave up on the connection because of lack of
 progress. See Sections 8.1.1 and 8.1.5.

Kohler, et al. Standards Track [Page 26]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 3, "No Connection"
 No connection exists. See Section 8.3.1.

 4, "Packet Error"
 A valid packet arrived with unexpected type. For example, a
 DCCP-Data packet with valid header checksum and sequence numbers
 arrived at a connection in the REQUEST state. See Section 8.3.1.
 The Data 1 field equals the offending packet type as an eight-bit
 number; thus, an offending packet with Type 2 will result in a
 Data 1 value of 2.

 5, "Option Error"
 An option was erroneous, and the error was serious enough to
 warrant resetting the connection. See Sections 6.6.7, 6.6.8, and
 11.4. The Data 1 field equals the offending option type; Data 2
 and Data 3 equal the first two bytes of option data (or zero if
 the option had less than two bytes of data).

 6, "Mandatory Error"
 The sending endpoint could not process an option O that was
 immediately preceded by Mandatory. The Data fields report the
 option type and data of option O, using the format of Reset Code
 5, "Option Error". See Section 5.8.2.

 7, "Connection Refused"
 The Destination Port didn’t correspond to a port open for
 listening. Sent only in response to DCCP-Requests. See Section
 8.1.3.

 8, "Bad Service Code"
 The Service Code didn’t equal the service code attached to the
 Destination Port. Sent only in response to DCCP-Requests. See
 Section 8.1.3.

 9, "Too Busy"
 The server is too busy to accept new connections. Sent only in
 response to DCCP-Requests. See Section 8.1.3.

 10, "Bad Init Cookie"
 The Init Cookie echoed by the client was incorrect or missing.
 See Section 8.1.4.

 11, "Aggression Penalty"
 This endpoint has detected congestion control-related misbehavior
 on the part of the other endpoint. See Section 12.3.

Kohler, et al. Standards Track [Page 27]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 12-127, Reserved
 Receivers should treat these codes as they do Reset Code 0,
 "Unspecified".

 128-255, CCID-specific codes
 Semantics depend on the connection’s CCIDs. See Section 10.3.
 Receivers should treat unknown CCID-specific Reset Codes as they
 do Reset Code 0, "Unspecified".

 The following table summarizes this information.

 Reset
 Code Name Data 1 Data 2 & 3
 ----- ---- ------ ----------
 0 Unspecified 0 0
 1 Closed 0 0
 2 Aborted 0 0
 3 No Connection 0 0
 4 Packet Error pkt type 0
 5 Option Error option # option data
 6 Mandatory Error option # option data
 7 Connection Refused 0 0
 8 Bad Service Code 0 0
 9 Too Busy 0 0
 10 Bad Init Cookie 0 0
 11 Aggression Penalty 0 0
 12-127 Reserved
 128-255 CCID-specific codes

 Table 2: DCCP Reset Codes

 Options on DCCP-Reset packets are processed before the connection is
 shut down. This means that certain combinations of options,
 particularly involving Mandatory, may cause an endpoint to respond to
 a valid DCCP-Reset with another DCCP-Reset. This cannot lead to a
 reset storm; since the first endpoint has already reset the
 connection, the second DCCP-Reset will be ignored.

5.7. DCCP-Sync and DCCP-SyncAck Packets

 DCCP-Sync packets help DCCP endpoints recover synchronization after
 bursts of loss and recover from half-open connections. Each valid
 received DCCP-Sync immediately elicits a DCCP-SyncAck. Both packet
 types MUST use 48-bit sequence numbers (X=1).

Kohler, et al. Standards Track [Page 28]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header with X=1 (16 bytes) /
 / with Type=8 (DCCP-Sync) or 9 (DCCP-SyncAck) /
 +-+
 / Acknowledgement Number Subheader (8 bytes) /
 +-+
 / Options and Padding /
 +=+
 / Application Data Area (Ignored) /
 +-+

 The Acknowledgement Number field has special semantics for DCCP-Sync
 and DCCP-SyncAck packets. First, the packet corresponding to a
 DCCP-Sync’s Acknowledgement Number need not have been
 acknowledgeable. Thus, receivers MUST NOT assume that a packet was
 processed simply because it appears in the Acknowledgement Number
 field of a DCCP-Sync packet. This differs from all other packet
 types, where the Acknowledgement Number by definition corresponds to
 an acknowledgeable packet. Second, the Acknowledgement Number on any
 DCCP-SyncAck packet MUST correspond to the Sequence Number on an
 acknowledgeable DCCP-Sync packet. In the presence of reordering,
 this might not equal GSR.

 As with DCCP-Ack packets, DCCP-Sync and DCCP-SyncAck packets MAY have
 non-zero-length application data areas, whose contents receivers MUST
 ignore. Padded DCCP-Sync packets may be useful when performing Path
 MTU discovery; see Section 14.

5.8. Options

 Any DCCP packet may contain options, which occupy space at the end of
 the DCCP header. Each option is a multiple of 8 bits in length.
 Individual options are not padded to multiples of 32 bits, and any
 option may begin on any byte boundary. However, the combination of
 all options MUST add up to a multiple of 32 bits; Padding options
 MUST be added as necessary to fill out option space to a word
 boundary. Any options present are included in the header checksum.

 The first byte of an option is the option type. Options with types 0
 through 31 are single-byte options. Other options are followed by a
 byte indicating the option’s length. This length value includes the
 two bytes of option-type and option-length as well as any option-data
 bytes; it must therefore be greater than or equal to two.

 Options MUST be processed sequentially, starting with the first
 option in the packet header. Options with unknown types MUST be

Kohler, et al. Standards Track [Page 29]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 ignored. Also, options with nonsensical lengths (length byte less
 than two or more than the remaining space in the options portion of
 the header) MUST be ignored, and any option space following an option
 with nonsensical length MUST likewise be ignored. Unless otherwise
 specified, multiple occurrences of the same option MUST be processed
 independently; for some options, this will mean in practice that the
 last valid occurrence of an option takes precedence.

 The following options are currently defined:

 Option DCCP- Section
 Type Length Meaning Data? Reference
 ---- ------ ------- ----- ---------
 0 1 Padding Y 5.8.1
 1 1 Mandatory N 5.8.2
 2 1 Slow Receiver Y 11.6
 3-31 1 Reserved
 32 variable Change L N 6.1
 33 variable Confirm L N 6.2
 34 variable Change R N 6.1
 35 variable Confirm R N 6.2
 36 variable Init Cookie N 8.1.4
 37 3-8 NDP Count Y 7.7
 38 variable Ack Vector [Nonce 0] N 11.4
 39 variable Ack Vector [Nonce 1] N 11.4
 40 variable Data Dropped N 11.7
 41 6 Timestamp Y 13.1
 42 6/8/10 Timestamp Echo Y 13.3
 43 4/6 Elapsed Time N 13.2
 44 6 Data Checksum Y 9.3
 45-127 variable Reserved
 128-255 variable CCID-specific options - 10.3

 Table 3: DCCP Options

 Not all options are suitable for all packet types. For example,
 since the Ack Vector option is interpreted relative to the
 Acknowledgement Number, it isn’t suitable on DCCP-Request and DCCP-
 Data packets, which have no Acknowledgement Number. If an option
 occurs on an unexpected packet type, it MUST generally be ignored;
 any such restrictions are mentioned in each option’s description.
 The table summarizes the most common restriction: when the DCCP-
 Data? column value is N, the corresponding option MUST be ignored
 when received on a DCCP-Data packet. (Section 7.5.5 describes why
 such options are ignored as opposed to, say, causing a reset.)

 Options with invalid values MUST be ignored unless otherwise
 specified. For example, any Data Checksum option with option length

Kohler, et al. Standards Track [Page 30]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 4 MUST be ignored, since all valid Data Checksum options have option
 length 6.

 This section describes two generic options, Padding and Mandatory.
 Other options are described later.

5.8.1. Padding Option

 +--------+
 |00000000|
 +--------+
 Type=0

 Padding is a single-byte "no-operation" option used to pad between or
 after options. If the length of a packet’s other options is not a
 multiple of 32 bits, then Padding options are REQUIRED to pad out the
 options area to the length implied by Data Offset. Padding may also
 be used between options; for example, to align the beginning of a
 subsequent option on a 32-bit boundary. There is no guarantee that
 senders will use this option, so receivers must be prepared to
 process options even if they do not begin on a word boundary.

5.8.2. Mandatory Option

 +--------+
 |00000001|
 +--------+
 Type=1

 Mandatory is a single-byte option that marks the immediately
 following option as mandatory. Say that the immediately following
 option is O. Then the Mandatory option has no effect if the
 receiving DCCP endpoint understands and processes O. If the endpoint
 does not understand or process O, however, then it MUST reset the
 connection using Reset Code 6, "Mandatory Failure". For instance,
 the endpoint would reset the connection if it did not understand O’s
 type; if it understood O’s type, but not O’s data; if O’s data was
 invalid for O’s type; if O was a feature negotiation option, and the
 endpoint did not understand the enclosed feature number; or if the
 endpoint understood O, but chose not to perform the action O implies.
 This list is not exhaustive and, in particular, individual option
 specifications may describe additional situations in which the
 endpoint should reset the connection and situations in which it
 should not.

 Mandatory options MUST NOT be sent on DCCP-Data packets, and any
 Mandatory options received on DCCP-Data packets MUST be ignored.

Kohler, et al. Standards Track [Page 31]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 The connection is in error and should be reset with Reset Code 5,
 "Option Error", if option O is absent (Mandatory was the last byte of
 the option list), or if option O equals Mandatory. However, the
 combination "Mandatory Padding" is valid, and MUST behave like two
 bytes of Padding.

 Section 6.6.9 describes the behavior of Mandatory feature negotiation
 options in more detail.

6. Feature Negotiation

 Four DCCP options, Change L, Confirm L, Change R, and Confirm R, are
 used to negotiate feature values. Change options initiate a
 negotiation; Confirm options complete that negotiation. The "L"
 options are sent by the feature location, and the "R" options are
 sent by the feature remote. Change options are retransmitted to
 ensure reliability.

 All these options have the same format. The first byte of option
 data is the feature number, and the second and subsequent data bytes
 hold one or more feature values. The exact format of the feature
 value area depends on the feature type; see Section 6.3.

 +--------+--------+--------+--------+--------
 | Type | Length |Feature#| Value(s) ...
 +--------+--------+--------+--------+--------

 Together, the feature number and the option type ("L" or "R")
 uniquely identify the feature to which an option applies. The exact
 format of the Value(s) area depends on the feature number.

 Feature negotiation options MUST NOT be sent on DCCP-Data packets,
 and any feature negotiation options received on DCCP-Data packets
 MUST be ignored.

6.1. Change Options

 Change L and Change R options initiate feature negotiation. The
 option to use depends on the relevant feature’s location: To start a
 negotiation for feature F/A, DCCP A will send a Change L option; to
 start a negotiation for F/B, it will send a Change R option. Change
 options are retransmitted until some response is received. They
 contain at least one Value, and thus have a length of at least 4.

Kohler, et al. Standards Track [Page 32]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +--------+--------+--------+--------+--------
 Change L: |00100000| Length |Feature#| Value(s) ...
 +--------+--------+--------+--------+--------
 Type=32

 +--------+--------+--------+--------+--------
 Change R: |00100010| Length |Feature#| Value(s) ...
 +--------+--------+--------+--------+--------
 Type=34

6.2. Confirm Options

 Confirm L and Confirm R options complete feature negotiation and are
 sent in response to Change R and Change L options, respectively.
 Confirm options MUST NOT be generated except in response to Change
 options. Confirm options need not be retransmitted, since Change
 options are retransmitted as necessary. The first byte of the
 Confirm option contains the feature number from the corresponding
 Change. Following this is the selected Value, and then possibly the
 sender’s preference list.

 +--------+--------+--------+--------+--------
 Confirm L: |00100001| Length |Feature#| Value(s) ...
 +--------+--------+--------+--------+--------
 Type=33

 +--------+--------+--------+--------+--------
 Confirm R: |00100011| Length |Feature#| Value(s) ...
 +--------+--------+--------+--------+--------
 Type=35

 If an endpoint receives an invalid Change option -- with an unknown
 feature number, or an invalid value -- it will respond with an empty
 Confirm option containing the problematic feature number, but no
 value. Such options have length 3.

6.3. Reconciliation Rules

 Reconciliation rules determine how the two sets of preferences for a
 given feature are resolved into a unique result. The reconciliation
 rule depends only on the feature number. Each reconciliation rule
 must have the property that the result is uniquely determined given
 the contents of Change options sent by the two endpoints.

 All current DCCP features use one of two reconciliation rules:
 server-priority ("SP") and non-negotiable ("NN").

Kohler, et al. Standards Track [Page 33]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

6.3.1. Server-Priority

 The feature value is a fixed-length byte string (length determined by
 the feature number). Each Change option contains a list of values
 ordered by preference, with the most preferred value coming first.
 Each Confirm option contains the confirmed value, followed by the
 confirmer’s preference list. Thus, the feature’s current value will
 generally appear twice in Confirm options’ data, once as the current
 value and once in the confirmer’s preference list.

 To reconcile the preference lists, select the first entry in the
 server’s list that also occurs in the client’s list. If there is no
 shared entry, the feature’s value MUST NOT change, and the Confirm
 option will confirm the feature’s previous value (unless the Change
 option was Mandatory; see Section 6.6.9).

6.3.2. Non-Negotiable

 The feature value is a byte string. Each option contains exactly one
 feature value. The feature location signals a new value by sending a
 Change L option. The feature remote MUST accept any valid value,
 responding with a Confirm R option containing the new value, and it
 MUST send empty Confirm R options in response to invalid values
 (unless the Change L option was Mandatory; see Section 6.6.9).
 Change R and Confirm L options MUST NOT be sent for non-negotiable
 features; see Section 6.6.8. Non-negotiable features use the feature
 negotiation mechanism to achieve reliability.

Kohler, et al. Standards Track [Page 34]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

6.4. Feature Numbers

 This document defines the following feature numbers.

 Rec’n Initial Section
 Number Meaning Rule Value Req’d Reference
 ------ ------- ----- ----- ----- ---------
 0 Reserved
 1 Congestion Control ID (CCID) SP 2 Y 10
 2 Allow Short Seqnos SP 0 Y 7.6.1
 3 Sequence Window NN 100 Y 7.5.2
 4 ECN Incapable SP 0 N 12.1
 5 Ack Ratio NN 2 N 11.3
 6 Send Ack Vector SP 0 N 11.5
 7 Send NDP Count SP 0 N 7.7.2
 8 Minimum Checksum Coverage SP 0 N 9.2.1
 9 Check Data Checksum SP 0 N 9.3.1
 10-127 Reserved
 128-255 CCID-specific features 10.3

 Table 4: DCCP Feature Numbers

 Rec’n Rule The reconciliation rule used for the feature. SP
 means server-priority, NN means non-negotiable.

 Initial Value The initial value for the feature. Every feature has
 a known initial value.

 Req’d This column is "Y" if and only if every DCCP
 implementation MUST understand the feature. If it is
 "N", then the feature behaves like an extension (see
 Section 15), and it is safe to respond to Change
 options for the feature with empty Confirm options.
 Of course, a CCID might require the feature; a DCCP
 that implements CCID 2 MUST support Ack Ratio and
 Send Ack Vector, for example.

Kohler, et al. Standards Track [Page 35]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

6.5. Feature Negotiation Examples

 Here are three example feature negotiations for features located at
 the server, the first two for the Congestion Control ID feature, the
 last for the Ack Ratio.

 Client Server
 ------ ------
 1. Change R(CCID, 2 3 1) -->
 ("2 3 1" is client’s preference list)
 2. <-- Confirm L(CCID, 3, 3 2 1)
 (3 is the negotiated value;
 "3 2 1" is server’s pref list)
 * agreement that CCID/Server = 3 *

 1. XXX <-- Change L(CCID, 3 2 1)
 2. Retransmission:
 <-- Change L(CCID, 3 2 1)
 3. Confirm R(CCID, 3, 2 3 1) -->
 * agreement that CCID/Server = 3 *

 1. <-- Change L(Ack Ratio, 3)
 2. Confirm R(Ack Ratio, 3) -->
 * agreement that Ack Ratio/Server = 3 *

 This example shows a simultaneous negotiation.

 Client Server
 ------ ------
 1a. Change R(CCID, 2 3 1) -->
 b. <-- Change L(CCID, 3 2 1)
 2a. <-- Confirm L(CCID, 3, 3 2 1)
 b. Confirm R(CCID, 3, 2 3 1) -->
 * agreement that CCID/Server = 3 *

 Here are the byte encodings of several Change and Confirm options.
 Each option is sent by DCCP A.

 Change L(CCID, 2 3) = 32,5,1,2,3
 DCCP B should change CCID/A’s value (feature number 1, a server-
 priority feature); DCCP A’s preferred values are 2 and 3, in that
 preference order.

Kohler, et al. Standards Track [Page 36]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Change L(Sequence Window, 1024) = 32,9,3,0,0,0,0,4,0
 DCCP B should change Sequence Window/A’s value (feature number 3,
 a non-negotiable feature) to the 6-byte string 0,0,0,0,4,0 (the
 value 1024).

 Confirm L(CCID, 2, 2 3) = 33,6,1,2,2,3
 DCCP A has changed CCID/A’s value to 2; its preferred values are 2
 and 3, in that preference order.

 Empty Confirm L(126) = 33,3,126
 DCCP A doesn’t implement feature number 126, or DCCP B’s proposed
 value for feature 126/A was invalid.

 Change R(CCID, 3 2) = 34,5,1,3,2
 DCCP B should change CCID/B’s value; DCCP A’s preferred values are
 3 and 2, in that preference order.

 Confirm R(CCID, 2, 3 2) = 35,6,1,2,3,2
 DCCP A has changed CCID/B’s value to 2; its preferred values were
 3 and 2, in that preference order.

 Confirm R(Sequence Window, 1024) = 35,9,3,0,0,0,0,4,0
 DCCP A has changed Sequence Window/B’s value to the 6-byte string
 0,0,0,0,4,0 (the value 1024).

 Empty Confirm R(126) = 35,3,126
 DCCP A doesn’t implement feature number 126, or DCCP B’s proposed
 value for feature 126/B was invalid.

6.6. Option Exchange

 A few basic rules govern feature negotiation option exchange.

 1. Every non-reordered Change option gets a Confirm option in
 response.

 2. Change options are retransmitted until a response for the latest
 Change is received.

 3. Feature negotiation options are processed in strictly-increasing
 order by Sequence Number.

 The rest of this section describes the consequences of these rules in
 more detail.

Kohler, et al. Standards Track [Page 37]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

6.6.1. Normal Exchange

 Change options are generated when a DCCP endpoint wants to change the
 value of some feature. Generally, this will happen at the beginning
 of a connection, although it may happen at any time. We say the
 endpoint "generates" or "sends" a Change L or Change R option, but of
 course the option must be attached to a packet. The endpoint may
 attach the option to a packet it would have generated anyway (such as
 a DCCP-Request), or it may create a "feature negotiation packet",
 often a DCCP-Ack or DCCP-Sync, just to carry the option. Feature
 negotiation packets are controlled by the relevant congestion control
 mechanism. For example, DCCP A may send a DCCP-Ack or DCCP-Sync for
 feature negotiation only if the B-to-A CCID would allow sending a
 DCCP-Ack. In addition, an endpoint SHOULD generate at most one
 feature negotiation packet per round-trip time.

 On receiving a Change L or Change R option, a DCCP endpoint examines
 the included preference list, reconciles that with its own preference
 list, calculates the new value, and sends back a Confirm R or Confirm
 L option, respectively, informing its peer of the new value or that
 the feature was not understood. Every non-reordered Change option
 MUST result in a corresponding Confirm option, and any packet
 including a Confirm option MUST carry an Acknowledgement Number.
 (Section 6.6.4 describes how Change reordering is detected and
 handled.) Generated Confirm options may be attached to packets that
 would have been sent anyway (such as DCCP-Response or DCCP-SyncAck)
 or to new feature negotiation packets, as described above.

 The Change-sending endpoint MUST wait to receive a corresponding
 Confirm option before changing its stored feature value. The
 Confirm-sending endpoint changes its stored feature value as soon as
 it sends the Confirm.

 A packet MAY contain more than one feature negotiation option,
 possibly including two options that refer to the same feature; as
 usual, the options are processed sequentially.

6.6.2. Processing Received Options

 DCCP endpoints exist in one of three states relative to each feature.
 STABLE is the normal state, where the endpoint knows the feature’s
 value and thinks the other endpoint agrees. An endpoint enters the
 CHANGING state when it first sends a Change for the feature and
 returns to STABLE once it receives a corresponding Confirm. The
 final state, UNSTABLE, indicates that an endpoint in CHANGING state
 changed its preference list but has not yet transmitted a Change
 option with the new preference list.

Kohler, et al. Standards Track [Page 38]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Feature state transitions at a feature location are implemented
 according to this diagram. The diagram ignores sequence number and
 option validity issues; these are handled explicitly in the
 pseudocode that follows.

 timeout/
 rcv Confirm R app/protocol evt : snd Change L rcv non-ack
 : ignore +---------------------------------------+ : snd Change L
 +----+ | | +----+
 | v | rcv Change R v | v
 +------------+ rcv Confirm R : calc new value, +------------+
	: accept value snd Confirm L	
STABLE	<-----------------------------------	CHANGING
	rcv empty Confirm R	
 +------------+ : revert to old value +------------+
 | ^ | ^
 +----+ pref list | | snd
 rcv Change R changes | | Change L
 : calc new value, snd Confirm L v |
 +------------+
 +---| |
 rcv Confirm/Change R | | UNSTABLE |
 : ignore +-->| |
 +------------+

 Feature locations SHOULD use the following pseudocode, which
 corresponds to the state diagram, to react to each feature
 negotiation option on each valid non-Data packet received. The
 pseudocode refers to "P.seqno" and "P.ackno", which are properties of
 the packet; "O.type" and "O.len", which are properties of the option;
 "FGSR" and "FGSS", which are properties of the connection and handle
 reordering as described in Section 6.6.4; "F.state", which is the
 feature’s state (STABLE, CHANGING, or UNSTABLE); and "F.value", which
 is the feature’s value.

 First, check for unknown features (Section 6.6.7);
 If F is unknown,
 If the option was Mandatory, /* Section 6.6.9 */
 Reset connection and return
 Otherwise, if O.type == Change R,
 Send Empty Confirm L on a future packet

 Return

 Second, check for reordering (Section 6.6.4);
 If F.state == UNSTABLE or P.seqno <= FGSR
 or (O.type == Confirm R and P.ackno < FGSS),
 Ignore option and return

Kohler, et al. Standards Track [Page 39]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Third, process Change R options;
 If O.type == Change R,
 If the option’s value is valid, /* Section 6.6.8 */
 Calculate new value
 Send Confirm L on a future packet
 Set F.state := STABLE
 Otherwise, if the option was Mandatory,
 Reset connection and return
 Otherwise,
 Send Empty Confirm L on a future packet
 /* Remain in existing state. If that’s CHANGING, this
 endpoint will retransmit its Change L option later. */

 Fourth, process Confirm R options (but only in CHANGING state).
 If F.state == CHANGING and O.type == Confirm R,
 If O.len > 3, /* nonempty */
 If the option’s value is valid,
 Set F.value := new value
 Otherwise,
 Reset connection and return
 Set F.state := STABLE

 Versions of this diagram and pseudocode are also used by feature
 remotes; simply switch the "L"s and "R"s, so that the relevant
 options are Change R and Confirm L.

6.6.3. Loss and Retransmission

 Packets containing Change and Confirm options might be lost or
 delayed by the network. Therefore, Change options are repeatedly
 transmitted to achieve reliability. We refer to this as
 "retransmission", although of course there are no packet-level
 retransmissions in DCCP: a Change option that is sent again will be
 sent on a new packet with a new sequence number.

 A CHANGING endpoint transmits another Change option once it realizes
 that it has not heard back from the other endpoint. The new Change
 option need not contain the same payload as the original; reordering
 protection will ensure that agreement is reached based on the most
 recently transmitted option.

 A CHANGING endpoint MUST continue retransmitting Change options until
 it gets some response or the connection terminates.

 Endpoints SHOULD use an exponential-backoff timer to decide when to
 retransmit Change options. (Packets generated specifically for
 feature negotiation MUST use such a timer.) The timer interval is
 initially set to not less than one round-trip time, and should back

Kohler, et al. Standards Track [Page 40]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 off to not less than 64 seconds. The backoff protects against
 delayed agreement due to the reordering protection algorithms
 described in the next section. Again, endpoints may piggyback Change
 options on packets they would have sent anyway or create new packets
 to carry the options. Any new packets are controlled by the relevant
 congestion-control mechanism.

 Confirm options are never retransmitted, but the Confirm-sending
 endpoint MUST generate a Confirm option after every non-reordered
 Change.

6.6.4. Reordering

 Reordering might cause packets containing Change and Confirm options
 to arrive in an unexpected order. Endpoints MUST ignore feature
 negotiation options that do not arrive in strictly-increasing order
 by Sequence Number. The rest of this section presents two algorithms
 that fulfill this requirement.

 The first algorithm introduces two sequence number variables that
 each endpoint maintains for the connection.

 FGSR Feature Greatest Sequence Number Received: The greatest
 sequence number received, considering only valid packets
 that contained one or more feature negotiation options
 (Change and/or Confirm). This value is initialized to
 ISR - 1.

 FGSS Feature Greatest Sequence Number Sent: The greatest
 sequence number sent, considering only packets that
 contained one or more new Change options. A Change option
 is new if and only if it was generated during a transition
 from the STABLE or UNSTABLE state to the CHANGING state;
 Change options generated within the CHANGING state are
 retransmissions and MUST have exactly the same contents as
 previously transmitted options, allowing tolerance for
 reordering. FGSS is initialized to ISS.

 Each endpoint checks two conditions on sequence numbers to decide
 whether to process received feature negotiation options.

 1. If a packet’s Sequence Number is less than or equal to FGSR, then
 its Change options MUST be ignored.

 2. If a packet’s Sequence Number is less than or equal to FGSR, if it
 has no Acknowledgement Number, OR if its Acknowledgement Number is
 less than FGSS, then its Confirm options MUST be ignored.

Kohler, et al. Standards Track [Page 41]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Alternatively, an endpoint MAY maintain separate FGSR and FGSS values
 for every feature. FGSR(F/X) would equal the greatest sequence
 number received, considering only packets that contained Change or
 Confirm options applying to feature F/X; FGSS(F/X) would be defined
 similarly. This algorithm requires more state, but is slightly more
 forgiving to multiple overlapped feature negotiations. Either
 algorithm MAY be used; the first algorithm, with connection-wide FGSR
 and FGSS variables, is RECOMMENDED.

 One consequence of these rules is that a CHANGING endpoint will
 ignore any Confirm option that does not acknowledge the latest Change
 option sent. This ensures that agreement, once achieved, used the
 most recent available information about the endpoints’ preferences.

6.6.5. Preference Changes

 Endpoints are allowed to change their preference lists at any time.
 However, an endpoint that changes its preference list while in the
 CHANGING state MUST transition to the UNSTABLE state. It will
 transition back to CHANGING once it has transmitted a Change option
 with the new preference list. This ensures that agreement is based
 on active preference lists. Without the UNSTABLE state, simultaneous
 negotiation -- where the endpoints began independent negotiations for
 the same feature at the same time -- might lead to the negotiation’s
 terminating with the endpoints thinking the feature had different
 values.

6.6.6. Simultaneous Negotiation

 The two endpoints might simultaneously open negotiation for the same
 feature, after which an endpoint in the CHANGING state will receive a
 Change option for the same feature. Such received Change options can
 act as responses to the original Change options. The CHANGING
 endpoint MUST examine the received Change’s preference list,
 reconcile that with its own preference list (as expressed in its
 generated Change options), and generate the corresponding Confirm
 option. It can then transition to the STABLE state.

Kohler, et al. Standards Track [Page 42]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

6.6.7. Unknown Features

 Endpoints may receive Change options referring to feature numbers
 they do not understand -- for instance, when an extended DCCP
 converses with a non-extended DCCP. Endpoints MUST respond to
 unknown Change options with Empty Confirm options (that is, Confirm
 options containing no data), which inform the CHANGING endpoint that
 the feature was not understood. However, if the Change option was
 Mandatory, the connection MUST be reset; see Section 6.6.9.

 On receiving an empty Confirm option for some feature, the CHANGING
 endpoint MUST transition back to the STABLE state, leaving the
 feature’s value unchanged. Section 15 suggests that the default
 value for any extension feature correspond to "extension not
 available".

 Some features are required to be understood by all DCCPs (see Section
 6.4). The CHANGING endpoint SHOULD reset the connection (with Reset
 Code 5, "Option Error") if it receives an empty Confirm option for
 such a feature.

 Since Confirm options are generated only in response to Change
 options, an endpoint should never receive a Confirm option referring
 to a feature number it does not understand. Nevertheless, endpoints
 MUST ignore any such options they receive.

6.6.8. Invalid Options

 A DCCP endpoint might receive a Change or Confirm option for a known
 feature that lists one or more values that it does not understand.
 Some, but not all, such options are invalid, depending on the
 relevant reconciliation rule (Section 6.3). For instance:

 o All features have length limitations, and options with invalid
 lengths are invalid. For example, the Ack Ratio feature takes
 16-bit values, so valid "Confirm R(Ack Ratio)" options have option
 length 5.

 o Some non-negotiable features have value limitations. The Ack
 Ratio feature takes two-byte, non-zero integer values, so a
 "Change L(Ack Ratio, 0)" option is never valid. Note that
 server-priority features do not have value limitations, since
 unknown values are handled as a matter of course.

 o Any Confirm option that selects the wrong value, based on the two
 preference lists and the relevant reconciliation rule, is invalid.

Kohler, et al. Standards Track [Page 43]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 However, unexpected Confirm options -- that refer to unknown feature
 numbers, or that don’t appear to be part of a current negotiation --
 are not invalid, although they are ignored by the receiver.

 An endpoint receiving an invalid Change option MUST respond with the
 corresponding empty Confirm option. An endpoint receiving an invalid
 Confirm option MUST reset the connection, with Reset Code 5, "Option
 Error".

6.6.9. Mandatory Feature Negotiation

 Change options may be preceded by Mandatory options (Section 5.8.2).
 Mandatory Change options are processed like normal Change options
 except that the following failure cases will cause the receiver to
 reset the connection with Reset Code 6, "Mandatory Failure", rather
 than send a Confirm option. The connection MUST be reset if:

 o the Change option’s feature number was not understood;

 o the Change option’s value was invalid, and the receiver would
 normally have sent an empty Confirm option in response; or

 o for server-priority features, there was no shared entry in the two
 endpoints’ preference lists.

 Other failure cases do not cause connection reset; in particular,
 reordering protection may cause a Mandatory Change option to be
 ignored without resetting the connection.

 Confirm options behave identically and have the same reset conditions
 whether or not they are Mandatory.

7. Sequence Numbers

 DCCP uses sequence numbers to arrange packets into sequence, to
 detect losses and network duplicates, and to protect against
 attackers, half-open connections, and the delivery of very old
 packets. Every packet carries a Sequence Number; most packet types
 carry an Acknowledgement Number as well.

 DCCP sequence numbers are packet based. That is, Sequence Numbers
 generated by each endpoint increase by one, modulo 2^48, per packet.
 Even DCCP-Ack and DCCP-Sync packets, and other packets that don’t
 carry user data, increment the Sequence Number. Since DCCP is an
 unreliable protocol, there are no true retransmissions, but effective
 retransmissions, such as retransmissions of DCCP-Request packets,
 also increment the Sequence Number. This lets DCCP implementations

Kohler, et al. Standards Track [Page 44]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 detect network duplication, retransmissions, and acknowledgement
 loss; it is a significant departure from TCP practice.

7.1. Variables

 DCCP endpoints maintain a set of sequence number variables for each
 connection.

 ISS The Initial Sequence Number Sent by this endpoint. This
 equals the Sequence Number of the first DCCP-Request or
 DCCP-Response sent.

 ISR The Initial Sequence Number Received from the other endpoint.
 This equals the Sequence Number of the first DCCP-Request or
 DCCP-Response received.

 GSS The Greatest Sequence Number Sent by this endpoint. Here,
 and elsewhere, "greatest" is measured in circular sequence
 space.

 GSR The Greatest Sequence Number Received from the other endpoint
 on an acknowledgeable packet. (Section 7.4 defines this
 term.)

 GAR The Greatest Acknowledgement Number Received from the other
 endpoint on an acknowledgeable packet that was not a DCCP-
 Sync.

 Some other variables are derived from these primitives.

 SWL and SWH
 (Sequence Number Window Low and High) The extremes of the
 validity window for received packets’ Sequence Numbers.

 AWL and AWH
 (Acknowledgement Number Window Low and High) The extremes of
 the validity window for received packets’ Acknowledgement
 Numbers.

7.2. Initial Sequence Numbers

 The endpoints’ initial sequence numbers are set by the first DCCP-
 Request and DCCP-Response packets sent. Initial sequence numbers
 MUST be chosen to avoid two problems:

 o delivery of old packets, where packets lingering in the network
 from an old connection are delivered to a new connection with the
 same addresses and port numbers; and

Kohler, et al. Standards Track [Page 45]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o sequence number attacks, where an attacker can guess the sequence
 numbers that a future connection would use [M85].

 These problems are the same as those faced by TCP, and DCCP
 implementations SHOULD use TCP’s strategies to avoid them [RFC793,
 RFC1948]. The rest of this section explains these strategies in more
 detail.

 To address the first problem, an implementation MUST ensure that the
 initial sequence number for a given <source address, source port,
 destination address, destination port> 4-tuple doesn’t overlap with
 recent sequence numbers on previous connections with the same
 4-tuple. ("Recent" means sent within 2 maximum segment lifetimes, or
 4 minutes.) The implementation MUST additionally ensure that the
 lower 24 bits of the initial sequence number don’t overlap with the
 lower 24 bits of recent sequence numbers (unless the implementation
 plans to avoid short sequence numbers; see Section 7.6). An
 implementation that has state for a recent connection with the same
 4-tuple can pick a good initial sequence number explicitly.
 Otherwise, it could tie initial sequence number selection to some
 clock, such as the 4-microsecond clock used by TCP [RFC793]. Two
 separate clocks may be required, one for the upper 24 bits and one
 for the lower 24 bits.

 To address the second problem, an implementation MUST provide each
 4-tuple with an independent initial sequence number space. Then,
 opening a connection doesn’t provide any information about initial
 sequence numbers on other connections to the same host. [RFC1948]
 achieves this by adding a cryptographic hash of the 4-tuple and a
 secret to each initial sequence number. For the secret, [RFC1948]
 recommends a combination of some truly random data [RFC4086], an
 administratively installed passphrase, the endpoint’s IP address, and
 the endpoint’s boot time, but truly random data is sufficient. Care
 should be taken when the secret is changed; such a change alters all
 initial sequence number spaces, which might make an initial sequence
 number for some 4-tuple equal a recently sent sequence number for the
 same 4-tuple. To avoid this problem, the endpoint might remember
 dead connection state for each 4-tuple or stay quiet for 2 maximum
 segment lifetimes around such a change.

7.3. Quiet Time

 DCCP endpoints, like TCP endpoints, must take care before initiating
 connections when they boot. In particular, they MUST NOT send
 packets whose sequence numbers are close to the sequence numbers of
 packets lingering in the network from before the boot. The simplest
 way to enforce this rule is for DCCP endpoints to avoid sending any
 packets until one maximum segment lifetime (2 minutes) after boot.

Kohler, et al. Standards Track [Page 46]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Other enforcement mechanisms include remembering recent sequence
 numbers across boots and reserving the upper 8 or so bits of initial
 sequence numbers for a persistent counter that decrements by two each
 boot. (The latter mechanism would require disallowing packets with
 short sequence numbers; see Section 7.6.1.)

7.4. Acknowledgement Numbers

 Cumulative acknowledgements are meaningless in an unreliable
 protocol. Therefore, DCCP’s Acknowledgement Number field has a
 different meaning from TCP’s.

 A received packet is classified as acknowledgeable if and only if its
 header was successfully processed by the receiving DCCP. In terms of
 the pseudocode in Section 8.5, a received packet becomes
 acknowledgeable when the receiving endpoint reaches Step 8. This
 means, for example, that all acknowledgeable packets have valid
 header checksums and sequence numbers. A sent packet’s
 Acknowledgement Number MUST equal the sending endpoint’s GSR, the
 Greatest Sequence Number Received on an acknowledgeable packet, for
 all packet types except DCCP-Sync and DCCP-SyncAck.

 "Acknowledgeable" does not refer to data processing. Even
 acknowledgeable packets may have their application data dropped, due
 to receive buffer overflow or corruption, for instance. Data Dropped
 options report these data losses when necessary, letting congestion
 control mechanisms distinguish between network losses and endpoint
 losses. This issue is discussed further in Sections 11.4 and 11.7.

 DCCP-Sync and DCCP-SyncAck packets’ Acknowledgement Numbers differ as
 follows: The Acknowledgement Number on a DCCP-Sync packet corresponds
 to a received packet, but not necessarily to an acknowledgeable
 packet; in particular, it might correspond to an out-of-sync packet
 whose options were not processed. The Acknowledgement Number on a
 DCCP-SyncAck packet always corresponds to an acknowledgeable DCCP-
 Sync packet; it might be less than GSR in the presence of reordering.

7.5. Validity and Synchronization

 Any DCCP endpoint might receive packets that are not actually part of
 the current connection. For instance, the network might deliver an
 old packet, an attacker might attempt to hijack a connection, or the
 other endpoint might crash, causing a half-open connection.

 DCCP, like TCP, uses sequence number checks to detect these cases.
 Packets whose Sequence and/or Acknowledgement Numbers are out of
 range are called sequence-invalid and are not processed normally.

Kohler, et al. Standards Track [Page 47]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Unlike TCP, DCCP requires a synchronization mechanism to recover from
 large bursts of loss. One endpoint might send so many packets during
 a burst of loss that when one of its packets finally got through, the
 other endpoint would label its Sequence Number as invalid. A
 handshake of DCCP-Sync and DCCP-SyncAck packets recovers from this
 case.

7.5.1. Sequence and Acknowledgement Number Windows

 Each DCCP endpoint defines sequence validity windows that are subsets
 of the Sequence and Acknowledgement Number spaces. These windows
 correspond to packets the endpoint expects to receive in the next few
 round-trip times. The Sequence and Acknowledgement Number windows
 always contain GSR and GSS, respectively. The window widths are
 controlled by Sequence Window features for the two half-connections.

 The Sequence Number validity window for packets from DCCP B is [SWL,
 SWH]. This window always contains GSR, the Greatest Sequence Number
 Received on a sequence-valid packet from DCCP B. It is W packets
 wide, where W is the value of the Sequence Window/B feature. One-
 fourth of the sequence window, rounded down, is less than or equal to
 GSR, and three-fourths is greater than GSR. (This asymmetric
 placement assumes that bursts of loss are more common in the network
 than significant reorderings.)

 invalid | valid Sequence Numbers | invalid
 <---------*|*===========*=======================*|*--------->
 GSR -|GSR + 1 - GSR GSR +|GSR + 1 +
 floor(W/4)|floor(W/4) ceil(3W/4)|ceil(3W/4)
 = SWL = SWH

 The Acknowledgement Number validity window for packets from DCCP B is
 [AWL, AWH]. The high end of the window, AWH, equals GSS, the
 Greatest Sequence Number Sent by DCCP A; the window is W’ packets
 wide, where W’ is the value of the Sequence Window/A feature.

 invalid | valid Acknowledgement Numbers | invalid
 <---------*|*===================================*|*--------->
 GSS - W’|GSS + 1 - W’ GSS|GSS + 1
 = AWL = AWH

 SWL and AWL are initially adjusted so that they are not less than the
 initial Sequence Numbers received and sent, respectively:

 SWL := max(GSR + 1 - floor(W/4), ISR),
 AWL := max(GSS + 1 - W’, ISS).

Kohler, et al. Standards Track [Page 48]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 These adjustments MUST be applied only at the beginning of the
 connection. (Long-lived connections may wrap sequence numbers so
 that they appear to be less than ISR or ISS; the adjustments MUST NOT
 be applied in that case.)

7.5.2. Sequence Window Feature

 The Sequence Window/A feature determines the width of the Sequence
 Number validity window used by DCCP B and the width of the
 Acknowledgement Number validity window used by DCCP A. DCCP A sends
 a "Change L(Sequence Window, W)" option to notify DCCP B that the
 Sequence Window/A value is W.

 Sequence Window has feature number 3 and is non-negotiable. It takes
 48-bit (6-byte) integer values, like DCCP sequence numbers. Change
 and Confirm options for Sequence Window are therefore 9 bytes long.
 New connections start with Sequence Window 100 for both endpoints.
 The minimum valid Sequence Window value is Wmin = 32. The maximum
 valid Sequence Window value is Wmax = 2^46 - 1 = 70368744177663.
 Change options suggesting Sequence Window values out of this range
 are invalid and MUST be handled accordingly.

 A proper Sequence Window/A value must reflect the number of packets
 DCCP A expects to be in flight. Only DCCP A can anticipate this
 number. Values that are too small increase the risk of the endpoints
 getting out sync after bursts of loss, and values that are much too
 small can prevent productive communication whether or not there is
 loss. On the other hand, too-large values increase the risk of
 connection hijacking; Section 7.5.5 quantifies this risk. One good
 guideline is for each endpoint to set Sequence Window to about five
 times the maximum number of packets it expects to send in a round-
 trip time. Endpoints SHOULD send Change L(Sequence Window) options,
 as necessary, as the connection progresses. Also, an endpoint MUST
 NOT persistently send more than its Sequence Window number of packets
 per round-trip time; that is, DCCP A MUST NOT persistently send more
 than Sequence Window/A packets per RTT.

7.5.3. Sequence-Validity Rules

 Sequence-validity depends on the received packet’s type. This table
 shows the sequence and acknowledgement number checks applied to each
 packet; a packet is sequence-valid if it passes both tests, and
 sequence-invalid if it does not. Many of the checks refer to the
 sequence and acknowledgement number validity windows [SWL, SWH] and
 [AWL, AWH] defined in Section 7.5.1.

Kohler, et al. Standards Track [Page 49]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Acknowledgement Number
 Packet Type Sequence Number Check Check
 ----------- --------------------- ----------------------
 DCCP-Request SWL <= seqno <= SWH (*) N/A
 DCCP-Response SWL <= seqno <= SWH (*) AWL <= ackno <= AWH
 DCCP-Data SWL <= seqno <= SWH N/A
 DCCP-Ack SWL <= seqno <= SWH AWL <= ackno <= AWH
 DCCP-DataAck SWL <= seqno <= SWH AWL <= ackno <= AWH
 DCCP-CloseReq GSR < seqno <= SWH GAR <= ackno <= AWH
 DCCP-Close GSR < seqno <= SWH GAR <= ackno <= AWH
 DCCP-Reset GSR < seqno <= SWH GAR <= ackno <= AWH
 DCCP-Sync SWL <= seqno AWL <= ackno <= AWH
 DCCP-SyncAck SWL <= seqno AWL <= ackno <= AWH

 (*) Check not applied if connection is in LISTEN or REQUEST state.

 In general, packets are sequence-valid if their Sequence and
 Acknowledgement Numbers lie within the corresponding valid windows,
 [SWL, SWH] and [AWL, AWH]. The exceptions to this rule are as
 follows:

 o Since DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets end a
 connection, they cannot have Sequence Numbers less than or equal
 to GSR, or Acknowledgement Numbers less than GAR.

 o DCCP-Sync and DCCP-SyncAck Sequence Numbers are not strongly
 checked. These packet types exist specifically to get the
 endpoints back into sync; checking their Sequence Numbers would
 eliminate their usefulness.

 The lenient checks on DCCP-Sync and DCCP-SyncAck packets allow
 continued operation after unusual events, such as endpoint crashes
 and large bursts of loss, but there’s no need for leniency in the
 absence of unusual events -- that is, during ongoing successful
 communication. Therefore, DCCP implementations SHOULD use the
 following, more stringent checks for active connections, where a
 connection is considered active if it has received valid packets from
 the other endpoint within the last three round-trip times.

 Acknowledgement Number
 Packet Type Sequence Number Check Check
 ----------- --------------------- ----------------------
 DCCP-Sync SWL <= seqno <= SWH AWL <= ackno <= AWH
 DCCP-SyncAck SWL <= seqno <= SWH AWL <= ackno <= AWH

 Finally, an endpoint MAY apply the following more stringent checks to
 DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets, further lowering
 the probability of successful blind attacks using those packet types.

Kohler, et al. Standards Track [Page 50]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Since these checks can cause extra synchronization overhead and delay
 connection closing when packets are lost, they should be considered
 experimental.

 Acknowledgement Number
 Packet Type Sequence Number Check Check
 ----------- --------------------- ----------------------
 DCCP-CloseReq seqno == GSR + 1 GAR <= ackno <= AWH
 DCCP-Close seqno == GSR + 1 GAR <= ackno <= AWH
 DCCP-Reset seqno == GSR + 1 GAR <= ackno <= AWH

 Note that sequence-validity is only one of the validity checks
 applied to received packets.

7.5.4. Handling Sequence-Invalid Packets

 Endpoints respond to received sequence-invalid packets as follows.

 o Any sequence-invalid DCCP-Sync or DCCP-SyncAck packet MUST be
 ignored.

 o A sequence-invalid DCCP-Reset packet MUST elicit a DCCP-Sync
 packet in response (subject to a possible rate limit). This
 response packet MUST use a new Sequence Number, and thus will
 increase GSS; GSR will not change, however, since the received
 packet was sequence-invalid. The response packet’s
 Acknowledgement Number MUST equal GSR.

 o Any other sequence-invalid packet MUST elicit a similar DCCP-Sync
 packet, except that the response packet’s Acknowledgement Number
 MUST equal the sequence-invalid packet’s Sequence Number.

 On receiving a sequence-valid DCCP-Sync packet, the peer endpoint
 (say, DCCP B) MUST update its GSR variable and reply with a DCCP-
 SyncAck packet. The DCCP-SyncAck packet’s Acknowledgement Number
 will equal the DCCP-Sync’s Sequence Number, which is not necessarily
 GSR. Upon receiving this DCCP-SyncAck, which will be sequence-valid
 since it acknowledges the DCCP-Sync, DCCP A will update its GSR
 variable, and the endpoints will be back in sync. As an exception,
 if the peer endpoint is in the REQUEST state, it MUST respond with a
 DCCP-Reset instead of a DCCP-SyncAck. This serves to clean up DCCP
 A’s half-open connection.

 To protect against denial-of-service attacks, DCCP implementations
 SHOULD impose a rate limit on DCCP-Syncs sent in response to
 sequence-invalid packets, such as not more than eight DCCP-Syncs per
 second.

Kohler, et al. Standards Track [Page 51]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 DCCP endpoints MUST NOT process sequence-invalid packets except,
 perhaps, by generating a DCCP-Sync. For instance, options MUST NOT
 be processed. An endpoint MAY temporarily preserve sequence-invalid
 packets in case they become valid later, however; this can reduce the
 impact of bursts of loss by delivering more packets to the
 application. In particular, an endpoint MAY preserve sequence-
 invalid packets for up to 2 round-trip times. If, within that time,
 the relevant sequence windows change so that the packets become
 sequence-valid, the endpoint MAY process them again.

 Note that sequence-invalid DCCP-Reset packets cause DCCP-Syncs to be
 generated. This is because endpoints in an unsynchronized state
 (CLOSED, REQUEST, and LISTEN) might not have enough information to
 generate a proper DCCP-Reset on the first try. For example, if a
 peer endpoint is in CLOSED state and receives a DCCP-Data packet, it
 cannot guess the right Sequence Number to use on the DCCP-Reset it
 generates (since the DCCP-Data packet has no Acknowledgement Number).
 The DCCP-Sync generated in response to this bad reset serves as a
 challenge, and contains enough information for the peer to generate a
 proper DCCP-Reset. However, the new DCCP-Reset may carry a different
 Reset Code than the original DCCP-Reset; probably the new Reset Code
 will be 3, "No Connection". The endpoint SHOULD use information from
 the original DCCP-Reset when possible.

7.5.5. Sequence Number Attacks

 Sequence and Acknowledgement Numbers form DCCP’s main line of defense
 against attackers. An attacker that cannot guess sequence numbers
 cannot easily manipulate or hijack a DCCP connection, and
 requirements like careful initial sequence number choice eliminate
 the most serious attacks.

 An attacker might still send many packets with randomly chosen
 Sequence and Acknowledgement Numbers, however. If one of those
 probes ends up sequence-valid, it may shut down the connection or
 otherwise cause problems. The easiest such attacks to execute are as
 follows:

 o Send DCCP-Data packets with random Sequence Numbers. If one of
 these packets hits the valid sequence number window, the attack
 packet’s application data may be inserted into the data stream.

 o Send DCCP-Sync packets with random Sequence and Acknowledgement
 Numbers. If one of these packets hits the valid acknowledgement
 number window, the receiver will shift its sequence number window
 accordingly, getting out of sync with the correct endpoint --
 perhaps permanently.

Kohler, et al. Standards Track [Page 52]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 The attacker has to guess both Source and Destination Ports for any
 of these attacks to succeed. Additionally, the connection would have
 to be inactive for the DCCP-Sync attack to succeed, assuming the
 victim implemented the more stringent checks for active connections
 recommended in Section 7.5.3.

 To quantify the probability of success, let N be the number of attack
 packets the attacker is willing to send, W be the relevant sequence
 window width, and L be the length of sequence numbers (24 or 48).
 The attacker’s best strategy is to space the attack packets evenly
 over sequence space. Then the probability of hitting one sequence
 number window is P = WN/2^L.

 The success probability for a DCCP-Data attack using short sequence
 numbers thus equals P = WN/2^24. For W = 100, then, the attacker
 must send more than 83,000 packets to achieve a 50% chance of
 success. For reference, the easiest TCP attack -- sending a SYN with
 a random sequence number, which will cause a connection reset if it
 falls within the window -- with W = 8760 (a common default) and
 L = 32 requires more than 245,000 packets to achieve a 50% chance of
 success.

 A fast connection’s W will generally be high, increasing the attack
 success probability for fixed N. If this probability gets
 uncomfortably high with L = 24, the endpoint SHOULD prevent the use
 of short sequence numbers by manipulating the Allow Short Sequence
 Numbers feature (see Section 7.6.1). The probability limit depends
 on the application, however. Some applications, such as those
 already designed to handle corruption, are quite resilient to data
 injection attacks.

 The DCCP-Sync attack has L = 48, since DCCP-Sync packets use long
 sequence numbers exclusively; in addition, the success probability is
 halved, since only half the Sequence Number space is valid. Attacks
 have a correspondingly smaller probability of success. For a large W
 of 2000 packets, then, the attacker must send more than 10^11 packets
 to achieve a 50% chance of success.

 Attacks involving DCCP-Ack, DCCP-DataAck, DCCP-CloseReq, DCCP-Close,
 and DCCP-Reset packets are more difficult, since Sequence and
 Acknowledgement Numbers must both be guessed. The probability of
 attack success for these packet types equals P = WXN/2^(2L), where W
 is the Sequence Number window, X is the Acknowledgement Number
 window, and N and L are as before.

 Since DCCP-Data attacks with short sequence numbers are relatively
 easy for attackers to execute, DCCP has been engineered to prevent
 these attacks from escalating to connection resets or other serious

Kohler, et al. Standards Track [Page 53]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 consequences. In particular, any options whose processing might
 cause the connection to be reset are ignored when they appear on
 DCCP-Data packets.

7.5.6. Sequence Number Handling Examples

 In the following example, DCCP A and DCCP B recover from a large
 burst of loss that runs DCCP A’s sequence numbers out of DCCP B’s
 appropriate sequence number window.

 DCCP A DCCP B
 (GSS=1,GSR=10) (GSS=10,GSR=1)
 --> DCCP-Data(seq 2) XXX
 ...
 --> DCCP-Data(seq 100) XXX
 --> DCCP-Data(seq 101) --> ???
 seqno out of range;
 send Sync
 OK <-- DCCP-Sync(seq 11, ack 101) <--
 (GSS=11,GSR=1)
 --> DCCP-SyncAck(seq 102, ack 11) --> OK
 (GSS=102,GSR=11) (GSS=11,GSR=102)

 In the next example, a DCCP connection recovers from a simple blind
 attack.

 DCCP A DCCP B
 (GSS=1,GSR=10) (GSS=10,GSR=1)
 ATTACKER --> DCCP-Data(seq 10^6) --> ???
 seqno out of range;
 send Sync
 ??? <-- DCCP-Sync(seq 11, ack 10^6) <--
 ackno out of range; ignore
 (GSS=1,GSR=10) (GSS=11,GSR=1)

 The final example demonstrates recovery from a half-open connection.

 DCCP A DCCP B
 (GSS=1,GSR=10) (GSS=10,GSR=1)
 (Crash)
 CLOSED OPEN
 REQUEST --> DCCP-Request(seq 400) --> ???
 !! <-- DCCP-Sync(seq 11, ack 400) <-- OPEN
 REQUEST --> DCCP-Reset(seq 401, ack 11) --> (Abort)
 REQUEST CLOSED
 REQUEST --> DCCP-Request(seq 402) --> ...

Kohler, et al. Standards Track [Page 54]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

7.6. Short Sequence Numbers

 DCCP sequence numbers are 48 bits long. This large sequence space
 protects DCCP connections against some blind attacks, such as the
 injection of DCCP-Resets into the connection. However, DCCP-Data,
 DCCP-Ack, and DCCP-DataAck packets, which make up the body of any
 DCCP connection, may reduce header space by transmitting only the
 lower 24 bits of the relevant Sequence and Acknowledgement Numbers.
 The receiving endpoint will extend these numbers to 48 bits using the
 following pseudocode:

 procedure Extend_Sequence_Number(S, REF)
 /* S is a 24-bit sequence number from the packet header.
 REF is the relevant 48-bit reference sequence number:
 GSS if S is an Acknowledgement Number, and GSR if S is a
 Sequence Number. */
 Set REF_low := low 24 bits of REF
 Set REF_hi := high 24 bits of REF
 If REF_low (<) S /* circular comparison mod 2^24 */
 and S |<| REF_low, /* conventional, non-circular
 comparison */
 Return (((REF_hi + 1) mod 2^24) << 24) | S
 Otherwise, if S (<) REF_low and REF_low |<| S,
 Return (((REF_hi - 1) mod 2^24) << 24) | S
 Otherwise,
 Return (REF_hi << 24) | S

 The two different kinds of comparison in the if statements detect
 when the low-order bits of the sequence space have wrapped. (The
 circular comparison "REF_low (<) S" returns true if and only if
 (S - REF_low), calculated using two’s-complement arithmetic and then
 represented as an unsigned number, is less than or equal to 2^23
 (mod 2^24).) When this happens, the high-order bits are incremented
 or decremented, as appropriate.

7.6.1. Allow Short Sequence Numbers Feature

 Endpoints can require that all packets use long sequence numbers by
 leaving the Allow Short Sequence Numbers feature value at its default
 of zero. This can reduce the risk that data will be inappropriately
 injected into the connection. DCCP A sends a "Change L(Allow Short
 Seqnos, 1)" option to indicate its desire to send packets with short
 sequence numbers.

 Allow Short Sequence Numbers has feature number 2 and is server-
 priority. It takes one-byte Boolean values. When Allow Short
 Seqnos/B is zero, DCCP B MUST NOT send packets with short sequence
 numbers and DCCP A MUST ignore any packets with short sequence

Kohler, et al. Standards Track [Page 55]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 numbers that are received. Values of two or more are reserved. New
 connections start with Allow Short Sequence Numbers 0 for both
 endpoints.

7.6.2. When to Avoid Short Sequence Numbers

 Short sequence numbers reduce the rate DCCP connections can safely
 achieve and increase the risks of certain kinds of attacks, including
 blind data injection. Very-high-rate DCCP connections, and
 connections with large sequence windows (Section 7.5.2), SHOULD NOT
 use short sequence numbers on their data packets. The attack risk
 issues have been discussed in Section 7.5.5; we discuss the rate
 limitation issue here.

 The sequence-validity mechanism assumes that the network does not
 deliver extremely old data. In particular, it assumes that the
 network must have dropped any packet by the time the connection wraps
 around and uses its sequence number again. This constraint limits
 the maximum connection rate that can be safely achieved. Let MSL
 equal the maximum segment lifetime, P equal the average DCCP packet
 size in bits, and L equal the length of sequence numbers (24 or 48
 bits). Then the maximum safe rate, in bits per second, is
 R = P*(2^L)/2MSL.

 For the default MSL of 2 minutes, 1500-byte DCCP packets, and short
 sequence numbers, the safe rate is therefore approximately 800 Mb/s.
 Although 2 minutes is a very large MSL for any networks that could
 sustain that rate with such small packets, long sequence numbers
 allow much higher rates under the same constraints: up to 14 petabits
 a second for 1500-byte packets and the default MSL.

7.7. NDP Count and Detecting Application Loss

 DCCP’s sequence numbers increment by one on every packet, including
 non-data packets (packets that don’t carry application data). This
 makes DCCP sequence numbers suitable for detecting any network loss,
 but not for detecting the loss of application data. The NDP Count
 option reports the length of each burst of non-data packets. This
 lets the receiving DCCP reliably determine when a burst of loss
 included application data.

 +--------+--------+-------- ... --------+
 |00100101| Length | NDP Count |
 +--------+--------+-------- ... --------+
 Type=37 Len=3-8 (1-6 bytes)

 If a DCCP endpoint’s Send NDP Count feature is one (see below), then
 that endpoint MUST send an NDP Count option on every packet whose

Kohler, et al. Standards Track [Page 56]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 immediate predecessor was a non-data packet. Non-data packets
 consist of DCCP packet types DCCP-Ack, DCCP-Close, DCCP-CloseReq,
 DCCP-Reset, DCCP-Sync, and DCCP-SyncAck. The other packet types,
 namely DCCP-Request, DCCP-Response, DCCP-Data, and DCCP-DataAck, are
 considered data packets, although not all DCCP-Request and DCCP-
 Response packets will actually carry application data.

 The value stored in NDP Count equals the number of consecutive non-
 data packets in the run immediately previous to the current packet.
 Packets with no NDP Count option are considered to have NDP Count
 zero.

 The NDP Count option can carry one to six bytes of data. The
 smallest option format that can hold the NDP Count SHOULD be used.

 With NDP Count, the receiver can reliably tell only whether a burst
 of loss contained at least one data packet. For example, the
 receiver cannot always tell whether a burst of loss contained a non-
 data packet.

7.7.1. NDP Count Usage Notes

 Say that K consecutive sequence numbers are missing in some burst of
 loss, and that the Send NDP Count feature is on. Then some
 application data was lost within those sequence numbers unless the
 packet following the hole contains an NDP Count option whose value is
 greater than or equal to K.

 For example, say that an endpoint sent the following sequence of
 non-data packets (Nx) and data packets (Dx).

 N0 N1 D2 N3 D4 D5 N6 D7 D8 D9 D10 N11 N12 D13

 Those packets would have NDP Counts as follows.

 N0 N1 D2 N3 D4 D5 N6 D7 D8 D9 D10 N11 N12 D13
 - 1 2 - 1 - - 1 - - - - 1 2

 NDP Count is not useful for applications that include their own
 sequence numbers with their packet headers.

7.7.2. Send NDP Count Feature

 The Send NDP Count feature lets DCCP endpoints negotiate whether they
 should send NDP Count options on their packets. DCCP A sends a
 "Change R(Send NDP Count, 1)" option to ask DCCP B to send NDP Count
 options.

Kohler, et al. Standards Track [Page 57]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Send NDP Count has feature number 7 and is server-priority. It takes
 one-byte Boolean values. DCCP B MUST send NDP Count options as
 described above when Send NDP Count/B is one, although it MAY send
 NDP Count options even when Send NDP Count/B is zero. Values of two
 or more are reserved. New connections start with Send NDP Count 0
 for both endpoints.

8. Event Processing

 This section describes how DCCP connections move between states and
 which packets are sent when. Note that feature negotiation takes
 place in parallel with the connection-wide state transitions
 described here.

8.1. Connection Establishment

 DCCP connections’ initiation phase consists of a three-way handshake:
 an initial DCCP-Request packet sent by the client, a DCCP-Response
 sent by the server in reply, and finally an acknowledgement from the
 client, usually via a DCCP-Ack or DCCP-DataAck packet. The client
 moves from the REQUEST state to PARTOPEN, and finally to OPEN; the
 server moves from LISTEN to RESPOND, and finally to OPEN.

 Client State Server State
 CLOSED LISTEN
 1. REQUEST --> Request -->
 2. <-- Response <-- RESPOND
 3. PARTOPEN --> Ack, DataAck -->
 4. <-- Data, Ack, DataAck <-- OPEN
 5. OPEN <-> Data, Ack, DataAck <-> OPEN

8.1.1. Client Request

 When a client decides to initiate a connection, it enters the REQUEST
 state, chooses an initial sequence number (Section 7.2), and sends a
 DCCP-Request packet using that sequence number to the intended
 server.

 DCCP-Request packets will commonly carry feature negotiation options
 that open negotiations for various connection parameters, such as
 preferred congestion control IDs for each half-connection. They may
 also carry application data, but the client should be aware that the
 server may not accept such data.

 A client in the REQUEST state SHOULD use an exponential-backoff timer
 to send new DCCP-Request packets if no response is received. The
 first retransmission should occur after approximately one second,
 backing off to not less than one packet every 64 seconds; or the

Kohler, et al. Standards Track [Page 58]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 endpoint can use whatever retransmission strategy is followed for
 retransmitting TCP SYNs. Each new DCCP-Request MUST increment the
 Sequence Number by one and MUST contain the same Service Code and
 application data as the original DCCP-Request.

 A client MAY give up on its DCCP-Requests after some time (3 minutes,
 for example). When it does, it SHOULD send a DCCP-Reset packet to
 the server with Reset Code 2, "Aborted", to clean up state in case
 one or more of the Requests actually arrived. A client in REQUEST
 state has never received an initial sequence number from its peer, so
 the DCCP-Reset’s Acknowledgement Number MUST be set to zero.

 The client leaves the REQUEST state for PARTOPEN when it receives a
 DCCP-Response from the server.

8.1.2. Service Codes

 Each DCCP-Request contains a 32-bit Service Code, which identifies
 the application-level service to which the client application is
 trying to connect. Service Codes should correspond to application
 services and protocols. For example, there might be a Service Code
 for SIP control connections and one for RTP audio connections.
 Middleboxes, such as firewalls, can use the Service Code to identify
 the application running on a nonstandard port (assuming the DCCP
 header has not been encrypted).

 Endpoints MUST associate a Service Code with every DCCP socket, both
 actively and passively opened. The application will generally supply
 this Service Code. Each active socket MUST have exactly one Service
 Code. Passive sockets MAY, at the implementation’s discretion, be
 associated with more than one Service Code; this might let multiple
 applications, or multiple versions of the same application, listen on
 the same port, differentiated by Service Code. If the DCCP-Request’s
 Service Code doesn’t equal any of the server’s Service Codes for the
 given port, the server MUST reject the request by sending a DCCP-
 Reset packet with Reset Code 8, "Bad Service Code". A middlebox MAY
 also send such a DCCP-Reset in response to packets whose Service Code
 is considered unsuitable.

 Service Codes are not intended to be DCCP-specific and are allocated
 by IANA. Following the policies outlined in [RFC2434], most Service
 Codes are allocated First Come First Served, subject to the following
 guidelines.

 o Service Codes are allocated one at a time, or in small blocks. A
 short English description of the intended service is REQUIRED to
 obtain a Service Code assignment, but no specification, standards

Kohler, et al. Standards Track [Page 59]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 track or otherwise, is necessary. IANA maintains an association
 of Service Codes to the corresponding phrases.

 o Users request specific Service Code values. We suggest that users
 request Service Codes that can be represented using the "SC:"
 formatting convention described below. Thus, the "Frobodyne Plotz
 Protocol" might correspond to Service Code 17178548426 or,
 equivalently, "SC:fdpz". The canonical interpretation of a
 Service Code field is numeric.

 o Service Codes whose bytes each have values in the set {32, 45-57,
 65-90} use a Specification Required allocation policy. That is,
 these Service Codes are used for international standard or
 standards-track specifications, IETF or otherwise. (This set
 consists of the ASCII digits, uppercase letters, and characters
 space, ’-’, ’.’, and ’/’.)

 o Service Codes whose high-order byte equals 63 (ASCII ’?’) are
 reserved for Private Use.

 o Service Code 0 represents the absence of a meaningful Service Code
 and MUST NOT be allocated.

 o The value 4294967295 is an invalid Service Code. Servers MUST
 reject any DCCP-Request with this Service Code value by sending a
 DCCP-Reset packet with Reset Code 8, "Bad Service Code".

 This design for Service Code allocation is based on the allocation of
 4-byte identifiers for Macintosh resources, PNG chunks, and TrueType
 and OpenType tables.

 In text settings, we recommend that Service Codes be written in one
 of three forms, prefixed by the ASCII letters SC and either a colon
 ":" or equals sign "=". These forms are interpreted as follows.

 SC: Indicates a Service Code representable using a subset of the
 ASCII characters. The colon is followed by one to four
 characters taken from the following set: letters, digits, and
 the characters in "-_+.*/?@" (not including quotes).
 Numerically, these characters have values in {42-43, 45-57,
 63-90, 95, 97-122}. The Service Code is calculated by
 padding the string on the right with spaces (value 32) and
 intepreting the four-character result as a 32-bit big-endian
 number.

 SC= Indicates a decimal Service Code. The equals sign is
 followed by any number of decimal digits, which specify the
 Service Code. Values above 4294967294 are illegal.

Kohler, et al. Standards Track [Page 60]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 SC=x or SC=X
 Indicates a hexadecimal Service Code. The "x" or "X" is
 followed by any number of hexadecimal digits (upper or lower
 case), which specify the Service Code. Values above
 4294967294 are illegal.

 Thus, the Service Code 1717858426 might be represented in text as
 either SC:fdpz, SC=1717858426, or SC=x6664707A.

8.1.3. Server Response

 In the second phase of the three-way handshake, the server moves from
 the LISTEN state to RESPOND and sends a DCCP-Response message to the
 client. In this phase, a server will often specify the features it
 would like to use, either from among those the client requested or in
 addition to those. Among these options is the congestion control
 mechanism the server expects to use.

 The server MAY respond to a DCCP-Request packet with a DCCP-Reset
 packet to refuse the connection. Relevant Reset Codes for refusing a
 connection include 7, "Connection Refused", when the DCCP-Request’s
 Destination Port did not correspond to a DCCP port open for
 listening; 8, "Bad Service Code", when the DCCP-Request’s Service
 Code did not correspond to the service code registered with the
 Destination Port; and 9, "Too Busy", when the server is currently too
 busy to respond to requests. The server SHOULD limit the rate at
 which it generates these resets; for example, to not more than 1024
 per second.

 The server SHOULD NOT retransmit DCCP-Response packets; the client
 will retransmit the DCCP-Request if necessary. (Note that the
 "retransmitted" DCCP-Request will have, at least, a different
 sequence number from the "original" DCCP-Request. The server can
 thus distinguish true retransmissions from network duplicates.) The
 server will detect that the retransmitted DCCP-Request applies to an
 existing connection because of its Source and Destination Ports.
 Every valid DCCP-Request received while the server is in the RESPOND
 state MUST elicit a new DCCP-Response. Each new DCCP-Response MUST
 increment the server’s Sequence Number by one and MUST include the
 same application data, if any, as the original DCCP-Response.

 The server MUST NOT accept more than one piece of DCCP-Request
 application data per connection. In particular, the DCCP-Response
 sent in reply to a retransmitted DCCP-Request with application data
 SHOULD contain a Data Dropped option, in which the retransmitted
 DCCP-Request data is reported with Drop Code 0, Protocol Constraints.
 The original DCCP-Request SHOULD also be reported in the Data Dropped
 option, either in a Normal Block (if the server accepted the data or

Kohler, et al. Standards Track [Page 61]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 there was no data) or in a Drop Code 0 Drop Block (if the server
 refused the data the first time as well).

 The Data Dropped and Init Cookie options are particularly useful for
 DCCP-Response packets (Sections 11.7 and 8.1.4).

 The server leaves the RESPOND state for OPEN when it receives a valid
 DCCP-Ack from the client, completing the three-way handshake. It MAY
 also leave the RESPOND state for CLOSED after a timeout of not less
 than 4MSL (8 minutes); when doing so, it SHOULD send a DCCP-Reset
 with Reset Code 2, "Aborted", to clean up state at the client.

8.1.4. Init Cookie Option

 +--------+--------+--------+--------+--------+--------
 |00100100| Length | Init Cookie Value ...
 +--------+--------+--------+--------+--------+--------
 Type=36

 The Init Cookie option lets a DCCP server avoid having to hold any
 state until the three-way connection setup handshake has completed,
 in a similar fashion as for TCP SYN cookies [SYNCOOKIES]. The server
 wraps up the Service Code, server port, and any options it cares
 about from both the DCCP-Request and DCCP-Response in an opaque
 cookie. Typically the cookie will be encrypted using a secret known
 only to the server and will include a cryptographic checksum or magic
 value so that correct decryption can be verified. When the server
 receives the cookie back in the response, it can decrypt the cookie
 and instantiate all the state it avoided keeping. In the meantime,
 it need not move from the LISTEN state.

 The Init Cookie option MUST NOT be sent on DCCP-Request or DCCP-Data
 packets. Any Init Cookie options received on DCCP-Request or DCCP-
 Data packets, or after the connection has been established (when the
 connection’s state is >= OPEN), MUST be ignored. The server MAY
 include Init Cookie options in its DCCP-Response. If so, then the
 client MUST echo the same Init Cookie options, in the same order, in
 each succeeding DCCP packet until one of those packets is
 acknowledged (showing that the three-way handshake has completed) or
 the connection is reset. As a result, the client MUST NOT use DCCP-
 Data packets until the three-way handshake completes or the
 connection is reset. The Init Cookie options on a client packet MUST
 equal those received on the DCCP-Request indicated by the client
 packet’s Acknowledgement Number. The server SHOULD design its Init
 Cookie format so that Init Cookies can be checked for tampering; it
 SHOULD respond to a tampered Init Cookie option by resetting the
 connection with Reset Code 10, "Bad Init Cookie".

Kohler, et al. Standards Track [Page 62]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Init Cookie’s precise implementation need not be specified here;
 since Init Cookies are opaque to the client, there are no
 interoperability concerns. An example cookie format might encrypt
 (using a secret key) the connection’s initial sequence and
 acknowledgement numbers, ports, Service Code, any options included on
 the DCCP-Request packet and the corresponding DCCP-Response, a random
 salt, and a magic number. On receiving a reflected Init Cookie, the
 server would decrypt the cookie, validate it by checking its magic
 number, sequence numbers, and ports, and, if valid, create a
 corresponding socket using the options.

 Each individual Init Cookie option can hold at most 253 bytes of
 data, but a server can send multiple Init Cookie options to gain more
 space.

8.1.5. Handshake Completion

 When the client receives a DCCP-Response from the server, it moves
 from the REQUEST state to PARTOPEN and completes the three-way
 handshake by sending a DCCP-Ack packet to the server. The client
 remains in PARTOPEN until it can be sure that the server has received
 some packet the client sent from PARTOPEN (either the initial DCCP-
 Ack or a later packet). Clients in the PARTOPEN state that want to
 send data MUST do so using DCCP-DataAck packets, not DCCP-Data
 packets. This is because DCCP-Data packets lack Acknowledgement
 Numbers, so the server can’t tell from a DCCP-Data packet whether the
 client saw its DCCP-Response. Furthermore, if the DCCP-Response
 included an Init Cookie, that Init Cookie MUST be included on every
 packet sent in PARTOPEN.

 The single DCCP-Ack sent when entering the PARTOPEN state might, of
 course, be dropped by the network. The client SHOULD ensure that
 some packet gets through eventually. The preferred mechanism would
 be a roughly 200-millisecond timer, set every time a packet is
 transmitted in PARTOPEN. If this timer goes off and the client is
 still in PARTOPEN, the client generates another DCCP-Ack and backs
 off the timer. If the client remains in PARTOPEN for more than 4MSL
 (8 minutes), it SHOULD reset the connection with Reset Code 2,
 "Aborted".

 The client leaves the PARTOPEN state for OPEN when it receives a
 valid packet other than DCCP-Response, DCCP-Reset, or DCCP-Sync from
 the server.

8.2. Data Transfer

 In the central data transfer phase of the connection, both server and
 client are in the OPEN state.

Kohler, et al. Standards Track [Page 63]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 DCCP A sends DCCP-Data and DCCP-DataAck packets to DCCP B due to
 application events on host A. These packets are congestion-
 controlled by the CCID for the A-to-B half-connection. In contrast,
 DCCP-Ack packets sent by DCCP A are controlled by the CCID for the
 B-to-A half-connection. Generally, DCCP A will piggyback
 acknowledgement information on DCCP-Data packets when acceptable,
 creating DCCP-DataAck packets. DCCP-Ack packets are used when there
 is no data to send from DCCP A to DCCP B, or when the congestion
 state of the A-to-B CCID will not allow data to be sent.

 DCCP-Sync and DCCP-SyncAck packets may also occur in the data
 transfer phase. Some cases causing DCCP-Sync generation are
 discussed in Section 7.5. One important distinction between DCCP-
 Sync packets and other packet types is that DCCP-Sync elicits an
 immediate acknowledgement. On receiving a valid DCCP-Sync packet, a
 DCCP endpoint MUST immediately generate and send a DCCP-SyncAck
 response (subject to any implementation rate limits); the
 Acknowledgement Number on that DCCP-SyncAck MUST equal the Sequence
 Number of the DCCP-Sync.

 A particular DCCP implementation might decide to initiate feature
 negotiation only once the OPEN state was reached, in which case it
 might not allow data transfer until some time later. Data received
 during that time SHOULD be rejected and reported using a Data Dropped
 Drop Block with Drop Code 0, Protocol Constraints (see Section 11.7).

8.3. Termination

 DCCP connection termination uses a handshake consisting of an
 optional DCCP-CloseReq packet, a DCCP-Close packet, and a DCCP-Reset
 packet. The server moves from the OPEN state, possibly through the
 CLOSEREQ state, to CLOSED; the client moves from OPEN through CLOSING
 to TIMEWAIT, and after 2MSL wait time (4 minutes) to CLOSED.

 The sequence DCCP-CloseReq, DCCP-Close, DCCP-Reset is used when the
 server decides to close the connection but doesn’t want to hold
 TIMEWAIT state:

 Client State Server State
 OPEN OPEN
 1. <-- CloseReq <-- CLOSEREQ
 2. CLOSING --> Close -->
 3. <-- Reset <-- CLOSED (LISTEN)
 4. TIMEWAIT
 5. CLOSED

Kohler, et al. Standards Track [Page 64]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 A shorter sequence occurs when the client decides to close the
 connection.

 Client State Server State
 OPEN OPEN
 1. CLOSING --> Close -->
 2. <-- Reset <-- CLOSED (LISTEN)
 3. TIMEWAIT
 4. CLOSED

 Finally, the server can decide to hold TIMEWAIT state:

 Client State Server State
 OPEN OPEN
 1. <-- Close <-- CLOSING
 2. CLOSED --> Reset -->
 3. TIMEWAIT
 4. CLOSED (LISTEN)

 In all cases, the receiver of the DCCP-Reset packet holds TIMEWAIT
 state for the connection. As in TCP, TIMEWAIT state, where an
 endpoint quietly preserves a socket for 2MSL (4 minutes) after its
 connection has closed, ensures that no connection duplicating the
 current connection’s source and destination addresses and ports can
 start up while old packets might remain in the network.

 The termination handshake proceeds as follows. The receiver of a
 valid DCCP-CloseReq packet MUST respond with a DCCP-Close packet.
 The receiver of a valid DCCP-Close packet MUST respond with a DCCP-
 Reset packet with Reset Code 1, "Closed". The receiver of a valid
 DCCP-Reset packet -- which is also the sender of the DCCP-Close
 packet (and possibly the receiver of the DCCP-CloseReq packet) --
 will hold TIMEWAIT state for the connection.

 A DCCP-Reset packet completes every DCCP connection, whether the
 termination is clean (due to application close; Reset Code 1,
 "Closed") or unclean. Unlike TCP, which has two distinct termination
 mechanisms (FIN and RST), DCCP ends all connections in a uniform
 manner. This is justified because some aspects of connection
 termination are the same independent of whether termination was
 clean. For instance, the endpoint that receives a valid DCCP-Reset
 SHOULD hold TIMEWAIT state for the connection. Processors that must
 distinguish between clean and unclean termination can examine the
 Reset Code. DCCP implementations generally transition to the CLOSED
 state after sending a DCCP-Reset packet.

 Endpoints in the CLOSEREQ and CLOSING states MUST retransmit DCCP-
 CloseReq and DCCP-Close packets, respectively, until leaving those

Kohler, et al. Standards Track [Page 65]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 states. The retransmission timer should initially be set to go off
 in two round-trip times and should back off to not less than once
 every 64 seconds if no relevant response is received.

 Only the server can send a DCCP-CloseReq packet or enter the CLOSEREQ
 state. A server receiving a sequence-valid DCCP-CloseReq packet MUST
 respond with a DCCP-Sync packet and otherwise ignore the DCCP-
 CloseReq.

 DCCP-Data, DCCP-DataAck, and DCCP-Ack packets received in CLOSEREQ or
 CLOSING states MAY be either processed or ignored.

8.3.1. Abnormal Termination

 DCCP endpoints generate DCCP-Reset packets to terminate connections
 abnormally; a DCCP-Reset packet may be generated from any state.
 Resets sent in the CLOSED, LISTEN, and TIMEWAIT states use Reset Code
 3, "No Connection", unless otherwise specified. Resets sent in the
 REQUEST or RESPOND states use Reset Code 4, "Packet Error", unless
 otherwise specified.

 DCCP endpoints in CLOSED, LISTEN, or TIMEWAIT state may need to
 generate a DCCP-Reset packet in response to a packet received from a
 peer. Since these states have no associated sequence number
 variables, the Sequence and Acknowledgement Numbers on the DCCP-Reset
 packet R are taken from the received packet P, as follows.

 1. If P.ackno exists, then set R.seqno := P.ackno + 1. Otherwise,
 set R.seqno := 0.

 2. Set R.ackno := P.seqno.

 3. If the packet used short sequence numbers (P.X == 0), then set the
 upper 24 bits of R.seqno and R.ackno to 0.

8.4. DCCP State Diagram

 The most common state transitions discussed above can be summarized
 in the following state diagram. The diagram is illustrative; the
 text in Section 8.5 and elsewhere should be considered definitive.
 For example, there are arcs (not shown) from every state except
 CLOSED to TIMEWAIT, contingent on the receipt of a valid DCCP-Reset.

Kohler, et al. Standards Track [Page 66]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +---------------------------+ +---------------------------+
 | v v |
 | +----------+ |
 | +-------------+ CLOSED +------------+ |
	passive +----------+ active	
	open open	
	snd Request	
v v		
+----------+ +----------+		
	LISTEN	
+----+-----+ +----+-----+		
	rcv Request rcv Response	
	snd Response snd Ack	
v v		
+----------+ +----------+		
	RESPOND	
+----+-----+ +----+-----+		
	rcv Ack/DataAck rcv packet	
	+----------+	
+------------>	OPEN	<-----------+
+--+-+--+--+		
server active close		
snd CloseReq		
+----------+		
	CLOSEREQ	<---------+
+----+-----+	+----+-----+	
	rcv Close	rcv Reset
	snd Reset	
<---------+	v	
	+----+-----+	
rcv Close		TIMEWAIT
snd Reset	+----+-----+	
 +-----------------------------+ | |
 +-----------+
 2MSL timer expires

8.5. Pseudocode

 This section presents an algorithm describing the processing steps a
 DCCP endpoint must go through when it receives a packet. A DCCP
 implementation need not implement the algorithm as it is described
 here, but any implementation MUST generate observable effects exactly
 as indicated by this pseudocode, except where allowed otherwise by
 another part of this document.

Kohler, et al. Standards Track [Page 67]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 The received packet is written as P, the socket as S. Socket
 variables are:

 S.SWL - sequence number window low
 S.SWH - sequence number window high
 S.AWL - acknowledgement number window low
 S.AWH - acknowledgement number window high
 S.ISS - initial sequence number sent
 S.ISR - initial sequence number received
 S.OSR - first OPEN sequence number received
 S.GSS - greatest sequence number sent
 S.GSR - greatest valid sequence number received
 S.GAR - greatest valid acknowledgement number received on a
 non-Sync; initialized to S.ISS
 "Send packet" actions always use, and increment, S.GSS.

 Step 1: Check header basics
 /* This step checks for malformed packets. Packets that fail
 these checks are ignored -- they do not receive Resets in
 response */
 If the packet is shorter than 12 bytes, drop packet and return
 If P.type is not understood, drop packet and return
 If P.Data Offset is smaller than the given packet type’s
 fixed header length or larger than the packet’s length,
 drop packet and return
 If P.type is not Data, Ack, or DataAck and P.X == 0 (the packet
 has short sequence numbers), drop packet and return
 If the header checksum is incorrect, drop packet and return
 If P.CsCov is too large for the packet size, drop packet and
 return

 Step 2: Check ports and process TIMEWAIT state
 /* Flow ID is <src addr, src port, dst addr, dst port> 4-tuple */
 Look up flow ID in table and get corresponding socket
 If no socket, or S.state == TIMEWAIT,
 /* The following Reset’s Sequence and Acknowledgement Numbers
 are taken from the input packet; see Section 8.3.1. */
 Generate Reset(No Connection) unless P.type == Reset
 Drop packet and return

Kohler, et al. Standards Track [Page 68]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Step 3: Process LISTEN state
 If S.state == LISTEN,
 If P.type == Request or P contains a valid Init Cookie option,
 /* Must scan the packet’s options to check for Init
 Cookies. Only Init Cookies are processed here,
 however; other options are processed in Step 8. This
 scan need only be performed if the endpoint uses Init
 Cookies */
 /* Generate a new socket and switch to that socket */
 Set S := new socket for this port pair
 S.state = RESPOND
 Choose S.ISS (initial seqno) or set from Init Cookies
 Initialize S.GAR := S.ISS
 Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookies
 Continue with S.state == RESPOND
 /* A Response packet will be generated in Step 11 */
 Otherwise,
 Generate Reset(No Connection) unless P.type == Reset
 Drop packet and return

 Step 4: Prepare sequence numbers in REQUEST
 If S.state == REQUEST,
 If (P.type == Response or P.type == Reset)
 and S.AWL <= P.ackno <= S.AWH,
 /* Set sequence number variables corresponding to the
 other endpoint, so P will pass the tests in Step 6 */
 Set S.GSR, S.ISR, S.SWL, S.SWH
 /* Response processing continues in Step 10; Reset
 processing continues in Step 9 */
 Otherwise,
 /* Only Response and Reset are valid in REQUEST state */
 Generate Reset(Packet Error)
 Drop packet and return

 Step 5: Prepare sequence numbers for Sync
 If P.type == Sync or P.type == SyncAck,
 If S.AWL <= P.ackno <= S.AWH and P.seqno >= S.SWL,
 /* P is valid, so update sequence number variables
 accordingly. After this update, P will pass the tests
 in Step 6. A SyncAck is generated if necessary in
 Step 15 */
 Update S.GSR, S.SWL, S.SWH
 Otherwise,
 Drop packet and return

Kohler, et al. Standards Track [Page 69]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Step 6: Check sequence numbers
 If P.X == 0 and the relevant Allow Short Seqnos feature is 0,
 /* Packet has short seqnos, but short seqnos not allowed */
 Drop packet and return
 Otherwise, if P.X == 0,
 Extend P.seqno and P.ackno to 48 bits using the procedure
 in Section 7.6
 Let LSWL = S.SWL and LAWL = S.AWL
 If P.type == CloseReq or P.type == Close or P.type == Reset,
 LSWL := S.GSR + 1, LAWL := S.GAR
 If LSWL <= P.seqno <= S.SWH
 and (P.ackno does not exist or LAWL <= P.ackno <= S.AWH),
 Update S.GSR, S.SWL, S.SWH
 If P.type != Sync,
 Update S.GAR
 Otherwise,
 If P.type == Reset,
 Send Sync packet acknowledging S.GSR
 Otherwise,
 Send Sync packet acknowledging P.seqno
 Drop packet and return

 Step 7: Check for unexpected packet types
 If (S.is_server and P.type == CloseReq)
 or (S.is_server and P.type == Response)
 or (S.is_client and P.type == Request)
 or (S.state >= OPEN and P.type == Request
 and P.seqno >= S.OSR)
 or (S.state >= OPEN and P.type == Response
 and P.seqno >= S.OSR)
 or (S.state == RESPOND and P.type == Data),
 Send Sync packet acknowledging P.seqno
 Drop packet and return

 Step 8: Process options and mark acknowledgeable
 /* Option processing is not specifically described here.
 Certain options, such as Mandatory, may cause the connection
 to be reset, in which case Steps 9 and on are not executed */
 Mark packet as acknowledgeable (in Ack Vector terms, Received
 or Received ECN Marked)

 Step 9: Process Reset
 If P.type == Reset,
 Tear down connection
 S.state := TIMEWAIT
 Set TIMEWAIT timer
 Drop packet and return

Kohler, et al. Standards Track [Page 70]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Step 10: Process REQUEST state (second part)
 If S.state == REQUEST,
 /* If we get here, P is a valid Response from the server (see
 Step 4), and we should move to PARTOPEN state. PARTOPEN
 means send an Ack, don’t send Data packets, retransmit
 Acks periodically, and always include any Init Cookie from
 the Response */
 S.state := PARTOPEN
 Set PARTOPEN timer
 Continue with S.state == PARTOPEN
 /* Step 12 will send the Ack completing the three-way
 handshake */

 Step 11: Process RESPOND state
 If S.state == RESPOND,
 If P.type == Request,
 Send Response, possibly containing Init Cookie
 If Init Cookie was sent,
 Destroy S and return
 /* Step 3 will create another socket when the client
 completes the three-way handshake */
 Otherwise,
 S.OSR := P.seqno
 S.state := OPEN

 Step 12: Process PARTOPEN state
 If S.state == PARTOPEN,
 If P.type == Response,
 Send Ack
 Otherwise, if P.type != Sync,
 S.OSR := P.seqno
 S.state := OPEN

 Step 13: Process CloseReq
 If P.type == CloseReq and S.state < CLOSEREQ,
 Generate Close
 S.state := CLOSING
 Set CLOSING timer

 Step 14: Process Close
 If P.type == Close,
 Generate Reset(Closed)
 Tear down connection
 Drop packet and return

Kohler, et al. Standards Track [Page 71]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Step 15: Process Sync
 If P.type == Sync,
 Generate SyncAck

 Step 16: Process data
 /* At this point any application data on P can be passed to the
 application, except that the application MUST NOT receive
 data from more than one Request or Response */

9. Checksums

 DCCP uses a header checksum to protect its header against corruption.
 Generally, this checksum also covers any application data. DCCP
 applications can, however, request that the header checksum cover
 only part of the application data, or perhaps no application data at
 all. Link layers may then reduce their protection on unprotected
 parts of DCCP packets. For some noisy links, and for applications
 that can tolerate corruption, this can greatly improve delivery rates
 and perceived performance.

 Checksum coverage may eventually impact congestion control mechanisms
 as well. A packet with corrupt application data and complete
 checksum coverage is treated as lost. This incurs a heavy-duty loss
 response from the sender’s congestion control mechanism, which can
 unfairly penalize connections on links with high background
 corruption. The combination of reduced checksum coverage and Data
 Checksum options may let endpoints report packets as corrupt rather
 than dropped, using Data Dropped options and Drop Code 3 (see Section
 11.7). This may eventually benefit applications. However, further
 research is required to determine an appropriate response to
 corruption, which can sometimes correlate with congestion. Corrupt
 packets currently incur a loss response.

 The Data Checksum option, which contains a strong CRC, lets endpoints
 detect application data corruption. An API can then be used to avoid
 delivering corrupt data to the application, even if links deliver
 corrupt data to the endpoint due to reduced checksum coverage.
 However, the use of reduced checksum coverage for applications that
 demand correct data is currently considered experimental. This is
 because the combined loss-plus-corruption rate for packets with
 reduced checksum coverage may be significantly higher than that for
 packets with full checksum coverage, although the loss rate will
 generally be lower. Actual behavior will depend on link design;
 further research and experience is required.

 Reduced checksum coverage introduces some security considerations;
 see Section 18.1. See Appendix B for further motivation and

Kohler, et al. Standards Track [Page 72]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 discussion. DCCP’s implementation of reduced checksum coverage was
 inspired by UDP-Lite [RFC3828].

9.1. Header Checksum Field

 DCCP uses the TCP/IP checksum algorithm. The Checksum field in the
 DCCP generic header (see Section 5.1) equals the 16-bit one’s
 complement of the one’s complement sum of all 16-bit words in the
 DCCP header, DCCP options, a pseudoheader taken from the network-
 layer header, and, depending on the value of the Checksum Coverage
 field, some or all of the application data. When calculating the
 checksum, the Checksum field itself is treated as 0. If a packet
 contains an odd number of header and payload bytes to be checksummed,
 8 zero bits are added on the right to form a 16-bit word for checksum
 purposes. The pad byte is not transmitted as part of the packet.

 The pseudoheader is calculated as for TCP. For IPv4, it is 96 bits
 long and consists of the IPv4 source and destination addresses, the
 IP protocol number for DCCP (padded on the left with 8 zero bits),
 and the DCCP length as a 16-bit quantity (the length of the DCCP
 header with options, plus the length of any data); see [RFC793],
 Section 3.1. For IPv6, it is 320 bits long, and consists of the IPv6
 source and destination addresses, the DCCP length as a 32-bit
 quantity, and the IP protocol number for DCCP (padded on the left
 with 24 zero bits); see [RFC2460], Section 8.1.

 Packets with invalid header checksums MUST be ignored. In
 particular, their options MUST NOT be processed.

9.2. Header Checksum Coverage Field

 The Checksum Coverage field in the DCCP generic header (see Section
 5.1) specifies what parts of the packet are covered by the Checksum
 field, as follows:

 CsCov = 0 The Checksum field covers the DCCP header, DCCP
 options, network-layer pseudoheader, and all
 application data in the packet, possibly padded on the
 right with zeros to an even number of bytes.

 CsCov = 1-15 The Checksum field covers the DCCP header, DCCP
 options, network-layer pseudoheader, and the initial
 (CsCov-1)*4 bytes of the packet’s application data.

 Thus, if CsCov is 1, none of the application data is protected by the
 header checksum. The value (CsCov-1)*4 MUST be less than or equal to
 the length of the application data. Packets with invalid CsCov
 values MUST be ignored; in particular, their options MUST NOT be

Kohler, et al. Standards Track [Page 73]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 processed. The meanings of values other than 0 and 1 should be
 considered experimental.

 Values other than 0 specify that corruption is acceptable in some or
 all of the DCCP packet’s application data. In fact, DCCP cannot even
 detect corruption in areas not covered by the header checksum, unless
 the Data Checksum option is used. Applications should not make any
 assumptions about the correctness of received data not covered by the
 checksum and should, if necessary, introduce their own validity
 checks.

 A DCCP application interface should let sending applications suggest
 a value for CsCov for sent packets, defaulting to 0 (full coverage).
 The Minimum Checksum Coverage feature, described below, lets an
 endpoint refuse delivery of application data on packets with partial
 checksum coverage; by default, only fully covered application data is
 accepted. Lower layers that support partial error detection MAY use
 the Checksum Coverage field as a hint of where errors do not need to
 be detected. Lower layers MUST use a strong error detection
 mechanism to detect at least errors that occur in the sensitive part
 of the packet, and to discard damaged packets. The sensitive part
 consists of the bytes between the first byte of the IP header and the
 last byte identified by Checksum Coverage.

 For more details on application and lower-layer interface issues
 relating to partial checksumming, see [RFC3828].

9.2.1. Minimum Checksum Coverage Feature

 The Minimum Checksum Coverage feature lets a DCCP endpoint determine
 whether its peer is willing to accept packets with reduced Checksum
 Coverage. For example, DCCP A sends a "Change R(Minimum Checksum
 Coverage, 1)" option to DCCP B to check whether B is willing to
 accept packets with Checksum Coverage set to 1.

 Minimum Checksum Coverage has feature number 8 and is server-
 priority. It takes one-byte integer values between 0 and 15; values
 of 16 or more are reserved. Minimum Checksum Coverage/B reflects
 values of Checksum Coverage that DCCP B finds unacceptable. Say that
 the value of Minimum Checksum Coverage/B is MinCsCov. Then:

 o If MinCsCov = 0, then DCCP B only finds packets with CsCov = 0
 acceptable.

 o If MinCsCov > 0, then DCCP B additionally finds packets with
 CsCov >= MinCsCov acceptable.

Kohler, et al. Standards Track [Page 74]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 DCCP B MAY refuse to process application data from packets with
 unacceptable Checksum Coverage. Such packets SHOULD be reported
 using Data Dropped options (Section 11.7) with Drop Code 0, Protocol
 Constraints. New connections start with Minimum Checksum Coverage 0
 for both endpoints.

9.3. Data Checksum Option

 The Data Checksum option holds a 32-bit CRC-32c cyclic redundancy-
 check code of a DCCP packet’s application data.

 +--------+--------+--------+--------+--------+--------+
 |00101100|00000110| CRC-32c |
 +--------+--------+--------+--------+--------+--------+
 Type=44 Length=6

 The sending DCCP computes the CRC of the bytes comprising the
 application data area and stores it in the option data. The CRC-32c
 algorithm used for Data Checksum is the same as that used for SCTP
 [RFC3309]; note that the CRC-32c of zero bytes of data equals zero.
 The DCCP header checksum will cover the Data Checksum option, so the
 data checksum must be computed before the header checksum.

 A DCCP endpoint receiving a packet with a Data Checksum option either
 MUST or MAY check the Data Checksum; the choice depends on the value
 of the Check Data Checksum feature described below. If it checks the
 checksum, it computes the received application data’s CRC-32c using
 the same algorithm as the sender and compares the result with the
 Data Checksum value. If the CRCs differ, the endpoint reacts in one
 of two ways:

 o The receiving application may have requested delivery of known-
 corrupt data via some optional API. In this case, the packet’s
 data MUST be delivered to the application, with a note that it is
 known to be corrupt. Furthermore, the receiving endpoint MUST
 report the packet as delivered corrupt using a Data Dropped option
 (Drop Code 7, Delivered Corrupt).

 o Otherwise, the receiving endpoint MUST drop the application data
 and report that data as dropped due to corruption using a Data
 Dropped option (Drop Code 3, Corrupt).

 In either case, the packet is considered acknowledgeable (since its
 header was processed) and will therefore be acknowledged using the
 equivalent of Ack Vector’s Received or Received ECN Marked states.

 Although Data Checksum is intended for packets containing application
 data, it may be included on other packets, such as DCCP-Ack, DCCP-

Kohler, et al. Standards Track [Page 75]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Sync, and DCCP-SyncAck. The receiver SHOULD calculate the
 application data area’s CRC-32c on such packets, just as it does for
 DCCP-Data and similar packets. If the CRCs differ, the packets
 similarly MUST be reported using Data Dropped options (Drop Code 3),
 although their application data areas would not be delivered to the
 application in any case.

9.3.1. Check Data Checksum Feature

 The Check Data Checksum feature lets a DCCP endpoint determine
 whether its peer will definitely check Data Checksum options. DCCP A
 sends a Mandatory "Change R(Check Data Checksum, 1)" option to DCCP B
 to require it to check Data Checksum options (the connection will be
 reset if it cannot).

 Check Data Checksum has feature number 9 and is server-priority. It
 takes one-byte Boolean values. DCCP B MUST check any received Data
 Checksum options when Check Data Checksum/B is one, although it MAY
 check them even when Check Data Checksum/B is zero. Values of two or
 more are reserved. New connections start with Check Data Checksum 0
 for both endpoints.

9.3.2. Checksum Usage Notes

 Internet links must normally apply strong integrity checks to the
 packets they transmit [RFC3828, RFC3819]. This is the default case
 when the DCCP header’s Checksum Coverage value equals zero (full
 coverage). However, the DCCP Checksum Coverage value might not be
 zero. By setting partial Checksum Coverage, the application
 indicates that it can tolerate corruption in the unprotected part of
 the application data. Recognizing this, link layers may reduce error
 detection and/or correction strength when transmitting this
 unprotected part. This, in turn, can significantly increase the
 likelihood of the endpoint’s receiving corrupt data; Data Checksum
 lets the receiver detect that corruption with very high probability.

10. Congestion Control

 Each congestion control mechanism supported by DCCP is assigned a
 congestion control identifier, or CCID: a number from 0 to 255.
 During connection setup, and optionally thereafter, the endpoints
 negotiate their congestion control mechanisms by negotiating the
 values for their Congestion Control ID features. Congestion Control
 ID has feature number 1. The CCID/A value equals the CCID in use for
 the A-to-B half-connection. DCCP B sends a "Change R(CCID, K)"
 option to ask DCCP A to use CCID K for its data packets.

Kohler, et al. Standards Track [Page 76]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 CCID is a server-priority feature, so CCID negotiation options can
 list multiple acceptable CCIDs, sorted in descending order of
 priority. For example, the option "Change R(CCID, 2 3 4)" asks the
 receiver to use CCID 2 for its packets, although CCIDs 3 and 4 are
 also acceptable. (This corresponds to the bytes "35, 6, 1, 2, 3, 4":
 Change R option (35), option length (6), feature ID (1), CCIDs (2, 3,
 4).) Similarly, "Confirm L(CCID, 2, 2 3 4)" tells the receiver that
 the sender is using CCID 2 for its packets, but that CCIDs 3 and 4
 might also be acceptable.

 Currently allocated CCIDs are as follows:

 CCID Meaning Reference
 ---- ------- ---------
 0-1 Reserved
 2 TCP-like Congestion Control [RFC4341]
 3 TCP-Friendly Rate Control [RFC4342]
 4-255 Reserved

 Table 5: DCCP Congestion Control Identifiers

 New connections start with CCID 2 for both endpoints. If this is
 unacceptable for a DCCP endpoint, that endpoint MUST send Mandatory
 Change(CCID) options on its first packets.

 All CCIDs standardized for use with DCCP will correspond to
 congestion control mechanisms previously standardized by the IETF.
 We expect that for quite some time, all such mechanisms will be TCP
 friendly, but TCP-friendliness is not an explicit DCCP requirement.

 A DCCP implementation intended for general use, such as an
 implementation in a general-purpose operating system kernel, SHOULD
 implement at least CCID 2. The intent is to make CCID 2 broadly
 available for interoperability, although particular applications
 might disallow its use.

10.1. TCP-like Congestion Control

 CCID 2, TCP-like Congestion Control, denotes Additive Increase,
 Multiplicative Decrease (AIMD) congestion control with behavior
 modelled directly on TCP, including congestion window, slow start,
 timeouts, and so forth [RFC2581]. CCID 2 achieves maximum bandwidth
 over the long term, consistent with the use of end-to-end congestion
 control, but halves its congestion window in response to each
 congestion event. This leads to the abrupt rate changes typical of
 TCP. Applications should use CCID 2 if they prefer maximum bandwidth
 utilization to steadiness of rate. This is often the case for
 applications that are not playing their data directly to the user.

Kohler, et al. Standards Track [Page 77]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 For example, a hypothetical application that transferred files over
 DCCP, using application-level retransmissions for lost packets, would
 prefer CCID 2 to CCID 3. On-line games may also prefer CCID 2.

 CCID 2 is further described in [RFC4341].

10.2. TFRC Congestion Control

 CCID 3 denotes TCP-Friendly Rate Control (TFRC), an equation-based
 rate-controlled congestion control mechanism. TFRC is designed to be
 reasonably fair when competing for bandwidth with TCP-like flows,
 where a flow is "reasonably fair" if its sending rate is generally
 within a factor of two of the sending rate of a TCP flow under the
 same conditions. However, TFRC has a much lower variation of
 throughput over time compared with TCP, which makes CCID 3 more
 suitable than CCID 2 for applications such as streaming media where a
 relatively smooth sending rate is important.

 CCID 3 is further described in [RFC4342]. The TFRC congestion
 control algorithms were initially described in [RFC3448].

10.3. CCID-Specific Options, Features, and Reset Codes

 Half of the option types, feature numbers, and Reset Codes are
 reserved for CCID-specific use. CCIDs may often need new options,
 for communicating acknowledgement or rate information, for example;
 reserved option spaces let CCIDs create options at will without
 polluting the global option space. Option 128 might have different
 meanings on a half-connection using CCID 4 and a half-connection
 using CCID 8. CCID-specific options and features will never conflict
 with global options and features introduced by later versions of this
 specification.

 Any packet may contain information meant for either half-connection,
 so CCID-specific option types, feature numbers, and Reset Codes
 explicitly signal the half-connection to which they apply.

 o Option numbers 128 through 191 are for options sent from the
 HC-Sender to the HC-Receiver; option numbers 192 through 255 are
 for options sent from the HC-Receiver to the HC-Sender.

 o Reset Codes 128 through 191 indicate that the HC-Sender reset the
 connection (most likely because of some problem with
 acknowledgements sent by the HC-Receiver). Reset Codes 192
 through 255 indicate that the HC-Receiver reset the connection
 (most likely because of some problem with data packets sent by the
 HC-Sender).

Kohler, et al. Standards Track [Page 78]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o Finally, feature numbers 128 through 191 are used for features
 located at the HC-Sender; feature numbers 192 through 255 are for
 features located at the HC-Receiver. Since Change L and Confirm L
 options for a feature are sent by the feature location, we know
 that any Change L(128) option was sent by the HC-Sender, while any
 Change L(192) option was sent by the HC-Receiver. Similarly,
 Change R(128) options are sent by the HC-Receiver, while Change
 R(192) options are sent by the HC-Sender.

 For example, consider a DCCP connection where the A-to-B half-
 connection uses CCID 4 and the B-to-A half-connection uses CCID 5.
 Here is how a sampling of CCID-specific options are assigned to
 half-connections.

 Relevant Relevant
 Packet Option Half-conn. CCID
 ------ ------ ---------- ----
 A > B 128 A-to-B 4
 A > B 192 B-to-A 5
 A > B Change L(128, ...) A-to-B 4
 A > B Change R(192, ...) A-to-B 4
 A > B Confirm L(128, ...) A-to-B 4
 A > B Confirm R(192, ...) A-to-B 4
 A > B Change R(128, ...) B-to-A 5
 A > B Change L(192, ...) B-to-A 5
 A > B Confirm R(128, ...) B-to-A 5
 A > B Confirm L(192, ...) B-to-A 5
 B > A 128 B-to-A 5
 B > A 192 A-to-B 4
 B > A Change L(128, ...) B-to-A 5
 B > A Change R(192, ...) B-to-A 5
 B > A Confirm L(128, ...) B-to-A 5
 B > A Confirm R(192, ...) B-to-A 5
 B > A Change R(128, ...) A-to-B 4
 B > A Change L(192, ...) A-to-B 4
 B > A Confirm R(128, ...) A-to-B 4
 B > A Confirm L(192, ...) A-to-B 4

 Using CCID-specific options and feature options during a negotiation
 for the corresponding CCID feature is NOT RECOMMENDED, since it is
 difficult to predict which CCID will be in force when the option is
 processed. For example, if a DCCP-Request contains the option
 sequence "Change L(CCID, 3), 128", the CCID-specific option "128" may
 be processed either by CCID 3 (if the server supports CCID 3) or by
 the default CCID 2 (if it does not). However, it is safe to include
 CCID-specific options following certain Mandatory Change(CCID)

Kohler, et al. Standards Track [Page 79]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 options. For example, if a DCCP-Request contains the option sequence
 "Mandatory, Change L(CCID, 3), 128", then either the "128" option
 will be processed by CCID 3 or the connection will be reset.

 Servers that do not implement the default CCID 2 might nevertheless
 receive CCID 2-specific options on a DCCP-Request packet. (Such a
 server MUST send Mandatory Change(CCID) options on its DCCP-Response,
 so CCID-specific options on any other packet won’t refer to CCID 2.)
 The server MUST treat such options as non-understood. Thus, it will
 reset the connection on encountering a Mandatory CCID-specific option
 or feature negotiation request, send an empty Confirm for a non-
 Mandatory Change option for a CCID-specific feature, and ignore other
 CCID-specific options.

10.4. CCID Profile Requirements

 Each CCID Profile document MUST address at least the following
 requirements:

 o The profile MUST include the name and number of the CCID being
 described.

 o The profile MUST describe the conditions in which it is likely to
 be useful. Often the best way to do this is by comparison to
 existing CCIDs.

 o The profile MUST list and describe any CCID-specific options,
 features, and Reset Codes and SHOULD list those general options
 and features described in this document that are especially
 relevant to the CCID.

 o Any newly defined acknowledgement mechanism MUST include a way to
 transmit ECN Nonce Echoes back to the sender.

 o The profile MUST describe the format of data packets, including
 any options that should be included and the setting of the CCval
 header field.

 o The profile MUST describe the format of acknowledgement packets,
 including any options that should be included.

 o The profile MUST define how data packets are congestion
 controlled. This includes responses to congestion events, to idle
 and application-limited periods, and to the DCCP Data Dropped and
 Slow Receiver options. CCIDs that implement per-packet congestion
 control SHOULD discuss how packet size is factored in to
 congestion control decisions.

Kohler, et al. Standards Track [Page 80]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o The profile MUST specify when acknowledgement packets are
 generated and how they are congestion controlled.

 o The profile MUST define when a sender using the CCID is considered
 quiescent.

 o The profile MUST say whether its CCID’s acknowledgements ever need
 to be acknowledged and, if so, how often.

10.5. Congestion State

 Most congestion control algorithms depend on past history to
 determine the current allowed sending rate. In CCID 2, this
 congestion state includes a congestion window and a measurement of
 the number of packets outstanding in the network; in CCID 3, it
 includes the lengths of recent loss intervals. Both CCIDs use an
 estimate of the round-trip time. Congestion state depends on the
 network path and is invalidated by path changes. Therefore, DCCP
 senders and receivers SHOULD reset their congestion state --
 essentially restarting congestion control from "slow start" or
 equivalent -- on significant changes in the end-to-end path. For
 example, an endpoint that sends or receives a Mobile IPv6 Binding
 Update message [RFC3775] SHOULD reset its congestion state for any
 corresponding DCCP connections.

 A DCCP implementation MAY also reset its congestion state when a CCID
 changes (that is, when a negotiation for the CCID feature completes
 successfully and the new feature value differs from the old value).
 Thus, a connection in a heavily congested environment might evade
 end-to-end congestion control by frequently renegotiating a CCID,
 just as it could evade end-to-end congestion control by opening new
 connections for the same session. This behavior is prohibited. To
 prevent it, DCCP implementations MAY limit the rate at which CCID can
 be changed -- for instance, by refusing to change a CCID feature
 value more than once per minute.

11. Acknowledgements

 Congestion control requires that receivers transmit information about
 packet losses and ECN marks to senders. DCCP receivers MUST report
 all congestion they see, as defined by the relevant CCID profile.
 Each CCID says when acknowledgements should be sent, what options
 they must use, and so on. DCCP acknowledgements are congestion
 controlled, although it is not required that the acknowledgement
 stream be more than very roughly TCP friendly; each CCID defines how
 acknowledgements are congestion controlled.

Kohler, et al. Standards Track [Page 81]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Most acknowledgements use DCCP options. For example, on a half-
 connection with CCID 2 (TCP-like), the receiver reports
 acknowledgement information using the Ack Vector option. This
 section describes common acknowledgement options and shows how acks
 using those options will commonly work. Full descriptions of the ack
 mechanisms used for each CCID are laid out in the CCID profile
 specifications.

 Acknowledgement options, such as Ack Vector, depend on the DCCP
 Acknowledgement Number and are thus only allowed on packet types that
 carry that number. Acknowledgement options received on other packet
 types, namely DCCP-Request and DCCP-Data, MUST be ignored. Detailed
 acknowledgement options are not necessarily required on every packet
 that carries an Acknowledgement Number, however.

11.1. Acks of Acks and Unidirectional Connections

 DCCP was designed to work well for both bidirectional and
 unidirectional flows of data, and for connections that transition
 between these states. However, acknowledgements required for a
 unidirectional connection are very different from those required for
 a bidirectional connection. In particular, unidirectional
 connections need to worry about acks of acks.

 The ack-of-acks problem arises because some acknowledgement
 mechanisms are reliable. For example, an HC-Receiver using CCID 2,
 TCP-like Congestion Control, sends Ack Vectors containing completely
 reliable acknowledgement information. The HC-Sender should
 occasionally inform the HC-Receiver that it has received an ack. If
 it did not, the HC-Receiver might resend complete Ack Vector
 information, going back to the start of the connection, with every
 DCCP-Ack packet! However, note that acks-of-acks need not be
 reliable themselves: when an ack-of-acks is lost, the HC-Receiver
 will simply maintain, and periodically retransmit, old
 acknowledgement-related state for a little longer. Therefore, there
 is no need for acks-of-acks-of-acks.

 When communication is bidirectional, any required acks-of-acks are
 automatically contained in normal acknowledgements for data packets.
 On a unidirectional connection, however, the receiver DCCP sends no
 data, so the sender would not normally send acknowledgements.
 Therefore, the CCID in force on that half-connection must explicitly
 say whether, when, and how the HC-Sender should generate acks-of-
 acks.

 For example, consider a bidirectional connection where both half-
 connections use the same CCID (either 2 or 3), and where DCCP B goes
 "quiescent". This means that the connection becomes unidirectional:

Kohler, et al. Standards Track [Page 82]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 DCCP B stops sending data and sends only DCCP-Ack packets to DCCP A.
 In CCID 2, TCP-like Congestion Control, DCCP B uses Ack Vector to
 reliably communicate which packets it has received. As described
 above, DCCP A must occasionally acknowledge a pure acknowledgement
 from DCCP B so that B can free old Ack Vector state. For instance, A
 might send a DCCP-DataAck packet instead of DCCP-Data every now and
 then. In CCID 3, however, acknowledgement state is generally
 bounded, so A does not need to acknowledge B’s acknowledgements.

 When communication is unidirectional, a single CCID -- in the
 example, the A-to-B CCID -- controls both DCCPs’ acknowledgements, in
 terms of their content, their frequency, and so forth. For
 bidirectional connections, the A-to-B CCID governs DCCP B’s
 acknowledgements (including its acks of DCCP A’s acks) and the B-to-A
 CCID governs DCCP A’s acknowledgements.

 DCCP A switches its ack pattern from bidirectional to unidirectional
 when it notices that DCCP B has gone quiescent. It switches from
 unidirectional to bidirectional when it must acknowledge even a
 single DCCP-Data or DCCP-DataAck packet from DCCP B.

 Each CCID defines how to detect quiescence on that CCID, and how that
 CCID handles acks-of-acks on unidirectional connections. The B-to-A
 CCID defines when DCCP B has gone quiescent. Usually, this happens
 when a period has passed without B sending any data packets; in CCID
 2, for example, this period is the maximum of 0.2 seconds and two
 round-trip times. The A-to-B CCID defines how DCCP A handles
 acks-of-acks once DCCP B has gone quiescent.

11.2. Ack Piggybacking

 Acknowledgements of A-to-B data MAY be piggybacked on data sent by
 DCCP B, as long as that does not delay the acknowledgement longer
 than the A-to-B CCID would find acceptable. However, data
 acknowledgements often require more than 4 bytes to express. A large
 set of acknowledgements prepended to a large data packet might exceed
 the allowed maximum packet size. In this case, DCCP B SHOULD send
 separate DCCP-Data and DCCP-Ack packets, or wait, but not too long,
 for a smaller datagram.

 Piggybacking is particularly common at DCCP A when the B-to-A
 half-connection is quiescent -- that is, when DCCP A is just
 acknowledging DCCP B’s acknowledgements. There are three reasons to
 acknowledge DCCP B’s acknowledgements: to allow DCCP B to free up
 information about previously acknowledged data packets from A; to
 shrink the size of future acknowledgements; and to manipulate the
 rate at which future acknowledgements are sent. Since these are

Kohler, et al. Standards Track [Page 83]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 secondary concerns, DCCP A can generally afford to wait indefinitely
 for a data packet to piggyback its acknowledgement onto; if DCCP B
 wants to elicit an acknowledgement, it can send a DCCP-Sync.

 Any restrictions on ack piggybacking are described in the relevant
 CCID’s profile.

11.3. Ack Ratio Feature

 The Ack Ratio feature lets HC-Senders influence the rate at which
 HC-Receivers generate DCCP-Ack packets, thus controlling reverse-path
 congestion. This differs from TCP, which presently has no congestion
 control for pure acknowledgement traffic. Ack Ratio reverse-path
 congestion control does not try to be TCP friendly. It just tries to
 avoid congestion collapse, and to be somewhat better than TCP in the
 presence of a high packet loss or mark rate on the reverse path.

 Ack Ratio applies to CCIDs whose HC-Receivers clock acknowledgements
 off the receipt of data packets. The value of Ack Ratio/A equals the
 rough ratio of data packets sent by DCCP A to DCCP-Ack packets sent
 by DCCP B. Higher Ack Ratios correspond to lower DCCP-Ack rates; the
 sender raises Ack Ratio when the reverse path is congested and lowers
 Ack Ratio when it is not. Each CCID profile defines how it controls
 congestion on the acknowledgement path, and, particularly, whether
 Ack Ratio is used. CCID 2, for example, uses Ack Ratio for
 acknowledgement congestion control, but CCID 3 does not. However,
 each Ack Ratio feature has a value whether or not that value is used
 by the relevant CCID.

 Ack Ratio has feature number 5 and is non-negotiable. It takes two-
 byte integer values. An Ack Ratio/A value of four means that DCCP B
 will send at least one acknowledgement packet for every four data
 packets sent by DCCP A. DCCP A sends a "Change L(Ack Ratio)" option
 to notify DCCP B of its ack ratio. An Ack Ratio value of zero
 indicates that the relevant half-connection does not use an Ack Ratio
 to control its acknowledgement rate. New connections start with Ack
 Ratio 2 for both endpoints; this Ack Ratio results in acknowledgement
 behavior analogous to TCP’s delayed acks.

 Ack Ratio should be treated as a guideline rather than a strict
 requirement. We intend Ack Ratio-controlled acknowledgement behavior
 to resemble TCP’s acknowledgement behavior when there is no reverse-
 path congestion, and to be somewhat more conservative when there is
 reverse-path congestion. Following this intent is more important
 than implementing Ack Ratio precisely. In particular:

Kohler, et al. Standards Track [Page 84]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o Receivers MAY piggyback acknowledgement information on data
 packets, creating DCCP-DataAck packets. The Ack Ratio does not
 apply to piggybacked acknowledgements. However, if the data
 packets are too big to carry acknowledgement information, or if
 the data sending rate is lower than Ack Ratio would suggest, then
 DCCP B SHOULD send enough pure DCCP-Ack packets to maintain the
 rate of one acknowledgement per Ack Ratio received data packets.

 o Receivers MAY rate-pace their acknowledgements rather than send
 acknowledgements immediately upon the receipt of data packets.
 Receivers that rate-pace acknowledgements SHOULD pick a rate that
 approximates the effect of Ack Ratio and SHOULD include Elapsed
 Time options (Section 13.2) to help the sender calculate round-
 trip times.

 o Receivers SHOULD implement delayed acknowledgement timers like
 TCP’s, whereby any packet’s acknowledgement is delayed by at most
 T seconds. This delay lets the receiver collect additional
 packets to acknowledge and thus reduce the per-packet overhead of
 acknowledgements; but if T seconds have passed by and the ack is
 still around, it is sent out right away. The default value of T
 should be 0.2 seconds, as is common in TCP implementations. This
 may lead to sending more acknowledgement packets than Ack Ratio
 would suggest.

 o Receivers SHOULD send acknowledgements immediately on receiving
 packets marked ECN Congestion Experienced or packets whose out-
 of-order sequence numbers potentially indicate loss. However,
 there is no need to send such immediate acknowledgements for
 marked packets more than once per round-trip time.

 o Receivers MAY ignore Ack Ratio if they perform their own
 congestion control on acknowledgements. For example, a receiver
 that knows the loss and mark rate for its DCCP-Ack packets might
 maintain a TCP-friendly acknowledgement rate on its own. Such a
 receiver MUST either ensure that it always obtains sufficient
 acknowledgement loss and mark information or fall back to Ack
 Ratio when sufficient information is not available, as might
 happen during periods when the receiver is quiescent.

11.4. Ack Vector Options

 The Ack Vector gives a run-length encoded history of data packets
 received at the client. Each byte of the vector gives the state of
 that data packet in the loss history, and the number of preceding
 packets with the same state. The option’s data looks like this:

Kohler, et al. Standards Track [Page 85]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +--------+--------+--------+--------+--------+--------
 |0010011?| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL| ...
 +--------+--------+--------+--------+--------+--------
 Type=38/39 ___________ Vector ___________...

 The two Ack Vector options (option types 38 and 39) differ only in
 the values they imply for ECN Nonce Echo. Section 12.2 describes
 this further.

 The vector itself consists of a series of bytes, each of whose
 encoding is:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Sta| Run Length|
 +-+-+-+-+-+-+-+-+

 Sta[te] occupies the most significant two bits of each byte and can
 have one of four values, as follows:

 State Meaning
 ----- -------
 0 Received
 1 Received ECN Marked
 2 Reserved
 3 Not Yet Received

 Table 6: DCCP Ack Vector States

 The term "ECN marked" refers to packets with ECN code point 11, CE
 (Congestion Experienced); packets received with this ECN code point
 MUST be reported using State 1, Received ECN Marked. Packets
 received with ECN code points 00, 01, or 10 (Non-ECT, ECT(0), or
 ECT(1), respectively) MUST be reported using State 0, Received.

 Run Length, the least significant six bits of each byte, specifies
 how many consecutive packets have the given State. Run Length zero
 says the corresponding State applies to one packet only; Run Length
 63 says it applies to 64 consecutive packets. Run lengths of 65 or
 more must be encoded in multiple bytes.

 The first byte in the first Ack Vector option refers to the packet
 indicated in the Acknowledgement Number; subsequent bytes refer to
 older packets. Ack Vector MUST NOT be sent on DCCP-Data and DCCP-
 Request packets, which lack an Acknowledgement Number, and any Ack
 Vector options encountered on such packets MUST be ignored.

Kohler, et al. Standards Track [Page 86]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 An Ack Vector containing the decimal values 0,192,3,64,5 and for
 which the Acknowledgement Number is decimal 100 indicates that:

 Packet 100 was received (Acknowledgement Number 100, State 0, Run
 Length 0);

 Packet 99 was lost (State 3, Run Length 0);

 Packets 98, 97, 96 and 95 were received (State 0, Run Length 3);

 Packet 94 was ECN marked (State 1, Run Length 0); and

 Packets 93, 92, 91, 90, 89, and 88 were received (State 0, Run
 Length 5).

 A single Ack Vector option can acknowledge up to 16192 data packets.
 Should more packets need to be acknowledged than can fit in 253 bytes
 of Ack Vector, then multiple Ack Vector options can be sent; the
 second Ack Vector begins where the first left off, and so forth.

 Ack Vector states are subject to two general constraints. (These
 principles SHOULD also be followed for other acknowledgement
 mechanisms; referring to Ack Vector states simplifies their
 explanation.)

 1. Packets reported as State 0 or State 1 MUST be acknowledgeable:
 their options have been processed by the receiving DCCP stack.
 Any data on the packet need not have been delivered to the
 receiving application; in fact, the data may have been dropped.

 2. Packets reported as State 3 MUST NOT be acknowledgeable. Feature
 negotiations and options on such packets MUST NOT have been
 processed, and the Acknowledgement Number MUST NOT correspond to
 such a packet.

 Packets dropped in the application’s receive buffer MUST be reported
 as Received or Received ECN Marked (States 0 and 1), depending on
 their ECN state; such packets’ ECN Nonces MUST be included in the
 Nonce Echo. The Data Dropped option informs the sender that some
 packets reported as received actually had their application data
 dropped.

 One or more Ack Vector options that, together, report the status of a
 packet with a sequence number less than ISN, the initial sequence
 number, SHOULD be considered invalid. The receiving DCCP SHOULD
 either ignore the options or reset the connection with Reset Code 5,
 "Option Error". No Ack Vector option can refer to a packet that has
 not yet been sent, as the Acknowledgement Number checks in Section

Kohler, et al. Standards Track [Page 87]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 7.5.3 ensure, but because of attack, implementation bug, or
 misbehavior, an Ack Vector option can claim that a packet was
 received before it is actually delivered. Section 12.2 describes how
 this is detected and how senders should react. Packets that haven’t
 been included in any Ack Vector option SHOULD be treated as "not yet
 received" (State 3) by the sender.

 Appendix A provides a non-normative description of the details of
 DCCP acknowledgement handling in the context of an abstract Ack
 Vector implementation.

11.4.1. Ack Vector Consistency

 A DCCP sender will commonly receive multiple acknowledgements for
 some of its data packets. For instance, an HC-Sender might receive
 two DCCP-Acks with Ack Vectors, both of which contained information
 about sequence number 24. (Information about a sequence number is
 generally repeated in every ack until the HC-Sender acknowledges an
 ack. In this case, perhaps the HC-Receiver is sending acks faster
 than the HC-Sender is acknowledging them.) In a perfect world, the
 two Ack Vectors would always be consistent. However, there are many
 reasons why they might not be. For example:

 o The HC-Receiver received packet 24 between sending its acks, so
 the first ack said 24 was not received (State 3) and the second
 said it was received or ECN marked (State 0 or 1).

 o The HC-Receiver received packet 24 between sending its acks, and
 the network reordered the acks. In this case, the packet will
 appear to transition from State 0 or 1 to State 3.

 o The network duplicated packet 24, and one of the duplicates was
 ECN marked. This might show up as a transition between States 0
 and 1.

 To cope with these situations, HC-Sender DCCP implementations SHOULD
 combine multiple received Ack Vector states according to this table:

 Received State
 0 1 3
 +---+---+---+
 0 | 0 |0/1| 0 |
 Old +---+---+---+
 1 | 1 | 1 | 1 |
 State +---+---+---+
 3 | 0 | 1 | 3 |
 +---+---+---+

Kohler, et al. Standards Track [Page 88]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 To read the table, choose the row corresponding to the packet’s old
 state and the column corresponding to the packet’s state in the newly
 received Ack Vector; then read the packet’s new state off the table.
 For an old state of 0 (received non-marked) and received state of 1
 (received ECN marked), the packet’s new state may be set to either 0
 or 1. The HC-Sender implementation will be indifferent to ack
 reordering if it chooses new state 1 for that cell.

 The HC-Receiver should collect information about received packets
 according to the following table:

 Received Packet
 0 1 3
 +---+---+---+
 0 | 0 |0/1| 0 |
 Stored +---+---+---+
 1 |0/1| 1 | 1 |
 State +---+---+---+
 3 | 0 | 1 | 3 |
 +---+---+---+

 This table equals the sender’s table except that, when the stored
 state is 1 and the received state is 0, the receiver is allowed to
 switch its stored state to 0.

 An HC-Sender MAY choose to throw away old information gleaned from
 the HC-Receiver’s Ack Vectors, in which case it MUST ignore newly
 received acknowledgements from the HC-Receiver for those old packets.
 It is often kinder to save recent Ack Vector information for a while
 so that the HC-Sender can undo its reaction to presumed congestion
 when a "lost" packet unexpectedly shows up (the transition from State
 3 to State 0).

11.4.2. Ack Vector Coverage

 We can divide the packets that have been sent from an HC-Sender to an
 HC-Receiver into four roughly contiguous groups. From oldest to
 youngest, these are:

 1. Packets already acknowledged by the HC-Receiver, where the
 HC-Receiver knows that the HC-Sender has definitely received the
 acknowledgements;

 2. Packets already acknowledged by the HC-Receiver, where the
 HC-Receiver cannot be sure that the HC-Sender has received the
 acknowledgements;

 3. Packets not yet acknowledged by the HC-Receiver; and

Kohler, et al. Standards Track [Page 89]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 4. Packets not yet received by the HC-Receiver.

 The union of groups 2 and 3 is called the Acknowledgement Window.
 Generally, every Ack Vector generated by the HC-Receiver will cover
 the whole Acknowledgement Window: Ack Vector acknowledgements are
 cumulative. (This simplifies Ack Vector maintenance at the
 HC-Receiver; see Appendix A, below.) As packets are received, this
 window both grows on the right and shrinks on the left. It grows
 because there are more packets, and shrinks because the HC-Sender’s
 Acknowledgement Numbers will acknowledge previous acknowledgements,
 moving packets from group 2 into group 1.

11.5. Send Ack Vector Feature

 The Send Ack Vector feature lets DCCPs negotiate whether they should
 use Ack Vector options to report congestion. Ack Vector provides
 detailed loss information and lets senders report back to their
 applications whether particular packets were dropped. Send Ack
 Vector is mandatory for some CCIDs and optional for others.

 Send Ack Vector has feature number 6 and is server-priority. It
 takes one-byte Boolean values. DCCP A MUST send Ack Vector options
 on its acknowledgements when Send Ack Vector/A has value one,
 although it MAY send Ack Vector options even when Send Ack Vector/A
 is zero. Values of two or more are reserved. New connections start
 with Send Ack Vector 0 for both endpoints. DCCP B sends a "Change
 R(Send Ack Vector, 1)" option to DCCP A to ask A to send Ack Vector
 options as part of its acknowledgement traffic.

11.6. Slow Receiver Option

 An HC-Receiver sends the Slow Receiver option to its sender to
 indicate that it is having trouble keeping up with the sender’s data.
 The HC-Sender SHOULD NOT increase its sending rate for approximately
 one round-trip time after seeing a packet with a Slow Receiver
 option. After one round-trip time, the effect of Slow Receiver
 disappears, allowing the HC-Sender to increase its rate. Therefore,
 the HC-Receiver SHOULD continue to send Slow Receiver options if it
 needs to prevent the HC-Sender from going faster in the long term.
 The Slow Receiver option does not indicate congestion, and the HC-
 Sender need not reduce its sending rate. (If necessary, the receiver
 can force the sender to slow down by dropping packets, with or
 without Data Dropped, or by reporting false ECN marks.) APIs should
 let receiver applications set Slow Receiver and sending applications
 determine whether their receivers are Slow.

Kohler, et al. Standards Track [Page 90]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Slow Receiver is a one-byte option.

 +--------+
 |00000010|
 +--------+
 Type=2

 Slow Receiver does not specify why the receiver is having trouble
 keeping up with the sender. Possible reasons include lack of buffer
 space, CPU overload, and application quotas. A sending application
 might react to Slow Receiver by reducing its application-level
 sending rate, for example.

 The sending application should not react to Slow Receiver by sending
 more data, however. Although the optimal response to a CPU-bound
 receiver might be to reduce compression and send more data (a
 highly-compressed data format might overwhelm a slow CPU more
 seriously than would the higher memory requirements of a less-
 compressed data format), this kind of format change should be
 requested at the application level, not via the Slow Receiver option.

 Slow Receiver implements a portion of TCP’s receive window
 functionality.

11.7. Data Dropped Option

 The Data Dropped option indicates that the application data on one or
 more received packets did not actually reach the application. Data
 Dropped additionally reports why the data was dropped: perhaps the
 data was corrupt, or perhaps the receiver cannot keep up with the
 sender’s current rate and the data was dropped in some receive
 buffer. Using Data Dropped, DCCP endpoints can discriminate between
 different kinds of loss; this differs from TCP, in which all loss is
 reported the same way.

 Unless it is explicitly specified otherwise, DCCP congestion control
 mechanisms MUST react as if each Data Dropped packet was marked as
 ECN Congestion Experienced by the network. We intend for Data
 Dropped to enable research into richer congestion responses to
 corrupt and other endpoint-dropped packets, but DCCP CCIDs MUST react
 conservatively to Data Dropped until this behavior is standardized.
 Section 11.7.2, below, describes congestion responses for all current
 Drop Codes.

 If a received packet’s application data is dropped for one of the
 reasons listed below, this SHOULD be reported using a Data Dropped
 option. Alternatively, the receiver MAY choose to report as

Kohler, et al. Standards Track [Page 91]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 "received" only those packets whose data were not dropped, subject to
 the constraint that packets not reported as received MUST NOT have
 had their options processed.

 The option’s data looks like this:

 +--------+--------+--------+--------+--------+--------
 |00101000| Length | Block | Block | Block | ...
 +--------+--------+--------+--------+--------+--------
 Type=40 ___________ Vector ___________ ...

 The Vector consists of a series of bytes, called Blocks, each of
 whose encoding corresponds to one of two choices:

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0| Run Length | or |1|DrpCd|Run Len|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 Normal Block Drop Block

 The first byte in the first Data Dropped option refers to the packet
 indicated by the Acknowledgement Number; subsequent bytes refer to
 older packets. Data Dropped MUST NOT be sent on DCCP-Data or DCCP-
 Request packets, which lack an Acknowledgement Number, and any Data
 Dropped options received on such packets MUST be ignored.

 Normal Blocks, which have high bit 0, indicate that any received
 packets in the Run Length had their data delivered to the
 application. Drop Blocks, which have high bit 1, indicate that
 received packets in the Run Len[gth] were not delivered as usual.
 The 3-bit Drop Code [DrpCd] field says what happened; generally, no
 data from that packet reached the application. Packets reported as
 "not yet received" MUST be included in Normal Blocks; packets not
 covered by any Data Dropped option are treated as if they were in a
 Normal Block. Defined Drop Codes for Drop Blocks are as follows.

 Drop Code Meaning
 --------- -------
 0 Protocol Constraints
 1 Application Not Listening
 2 Receive Buffer
 3 Corrupt
 4-6 Reserved
 7 Delivered Corrupt

 Table 7: DCCP Drop Codes

Kohler, et al. Standards Track [Page 92]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 In more detail:

 0 The packet data was dropped due to protocol constraints. For
 example, the data was included on a DCCP-Request packet, but
 the receiving application does not allow such piggybacking; or
 the data was included on a packet with inappropriately low
 Checksum Coverage.

 1 The packet data was dropped because the application is no
 longer listening. See Section 11.7.2.

 2 The packet data was dropped in a receive buffer, probably
 because of receive buffer overflow. See Section 11.7.2.

 3 The packet data was dropped due to corruption. See Section
 9.3.

 7 The packet data was corrupted but was delivered to the
 application anyway. See Section 9.3.

 For example, assume that a packet arrives with Acknowledgement Number
 100, an Ack Vector reporting all packets as received, and a Data
 Dropped option containing the decimal values 0,160,3,162. Then:

 Packet 100 was received (Acknowledgement Number 100, Normal Block,
 Run Length 0).

 Packet 99 was dropped in a receive buffer (Drop Block, Drop Code
 2, Run Length 0).

 Packets 98, 97, 96, and 95 were received (Normal Block, Run Length
 3).

 Packets 95, 94, and 93 were dropped in the receive buffer (Drop
 Block, Drop Code 2, Run Length 2).

 Run lengths of more than 128 (for Normal Blocks) or 16 (for Drop
 Blocks) must be encoded in multiple Blocks. A single Data Dropped
 option can acknowledge up to 32384 Normal Block data packets,
 although the receiver SHOULD NOT send a Data Dropped option when all
 relevant packets fit into Normal Blocks. Should more packets need to
 be acknowledged than can fit in 253 bytes of Data Dropped, then
 multiple Data Dropped options can be sent. The second option will
 begin where the first left off, and so forth.

 One or more Data Dropped options that, together, report the status of
 more packets than have been sent, or that change the status of a
 packet, or that disagree with Ack Vector or equivalent options (by

Kohler, et al. Standards Track [Page 93]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 reporting a "not yet received" packet as "dropped in the receive
 buffer", for example) SHOULD be considered invalid. The receiving
 DCCP SHOULD either ignore such options, or respond by resetting the
 connection with Reset Code 5, "Option Error".

 A DCCP application interface should let receiving applications
 specify the Drop Codes corresponding to received packets. For
 example, this would let applications calculate their own checksums
 but still report "dropped due to corruption" packets via the Data
 Dropped option. The interface SHOULD NOT let applications reduce the
 "seriousness" of a packet’s Drop Code; for example, the application
 should not be able to upgrade a packet from delivered corrupt (Drop
 Code 7) to delivered normally (no Drop Code).

 Data Dropped information is transmitted reliably. That is, endpoints
 SHOULD continue to transmit Data Dropped options until receiving an
 acknowledgement indicating that the relevant options have been
 processed. In Ack Vector terms, each acknowledgement should contain
 Data Dropped options that cover the whole Acknowledgement Window
 (Section 11.4.2), although when every packet in that window would be
 placed in a Normal Block, no actual option is required.

11.7.1. Data Dropped and Normal Congestion Response

 When deciding on a response to a particular acknowledgement or set of
 acknowledgements containing Data Dropped options, a congestion
 control mechanism MUST consider dropped packets, ECN Congestion
 Experienced marks (including marked packets that are included in Data
 Dropped), and packets singled out in Data Dropped. For window-based
 mechanisms, the valid response space is defined as follows.

 Assume an old window of W. Independently calculate a new window
 W_new1 that assumes no packets were Data Dropped (so W_new1 contains
 only the normal congestion response), and a new window W_new2 that
 assumes no packets were lost or marked (so W_new2 contains only the
 Data Dropped response). We are assuming that Data Dropped
 recommended a reduction in congestion window, so W_new2 < W.

 Then the actual new window W_new MUST NOT be larger than the minimum
 of W_new1 and W_new2; and the sender MAY combine the two responses,
 by setting

 W_new = W + min(W_new1 - W, 0) + min(W_new2 - W, 0).

 The details of how this is accomplished are specified in CCID profile
 documents. Non-window-based congestion control mechanisms MUST
 behave analogously; again, CCID profiles define how.

Kohler, et al. Standards Track [Page 94]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

11.7.2. Particular Drop Codes

 Drop Code 0, Protocol Constraints, does not indicate any kind of
 congestion, so the sender’s CCID SHOULD react to packets with Drop
 Code 0 as if they were received (with or without ECN Congestion
 Experienced marks, as appropriate). However, the sending endpoint
 SHOULD NOT send data until it believes the protocol constraint no
 longer applies.

 Drop Code 1, Application Not Listening, means the application running
 at the endpoint that sent the option is no longer listening for data.
 For example, a server might close its receiving half-connection to
 new data after receiving a complete request from the client. This
 would limit the amount of state available at the server for incoming
 data and thus reduce the potential damage from certain denial-of-
 service attacks. A Data Dropped option containing Drop Code 1 SHOULD
 be sent whenever received data is ignored due to a non-listening
 application. Once an endpoint reports Drop Code 1 for a packet, it
 SHOULD report Drop Code 1 for every succeeding data packet on that
 half-connection; once an endpoint receives a Drop State 1 report, it
 SHOULD expect that no more data will ever be delivered to the other
 endpoint’s application, so it SHOULD NOT send more data.

 Drop Code 2, Receive Buffer, indicates congestion inside the
 receiving host. For instance, if a drop-from-tail kernel socket
 buffer is too full to accept a packet’s application data, that packet
 should be reported as Drop Code 2. For a drop-from-head or more
 complex socket buffer, the dropped packet should be reported as Drop
 Code 2. DCCP implementations may also provide an API by which
 applications can mark received packets as Drop Code 2, indicating
 that the application ran out of space in its user-level receive
 buffer. (However, it is not generally useful to report packets as
 dropped due to Drop Code 2 after more than a couple of round-trip
 times have passed. The HC-Sender may have forgotten its
 acknowledgement state for the packet by that time, so the Data
 Dropped report will have no effect.) Every packet newly acknowledged
 as Drop Code 2 SHOULD reduce the sender’s instantaneous rate by one
 packet per round-trip time, unless the sender is already sending one
 packet per RTT or less. Each CCID profile defines the CCID-specific
 mechanism by which this is accomplished.

 Currently, the other Drop Codes (namely Drop Code 3, Corrupt; Drop
 Code 7, Delivered Corrupt; and reserved Drop Codes 4-6) MUST cause
 the relevant CCID to behave as if the relevant packets were ECN
 marked (ECN Congestion Experienced).

Kohler, et al. Standards Track [Page 95]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

12. Explicit Congestion Notification

 The DCCP protocol is fully ECN-aware [RFC3168]. Each CCID specifies
 how its endpoints respond to ECN marks. Furthermore, DCCP, unlike
 TCP, allows senders to control the rate at which acknowledgements are
 generated (with options like Ack Ratio); since acknowledgements are
 congestion controlled, they also qualify as ECN-Capable Transport.

 Each CCID profile describes how that CCID interacts with ECN, both
 for data traffic and pure-acknowledgement traffic. A sender SHOULD
 set ECN-Capable Transport on its packets’ IP headers unless the
 receiver’s ECN Incapable feature is on or the relevant CCID disallows
 it.

 The rest of this section describes the ECN Incapable feature and the
 interaction of the ECN Nonce with acknowledgement options such as Ack
 Vector.

12.1. ECN Incapable Feature

 DCCP endpoints are ECN-aware by default, but the ECN Incapable
 feature lets an endpoint reject the use of Explicit Congestion
 Notification. The use of this feature is NOT RECOMMENDED. ECN
 incapability both avoids ECN’s possible benefits and prevents senders
 from using the ECN Nonce to check for receiver misbehavior. A DCCP
 stack MAY therefore leave the ECN Incapable feature unimplemented,
 acting as if all connections were ECN capable. Note that the
 inappropriate firewall interactions that dogged TCP’s implementation
 of ECN [RFC3360] involve TCP header bits, not the IP header’s ECN
 bits; we know of no middlebox that would block ECN-capable DCCP
 packets but allow ECN-incapable DCCP packets.

 ECN Incapable has feature number 4 and is server-priority. It takes
 one-byte Boolean values. DCCP A MUST be able to read ECN bits from
 received frames’ IP headers when ECN Incapable/A is zero. (This is
 independent of whether it can set ECN bits on sent frames.) DCCP A
 thus sends a "Change L(ECN Inapable, 1)" option to DCCP B to inform
 it that A cannot read ECN bits. If the ECN Incapable/A feature is
 one, then all of DCCP B’s packets MUST be sent as ECN incapable. New
 connections start with ECN Incapable 0 (that is, ECN capable) for
 both endpoints. Values of two or more are reserved.

 If a DCCP is not ECN capable, it MUST send Mandatory "Change L(ECN
 Incapable, 1)" options to the other endpoint until acknowledged (by
 "Confirm R(ECN Incapable, 1)") or the connection closes.
 Furthermore, it MUST NOT accept any data until the other endpoint

Kohler, et al. Standards Track [Page 96]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 sends "Confirm R(ECN Incapable, 1)". It SHOULD send Data Dropped
 options on its acknowledgements, with Drop Code 0 ("protocol
 constraints"), if the other endpoint does send data inappropriately.

12.2. ECN Nonces

 Congestion avoidance will not occur, and the receiver will sometimes
 get its data faster, if the sender isn’t told about congestion
 events. Thus, the receiver has some incentive to falsify
 acknowledgement information, reporting that marked or dropped packets
 were actually received unmarked. This problem is more serious with
 DCCP than with TCP, since TCP provides reliable transport: it is more
 difficult with TCP to lie about lost packets without breaking the
 application.

 ECN Nonces are a general mechanism to prevent ECN cheating (or loss
 cheating). Two values for the two-bit ECN header field indicate
 ECN-Capable Transport, 01 and 10. The second code point, 10, is the
 ECN Nonce. In general, a protocol sender chooses between these code
 points randomly on its output packets, remembering the sequence it
 chose. On every acknowledgement, the protocol receiver reports the
 number of ECN Nonces it has received thus far. This is called the
 ECN Nonce Echo. Since ECN marking and packet dropping both destroy
 the ECN Nonce, a receiver that lies about an ECN mark or packet drop
 has a 50% chance of guessing right and avoiding discipline. The
 sender may react punitively to an ECN Nonce mismatch, possibly up to
 dropping the connection. The ECN Nonce Echo field need not be an
 integer; one bit is enough to catch 50% of infractions, and the
 probability of success drops exponentially as more packets are sent
 [RFC3540].

 In DCCP, the ECN Nonce Echo field is encoded in acknowledgement
 options. For example, the Ack Vector option comes in two forms, Ack
 Vector [Nonce 0] (option 38) and Ack Vector [Nonce 1] (option 39),
 corresponding to the two values for a one-bit ECN Nonce Echo. The
 Nonce Echo for a given Ack Vector equals the one-bit sum (exclusive-
 or, or parity) of ECN nonces for packets reported by that Ack Vector
 as received and not ECN marked. Thus, only packets marked as State 0
 matter for this calculation (that is, valid received packets that
 were not ECN marked). Every Ack Vector option is detailed enough for
 the sender to determine what the Nonce Echo should have been. It can
 check this calculation against the actual Nonce Echo and complain if
 there is a mismatch. (The Ack Vector could conceivably report every
 packet’s ECN Nonce state, but this would severely limit its
 compressibility without providing much extra protection.)

 Each DCCP sender SHOULD set ECN Nonces on its packets and remember
 which packets had nonces. When a sender detects an ECN Nonce Echo

Kohler, et al. Standards Track [Page 97]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 mismatch, it behaves as described in the next section. Each DCCP
 receiver MUST calculate and use the correct value for ECN Nonce Echo
 when sending acknowledgement options.

 ECN incapability, as indicated by the ECN Incapable feature, is
 handled as follows: an endpoint sending packets to an ECN-incapable
 receiver MUST send its packets as ECN incapable, and an ECN-
 incapable receiver MUST use the value zero for all ECN Nonce Echoes.

12.3. Aggression Penalties

 DCCP endpoints have several mechanisms for detecting congestion-
 related misbehavior. For example:

 o A sender can detect an ECN Nonce Echo mismatch, indicating
 possible receiver misbehavior.

 o A receiver can detect whether the sender is responding to
 congestion feedback or Slow Receiver.

 o An endpoint may be able to detect that its peer is reporting
 inappropriately small Elapsed Time values (Section 13.2).

 An endpoint that detects possible congestion-related misbehavior
 SHOULD try to verify that its peer is truly misbehaving. For
 example, a sending endpoint might send a packet whose ECN header
 field is set to Congestion Experienced, 11; a receiver that doesn’t
 report a corresponding mark is most likely misbehaving.

 Upon detecting possible misbehavior, a sender SHOULD respond as if
 the receiver had reported one or more recent packets as ECN-marked
 (instead of unmarked), while a receiver SHOULD report one or more
 recent non-marked packets as ECN-marked. Alternately, a sender might
 act as if the receiver had sent a Slow Receiver option, and a
 receiver might send Slow Receiver options. Other reactions that
 serve to slow the transfer rate are also acceptable. An entity that
 detects particularly egregious and ongoing misbehavior MAY also reset
 the connection with Reset Code 11, "Aggression Penalty".

 However, ECN Nonce mismatches and other warning signs can result from
 innocent causes, such as implementation bugs or attack. In
 particular, a successful DCCP-Data attack (Section 7.5.5) can cause
 the receiver to report an incorrect ECN Nonce Echo. Therefore,
 connection reset and other heavyweight mechanisms SHOULD be used only
 as last resorts, after multiple round-trip times of verified
 aggression.

Kohler, et al. Standards Track [Page 98]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

13. Timing Options

 The Timestamp, Timestamp Echo, and Elapsed Time options help DCCP
 endpoints explicitly measure round-trip times.

13.1. Timestamp Option

 This option is permitted in any DCCP packet. The length of the
 option is 6 bytes.

 +--------+--------+--------+--------+--------+--------+
 |00101001|00000110| Timestamp Value |
 +--------+--------+--------+--------+--------+--------+
 Type=41 Length=6

 The four bytes of option data carry the timestamp of this packet.
 The timestamp is a 32-bit integer that increases monotonically with
 time, at a rate of 1 unit per 10 microseconds. At this rate,
 Timestamp Value will wrap approximately every 11.9 hours. Endpoints
 need not measure time at this fine granularity; for example, an
 endpoint that preferred to measure time at millisecond granularity
 might send Timestamp Values that were all multiples of 100. The
 precise time corresponding to Timestamp Value zero is not specified:
 Timestamp Values are only meaningful relative to other Timestamp
 Values sent on the same connection. A DCCP receiving a Timestamp
 option SHOULD respond with a Timestamp Echo option on the next packet
 it sends.

13.2. Elapsed Time Option

 This option is permitted in any DCCP packet that contains an
 Acknowledgement Number; such options received on other packet types
 MUST be ignored. It indicates how much time has elapsed since the
 packet being acknowledged -- the packet with the given
 Acknowledgement Number -- was received. The option may take 4 or 6
 bytes, depending on the size of the Elapsed Time value. Elapsed Time
 helps correct round-trip time estimates when the gap between
 receiving a packet and acknowledging that packet may be long -- in
 CCID 3, for example, where acknowledgements are sent infrequently.

Kohler, et al. Standards Track [Page 99]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +--------+--------+--------+--------+
 |00101011|00000100| Elapsed Time |
 +--------+--------+--------+--------+
 Type=43 Len=4

 +--------+--------+--------+--------+--------+--------+
 |00101011|00000110| Elapsed Time |
 +--------+--------+--------+--------+--------+--------+
 Type=43 Len=6

 The option data, Elapsed Time, represents an estimated lower bound on
 the amount of time elapsed since the packet being acknowledged was
 received, with units of hundredths of milliseconds. If Elapsed Time
 is less than a half-second, the first, smaller form of the option
 SHOULD be used. Elapsed Times of more than 0.65535 seconds MUST be
 sent using the second form of the option. The special Elapsed Time
 value 4294967295, which corresponds to approximately 11.9 hours, is
 used to represent any Elapsed Time greater than 42949.67294 seconds.
 DCCP endpoints MUST NOT report Elapsed Times that are significantly
 larger than the true elapsed times. A connection MAY be reset with
 Reset Code 11, "Aggression Penalty", if one endpoint determines that
 the other is reporting a much-too-large Elapsed Time.

 Elapsed Time is measured in hundredths of milliseconds as a
 compromise between two conflicting goals. First, it provides enough
 granularity to reduce rounding error when measuring elapsed time over
 fast LANs; second, it allows many reasonable elapsed times to fit
 into two bytes of data.

13.3. Timestamp Echo Option

 This option is permitted in any DCCP packet, as long as at least one
 packet carrying the Timestamp option has been received. Generally, a
 DCCP endpoint should send one Timestamp Echo option for each
 Timestamp option it receives, and it should send that option as soon
 as is convenient. The length of the option is between 6 and 10
 bytes, depending on whether Elapsed Time is included and how large it
 is.

Kohler, et al. Standards Track [Page 100]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 +--------+--------+--------+--------+--------+--------+
 |00101010|00000110| Timestamp Echo |
 +--------+--------+--------+--------+--------+--------+
 Type=42 Len=6

 +--------+--------+------- ... -------+--------+--------+
 |00101010|00001000| Timestamp Echo | Elapsed Time |
 +--------+--------+------- ... -------+--------+--------+
 Type=42 Len=8 (4 bytes)

 +--------+--------+------- ... -------+------- ... -------+
 |00101010|00001010| Timestamp Echo | Elapsed Time |
 +--------+--------+------- ... -------+------- ... -------+
 Type=42 Len=10 (4 bytes) (4 bytes)

 The first four bytes of option data, Timestamp Echo, carry a
 Timestamp Value taken from a preceding received Timestamp option.
 Usually, this will be the last packet that was received -- the packet
 indicated by the Acknowledgement Number, if any -- but it might be a
 preceding packet. Each Timestamp received will generally result in
 exactly one Timestamp Echo transmitted. If an endpoint has received
 multiple Timestamp options since the last time it sent a packet, then
 it MAY ignore all Timestamp options but the one included on the
 packet with the greatest sequence number. Alternatively, it MAY
 include multiple Timestamp Echo options in its response, each
 corresponding to a different Timestamp option.

 The Elapsed Time value, similar to that in the Elapsed Time option,
 indicates the amount of time elapsed since receiving the packet whose
 timestamp is being echoed. This time MUST have units of hundredths
 of milliseconds. Elapsed Time is meant to help the Timestamp sender
 separate the network round-trip time from the Timestamp receiver’s
 processing time. This may be particularly important for CCIDs where
 acknowledgements are sent infrequently, so that there might be
 considerable delay between receiving a Timestamp option and sending
 the corresponding Timestamp Echo. A missing Elapsed Time field is
 equivalent to an Elapsed Time of zero. The smallest version of the
 option SHOULD be used that can hold the relevant Elapsed Time value.

14. Maximum Packet Size

 A DCCP implementation MUST maintain the maximum packet size (MPS)
 allowed for each active DCCP session. The MPS is influenced by the
 maximum packet size allowed by the current congestion control
 mechanism (CCMPS), the maximum packet size supported by the path’s
 links (PMTU, the Path Maximum Transmission Unit) [RFC1191], and the
 lengths of the IP and DCCP headers.

Kohler, et al. Standards Track [Page 101]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 A DCCP application interface SHOULD let the application discover
 DCCP’s current MPS. Generally, the DCCP implementation will refuse
 to send any packet bigger than the MPS, returning an appropriate
 error to the application. A DCCP interface MAY allow applications to
 request fragmentation for packets larger than PMTU, but not larger
 than CCMPS. (Packets larger than CCMPS MUST be rejected in any
 case.) Fragmentation SHOULD NOT be the default, since it decreases
 robustness: an entire packet is discarded if even one of its
 fragments is lost. Applications can usually get better error
 tolerance by producing packets smaller than the PMTU.

 The MPS reported to the application SHOULD be influenced by the size
 expected to be required for DCCP headers and options. If the
 application provides data that, when combined with the options the
 DCCP implementation would like to include, would exceed the MPS, the
 implementation should either send the options on a separate packet
 (such as a DCCP-Ack) or lower the MPS, drop the data, and return an
 appropriate error to the application.

14.1. Measuring PMTU

 Each DCCP endpoint MUST keep track of the current PMTU for each
 connection, except that this is not required for IPv4 connections
 whose applications have requested fragmentation. The PMTU SHOULD be
 initialized from the interface MTU that will be used to send packets.
 The MPS will be initialized with the minimum of the PMTU and the
 CCMPS, if any.

 Classical PMTU discovery uses unfragmentable packets. In IPv4, these
 packets have the IP Don’t Fragment (DF) bit set; in IPv6, all packets
 are unfragmentable once emitted by an end host. As specified in
 [RFC1191], when a router receives a packet with DF set that is larger
 than the next link’s MTU, it sends an ICMP Destination Unreachable
 message back to the source whose Code indicates that an
 unfragmentable packet was too large to forward (a "Datagram Too Big"
 message). When a DCCP implementation receives a Datagram Too Big
 message, it decreases its PMTU to the Next-Hop MTU value given in the
 ICMP message. If the MTU given in the message is zero, the sender
 chooses a value for PMTU using the algorithm described in [RFC1191],
 Section 7. If the MTU given in the message is greater than the
 current PMTU, the Datagram Too Big message is ignored, as described
 in [RFC1191]. (We are aware that this may cause problems for DCCP
 endpoints behind certain firewalls.)

 A DCCP implementation may allow the application occasionally to
 request that PMTU discovery be performed again. This will reset the
 PMTU to the outgoing interface’s MTU. Such requests SHOULD be rate
 limited, to one per two seconds, for example.

Kohler, et al. Standards Track [Page 102]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 A DCCP sender MAY treat the reception of an ICMP Datagram Too Big
 message as an indication that the packet being reported was not lost
 due to congestion, and so for the purposes of congestion control it
 MAY ignore the DCCP receiver’s indication that this packet did not
 arrive. However, if this is done, then the DCCP sender MUST check
 the ECN bits of the IP header echoed in the ICMP message and only
 perform this optimization if these ECN bits indicate that the packet
 did not experience congestion prior to reaching the router whose link
 MTU it exceeded.

 A DCCP implementation SHOULD ensure, as far as possible, that ICMP
 Datagram Too Big messages were actually generated by routers, so that
 attackers cannot drive the PMTU down to a falsely small value. The
 simplest way to do this is to verify that the Sequence Number on the
 ICMP error’s encapsulated header corresponds to a Sequence Number
 that the implementation recently sent. (According to current
 specifications, routers should return the full DCCP header and
 payload up to a maximum of 576 bytes [RFC1812] or the minimum IPv6
 MTU [RFC2463], although they are not required to return more than 64
 bits [RFC792]. Any amount greater than 128 bits will include the
 Sequence Number.) ICMP Datagram Too Big messages with incorrect or
 missing Sequence Numbers may be ignored, or the DCCP implementation
 may lower the PMTU only temporarily in response. If more than three
 odd Datagram Too Big messages are received and the other DCCP
 endpoint reports more than three lost packets, however, the DCCP
 implementation SHOULD assume the presence of a confused router and
 either obey the ICMP messages’ PMTU or (on IPv4 networks) switch to
 allowing fragmentation.

 DCCP also allows upward probing of the PMTU [PMTUD], where the DCCP
 endpoint begins by sending small packets with DF set and then
 gradually increases the packet size until a packet is lost. This
 mechanism does not require any ICMP error processing. DCCP-Sync
 packets are the best choice for upward probing, since DCCP-Sync
 probes do not risk application data loss. The DCCP implementation
 inserts arbitrary data into the DCCP-Sync application area, padding
 the packet to the right length. Since every valid DCCP-Sync
 generates an immediate DCCP-SyncAck in response, the endpoint will
 have a pretty good idea of when a probe is lost.

14.2. Sender Behavior

 A DCCP sender SHOULD send every packet as unfragmentable, as
 described above, with the following exceptions.

 o On IPv4 connections whose applications have requested
 fragmentation, the sender SHOULD send packets with the DF bit not
 set.

Kohler, et al. Standards Track [Page 103]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o On IPv6 connections whose applications have requested
 fragmentation, the sender SHOULD use fragmentation extension
 headers to fragment packets larger than PMTU into suitably-sized
 chunks. (Those chunks are, of course, unfragmentable.)

 o It is undesirable for PMTU discovery to occur on the initial
 connection setup handshake, as the connection setup process may
 not be representative of packet sizes used during the connection,
 and performing MTU discovery on the initial handshake might
 unnecessarily delay connection establishment. Thus, DCCP-Request
 and DCCP-Response packets SHOULD be sent as fragmentable. In
 addition, DCCP-Reset packets SHOULD be sent as fragmentable,
 although typically these would be small enough to not be a
 problem. For IPv4 connections, these packets SHOULD be sent with
 the DF bit not set; for IPv6 connections, they SHOULD be
 preemptively fragmented to a size not larger than the relevant
 interface MTU.

 If the DCCP implementation has decreased the PMTU, the sending
 application has not requested fragmentation, and the sending
 application attempts to send a packet larger than the new MPS, the
 API MUST refuse to send the packet and return an appropriate error to
 the application. The application should then use the API to query
 the new value of MPS. The kernel might have some packets buffered
 for transmission that are smaller than the old MPS but larger than
 the new MPS. It MAY send these packets as fragmentable, or it MAY
 discard these packets; it MUST NOT send them as unfragmentable.

15. Forward Compatibility

 Future versions of DCCP may add new options and features. A few
 simple guidelines will let extended DCCPs interoperate with normal
 DCCPs.

 o DCCP processors MUST NOT act punitively towards options and
 features they do not understand. For example, DCCP processors
 MUST NOT reset the connection if some field marked Reserved in
 this specification is non-zero; if some unknown option is present;
 or if some feature negotiation option mentions an unknown feature.
 Instead, DCCP processors MUST ignore these events. The Mandatory
 option is the single exception: if Mandatory precedes some unknown
 option or feature, the connection MUST be reset.

 o DCCP processors MUST anticipate the possibility of unknown feature
 values, which might occur as part of a negotiation for a known
 feature. For server-priority features, unknown values are handled
 as a matter of course: since the non-extended DCCP’s priority list
 will not contain unknown values, the result of the negotiation

Kohler, et al. Standards Track [Page 104]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 cannot be an unknown value. A DCCP MUST respond with an empty
 Confirm option if it is assigned an unacceptable value for some
 non-negotiable feature.

 o Each DCCP extension SHOULD be controlled by some feature. The
 default value of this feature SHOULD correspond to "extension not
 available". If an extended DCCP wants to use the extension, it
 SHOULD attempt to change the feature’s value using a Change L or
 Change R option. Any non-extended DCCP will ignore the option,
 thus leaving the feature value at its default, "extension not
 available".

 Section 19 lists DCCP assigned numbers reserved for experimental and
 testing purposes.

16. Middlebox Considerations

 This section describes properties of DCCP that firewalls, network
 address translators, and other middleboxes should consider, including
 parts of the packet that middleboxes should not change. The intent
 is to draw attention to aspects of DCCP that may be useful, or
 dangerous, for middleboxes, or that differ significantly from TCP.

 The Service Code field in DCCP-Request packets provides information
 that may be useful for stateful middleboxes. With Service Code, a
 middlebox can tell what protocol a connection will use without
 relying on port numbers. Middleboxes can disallow connections that
 attempt to access unexpected services by sending a DCCP-Reset with
 Reset Code 8, "Bad Service Code". Middleboxes should not modify the
 Service Code unless they are really changing the service a connection
 is accessing.

 The Source and Destination Port fields are in the same packet
 locations as the corresponding fields in TCP and UDP, which may
 simplify some middlebox implementations.

 The forward compatibility considerations in Section 15 apply to
 middleboxes as well. In particular, middleboxes generally shouldn’t
 act punitively towards options and features they do not understand.

 Modifying DCCP Sequence Numbers and Acknowledgement Numbers is more
 tedious and dangerous than modifying TCP sequence numbers. A
 middlebox that added packets to or removed packets from a DCCP
 connection would have to modify acknowledgement options, such as Ack
 Vector, and CCID-specific options, such as TFRC’s Loss Intervals, at
 minimum. On ECN-capable connections, the middlebox would have to
 keep track of ECN Nonce information for packets it introduced or
 removed, so that the relevant acknowledgement options continued to

Kohler, et al. Standards Track [Page 105]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 have correct ECN Nonce Echoes, or risk the connection being reset for
 "Aggression Penalty". We therefore recommend that middleboxes not
 modify packet streams by adding or removing packets.

 Note that there is less need to modify DCCP’s per-packet sequence
 numbers than to modify TCP’s per-byte sequence numbers; for example,
 a middlebox can change the contents of a packet without changing its
 sequence number. (In TCP, sequence number modification is required
 to support protocols like FTP that carry variable-length addresses in
 the data stream. If such an application were deployed over DCCP,
 middleboxes would simply grow or shrink the relevant packets as
 necessary without changing their sequence numbers. This might
 involve fragmenting the packet.)

 Middleboxes may, of course, reset connections in progress. Clearly,
 this requires inserting a packet into one or both packet streams, but
 the difficult issues do not arise.

 DCCP is somewhat unfriendly to "connection splicing" [SHHP00], in
 which clients’ connection attempts are intercepted, but possibly
 later "spliced in" to external server connections via sequence number
 manipulations. A connection splicer at minimum would have to ensure
 that the spliced connections agreed on all relevant feature values,
 which might take some renegotiation.

 The contents of this section should not be interpreted as a wholesale
 endorsement of stateful middleboxes.

17. Relations to Other Specifications

17.1. RTP

 The Real-Time Transport Protocol, RTP [RFC3550], is currently used
 over UDP by many of DCCP’s target applications (for instance,
 streaming media). Therefore, it is important to examine the
 relationship between DCCP and RTP and, in particular, the question of
 whether any changes in RTP are necessary or desirable when it is
 layered over DCCP instead of UDP.

 There are two potential sources of overhead in the RTP-over-DCCP
 combination: duplicated acknowledgement information and duplicated
 sequence numbers. Together, these sources of overhead add slightly
 more than 4 bytes per packet relative to RTP-over-UDP, and
 eliminating the redundancy would not reduce the overhead.

 First, consider acknowledgements. Both RTP and DCCP report feedback
 about loss rates to data senders, via RTP Control Protocol Sender and
 Receiver Reports (RTCP SR/RR packets) and via DCCP acknowledgement

Kohler, et al. Standards Track [Page 106]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 options. These feedback mechanisms are potentially redundant.
 However, RTCP SR/RR packets contain information not present in DCCP
 acknowledgements, such as "interarrival jitter", and DCCP’s
 acknowledgements contain information not transmitted by RTCP, such as
 the ECN Nonce Echo. Neither feedback mechanism makes the other
 redundant.

 Sending both types of feedback need not be particularly costly
 either. RTCP reports may be sent relatively infrequently: once every
 5 seconds on average, for low-bandwidth flows. In DCCP, some
 feedback mechanisms are expensive -- Ack Vector, for example, is
 frequent and verbose -- but others are relatively cheap: CCID 3
 (TFRC) acknowledgements take between 16 and 32 bytes of options sent
 once per round-trip time. (Reporting less frequently than once per
 RTT would make congestion control less responsive to loss.) We
 therefore conclude that acknowledgement overhead in RTP-over-DCCP
 need not be significantly higher than for RTP-over-UDP, at least for
 CCID 3.

 One clear redundancy can be addressed at the application level. The
 verbose packet-by-packet loss reports sent in RTCP Extended Reports
 Loss RLE Blocks [RFC3611] can be derived from DCCP’s Ack Vector
 options. (The converse is not true, since Loss RLE Blocks contain no
 ECN information.) Since DCCP implementations should provide an API
 for application access to Ack Vector information, RTP-over-DCCP
 applications might request either DCCP Ack Vectors or RTCP Extended
 Report Loss RLE Blocks, but not both.

 Now consider sequence number redundancy on data packets. The
 embedded RTP header contains a 16-bit RTP sequence number. Most data
 packets will use the DCCP-Data type; DCCP-DataAck and DCCP-Ack
 packets need not usually be sent. The DCCP-Data header is 12 bytes
 long without options, including a 24-bit sequence number. This is 4
 bytes more than a UDP header. Any options required on data packets
 would add further overhead, although many CCIDs (for instance, CCID
 3, TFRC) don’t require options on most data packets.

 The DCCP sequence number cannot be inferred from the RTP sequence
 number since it increments on non-data packets as well as data
 packets. The RTP sequence number cannot be inferred from the DCCP
 sequence number either [RFC3550]. Furthermore, removing RTP’s
 sequence number would not save any header space because of alignment
 issues. We therefore recommend that RTP transmitted over DCCP use
 the same headers currently defined. The 4 byte header cost is a
 reasonable tradeoff for DCCP’s congestion control features and access
 to ECN. Truly bandwidth-starved endpoints should use some header
 compression scheme.

Kohler, et al. Standards Track [Page 107]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

17.2. Congestion Manager and Multiplexing

 Since DCCP doesn’t provide reliable, ordered delivery, multiple
 application sub-flows may be multiplexed over a single DCCP
 connection with no inherent performance penalty. Thus, there is no
 need for DCCP to provide built-in support for multiple sub-flows.
 This differs from SCTP [RFC2960].

 Some applications might want to share congestion control state among
 multiple DCCP flows that share the same source and destination
 addresses. This functionality could be provided by the Congestion
 Manager [RFC3124], a generic multiplexing facility. However, the CM
 would not fully support DCCP without change; it does not gracefully
 handle multiple congestion control mechanisms, for example.

18. Security Considerations

 DCCP does not provide cryptographic security guarantees.
 Applications desiring cryptographic security services (integrity,
 authentication, confidentiality, access control, and anti-replay
 protection) should use IPsec or end-to-end security of some kind;
 Secure RTP is one candidate protocol [RFC3711].

 Nevertheless, DCCP is intended to protect against some classes of
 attackers: Attackers cannot hijack a DCCP connection (close the
 connection unexpectedly, or cause attacker data to be accepted by an
 endpoint as if it came from the sender) unless they can guess valid
 sequence numbers. Thus, as long as endpoints choose initial sequence
 numbers well, a DCCP attacker must snoop on data packets to get any
 reasonable probability of success. Sequence number validity checks
 provide this guarantee. Section 7.5.5 describes sequence number
 security further. This security property only holds assuming that
 DCCP’s random numbers are chosen according to the guidelines in
 [RFC4086].

 DCCP also provides mechanisms to limit the potential impact of some
 denial-of-service attacks. These mechanisms include Init Cookie
 (Section 8.1.4), the DCCP-CloseReq packet (Section 5.5), the
 Application Not Listening Drop Code (Section 11.7.2), limitations on
 the processing of options that might cause connection reset (Section
 7.5.5), limitations on the processing of some ICMP messages (Section
 14.1), and various rate limits, which let servers avoid extensive
 computation or packet generation (Sections 7.5.3, 8.1.3, and others).

 DCCP provides no protection against attackers that can snoop on data
 packets.

Kohler, et al. Standards Track [Page 108]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

18.1. Security Considerations for Partial Checksums

 The partial checksum facility has a separate security impact,
 particularly in its interaction with authentication and encryption
 mechanisms. The impact is the same in DCCP as in the UDP-Lite
 protocol, and what follows was adapted from the corresponding text in
 the UDP-Lite specification [RFC3828].

 When a DCCP packet’s Checksum Coverage field is not zero, the
 uncovered portion of a packet may change in transit. This is
 contrary to the idea behind most authentication mechanisms:
 authentication succeeds if the packet has not changed in transit.
 Unless authentication mechanisms that operate only on the sensitive
 part of packets are developed and used, authentication will always
 fail for partially-checksummed DCCP packets whose uncovered part has
 been damaged.

 The IPsec integrity check (Encapsulation Security Protocol, ESP, or
 Authentication Header, AH) is applied (at least) to the entire IP
 packet payload. Corruption of any bit within that area will then
 result in the IP receiver’s discarding a DCCP packet, even if the
 corruption happened in an uncovered part of the DCCP application
 data.

 When IPsec is used with ESP payload encryption, a link can not
 determine the specific transport protocol of a packet being forwarded
 by inspecting the IP packet payload. In this case, the link MUST
 provide a standard integrity check covering the entire IP packet and
 payload. DCCP partial checksums provide no benefit in this case.

 Encryption (e.g., at the transport or application levels) may be
 used. Note that omitting an integrity check can, under certain
 circumstances, compromise confidentiality [B98].

 If a few bits of an encrypted packet are damaged, the decryption
 transform will typically spread errors so that the packet becomes too
 damaged to be of use. Many encryption transforms today exhibit this
 behavior. There exist encryption transforms, stream ciphers, that do
 not cause error propagation. Proper use of stream ciphers can be
 quite difficult, especially when authentication checking is omitted
 [BB01]. In particular, an attacker can cause predictable changes to
 the ultimate plaintext, even without being able to decrypt the
 ciphertext.

Kohler, et al. Standards Track [Page 109]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

19. IANA Considerations

 IANA has assigned IP Protocol Number 33 to DCCP.

 DCCP introduces eight sets of numbers whose values should be
 allocated by IANA. We refer to allocation policies, such as
 Standards Action, outlined in [RFC2434], and most registries reserve
 some values for experimental and testing use [RFC3692]. In addition,
 DCCP requires that the IANA Port Numbers registry be opened for DCCP
 port registrations; Section 19.9 describes how. The IANA should feel
 free to contact the DCCP Expert Reviewer with questions on any
 registry, regardless of the registry policy, for clarification or if
 there is a problem with a request.

19.1. Packet Types Registry

 Each entry in the DCCP Packet Types registry contains a packet type,
 which is a number in the range 0-15; a packet type name, such as
 DCCP-Request; and a reference to the RFC defining the packet type.
 The registry is initially populated using the values in Table 1
 (Section 5.1). This document allocates packet types 0-9, and packet
 type 14 is permanently reserved for experimental and testing use.
 Packet types 10-13 and 15 are currently reserved and should be
 allocated with the Standards Action policy, which requires IESG
 review and approval and standards-track IETF RFC publication.

19.2. Reset Codes Registry

 Each entry in the DCCP Reset Codes registry contains a Reset Code,
 which is a number in the range 0-255; a short description of the
 Reset Code, such as "No Connection"; and a reference to the RFC
 defining the Reset Code. The registry is initially populated using
 the values in Table 2 (Section 5.6). This document allocates Reset
 Codes 0-11, and Reset Codes 120-126 are permanently reserved for
 experimental and testing use. Reset Codes 12-119 and 127 are
 currently reserved and should be allocated with the IETF Consensus
 policy, requiring an IETF RFC publication (standards track or not)
 with IESG review and approval. Reset Codes 128-255 are permanently
 reserved for CCID-specific registries; each CCID Profile document
 describes how the corresponding registry is managed.

19.3. Option Types Registry

 Each entry in the DCCP option types registry contains an option type,
 which is a number in the range 0-255; the name of the option, such as
 "Slow Receiver"; and a reference to the RFC defining the option type.
 The registry is initially populated using the values in Table 3
 (Section 5.8). This document allocates option types 0-2 and 32-44,

Kohler, et al. Standards Track [Page 110]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 and option types 31 and 120-126 are permanently reserved for
 experimental and testing use. Option types 3-30, 45-119, and 127 are
 currently reserved and should be allocated with the IETF Consensus
 policy, requiring an IETF RFC publication (standards track or not)
 with IESG review and approval. Option types 128-255 are permanently
 reserved for CCID-specific registries; each CCID Profile document
 describes how the corresponding registry is managed.

19.4. Feature Numbers Registry

 Each entry in the DCCP feature numbers registry contains a feature
 number, which is a number in the range 0-255; the name of the
 feature, such as "ECN Incapable"; and a reference to the RFC defining
 the feature number. The registry is initially populated using the
 values in Table 4 (Section 6). This document allocates feature
 numbers 0-9, and feature numbers 120-126 are permanently reserved for
 experimental and testing use. Feature numbers 10-119 and 127 are
 currently reserved and should be allocated with the IETF Consensus
 policy, requiring an IETF RFC publication (standards track or not)
 with IESG review and approval. Feature numbers 128-255 are
 permanently reserved for CCID-specific registries; each CCID Profile
 document describes how the corresponding registry is managed.

19.5. Congestion Control Identifiers Registry

 Each entry in the DCCP Congestion Control Identifiers (CCIDs)
 registry contains a CCID, which is a number in the range 0-255; the
 name of the CCID, such as "TCP-like Congestion Control"; and a
 reference to the RFC defining the CCID. The registry is initially
 populated using the values in Table 5 (Section 10). CCIDs 2 and 3
 are allocated by concurrently published profiles, and CCIDs 248-254
 are permanently reserved for experimental and testing use. CCIDs 0,
 1, 4-247, and 255 are currently reserved and should be allocated with
 the IETF Consensus policy, requiring an IETF RFC publication
 (standards track or not) with IESG review and approval.

19.6. Ack Vector States Registry

 Each entry in the DCCP Ack Vector States registry contains an Ack
 Vector State, which is a number in the range 0-3; the name of the
 State, such as "Received ECN Marked"; and a reference to the RFC
 defining the State. The registry is initially populated using the
 values in Table 6 (Section 11.4). This document allocates States 0,
 1, and 3. State 2 is currently reserved and should be allocated with
 the Standards Action policy, which requires IESG review and approval
 and standards-track IETF RFC publication.

Kohler, et al. Standards Track [Page 111]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

19.7. Drop Codes Registry

 Each entry in the DCCP Drop Codes registry contains a Data Dropped
 Drop Code, which is a number in the range 0-7; the name of the Drop
 Code, such as "Application Not Listening"; and a reference to the RFC
 defining the Drop Code. The registry is initially populated using
 the values in Table 7 (Section 11.7). This document allocates Drop
 Codes 0-3 and 7. Drop Codes 4-6 are currently reserved, and should
 be allocated with the Standards Action policy, which requires IESG
 review and approval and standards-track IETF RFC publication.

19.8. Service Codes Registry

 Each entry in the Service Codes registry contains a Service Code,
 which is a number in the range 0-4294967294; a short English
 description of the intended service; and an optional reference to an
 RFC or other publicly available specification defining the Service
 Code. The registry should list the Service Code’s numeric value as a
 decimal number. When the Service Code may be represented in "SC:"
 format according to the rules in Section 8.1.2, the registry should
 also show the corresponding ASCII interpretation of the Service Code
 minus the "SC:" prefix. Thus, the number 1717858426 would
 additionally appear as "fdpz". Service Codes are not DCCP-specific.
 Service Code 0 is permanently reserved (it represents the absence of
 a meaningful Service Code), and Service Codes 1056964608-1073741823
 (high byte ASCII "?") are reserved for Private Use. Note that
 4294967295 is not a valid Service Code. Most of the remaining
 Service Codes are allocated First Come First Served, with no RFC
 publication required; exceptions are listed in Section 8.1.2. This
 document allocates a single Service Code, 1145656131 ("DISC"). This
 corresponds to the discard service, which discards all data sent to
 the service and sends no data in reply.

19.9. Port Numbers Registry

 DCCP services may use contact port numbers to provide service to
 unknown callers, as in TCP and UDP. IANA is therefore requested to
 open the existing Port Numbers registry for DCCP using the following
 rules, which we intend to mesh well with existing Port Numbers
 registration procedures.

 Port numbers are divided into three ranges. The Well Known Ports are
 those from 0 through 1023, the Registered Ports are those from 1024
 through 49151, and the Dynamic and/or Private Ports are those from
 49152 through 65535. Well Known and Registered Ports are intended
 for use by server applications that desire a default contact point on
 a system. On most systems, Well Known Ports can only be used by
 system (or root) processes or by programs executed by privileged

Kohler, et al. Standards Track [Page 112]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 users, while Registered Ports can be used by ordinary user processes
 or programs executed by ordinary users. Dynamic and/or Private Ports
 are intended for temporary use, including client-side ports, out-of-
 band negotiated ports, and application testing prior to registration
 of a dedicated port; they MUST NOT be registered.

 The Port Numbers registry should accept registrations for DCCP ports
 in the Well Known Ports and Registered Ports ranges. Well Known and
 Registered Ports SHOULD NOT be used without registration. Although
 in some cases -- such as porting an application from UDP to DCCP --
 it may seem natural to use a DCCP port before registration completes,
 we emphasize that IANA will not guarantee registration of particular
 Well Known and Registered Ports. Registrations should be requested
 as early as possible.

 Each port registration SHALL include the following information:

 o A short port name, consisting entirely of letters (A-Z and a-z),
 digits (0-9), and punctuation characters from "-_+./*" (not
 including the quotes).

 o The port number that is requested to be registered.

 o A short English phrase describing the port’s purpose. This MUST
 include one or more space-separated textual Service Code
 descriptors naming the port’s corresponding Service Codes (see
 Section 8.1.2).

 o Name and contact information for the person or entity performing
 the registration, and possibly a reference to a document defining
 the port’s use. Registrations coming from IETF working groups
 need only name the working group, but indicating a contact person
 is recommended.

 Registrants are encouraged to follow these guidelines when submitting
 a registration.

 o A port name SHOULD NOT be registered for more than one DCCP port
 number.

 o A port name registered for UDP MAY be registered for DCCP as well.
 Any such registration SHOULD use the same port number as the
 existing UDP registration.

 o Concrete intent to use a port SHOULD precede port registration.
 For example, existing UDP ports SHOULD NOT be registered in
 advance of any intent to use those ports for DCCP.

Kohler, et al. Standards Track [Page 113]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o A port name generally associated with TCP and/or SCTP SHOULD NOT
 be registered for DCCP, since that port name implies reliable
 transport. For example, we discourage registration of any "http"
 port for DCCP. However, if such a registration makes sense (that
 is, if there is concrete intent to use such a port), the DCCP
 registration SHOULD use the same port number as the existing
 registration.

 o Multiple DCCP registrations for the same port number are allowed
 as long as the registrations’ Service Codes do not overlap.

 This document registers the following port. (This should be
 considered a model registration.)

 discard 9/dccp Discard SC:DISC
 # IETF dccp WG, Eddie Kohler <kohler@cs.ucla.edu>, [RFC4340]

 The discard service, which accepts DCCP connections on port 9,
 discards all incoming application data and sends no data in response.
 Thus, DCCP’s discard port is analogous to TCP’s discard port, and
 might be used to check the health of a DCCP stack.

20. Thanks

 Thanks to Jitendra Padhye for his help with early versions of this
 specification.

 Thanks to Junwen Lai and Arun Venkataramani, who, as interns at ICIR,
 built a prototype DCCP implementation. In particular, Junwen Lai
 recommended that the old feature negotiation mechanism be scrapped
 and co-designed the current mechanism. Arun Venkataramani’s feedback
 improved Appendix A.

 We thank the staff and interns of ICIR and, formerly, ACIRI, the
 members of the End-to-End Research Group, and the members of the
 Transport Area Working Group for their feedback on DCCP. We
 especially thank the DCCP expert reviewers Greg Minshall, Eric
 Rescorla, and Magnus Westerlund for detailed written comments and
 problem spotting, and Rob Austein and Steve Bellovin for verbal
 comments and written notes. We also especially thank Aaron Falk, the
 working group chair during the development of this specification.

 We also thank those who provided comments and suggestions via the
 DCCP BOF, Working Group, and mailing lists, including Damon Lanphear,
 Patrick McManus, Colin Perkins, Sara Karlberg, Kevin Lai, Bernard
 Aboba, Youngsoo Choi, Pengfei Di, Dan Duchamp, Lars Eggert, Gorry
 Fairhurst, Derek Fawcus, David Timothy Fleeman, John Loughney,
 Ghyslain Pelletier, Hagen Paul Pfeifer, Tom Phelan, Stanislav

Kohler, et al. Standards Track [Page 114]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Shalunov, Somsak Vanit-Anunchai, David Vos, Yufei Wang, and Michael
 Welzl. In particular, Colin Perkins provided extensive, detailed
 feedback, Michael Welzl suggested the Data Checksum option, Gorry
 Fairhurst provided extensive feedback on various checksum issues, and
 Somsak Vanit-Anunchai, Jonathan Billington, and Tul Kongprakaiwoot’s
 Colored Petri Net model [VBK05] discovered several problems with
 message exchange.

Kohler, et al. Standards Track [Page 115]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

A. Appendix: Ack Vector Implementation Notes

 This appendix discusses particulars of DCCP acknowledgement handling
 in the context of an abstract implementation for Ack Vector. It is
 informative and not normative.

 The first part of our implementation runs at the HC-Receiver, and
 therefore acknowledges data packets. It generates Ack Vector
 options. The implementation has the following characteristics:

 o At most one byte of state per acknowledged packet.

 o O(1) time to update that state when a new packet arrives (normal
 case).

 o Cumulative acknowledgements.

 o Quick removal of old state.

 The basic data structure is a circular buffer containing information
 about acknowledged packets. Each byte in this buffer contains a
 state and run length; the state can be 0 (packet received), 1 (packet
 ECN marked), or 3 (packet not yet received). The buffer grows from
 right to left. The implementation maintains five variables, aside
 from the buffer contents:

 o "buf_head" and "buf_tail", which mark the live portion of the
 buffer.

 o "buf_ackno", the Acknowledgement Number of the most recent packet
 acknowledged in the buffer. This corresponds to the "head"
 pointer.

 o "buf_nonce", the one-bit sum (exclusive-or, or parity) of the ECN
 Nonces received on all packets acknowledged by the buffer with
 State 0.

 We draw acknowledgement buffers like this:

 +---+
 |S,L|S,L|S,L|S,L| | | | |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|
 +---+
 ^ ^
 buf_tail buf_head, buf_ackno = A buf_nonce = E

 <=== buf_head and buf_tail move this way <===

Kohler, et al. Standards Track [Page 116]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Each "S,L" represents a State/Run length byte. We will draw these
 buffers showing only their live portion and will add an annotation
 showing the Acknowledgement Number for the last live byte in the
 buffer. For example:

 +---+
 A |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L| T BN[E]
 +---+

 Here, buf_nonce equals E and buf_ackno equals A.

 We will use this buffer as a running example.

 +---------------------------+
 10 |0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0 BN[1] [Example Buffer]
 +---------------------------+

 In concrete terms, its meaning is as follows:

 Packet 10 was received. (The head of the buffer has sequence
 number 10, state 0, and run length 0.)

 Packets 9, 8, and 7 have not yet been received. (The three bytes
 preceding the head each have state 3 and run length 0.)

 Packets 6, 5, 4, 3, and 2 were received.

 Packet 1 was ECN marked.

 Packet 0 was received.

 The one-bit sum of the ECN Nonces on packets 10, 6, 5, 4, 3, 2,
 and 0 equals 1.

 Additionally, the HC-Receiver must keep some information about the
 Ack Vectors it has recently sent. For each packet sent carrying an
 Ack Vector, it remembers four variables:

 o "ack_seqno", the Sequence Number used for the packet. This is an
 HC-Receiver sequence number.

 o "ack_ptr", the value of buf_head at the time of acknowledgement.

 o "ack_runlen", the run length stored in the byte of buffer data at
 buf_head at the time of acknowledgement.

Kohler, et al. Standards Track [Page 117]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o "ack_ackno", the Acknowledgement Number used for the packet. This
 is an HC-Sender sequence number. Since acknowledgements are
 cumulative, this single number completely specifies all necessary
 information about the packets acknowledged by this Ack Vector.

 o "ack_nonce", the one-bit sum of the ECN Nonces for all State 0
 packets in the buffer from buf_head to ack_ackno, inclusive.
 Initially, this equals the Nonce Echo of the acknowledgement’s Ack
 Vector (or, if the ack packet contained more than one Ack Vector,
 the exclusive-or of all the acknowledgement’s Ack Vectors). It
 changes as information about old acknowledgements is removed (so
 ack_ptr and buf_head diverge) and as old packets arrive (so they
 change from State 3 or State 1 to State 0).

A.1. Packet Arrival

 This section describes how the HC-Receiver updates its
 acknowledgement buffer as packets arrive from the HC-Sender.

A.1.1. New Packets

 When a packet with Sequence Number greater than buf_ackno arrives,
 the HC-Receiver updates buf_head (by moving it to the left
 appropriately), buf_ackno (which is set to the new packet’s Sequence
 Number), and possibly buf_nonce (if the packet arrived unmarked with
 ECN Nonce 1), in addition to the buffer itself. For example, if
 HC-Sender packet 11 arrived ECN marked, the Example Buffer above
 would enter this new state (changes are marked with stars):

 ** +***----------------------------+
 11 |1,0|0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0 BN[1]
 ** +***----------------------------+

 If the packet’s state equals the state at the head of the buffer, the
 HC-Receiver may choose to increment its run length (up to the
 maximum). For example, if HC-Sender packet 11 arrived without ECN
 marking and with ECN Nonce 0, the Example Buffer might enter this
 state instead:

 ** +--*------------------------+
 11 |0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0 BN[1]
 ** +--*------------------------+

Kohler, et al. Standards Track [Page 118]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 Of course, the new packet’s sequence number might not equal the
 expected sequence number. In this case, the HC-Receiver will enter
 the intervening packets as State 3. If several packets are missing,
 the HC-Receiver may prefer to enter multiple bytes with run length 0,
 rather than a single byte with a larger run length; this simplifies
 table updates if one of the missing packets arrives. For example, if
 HC-Sender packet 12 arrived with ECN Nonce 1, the Example Buffer
 would enter this state:

 ** +*******----------------------------+ *
 12 |0,0|3,0|0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0 BN[0]
 ** +*******----------------------------+ *

 Of course, the circular buffer may overflow when the HC-Sender is
 sending data at a very high rate, when the HC-Receiver’s
 acknowledgements are not reaching the HC-Sender, or when the
 HC-Sender is forgetting to acknowledge those acks (so the HC-Receiver
 is unable to clean up old state). In this case, the HC-Receiver
 should either compress the buffer (by increasing run lengths when
 possible), transfer its state to a larger buffer, or, as a last
 resort, drop all received packets, without processing them at all,
 until its buffer shrinks again.

A.1.2. Old Packets

 When a packet with Sequence Number S <= buf_ackno arrives, the
 HC-Receiver will scan the table for the byte corresponding to S.
 (Indexing structures could reduce the complexity of this scan.) If S
 was previously lost (State 3), and it was stored in a byte with run
 length 0, the HC-Receiver can simply change the byte’s state. For
 example, if HC-Sender packet 8 was received with ECN Nonce 0, the
 Example Buffer would enter this state:

 +--------*------------------+
 10 |0,0|3,0|0,0|3,0|0,4|1,0|0,0| 0 BN[1]
 +--------*------------------+

 If S was not marked as lost, or if it was not contained in the table,
 the packet is probably a duplicate and should be ignored. (The new
 packet’s ECN marking state might differ from the state in the buffer;
 Section 11.4.1 describes what is allowed then.) If S’s buffer byte
 has a non-zero run length, then the buffer might need to be
 reshuffled to make space for one or two new bytes.

 The ack_nonce fields may also need manipulation when old packets
 arrive. In particular, when S transitions from State 3 or State 1 to
 State 0, and S had ECN Nonce 1, then the implementation should flip
 the value of ack_nonce for every acknowledgement with ack_ackno >= S.

Kohler, et al. Standards Track [Page 119]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 It is impossible with this data structure to shift packets from State
 0 to State 1, since the buffer doesn’t store individual packets’ ECN
 Nonces.

A.2. Sending Acknowledgements

 Whenever the HC-Receiver needs to generate an acknowledgement, the
 buffer’s contents can simply be copied into one or more Ack Vector
 options. Copied Ack Vectors might not be maximally compressed; for
 example, the Example Buffer above contains three adjacent 3,0 bytes
 that could be combined into a single 3,2 byte. The HC-Receiver
 might, therefore, choose to compress the buffer in place before
 sending the option, or to compress the buffer while copying it;
 either operation is simple.

 Every acknowledgement sent by the HC-Receiver SHOULD include the
 entire state of the buffer. That is, acknowledgements are
 cumulative.

 If the acknowledgement fits in one Ack Vector, that Ack Vector’s
 Nonce Echo simply equals buf_nonce. For multiple Ack Vectors, more
 care is required. The Ack Vectors should be split at points
 corresponding to previous acknowledgements, since the stored
 ack_nonce fields provide enough information to calculate correct
 Nonce Echoes. The implementation should therefore acknowledge data
 at least once per 253 bytes of buffer state. (Otherwise, there’d be
 no way to calculate a Nonce Echo.)

 For each acknowledgement it sends, the HC-Receiver will add an
 acknowledgement record. ack_seqno will equal the HC-Receiver
 sequence number it used for the ack packet; ack_ptr will equal
 buf_head; ack_runlen will equal the run length stored in the buffer’s
 buf_head byte; ack_ackno will equal buf_ackno; and ack_nonce will
 equal buf_nonce.

A.3. Clearing State

 Some of the HC-Sender’s packets will include acknowledgement numbers,
 which ack the HC-Receiver’s acknowledgements. When such an ack is
 received, the HC-Receiver finds the acknowledgement record R with the
 appropriate ack_seqno and then does the following:

 o If the run length in the buffer’s R.ack_ptr byte is greater than
 R.ack_runlen, then it decrements that run length by
 R.ack_runlen + 1 and sets buf_tail to R.ack_ptr. Otherwise, it
 sets buf_tail to R.ack_ptr + 1.

Kohler, et al. Standards Track [Page 120]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 o If R.ack_nonce is 1, it flips buf_nonce, and the value of
 ack_nonce for every later ack record.

 o It throws away R and every preceding ack record.

 (The HC-Receiver may choose to keep some older information, in case a
 lost packet shows up late.) For example, say that the HC-Receiver
 storing the Example Buffer had sent two acknowledgements already:

 1. ack_seqno = 59, ack_runlen = 1, ack_ackno = 3, ack_nonce = 1.

 2. ack_seqno = 60, ack_runlen = 0, ack_ackno = 10, ack_nonce = 0.

 Say the HC-Receiver then received a DCCP-DataAck packet with
 Acknowledgement Number 59 from the HC-Sender. This informs the
 HC-Receiver that the HC-Sender received, and processed, all the
 information in HC-Receiver packet 59. This packet acknowledged
 HC-Sender packet 3, so the HC-Sender has now received HC-Receiver’s
 acknowledgements for packets 0, 1, 2, and 3. The Example Buffer
 should enter this state:

 +------------------*+ * *
 10 |0,0|3,0|3,0|3,0|0,2| 4 BN[0]
 +------------------*+ * *

 The tail byte’s run length was adjusted, since packet 3 was in the
 middle of that byte. Since R.ack_nonce was 1, the buf_nonce field
 was flipped, as were the ack_nonce fields for later acknowledgements
 (here, the HC-Receiver Ack 60 record, not shown, has its ack_nonce
 flipped to 1). The HC-Receiver can also throw away stored
 information about HC-Receiver Ack 59 and any earlier
 acknowledgements.

 A careful implementation might try to ensure reasonable robustness to
 reordering. Suppose that the Example Buffer is as before, but that
 packet 9 now arrives, out of sequence. The buffer would enter this
 state:

 +----*----------------------+
 10 |0,0|0,0|3,0|3,0|0,4|1,0|0,0| 0 BN[1]
 +----*----------------------+

 The danger is that the HC-Sender might acknowledge the HC-Receiver’s
 previous acknowledgement (with sequence number 60), which says that
 Packet 9 was not received, before the HC-Receiver has a chance to
 send a new acknowledgement saying that Packet 9 actually was
 received. Therefore, when packet 9 arrived, the HC-Receiver might
 modify its acknowledgement record as follows:

Kohler, et al. Standards Track [Page 121]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 1. ack_seqno = 59, ack_ackno = 3, ack_nonce = 1.

 2. ack_seqno = 60, ack_ackno = 3, ack_nonce = 1.

 That is, Ack 60 is now treated like a duplicate of Ack 59. This
 would prevent the Tail pointer from moving past packet 9 until the
 HC-Receiver knows that the HC-Sender has seen an Ack Vector
 indicating that packet’s arrival.

A.4. Processing Acknowledgements

 When the HC-Sender receives an acknowledgement, it generally cares
 about the number of packets that were dropped and/or ECN marked. It
 simply reads this off the Ack Vector. Additionally, it should check
 the ECN Nonce for correctness. (As described in Section 11.4.1, it
 may want to keep more detailed information about acknowledged packets
 in case packets change states between acknowledgements, or in case
 the application queries whether a packet arrived.)

 The HC-Sender must also acknowledge the HC-Receiver’s
 acknowledgements so that the HC-Receiver can free old Ack Vector
 state. (Since Ack Vector acknowledgements are reliable, the
 HC-Receiver must maintain and resend Ack Vector information until it
 is sure that the HC-Sender has received that information.) A simple
 algorithm suffices: since Ack Vector acknowledgements are cumulative,
 a single acknowledgement number tells HC-Receiver how much ack
 information has arrived. Assuming that the HC-Receiver sends no
 data, the HC-Sender can ensure that at least once a round-trip time,
 it sends a DCCP-DataAck packet acknowledging the latest DCCP-Ack
 packet it has received. Of course, the HC-Sender only needs to
 acknowledge the HC-Receiver’s acknowledgements if the HC-Sender is
 also sending data. If the HC-Sender is not sending data, then the
 HC-Receiver’s Ack Vector state is stable, and there is no need to
 shrink it. The HC-Sender must watch for drops and ECN marks on
 received DCCP-Ack packets so that it can adjust the HC-Receiver’s
 ack-sending rate in response to congestion, for example, with Ack
 Ratio.

 If the other half-connection is not quiescent -- that is, the
 HC-Receiver is sending data to the HC-Sender, possibly using another
 CCID -- then the acknowledgements on that half-connection are
 sufficient for the HC-Receiver to free its state.

Kohler, et al. Standards Track [Page 122]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

B. Appendix: Partial Checksumming Design Motivation

 A great deal of discussion has taken place regarding the utility of
 allowing a DCCP sender to restrict the checksum so that it does not
 cover the complete packet. This section attempts to capture some of
 the rationale behind specific details of DCCP design.

 Many of the applications that we envisage using DCCP are resilient to
 some degree of data loss, or they would typically have chosen a
 reliable transport. Some of these applications may also be resilient
 to data corruption -- some audio payloads, for example. These
 resilient applications might rather receive corrupted data than have
 DCCP drop corrupted packets. This is particularly because of
 congestion control: DCCP cannot tell the difference between packets
 dropped due to corruption and packets dropped due to congestion, and
 so it must reduce the transmission rate accordingly. This response
 may cause the connection to receive less bandwidth than it is due;
 corruption in some networking technologies is independent of, or at
 least not always correlated to, congestion. Therefore, corrupted
 packets do not need to cause as strong a reduction in transmission
 rate as the congestion response would dictate (as long as the DCCP
 header and options are not corrupt).

 Thus DCCP allows the checksum to cover all of the packet, just the
 DCCP header, or both the DCCP header and some number of bytes from
 the application data. If the application cannot tolerate any data
 corruption, then the checksum must cover the whole packet. If the
 application would prefer to tolerate some corruption rather than have
 the packet dropped, then it can set the checksum to cover only part
 of the packet (but always the DCCP header). In addition, if the
 application wishes to decouple checksumming of the DCCP header from
 checksumming of the application data, it may do so by including the
 Data Checksum option. This would allow DCCP to discard corrupted
 application data without mistaking the corruption for network
 congestion.

 Thus, from the application point of view, partial checksums seem to
 be a desirable feature. However, the usefulness of partial checksums
 depends on partially corrupted packets being delivered to the
 receiver. If the link-layer CRC always discards corrupted packets,
 then this will not happen, and so the usefulness of partial checksums
 would be restricted to corruption that occurred in routers and other
 places not covered by link CRCs. There does not appear to be
 consensus on how likely it is that future network links that suffer
 significant corruption will not cover the entire packet with a single
 strong CRC. DCCP makes it possible to tailor such links to the
 application, but it is difficult to predict if this will be
 compelling for future link technologies.

Kohler, et al. Standards Track [Page 123]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 In addition, partial checksums do not co-exist well with IP-level
 authentication mechanisms such as IPsec AH, which cover the entire
 packet with a cryptographic hash. Thus, if cryptographic
 authentication mechanisms are required to co-exist with partial
 checksums, the authentication must be carried in the application
 data. A possible mode of usage would appear to be similar to that of
 Secure RTP. However, such "application-level" authentication does
 not protect the DCCP option negotiation and state machine from forged
 packets. An alternative would be to use IPsec ESP, and to use
 encryption to protect the DCCP headers against attack, while using
 the DCCP header validity checks to authenticate that the header is
 from someone who possessed the correct key. While this is resistant
 to replay (due to the DCCP sequence number), it is not by itself
 resistant to some forms of man-in-the-middle attacks because the
 application data is not tightly coupled to the packet header. Thus,
 an application-level authentication probably needs to be coupled with
 IPsec ESP or a similar mechanism to provide a reasonably complete
 security solution. The overhead of such a solution might be
 unacceptable for some applications that would otherwise wish to use
 partial checksums.

 On balance, the authors believe that DCCP partial checksums have the
 potential to enable some future uses that would otherwise be
 difficult. As the cost and complexity of supporting them is small,
 it seems worth including them at this time. It remains to be seen
 whether they are useful in practice.

Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC
 1191, November 1990.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC
 2434, October 1998.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version
 6 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The
 Addition of Explicit Congestion Notification (ECN) to
 IP", RFC 3168, September 2001.

Kohler, et al. Standards Track [Page 124]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 [RFC3309] Stone, J., Stewart, R., and D. Otis, "Stream Control
 Transmission Protocol (SCTP) Checksum Change", RFC
 3309, September 2002.

 [RFC3692] Narten, T., "Assigning Experimental and Testing
 Numbers Considered Useful", BCP 82, RFC 3692, January
 2004.

 [RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility
 Support in IPv6", RFC 3775, June 2004.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E.,
 and G. Fairhurst, "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, July 2004.

Informative References

 [B98] Bellovin, S.M., "Cryptography and the Internet",
 CRYPTO ’98 (LNCS 1462), pp 46-55, August 1988.

 [BB01] Bellovin, S.M. and M. Blaze, "Cryptographic Modes of
 Operation for the Internet", 2nd NIST Workshop on
 Modes of Operation, August 2001.

 [M85] Morris, R.T., "A Weakness in the 4.2BSD Unix TCP/IP
 Software", Computer Science Technical Report 117, AT&T
 Bell Laboratories, Murray Hill, NJ, February 1985.

 [PMTUD] Mathis, M. and J. Heffner, "Path MTU Discovery", Work
 in Progress, March 2006.

 [RFC792] Postel, J., "Internet Control Message Protocol", STD
 5, RFC 792, September 1981.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers",
 RFC 1812, June 1995.

 [RFC1948] Bellovin, S., "Defending Against Sequence Number
 Attacks", RFC 1948, May 1996.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC
 1982, August 1996.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow,
 "TCP Selective Acknowledgement Options", RFC 2018,
 October 1996.

Kohler, et al. Standards Track [Page 125]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for
 the Internet Protocol", RFC 2401, November 1998.

 [RFC2463] Conta, A. and S. Deering, "Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6
 (IPv6) Specification", RFC 2463, December 1998.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP
 Congestion Control", RFC 2581, April 1999.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion
 Manager", RFC 3124, June 2001.

 [RFC3360] Floyd, S., "Inappropriate TCP Resets Considered
 Harmful", BCP 60, RFC 3360, August 2002.

 [RFC3448] Handley, M., Floyd, S., Padhye, J., and J. Widmer,
 "TCP Friendly Rate Control (TFRC): Protocol
 Specification", RFC 3448, January 2003.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust
 Explicit Congestion Notification (ECN) Signaling with
 Nonces", RFC 3540, June 2003.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3611] Friedman, T., Caceres, R., and A. Clark, "RTP Control
 Protocol Extended Reports (RTCP XR)", RFC 3611,
 November 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and
 K. Norrman, "The Secure Real-time Transport Protocol
 (SRTP)", RFC 3711, March 2004.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J.,
 and L. Wood, "Advice for Internet Subnetwork
 Designers", BCP 89, RFC 3819, July 2004.

Kohler, et al. Standards Track [Page 126]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

 [RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram
 Congestion Control Protocol (DCCP) Congestion Control
 ID 2: TCP-like Congestion Control", RFC 4341, March
 2006.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
 Datagram Congestion Control Protocol (DCCP) Congestion
 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC
 4342, March 2006.

 [SHHP00] Spatscheck, O., Hansen, J.S., Hartman, J.H., and L.L.
 Peterson, "Optimizing TCP Forwarder Performance",
 IEEE/ACM Transactions on Networking 8(2):146-157,
 April 2000.

 [SYNCOOKIES] Bernstein, D.J., "SYN Cookies",
 http://cr.yp.to/syncookies.html, as of March 2006.

 [VBK05] Vanit-Anunchai, S., Billington, J., and T.
 Kongprakaiwoot, "Discovering Chatter and
 Incompleteness in the Datagram Congestion Control
 Protocol", FORTE 2005, pp 143-158, October 2005.

Kohler, et al. Standards Track [Page 127]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

Authors’ Addresses

 Eddie Kohler
 4531C Boelter Hall
 UCLA Computer Science Department
 Los Angeles, CA 90095
 USA

 EMail: kohler@cs.ucla.edu

 Mark Handley
 Department of Computer Science
 University College London
 Gower Street
 London WC1E 6BT
 UK

 EMail: M.Handley@cs.ucl.ac.uk

 Sally Floyd
 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704
 USA

 EMail: floyd@icir.org

Kohler, et al. Standards Track [Page 128]

RFC 4340 Datagram Congestion Control Protocol (DCCP) March 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Kohler, et al. Standards Track [Page 129]

