Net wor k Wor ki ng Group E. Rescorla

Request for Comments: 4347 RTFM I nc.
Cat egory: Standards Track N. Modadugu
Stanford University

April 2006

Dat agram Transport Layer Security

Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2006).
Abstr act

Thi s docunent specifies Version 1.0 of the Datagram Transport Layer
Security (DTLS) protocol. The DTLS protocol provides conmunications
privacy for datagram protocols. The protocol allows client/server
applications to communicate in a way that is designed to prevent
eavesdroppi ng, tanpering, or nmessage forgery. The DILS protocol is
based on the Transport Layer Security (TLS) protocol and provides
equi val ent security guarantees. Datagram semantics of the underlying
transport are preserved by the DTLS protocol

Tabl e of Contents

1. IntroduCti ON ... e e 2
1.1. Requirements Termnology, 3

2. Usage Model 3
3. Overview of DILS 4
3.1. Loss-Insensitive MeSSaQiNgot 4
3.2. Providing Reliability for Handshake 4
3.2. 1. Packet LOSSt 5

3.2.2. ReOrderingo i 5

3.2.3. MBSSAQEe S Z@ ..o 5

3.3. Replay Detection 6

4, Differences from TLS 6
4.1, Record Layer e e 6
4.1.1. Transport Layer Mapping 7

Rescorl a & Modadugu St andards Track [Page 1]

RFC 4347 Dat agram Transport Layer Security April 2006

4.1.1.1. PMIU Di SCOVEIY .ot iii it e e e 8

4.1.2. Record Payload Protection 9
4.1.2. 1. MAC .. 9

4.1.2.2. Null or Standard Stream Cipher 9

4.1.2.3. Block Gipher 10

4.1.2.4. New Cipher Suites 10

4.1.2.5. Anti-replay e 10

4.2. The DTLS Handshake Protocol 11
4.2.1. Denial of Service Counterneasures 11

4.2.2. Handshake Message Format 13

4.2.3. Message Fragnentation and Reassenbly 15

4.2.4. Tinmeout and Retransmission 15
4.2.4.1. Timer Values i 18

4.2.5. ChangeG pherSpec i 19

4.2.6. Finished MeSSages i, 19

4.2.7. Alert MeSSagesS . ..ot i it 19

4.3. Summary of new SYNtax 19
4.3.1. Record Layer e 20

4.3.2. Handshake Protocol 20

5. Security Considerati oOns 21
6. ACKNOW edgemBnt S 22
7. TANA Considerati ONS e 22
8. References 22
8.1. Normative References i, 22
8.2. Informative References i, 23

1. Introduction

TLS [TLS] is the nost wi dely depl oyed protocol for securing network

traffic. It is widely used for protecting Web traffic and for e-nmai
protocols such as IMAP [I MAP] and POP [POP]. The primary advantage

of TLSis that it provides a transparent connection-oriented channel
Thus, it is easy to secure an application protocol by inserting TLS

between the application layer and the transport |layer. However, TLS
must run over a reliable transport channel -- typically TCP [TCP]

It therefore cannot be used to secure unreliable datagramtraffic.

However, over the past few years an increasing nunber of application
| ayer protocols have been designed that use UDP transport. In
particul ar protocols such as the Session Initiation Protocol (SIP)
[SIP] and el ectronic ganm ng protocols are increasingly popul ar

(Note that SIP can run over both TCP and UDP, but that there are
situations in which UDP is preferable). Currently, designers of
these applications are faced with a nunber of unsatisfactory choices.
First, they can use | Psec [RFC2401]. However, for a nunber of
reasons detailed in [WHYI PSEC], this is only suitable for some
applications. Second, they can design a custom application |ayer
security protocol. SIP, for instance, uses a subset of SSMME to

Rescorl a & Modadugu St andards Track [Page 2]

RFC 4347 Dat agram Transport Layer Security April 2006

secure its traffic. Unfortunately, although application |ayer
security protocols generally provide superior security properties
(e.g., end-to-end security in the case of SSMM), they typically
requires a large anount of effort to design -- in contrast to the
relatively small anmount of effort required to run the protocol over
TLS.

In many cases, the nost desirable way to secure client/server
applications would be to use TLS; however, the requirenent for

dat agram semanti cs automatically prohibits use of TLS. Thus, a

dat agram conpati bl e variant of TLS would be very desirable. This
meno describes such a protocol: Datagram Transport Layer Security
(DTLS). DITLS is deliberately designed to be as sinilar to TLS as
possi ble, both to minimze new security invention and to maxim ze the
amount of code and infrastructure reuse.

1.1. Requirenents Term nol ogy

In this docunent, the keywords "MJST", "MJST NOT", "REQUI RED",
"SHOULD', "SHOULD NOT", and "MAY" are to be interpreted as descri bed
in RFC 2119 [REQ .

2. Usage Mbdde

The DTLS protocol is designed to secure data between comuni cati ng
applications. It is designed to run in application space, w thout
requiring any kernel nodifications.

Dat agram transport does not require or provide reliable or in-order
delivery of data. The DTLS protocol preserves this property for

payl oad data. Applications such as nedia stream ng, |nternet

t el ephony, and online gam ng use datagram transport for conmunication
due to the delay-sensitive nature of transported data. The behavi or
of such applications is unchanged when the DTLS protocol is used to
secure conmuni cation, since the DILS protocol does not conpensate for
lost or re-ordered data traffic.

Rescorl a & Modadugu St andards Track [Page 3]

RFC 4347 Dat agram Transport Layer Security April 2006

3. Overview of DILS

The basi c design phil osophy of DILS is to construct "TLS over
datagrant. The reason that TLS cannot be used directly in datagram
environnments is sinmply that packets may be |l ost or reordered. TLS
has no internal facilities to handle this kind of unreliability, and
therefore TLS i npl enent ati ons break when rehosted on datagram
transport. The purpose of DILS is to make only the minimal changes
to TLS required to fix this problem To the greatest extent
possible, DILS is identical to TLS. Wenever we need to invent new
mechani sms, we attenpt to do so in such a way that preserves the
style of TLS.

Unreliability creates problens for TLS at two |evels:

1. TLS s traffic encryption |ayer does not allow i ndependent
decryption of individual records. |If record Nis not received,
then record N+1 cannot be decrypted.

2. The TLS handshake | ayer assunes that handshake nessages are
delivered reliably and breaks if those messages are |ost.

The rest of this section describes the approach that DILS uses to
sol ve these probl ens.

3.1. Loss-Insensitive Messaging

In TLS s traffic encryption layer (called the TLS Record Layer),
records are not independent. There are two kinds of inter-record
dependency:

1. Cryptographic context (CBC state, stream cipher key stream is
chai ned between records.

2. Anti-replay and nessage reordering protection are provided by a
MAC that includes a sequence nunber, but the sequence nunbers are
inmplicit in the records.

The fix for both of these problens is straightforward and well known
fromlPsec ESP [ESP]: add explicit state to the records. TLS 1.1

[TLS11] is already adding explicit CBC state to TLS records. DILS
borrows that mechani sm and adds explicit sequence nunbers.

3.2. Providing Reliability for Handshake
The TLS handshake is a | ockstep cryptographi c handshake. Messages

must be transmitted and received in a defined order, and any other
order is an error. Clearly, this is inconpatible with reordering and

Rescorl a & Modadugu St andards Track [Page 4]

RFC 4347 Dat agram Transport Layer Security April 2006

message | oss. In addition, TLS handshake nessages are potentially
| arger than any given datagram thus creating the problem of
fragmentation. DTLS nust provide fixes for both of these problens.

3.2.1. Packet Loss

DTLS uses a sinple retransmission tiner to handl e packet |oss. The
followi ng figure denonstrates the basic concept, using the first
phase of the DTLS handshake:

Client Ser ver

dientHello - ----- >

X<-- Hel l oVerifyRequest
(lost)

[Ti mer Expires]

ClientHello ------ >
(retransmt)

Once the client has transnmitted the ClientHell o nessage, it expects
to see a HelloVerifyRequest fromthe server. However, if the
server’'s nessage is lost the client knows that either the dientHello
or the HelloVerifyRequest has been lost and retransnits. \Wen the
server receives the retransm ssion, it knows to retransmit. The
server also maintains a retransm ssion tiner and retransmts when
that timer expires

Note: tineout and retransm ssion do not apply to the
Hel | oVeri f yRequest, because this requires creating state on the
server.

3.2.2. Reordering
In DTILS, each handshake nessage is assigned a specific sequence

nunber within that handshake. Wen a peer receives a handshake
message, it can quickly determ ne whether that message is the next

message it expects. If it is, then it processes it. |If not, it
queues it up for future handling once all previous nessages have been
recei ved.

3.2.3. Message Size
TLS and DTLS handshake nmessages can be quite large (in theory up to

2"24-1 bytes, in practice many kilobytes). By contrast, UDP
datagrans are often limted to <1500 bytes if fragnentation is not

Rescorl a & Modadugu St andards Track [Page 5]

RFC 4347 Dat agram Transport Layer Security April 2006

desired. In order to conpensate for this linmtation, each DTLS
handshake nessage nay be fragnmented over several DTLS records. Each
DTLS handshake nmessage contains both a fragnment offset and a fragnent
Il ength. Thus, a recipient in possession of all bytes of a handshake
message can reassenbl e the original unfragmented nessage

3.3. Replay Detection

DTLS optionally supports record replay detection. The technique used
is the same as in I Psec AH ESP, by maintaining a bitmp w ndow of
received records. Records that are too old to fit in the w ndow and
records that have previously been received are silently discarded.
The replay detection feature is optional, since packet duplication is
not always nalicious, but can al so occur due to routing errors.
Appl i cations may concei vably detect duplicate packets and accordingly
nmodi fy their data transnission strategy.

4, Differences fromTLS

As mentioned in Section 3, DILS is intentionally very simlar to TLS
Therefore, instead of presenting DTLS as a new protocol, we present
it as a series of deltas fromTLS 1.1 [TLS11]. Were we do not
explicitly call out differences, DILS is the sanme as in [TLS11].

4.1. Record Layer

The DTLS record layer is extrenely simlar to that of TLS 1.1. The
only change is the inclusion of an explicit sequence nunber in the
record. This sequence nunber allows the recipient to correctly
verify the TLS MAC. The DTLS record format is shown bel ow

struct {
Cont ent Type type;
Pr ot ocol Ver si on versi on;
ui nt 16 epoch; /1 New field
ui nt 48 sequence_nunber; /1 New field
uint16 | ength;
opaque fragment [DTLSPI ai ntext. | ength];

} DTLSPI ai nt ext ;

type
Equivalent to the type field in a TLS 1.1 record

version

The version of the protocol being enployed. This docunent
descri bes DTLS Version 1.0, which uses the version { 254, 255
}. The version value of 254.255 is the 1's conpl enent of DILS
Version 1.0. This maxi mal spaci ng between TLS and DITLS version

Rescorl a & Modadugu St andards Track [Page 6]

RFC 4347 Dat agram Transport Layer Security April 2006

nunbers ensures that records fromthe two protocols can be

easily distinguished. It should be noted that future on-the-wire
versi on nunbers of DILS are decreasing in value (while the true
versi on nunber is increasing in value.)

epoch
A counter value that is increnented on every cipher state
change.

sequence_numnber
The sequence nunber for this record.

| ength
Identical to the length field in a TLS 1.1 record. As in TLS
1.1, the length should not exceed 2714.

f ragment
Identical to the fragnent field of a TLS 1.1 record

DTLS uses an explicit sequence nunber, rather than an inplicit one,
carried in the sequence_nunber field of the record. As with TLS, the
sequence nunmber is set to zero after each ChangeC pher Spec nessage is
sent.

I f several handshakes are perfornmed in close succession, there night
be multiple records on the wire with the sane sequence nunber but
fromdifferent cipher states. The epoch field allows recipients to
di stingui sh such packets. The epoch nunber is initially zero and is
i ncrenented each tinme the ChangeC pher Spec nessages is sent. In
order to ensure that any given sequence/ epoch pair is unique,

i mpl enent ati ons MJST NOT al |l ow t he sane epoch value to be reused
within two tinmes the TCP maxi num segnent lifetime. |In practice, TLS
i mpl erent ations rarely rehandshake and we therefore do not expect
this to be a problem

4.1.1. Transport Layer Mapping

Each DTLS record MJUST fit within a single datagram |In order to
avoid I P fragnmentation [MOGUL], DTLS inplenentati ons SHOULD det ermi ne
the MIU and send records smaller than the MIU. DTLS i npl enent ati ons
SHOULD provide a way for applications to determ ne the value of the
PMIU (or, alternately, the maxi mum application datagram size, which
is the PMIU m nus the DTLS per-record overhead). |f the application
attenpts to send a record larger than the MIU, the DTLS

i mpl erent ati on SHOULD generate an error, thus avoiding sending a
packet which will be fragnented.

Rescorl a & Modadugu St andards Track [Page 7]

RFC 4347 Dat agram Transport Layer Security April 2006

Note that unlike | Psec, DTLS records do not contain any association
identifiers. Applications nust arrange to nultiplex between
associations. Wth UDP, this is presunably done with host/port
nunber .

Mul tiple DTLS records nay be placed in a single datagram They are

simply encoded consecutively. The DITLS record framing is sufficient
to determine the boundaries. Note, however, that the first byte of

t he dat agram payl oad nust be the beginning of a record. Records nay
not span dat agrans.

Some transports, such as DCCP [DCCP] provide their own sequence
nunbers. When carried over those transports, both the DTLS and the
transport sequence nunbers will be present. Although this introduces
a smal |l amount of inefficiency, the transport |ayer and DILS sequence
nunbers serve different purposes, and therefore for conceptua
simplicity it is superior to use both sequence nunmbers. 1In the
future, extensions to DILS nay be specified that all ow the use of
only one set of sequence nunbers for deploynent in constrained

envi ronment s.

Some transports, such as DCCP, provide congestion control for traffic
carried over them |If the congestion window is sufficiently narrow,
DTLS handshake retransni ssions may be held rather than transnitted

i mediately, potentially leading to tinmeouts and spuri ous

retransm ssion. Wien DILS is used over such transports, care should
be taken not to overrun the likely congestion window In the future,
a DTLS-DCCP mappi ng may be specified to provide optiml behavior for
this interaction.

4.1.1.1. PMIU Di scovery

In general, DTLS s philosophy is to avoid dealing with PMIU issues.
The general strategy is to start with a conservative MIU and then
update it if events during the handshake or actual application data
transport phase require it.

The PMITU SHOULD be initialized fromthe interface MU that will be
used to send packets. |If the DILS inplenmentation receives an RFC
1191 [RFC1191] | CWP Destination Unreachabl e nessage with the
"fragmentati on needed and DF set"” Code (otherw se known as Datagram
Too Big), it should decrease its PMIU estimate to that given in the

| CMP nessage. A DTLS inplenentation SHOULD all ow the application to
occasionally reset its PMIU estinmate. The DTLS inpl enentati on SHOULD
al so allow applications to control the status of the DF bit. These
controls allow the application to perform PMIU di scovery. RFC 1981

[RFC1981] procedures SHOULD be foll owed for |Pv6.

Rescorl a & Modadugu St andards Track [Page 8]

RFC 4347 Dat agram Transport Layer Security April 2006

One special case is the DILS handshake system Handshake nessages
shoul d be set with DF set. Because sone firewalls and routers screen
out | CWMP nmessages, it is difficult for the handshake |ayer to

di stingui sh packet |oss froman overlarge PMIU estimate. In order to
al | ow connections under these circunstances, DILS inplenmentations
SHOULD back off handshake packet size during the retransnit backoff
described in Section 4.2.4. For instance, if a large packet is being
sent, after 3 retransnits the handshake | ayer ni ght choose to
fragment the handshake nmessage on retransmission. |n general, choice
of a conservative initial MTUw Il avoid this problem

4.1.2. Record Payl oad Protection

Li ke TLS, DTLS transnmits data as a series of protected records. The
rest of this section describes the details of that format.

4.1.2.1. MAC

The DTLS MAC is the same as that of TLS 1.1. However, rather than
using TLS s inplicit sequence nunber, the sequence number used to
conpute the MAC is the 64-bit value forned by concatenating the epoch
and the sequence nunber in the order they appear on the wire. Note
that the DTLS epoch + sequence nunber is the same |length as the TLS
sequence nunber.

TLS MAC cal cul ation is paraneterized on the protocol version nunber,
which, in the case of DTLS, is the on-the-wire version, i.e., {254,
255 } for DTLS 1.0.

Note that one inportant difference between DTLS and TLS MAC handl i ng
is that in TLS MAC errors nust result in connection termnation. |In
DTLS, the receiving inplenentation MAY sinply discard the of fending
record and continue with the connection. This change is possible
because DTLS records are not dependent on each other in the way that
TLS records are.

In general, DTLS inplenentations SHOULD silently discard data with
bad MACs. |If a DTLS inplenentation chooses to generate an al ert when
it receives a nmessage with an invalid MAC, it MJST generate
bad record nac alert with level fatal and terminate its connection
st at e.

4.1.2.2. Null or Standard Stream G pher
The DTLS NULL cipher is perforned exactly as the TLS 1.1 NULL ci pher.

The only stream ci pher described in TLS 1.1 is RC4, which cannot be
randonly accessed. RC4 MJST NOT be used with DILS.

Rescorl a & Modadugu St andards Track [Page 9]

RFC 4347 Dat agram Transport Layer Security April 2006

4.1.2.3. Block G pher

DTLS bl ock ci pher encryption and decryption are perfornmed exactly as
with TLS 1. 1.

4.1.2.4. New Ci pher Suites

Upon registration, new TLS ci pher suites MJST indi cate whether they
are suitable for DILS usage and what, if any, adaptations nmust be
made.

4.1.2.5. Anti-replay

DTLS records contain a sequence nunber to provide replay protection
Sequence nunber verification SHOULD be perfornmed using the follow ng
slidi ng wi ndow procedure, borrowed from Section 3.4.3 of [RFC 2402].

The recei ver packet counter for this session MIUST be initialized to
zero when the session is established. For each received record, the
receiver MIUST verify that the record contains a Sequence Nunber that
does not duplicate the Sequence Number of any other record received
during the life of this session. This SHOULD be the first check
applied to a packet after it has been matched to a session, to speed
rejection of duplicate records.

Duplicates are rejected through the use of a sliding receive w ndow.
(How the window is inplenmented is a local matter, but the foll ow ng
text describes the functionality that the inplenmentation nust
exhibit.) A mninmw ndow size of 32 MJST be supported, but a

wi ndow si ze of 64 is preferred and SHOULD be enpl oyed as the default.
Anot her wi ndow si ze (larger than the m ninun) MAY be chosen by the
receiver. (The receiver does not notify the sender of the w ndow

si ze.)

The "right" edge of the wi ndow represents the highest validated
Sequence Nunmber val ue received on this session. Records that contain
Sequence Numbers |ower than the "left" edge of the wi ndow are
rejected. Packets falling within the wi ndow are checked agai nst a
list of received packets within the window. An efficient nmeans for
performng this check, based on the use of a bit nmask, is described

i n Appendi x C of [RFC 2401].

If the received record falls within the window and is new, or if the
packet is to the right of the window, then the receiver proceeds to
MAC verification. |f the MAC validation fails, the receiver MJST

di scard the received record as invalid. The receive wi ndow is
updated only if the MAC verification succeeds.

Rescorl a & Modadugu St andards Track [Page 10]

RFC 4347 Dat agram Transport Layer Security April 2006

4.2. The DTLS Handshake Protoco

DTLS uses all of the sane handshake nessages and flows as TLS, with
three principal changes:

1. A stateless cookie exchange has been added to prevent denial of
servi ce attacks.

2. Modifications to the handshake header to handl e nessage | oss,
reordering, and fragnentation

3. Retransnission tiners to handl e nessage | oss.

Wth these exceptions, the DILS nessage fornmats, flows, and logic are
the sane as those of TLS 1. 1.

4.2.1. Denial of Service Counterneasures

Dat agram security protocols are extrenely susceptible to a variety of
deni al of service (DoS) attacks. Two attacks are of particul ar
concern

1. An attacker can consume excessive resources on the server by
transmitting a series of handshake initiation requests, causing
the server to allocate state and potentially to perform expensive
crypt ographi c operations.

2. An attacker can use the server as an anplifier by sending
connection initiation nessages with a forged source of the victim
The server then sends its next nessage (in DILS, a Certificate
message, which can be quite large) to the victimnachine, thus
flooding it.

In order to counter both of these attacks, DTLS borrows the stateless
cooki e techni que used by Photuris [PHOTURI S] and IKE [I KE]. \When the
client sends its CientHello nessage to the server, the server NMAY
respond with a HelloVerifyRequest nessage. This nessage contains a
st at el ess cooki e generated using the technique of [PHOTURI S]. The
client MUST retransmit the CientHello with the cooki e added. The
server then verifies the cookie and proceeds with the handshake only
if it is valid. This mechanismforces the attacker/client to be able
to receive the cookie, which nakes DoS attacks with spoofed IP
addresses difficult. This nechani sm does not provide any defense
agai nst DoS attacks nounted fromvalid | P addresses.

Rescorl a & Modadugu St andards Track [Page 11]

RFC 4347 Dat agram Transport Layer Security April 2006

The exchange i s shown bel ow

Cient Server

CientHello —----- >

<----- Hel | oVeri f yRequest
(contai ns cookie)

CientHello ------ >
(with cookie)

[Rest of handshake]

DTLS therefore nodifies the ClientHello nessage to add the cookie
val ue.

struct {
Pr ot ocol Version client_version;
Random r andom
Sessi onl D session_id;
opaque cooki e<0. . 32>; Il New field
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1. . 2"8- 1>;
} dientHell o;

Wien sending the first ClientHello, the client does not have a cookie
yet; in this case, the Cookie field is left enpty (zero length).

The definition of HelloVerifyRequest is as follows:

struct {
Pr ot ocol Versi on server_version;
opaque cooki e<0. . 32>;

} Hell oVerifyRequest;

The Hel |l oVeri fyRequest nessage type is hello_verify request(3).
The server_version field is defined as in TLS.

When responding to a Hell oVerifyRequest the client MIST use the sane
par aneter val ues (version, random session_id, cipher_suites,
conpression_nethod) as it did in the original ClientHello. The
server SHOULD use those values to generate its cookie and verify that
they are correct upon cookie receipt. The server MIST use the sane
versi on nunber in the HelloVerifyRequest that it would use when
sending a ServerHello. Upon receipt of the ServerHello, the client
MUST verify that the server version val ues natch.

Rescorl a & Modadugu St andards Track [Page 12]

RFC 4347 Dat agram Transport Layer Security April 2006

The DTLS server SHOULD generate cookies in such a way that they can
be verified without retaining any per-client state on the server
One technique is to have a randomy generated secret and generate
cooki es as: Cookie = HVAC(Secret, dient-1P, Cient-Paraneters)

When the second dientHello is received, the server can verify that
the Cookie is valid and that the client can receive packets at the
gi ven | P address.

One potential attack on this schene is for the attacker to collect a
nunber of cookies fromdifferent addresses and then reuse themto
attack the server. The server can defend against this attack by
changi ng the Secret value frequently, thus invalidating those
cookies. If the server wishes that legitimate clients be able to
handshake t hrough the transition (e.g., they received a cookie with
Secret 1 and then sent the second CientHello after the server has
changed to Secret 2), the server can have a linmited w ndow during
which it accepts both secrets. [|IKEv2] suggests adding a version
nunber to cookies to detect this case. An alternative approach is
sinply to try verifying with both secrets.

DTLS servers SHOULD perform a cooki e exchange whenever a new
handshake is being perforned. |If the server is being operated in an
environnent where anplification is not a problem the server NMAY be
configured not to performa cookie exchange. The default SHOULD be
that the exchange is perforned, however. |In addition, the server MAY
choose not to do a cooki e exchange when a session is resumned.

Cients MIST be prepared to do a cookie exchange with every
handshake.

If HelloVerifyRequest is used, the initial dientHello and
Hel | oVeri f yRequest are not included in the cal culation of the
verify data for the Finished nessage

4.2.2. Handshake Message For nmat

In order to support nessage |oss, reordering, and fragmentation, DILS
nodi fies the TLS 1.1 handshake header

struct {
HandshakeType nmsg_type
ui nt 24 | engt h;

ui nt 16 nessage_seq; /1 New field
ui nt 24 fragnent _of fset; Il New field
ui nt 24 fragnent _I engt h; Il New field

sel ect (HandshakeType) {
case hell o_request: Hell oRequest;
case client_hello: dientHello;

Rescorl a & Modadugu St andards Track [Page 13]

RFC 4347 Dat agram Transport Layer Security April 2006

case hello_verify request: HelloVerifyRequest; // New type
case server_hello: ServerHello;
case certificate: Certificate;
case server_key exchange: Server KeyExchange
case certificate_request: CertificateRequest;
case server_hel |l o_done: Server Hel | oDone;
case certificate verify: CertificateVerify;
case client_key exchange: dientKeyExchange;
case fini shed: Fi ni shed,;
} body;
} Handshake;

The first nessage each side transmts in each handshake al ways has
message_seq = 0. Wenever each new nessage is generated, the
nmessage_seq value is increnented by one. Wen a nessage is
retransmtted, the sanme nmessage_seq value is used. For exanple:

Cient Server
CientHello (seq=0) ------ >
X<-- Hell oVerifyRequest (seq=0)
(lost)
[Ti mer Expires]
CientHello (seq=0) ------ >
(retransmit)
<------ Hel | oVeri f yRequest (seq=0)
ClientHello (seg=1) ------ >
(wi th cookie)
<------ ServerHell o (seq=1)
<------ Certificate (seq=2)
<------ Server Hel | oDone (seq=3)

[Rest of handshake]

Not e, however, that fromthe perspective of the DTLS record | ayer
the retransmission is a newrecord. This record will have a new
DTLSPI ai nt ext. sequence_nunber val ue.

DTLS i npl enentations naintain (at |east notionally) a

next _receive_seq counter. This counter is initially set to zero.
When a nessage is received, if its sequence nunber matches

next _receive_seq, next _receive seq is increnmented and the nessage is

Rescorl a & Modadugu St andards Track [Page 14]

RFC 4347 Dat agram Transport Layer Security April 2006

processed. |If the sequence nunber is |ess than next _receive_seq, the
message MJST be discarded. |If the sequence nunber is greater than
next _receive_seq, the inplenentati on SHOULD queue the nmessage but MAY
discard it. (This is a sinple space/bandw dth tradeoff).

4.2.3. Message Fragnentati on and Reassenbly

As noted in Section 4.1.1, each DTLS nessage MJST fit within a single
transport | ayer datagram However, handshake messages are
potentially bigger than the nmaxi mumrecord size. Therefore, DILS
provi des a mechani sm for fragmenti ng a handshake nessage over a
nunmber of records.

When transmitting the handshake nessage, the sender divides the
nmessage into a series of N contiguous data ranges. These ranges MJST
NOT be | arger than the maxi rum handshake fragnent size and MJST
jointly contain the entire handshake nmessage. The ranges SHOULD NOT
overlap. The sender then creates N handshake nessages, all with the
sanme nessage_seq val ue as the original handshake nessage. Each new
message is labelled with the fragnent offset (the nunber of bytes
contained in previous fragnents) and the fragnment_length (the [ength
of this fragnent). The length field in all nmessages is the same as
the length field of the original nmessage. An unfragmented nmessage is
a degenerate case with fragnent offset=0 and fragnment | engt h=Il engt h.

Wien a DTLS inplenentation receives a handshake nessage fragnent, it
MJUST buffer it until it has the entire handshake nessage. DTLS

i npl ement ati ons MJST be able to handl e overl appi ng fragment ranges.
This allows senders to retransmt handshake nmessages with smaller
fragment sizes during path MIU di scovery.

Note that as with TLS, multiple handshake nmessages may be placed in
the sane DTLS record, provided that there is roomand that they are
part of the same flight. Thus, there are two acceptabl e ways to pack
two DTLS nessages into the sane datagram in the same record or in
separate records

4.2.4. Tineout and Retransni ssion
DTLS nessages are grouped into a series of message flights, according
to the diagrans bel ow. Although each flight of messages may consi st

of a nunber of nessages, they should be viewed as nonolithic for the
pur pose of tinmeout and retransm ssion.

Rescorl a & Modadugu St andards Track [Page 15]

RFC 4347 Dat agram Transport Layer Security April 2006

Cient Server
CientHello -------- > Flight 1
<------ Hel | oVeri f yRequest Flight 2
CientHello -------- > Flight 3
ServerHell o \
Certificate* \
Ser ver KeyExchange* Flight 4
Certificat eRequest* /
R Server Hel | oDone /
Certificate* \
d i ent KeyExchange \
CertificateVerify* Flight 5
[ChangeCi pher Spec] /
Finished -------- > /

[ChangeCGi pher Spec] \ Flight 6
S Fi ni shed /

Figure 1. Message flights for full handshake

Cient Server
CdientHello -------- > Flight 1
ServerHel |l o \
[ChangeCGi pher Spec] Flight 2
R Fi ni shed /
[ChangeCi pher Spec] \Flight 3
Finished -------- > /

Figure 2. Message flights for session-resuni ng handshake
(no cooki e exchange)

DTLS uses a sinple tineout and retransm ssion schene with the

followi ng state machi ne. Because DTLS clients send the first message
(CientHello), they start in the PREPARI NG state. DILS servers start
in the WAITING state, but with enpty buffers and no retransmt tiner.

Rescorl a & Modadugu St andards Track [Page 16]

RFC 4347 Dat agram Transport Layer Security April 2006

| |
| |
| |
| |
| |
| |
| \|/ |
| [TS + |
| |
| | SENDING |<------------------ +
| | | | | Send
| e + | | HelloRequest
Recei ve | | | |
next | | Send flight | | or
flight | +-------- + |
| | Set retransmit tiner | | Receive
| \/ | | HelloRequest
|] +--mem---- + | | Send
| | | | CientHello
+-)--1 VAITING |[------------------- +
			Ti mer expires
	A+ +		
		(.	
	A R R +		
	Read retransm t		
Receive			
last			
flight			
\SRAYN)			
F- - - - - - + I			
FINNSHED	--------mmmmmm e oo +		
N L

Figure 3. DILS tineout and retransnission state nachine

The state machi ne has three basic states.

Rescorl a & Modadugu St andards Track [Page 17]

RFC 4347 Dat agram Transport Layer Security April 2006

In the PREPARI NG state the inplenentati on does what ever conputations
are necessary to prepare the next flight of nessages. |t then
buffers themup for transnission (enptying the buffer first) and
enters the SENDI NG st ate.

In the SENDING state, the inplenentation transnits the buffered
flight of nmessages. Once the nessages have been sent, the

i mpl ementation then enters the FINISHED state if this is the |ast
flight in the handshake. O, if the inplenentation expects to
recei ve nore nmessages, it sets a retransnmit tiner and then enters the
WAI TI NG st at e.

There are three ways to exit the WAI TING state:

1. The retransnmit timer expires: the inplenmentation transitions to
the SENDI NG state, where it retransnits the flight, resets the
retransmt tinmer, and returns to the WAITING state.

2. The inplenentation reads a retransmtted flight fromthe peer
the inplenentation transitions to the SENDI NG state, where it
retransmts the flight, resets the retransnit tinmer, and returns
to the WAITING state. The rationale here is that the receipt of a
duplicate nmessage is the likely result of timer expiry on the peer
and therefore suggests that part of one's previous flight was

| ost.

3. The inplenmentation receives the next flight of nessages: if
this is the final flight of nmessages, the inplenentation
transitions to FINNSHED. [If the inplenmentation needs to send a

new flight, it transitions to the PREPARI NG state. Partial reads
(whet her partial nessages or only sone of the nessages in the
flight) do not cause state transitions or timer resets.

Because DTLS clients send the first message (ClientHell o), they start
in the PREPARI NG state. DILS servers start in the WAITING state, but
with enpty buffers and no retransmt tiner.

When the server desires a rehandshake, it transitions fromthe

FI NI SHED state to the PREPARI NG state to transnmit the Hell oRequest.
When the client receives a Hell oRequest it transitions from FI Nl SHED
to PREPARING to transmit the CientHello.

4.2.4.1. Tinmer Val ues
Though tiner values are the choice of the inplenmentation, nishandling
of the tiner can |l ead to serious congestion problens; for exanple, if

many instances of a DILS tinme out early and retransmt too quickly on
a congested link. [Inplenmentations SHOULD use an initial tiner value

Rescorl a & Modadugu St andards Track [Page 18]

RFC 4347 Dat agram Transport Layer Security April 2006

of 1 second (the m nimum defined in RFC 2988 [RFC2988]) and doubl e
the value at each retransnission, up to no | ess than the RFC 2988
maxi nrum of 60 seconds. Note that we reconmend a 1-second timer
rather than the 3-second RFC 2988 default in order to inprove | atency
for tine-sensitive applications. Because DILS only uses

retransm ssion for handshake and not dataflow, the effect on
congestion should be mininal.

| mpl enent ati ons SHOULD retain the current tinmer value until a

transm ssion without |oss occurs, at which tine the value may be
reset to the initial value. After a long period of idleness, no |less
than 10 tines the current tiner value, inplenentations may reset the
timer to the initial value. One situation where this might occur is
when a rehandshake is used after substantial data transfer

4.2.5. ChangeGi pher Spec

As with TLS, the ChangeC pher Spec nessage is not technically a
handshake nessage but MJUST be treated as part of the same flight as
t he associ ated Fini shed nessage for the purposes of tinmeout and
retransm ssion.

4.2.6. Finished Messages

Fi ni shed nessages have the sane fornmat as in TLS. However, in order
to renove sensitivity to fragnentation, the Finished MAC MIST be
computed as if each handshake nessage had been sent as a single
fragment. Note that in cases where the cookie exchange is used, the
initial CientHello and Hel |l oVerifyRequest MJST NOT be included in

t he Fi ni shed MAC.

4.2.7. Alert Messages

Note that Alert nessages are not retransmtted at all, even when they
occur in the context of a handshake. However, a DTLS inplenentation
SHOULD generate a new alert nessage if the offending record is
received again (e.g., as a retransnmtted handshake nessage).

| mpl enent ati ons SHOULD detect when a peer is persistently sending bad
nmessages and terminate the local connection state after such

m sbehavi or is detected.

4. 3. Summary of new synt ax

This section includes specifications for the data structures that
have changed between TLS 1.1 and DITLS.

Rescorl a & Modadugu St andards Track [Page 19]

RFC 4347

Dat agram Transport Layer Security

4.3.1. Record Layer

4.3. 2.

Rescorl a & Modadugu

struct {

}

Cont ent Type type;

Pr ot ocol Ver si on version;

ui nt 16 epoch;

ui nt 48 sequence_nunber;

uint16 | ength;

opaque fragment [DTLSPI ai nt ext. | ength];
DTLSPI ai nt ext ;

struct {

}

Cont ent Type type;

Pr ot ocol Versi on version;

ui nt 16 epoch;

ui nt 48 sequence_nunber;

uint 16 | engt h;

opaque fragment [DTLSConpressed. | ength];
DTLSConpr essed

struct {

Cont ent Type type;

Pr ot ocol Ver si on versi on;

ui nt 16 epoch;

ui nt 48 sequence_nunber;

uint16 | ength;

sel ect (G pher Spec. ci pher_type) {
case bl ock: GenericBl ockG pher;

} fragnent;

DTLSCi phertext;

Handshake Protoco

enum {
hell o_request(0), client_hello(1l), server_hello(2),

}

hell o _verify request(3),

certificate(1ll), server_key exchange (12),
certificate request(13), server _hell o _done(14),
certificate_verify(15), client_key_exchange(16),

fini shed(20), (255)
HandshakeType;

struct {

HandshakeType nsg _type
ui nt 24 | engt h;

ui nt 16 nessage_seq;
ui nt 24 fragment _of f set;
ui nt 24 fragnment | engt h;

St andards Track

/1
/1

11
/11

/1
/1

/1

11
I
/1

April 2006

New field
New fi el d

New field
New field

New field
New fi el d

New fiel d

New field
New fi el d
New fi el d

[Page 20]

RFC 4347 Dat agram Transport Layer Security April 2006

sel ect (HandshakeType) {
case hell o_request: Hell oRequest;
case client_hello: dientHello;
case server_hello: ServerHello;
case hello_verify request: HelloVerifyRequest; // New field
case certificate: Certificate;
case server_key exchange: Server KeyExchange
case certificate request: CertificateRequest;
case server_hel |l o_done: Server Hel | oDone;
case certificate verify: CertificateVerify;
case client_key exchange: i entKeyExchange;
case finished: Fini shed;

} body;

} Handshake;

struct {
Pr ot ocol Versi on client_version;
Random r andom
Sessi onl D session_id;
opaque cooki e<0. . 32>; /1l New field
Ci pher Sui te ci pher_suites<2..2"16- 1>;
Conpr essi onMet hod conpressi on_net hods<1..278-1>;
} dientHell o;

struct {
Pr ot ocol Ver si on server_version;
opaque cooki e<0..32>;

} HelloVerifyRequest;

5. Security Considerations

Thi s docunent describes a variant of TLS 1.1 and therefore nost of
the security considerations are the sane as those of TLS 1.1 [TLS11],
described in Appendices D, E, and F.

The prinmary additional security consideration raised by DILS is that
of denial of service. DTLS includes a cookie exchange designed to
protect agai nst denial of service. However, inplenentations which do
not use this cookie exchange are still vulnerable to DoS. In
particul ar, DTLS servers which do not use the cooki e exchange may be
used as attack amplifiers even if they thensel ves are not
experiencing DoS. Therefore, DILS servers SHOULD use the cookie
exchange unl ess there is good reason to believe that anplification is
not a threat in their environment. Cdients MJST be prepared to do a
cooki e exchange with every handshake.

Rescorl a & Modadugu St andards Track [Page 21]

RFC 4347 Dat agram Transport Layer Security April 2006

8.

Acknowl edgenent s

The authors would like to thank Dan Boneh, Eu-Jin Goh, Russ Housl ey,
Const anti ne Sapunt zaki s, and Hovav Shacham for di scussi ons and
comments on the design of DILS. Thanks to the anonynmous NDSS
reviewers of our original NDSS paper on DTLS [DILS] for their
commrents. Also, thanks to Steve Kent for feedback that hel ped
clarify many points. The section on PMIU was cribbed fromthe DCCP
specification [DCCP]. Pasi Eronen provided a detailed review of this
specification. Helpful comments on the docunent were al so received
fromMark Al man, Jari Arkko, Joel Hal pern, Ted Hardie, and Allison
Manki n.

| ANA Consi derati ons

Thi s docunent uses the same identifier space as TLS [TLS11], so no
new | ANA registries are required. When new identifiers are assigned
for TLS, authors MJST specify whether they are suitable for DILS.
Thi s docunent defines a new handshake nessage, hello_verify_ request,
whose val ue has been allocated fromthe TLS HandshakeType registry
defined in [TLS11]. The value "3" has been assigned by the | ANA

Ref er ences

8.1. Normati ve References

[RFC1191] Mogul, J. and S. Deering, "Path MIU di scovery", RFC 1191
Novenber 1990.

[RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MIU Di scovery
for I P version 6", RFC 1981, August 1996.

[RFC2401] Kent, S. and R Atkinson, "Security Architecture for the
Internet Protocol", RFC 2401, Novenber 1998.

[RFC2988] Paxson, V. and M Al lnman, "Conputing TCP's Retransm ssion
Timer", RFC 2988, Novenber 2000.

[TCP] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[TLS11] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006

Rescorl a & Modadugu St andards Track [Page 22]

RFC 4347

Dat agram Transport Layer Security April 2006

8.2. Informative References

[AESCACHE]

[AH]

[DCCP]

[DNS]

[DTLS]

[ESP]

[I KE]

Kauf man, C.

[1 MAP]

[PHOTUR! S]

[POP]

[REQ

[SCTP]

Bernstein, D.J., "Cache-tinm ng attacks on AES"
http://cr.yp.to/antiforgery/cachetim ng-20050414. pdf .

Kent, S. and R Atkinson, "IP Authentication Header", RFC
2402, Novenber 1998.

Kohler, E., Handley, M, Floyd, S., Padhye, J., "Datagram
Congestion Control Protocol”, Wrk in Progress, 10 March
2005.

Mockapetris, P., "Domain nanmes - inplenentation and
speci fication", STD 13, RFC 1035, Novenber 1987.

Modadugu, N., Rescorla, E., "The Design and |Inplenentation
of Datagram TLS", Proceedi ngs of |SOC NDSS 2004, February
2004.

Kent, S. and R Atkinson, "IP Encapsul ating Security
Payl oad (ESP)", RFC 2406, Novenber 1998.

Harkins, D. and D. Carrel, "The Internet Key Exchange
(IKE)", RFC 2409, Novenber 1998.

, "Internet Key Exchange (IKEv2) Protocol", RFC 4306,
Decenber 2005.

Crispin, M, "INTERNET MESSAGE ACCESS PROTOCOL - VERSI ON
4revl", RFC 3501, March 2003.

Karn, P. and W Sinpson, "ICW Security Failures
Messages", RFC 2521, March 1999.

MWyers, J. and M Rose, "Post Ofice Protocol - Version 3",
STD 53, RFC 1939, May 1996.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

Stewart, R, Xie, Q, Mrneault, K, Sharp, C,

Schwar zbauer, H., Taylor, T., Rytina, |I., Kalla, M,
Zhang, L., and V. Paxson, "Stream Control Transm ssion
Protocol ", RFC 2960, Cctober 2000.

Rescorl a & Modadugu St andards Track [Page 23]

RFC 4347

[SIP]

[TLS]

[WHYI PSEC]

Dat agram Transport Layer Security April 2006

Rosenberg, J., Schul zrinne, H, Canarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M, and E
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

Bellovin, S., "Quidelines for Mandating the Use of | Psec",
Wirk in Progress, Cctober 2003.

Aut hor s’ Addr esses

Eric Rescorl a

RTFM I nc.

2064 Edgewood Drive

Pal o Alto,

CA 943083

EMBil: ekr@tfm com

Nagendra Mbdadugu

Comput er Sci ence Depart ment
Stanford University

353 Serra Ml l

Stanford, CA 94305

EMai | : nagendra@s. st anf ord. edu

Rescorl a & Modadugu St andards Track [Page 24]

RFC 4347 Dat agram Transport Layer Security April 2006

Ful I Copyright Statenent
Copyright (C) The Internet Society (2006).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the | ETF
Admini strative Support Activity (IASA)

Rescorl a & Modadugu St andards Track [Page 25]

