
Network Working Group A. Surtees
Request for Comments: 4464 M. West
Category: Informational Siemens/Roke Manor Research
 May 2006

 Signaling Compression (SigComp) Users’ Guide

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document provides an informational guide for users of the
 Signaling Compression (SigComp) protocol. The aim of the document is
 to assist users when making SigComp implementation decisions, for
 example, the choice of compression algorithm and the level of
 robustness against lost or misordered packets.

Surtees & West Informational [Page 1]

RFC 4464 SigComp Users’ Guide May 2006

Table of Contents

 1. Introduction ..3
 2. Overview of the User Guide3
 3. UDVM Assembly Language ..4
 3.1. Lexical Level ..4
 3.2. Syntactic Level ..5
 3.2.1. Expressions ...7
 3.2.2. Instructions ..8
 3.2.3. Directives ..9
 3.2.4. Labels ...10
 3.3. Uploading the Bytecode to the UDVM11
 4. Compression Algorithms ...12
 4.1. Well-known Compression Algorithms12
 4.1.1. LZ77 ...12
 4.1.2. LZSS ...16
 4.1.3. LZW ..18
 4.1.4. DEFLATE ..21
 4.1.5. LZJH ...24
 4.2. Adapted Algorithms ..28
 4.2.1. Modified DEFLATE28
 5. Additional SigComp Mechanisms31
 5.1. Acknowledging a State Item32
 5.2. Static Dictionary ...33
 5.3. CRC Checksum ..34
 5.4. Announcing Additional Resources35
 5.5. Shared Compression ..37
 6. Security Considerations ..38
 7. Acknowledgements ...38
 8. Intellectual Property Right Considerations38
 9. Informative References ...38
 Appendix A. UDVM Bytecode for the Compression Algorithms40
 A.1. Well-known Algorithms40
 A.1.1. LZ77 ..40
 A.1.2. LZSS ..40
 A.1.3. LZW ...40
 A.1.4. DEFLATE ...40
 A.1.5. LZJH ..41
 A.2. Adapted Algorithms ..41
 A.2.1. Modified DEFLATE41

Surtees & West Informational [Page 2]

RFC 4464 SigComp Users’ Guide May 2006

1. Introduction

 This document provides an informational guide for users of the
 SigComp protocol, RFC 3320 [2]. The idea behind SigComp is to
 standardize a Universal Decompressor Virtual Machine (UDVM) that can
 be programmed to understand the output of many well-known compressors
 including DEFLATE [8] and LZW [7]. The bytecode for the chosen
 compression algorithm is uploaded to the UDVM as part of the
 compressed data.

 The basic SigComp RFC describes the actions that an endpoint must
 take upon receiving a SigComp message. However, the entity
 responsible for generating new SigComp messages (the SigComp
 compressor) is left as an implementation decision; any compressor can
 be used provided that it generates SigComp messages that can be
 successfully decompressed by the receiving endpoint.

 This document gives examples of a number of different compressors
 that can be used by the SigComp protocol. It also gives examples of
 how to use some of the mechanisms (such as acknowledgements)
 described in RFC 3321 [3].

2. Overview of the User Guide

 When implementing a SigComp compressor, the first step is to choose a
 compression algorithm that can encode the application messages into a
 (hopefully) smaller form. Since SigComp can upload bytecode for new
 algorithms to the receiving endpoint, arbitrary compression
 algorithms can be supported provided that suitable bytecode has been
 written for the corresponding decompressor.

 This document provides example bytecode for the following algorithms:

 1. LZ77
 2. LZSS
 3. LZW
 4. DEFLATE
 5. LZJH

 Any of the above algorithms may be useful depending on the desired
 compression ratio, processing and memory requirements, code size,
 implementation complexity, and Intellectual Property (IPR)
 considerations.

 As well as encoding the application messages using the chosen
 algorithm, the SigComp compressor is responsible for ensuring that
 messages can be correctly decompressed even if packets are lost or
 misordered during transmission. The SigComp feedback mechanism can

Surtees & West Informational [Page 3]

RFC 4464 SigComp Users’ Guide May 2006

 be used to acknowledge successful decompression at the remote
 endpoint.

 The following robustness techniques and other mechanisms specific to
 the SigComp environment are covered in this document:

 1. Acknowledgements using the SigComp feedback mechanism
 2. Static dictionary
 3. Cyclic redundancy code (CRC) checksum
 4. Announcing additional resources
 5. Shared compression

 Any or all of the above mechanisms can be implemented in conjunction
 with the chosen compression algorithm. An example subroutine of UDVM
 bytecode is provided for each of the mechanisms; these subroutines
 can be added to the bytecode for one of the basic compression
 algorithms. (Note: The subroutine or the basic algorithm may require
 minor modification to ensure they work together correctly.)

3. UDVM Assembly Language

 Writing UDVM programs directly in bytecode would be a daunting task,
 so a simple assembly language is provided to facilitate the creation
 of new decompression algorithms. The assembly language includes
 mnemonic codes for each of the UDVM instructions, as well as simple
 directives for evaluating integer expressions, padding the bytecode,
 and so forth.

 The syntax of the UDVM assembly language uses the customary two-level
 description technique, partitioning the grammar into a lexical and a
 syntactic level.

3.1. Lexical Level

 On a lexical level, a string of assembly consists of zero or more
 tokens optionally separated by whitespace. Each token can be a text
 name, an instruction opcode, a delimiter, or an integer (specified as
 decimal, binary, or hex).

Surtees & West Informational [Page 4]

RFC 4464 SigComp Users’ Guide May 2006

 The following ABNF description, RFC 4234 [1], specifies the syntax of
 a token:

 token = (name / opcode / delimiter / dec / bin / hex)
 name = (lowercase / "_") 0*(lowercase / digit / "_")
 opcode = uppercase *(uppercase / digit / "-")
 delimiter = "." / "," / "!" / "$" / ":" / "(" / ")" /
 operator
 dec = 1*(digit)
 bin = "0b" 1*("0" / "1")
 hex = "0x" 1*(hex-digit)
 hex-digit = digit / %x41-46 / %x61-66
 digit = %x30-39
 uppercase = %x41-5a
 lowercase = %x61-7a
 operator = "+" / "-" / "*" / "/" / "%" / "&" / "|" /
 "^" / "˜" / "<<" / ">>"

 When parsing for tokens, the longest match is applied, i.e., a token
 is the longest string that matches the <token> rule specified above.

 The syntax of whitespace and comments is specified by the following
 ABNF:

 ws = *(%x09 / %x0a / %x0d / %x20 / comment)
 comment = ";" *(%x00-09 / %x0b-0c / %x0e-ff)
 (%x0a / %x0d)

 Whitespace that matches <ws> is skipped between tokens, but serves to
 terminate the longest match for a token.

 Comments are specified by the symbol ";" and are terminated by the
 end of the line, for example:

 LOAD (temp, 1) ; This is a comment.

 Any other input is a syntax error.

 When parsing on the lexical level, the string of assembly should be
 divided up into a list of successive tokens. The whitespace and
 comments should also be deleted. The assembly should then be parsed
 on the syntactic level as explained in Section 3.2.

3.2. Syntactic Level

 Once the string of assembly has been divided into tokens as per
 Section 3.1, the next step is to convert the assembly into a string
 of UDVM bytecode.

Surtees & West Informational [Page 5]

RFC 4464 SigComp Users’ Guide May 2006

 On a syntactic level, a string of assembly consists of zero or more
 instructions, directives, or labels, each of which is itself built up
 from one or more lexical tokens.

 The following ABNF description specifies the syntax of the assembly
 language. Note that the lexical parsing step is assumed to have been
 carried out; so in particular, the boundaries between tokens are
 already known, and the comments and whitespace have been deleted:

 assembly = *(instruction / directive / label)
 instruction = opcode ["(" operand *("," operand) ")"]
 operand = [["$"] expression]
 ; Operands can be left blank if they can
 ; be automatically inferred by the
 ; compiler, e.g., a literal operand
 ; that specifies the total number of
 ; operands for the instruction.
 ; When "$" is prepended to an operand,
 ; the corresponding integer is an
 ; address rather than the actual operand
 ; value. This symbol is mandatory for
 ; reference operands, optional for
 ; multitypes and addresses, and
 ; disallowed for literals.
 label = ":" name
 directive = padding / data / set / readonly /
 unknown-directive
 unknown-directive = name ["(" expression *("," expression) ")"]
 ; The parser can ignore unknown
 ; directives. The resulting bytecode
 ; may or may not generate the expected
 ; results.
 padding = ("pad" / "align" / "at") "(" expression ")"
 data = ("byte" / "word") "(" expression *(","
 expression) ")"
 readonly = "readonly" "(" "0" / "1" ")"
 set = "set" "(" name "," expression ")"
 expression = value / "(" expression operator expression ")"
 value = dec / bin / hex / name / "." / "!"
 ; "." is the location of this
 ; instruction/directive, whereas "!" is
 ; the location of the closest
 ; DECOMPRESSION-FAILURE

 The following sections define how to convert the instructions, labels
 and directives into UDVM bytecode:

Surtees & West Informational [Page 6]

RFC 4464 SigComp Users’ Guide May 2006

3.2.1. Expressions

 The operand values needed by particular instructions or directives
 can be given in the form of expressions. An expression can include
 one or more values specified as decimal, binary, or hex (binary
 values are preceded by "0b" and hex values are preceded by "0x").
 The expression may also include one or more of the following
 operators:

 "+" Addition
 "-" Subtraction
 "*" Multiplication
 "/" Integer division
 "%" Modulo arithmetic (a%b := a modulo b)
 "&" Binary AND
 "|" Binary OR
 "^" Binary XOR
 "˜" Binary XNOR
 "<<" Binary LSHIFT
 ">>" Binary RSHIFT

 The operands for each operator must always be surrounded by
 parentheses so that the order in which the operators should be
 evaluated is clear. For example:

 ((1 + (2 * 3)) & (0xabcd - 0b00101010)) gives the result 3.

 Expressions can also include the special values "." and "!". When
 the symbol "." is encountered, it is replaced by the location in the
 bytecode of the current instruction/directive. When the symbol "!"
 is encountered it is replaced by the location in the bytecode of the
 closest DECOMPRESSION-FAILURE instruction (i.e., the closest zero
 byte). This can be useful when writing UDVM instructions that call a
 decompression failure, for example:

 INPUT-BYTES (1, temp, !)

 The above instruction causes a decompression failure to occur if it
 tries to input data from beyond the end of the compressed message.

 Note: When using "!" in the assembly language to generate bytecode,
 care must be taken to ensure that the address of the zero used at
 bytecode generation time will still contain zero when the bytecode is
 run. The readonly directive (see Section 3.2.3) can be used to do
 this.

Surtees & West Informational [Page 7]

RFC 4464 SigComp Users’ Guide May 2006

 It is also possible to assign integer values to text names: when a
 text name is encountered in an expression, it is replaced by the
 integer value assigned to it. Section 3.2.3 explains how to assign
 integer values to text names.

3.2.2. Instructions

 A UDVM instruction is specified by the instruction opcode followed by
 zero or more operands. The instruction operands are enclosed in
 parentheses and separated by commas, for example:

 ADD ($3, 4)

 When generating the bytecode, the parser should replace the
 instruction opcode with the corresponding 1-byte value as per Figure
 11 of SigComp [2].

 Each operand consists of an expression that evaluates to an integer,
 optionally preceded by the symbol "$". This symbol indicates that
 the supplied integer value must be interpreted as the memory address
 at which the operand value can be found, rather than the actual
 operand value itself.

 When converting each instruction operand to bytecode, the parser
 first determines whether the instruction expects the operand to be a
 literal, a reference, a multitype, or an address. If the operand is
 a literal, then, as per Figure 8 of SigComp, the parser inserts
 bytecode (usually the shortest) capable of encoding the supplied
 operand value.

 Since literal operands are used to indicate the total number of
 operands for an instruction, it is possible to leave a literal
 operand blank and allow its value to be inferred automatically by the
 assembler. For example:

 MULTILOAD (64, , 1, 2, 3, 4)

 The missing operand should be given the value 4 because it is
 followed by a total of 4 operands.

 If the operand is a reference, then, as per Figure 9 of SigComp, the
 parser inserts bytecode (usually the shortest) capable of encoding
 the supplied memory address. Note that reference operands will
 always be preceded by the symbol "$" in assembly because they always
 encode memory addresses rather than actual operand values.

Surtees & West Informational [Page 8]

RFC 4464 SigComp Users’ Guide May 2006

 If the operand is a multitype, then the parser first checks whether
 the symbol "$" is present. If so, then, as per Figure 10 of SigComp,
 it inserts bytecode (usually the shortest) capable of encoding the
 supplied integer as a memory address. If not, then, as per Figure 10
 of SigComp, it inserts bytecode (usually the shortest) that encodes
 the supplied integer as an operand value.

 If the operand is an address, then the parser checks whether the
 symbol "$" is present. If so, then the supplied integer is encoded
 as a memory address, just as for the multitype instruction above. If
 not, then the byte position of the opcode is subtracted from the
 supplied integer modulo 16, and the result is encoded as an operand
 value as per Figure 10 of SigComp.

 The length of the resulting bytecode is dependent on the parser in
 use. There can be several correct and usable representations of the
 same instruction.

3.2.3. Directives

 The assembly language provides a number of directives for evaluating
 expressions, moving instructions to a particular memory address, etc.

 The directives "pad", "align", and "at" can be used to add padding to
 the bytecode.

 The directive "pad (n)" appends n consecutive padding bytes to the
 bytecode. The actual value of the padding bytes is unimportant, so
 when the bytecode is uploaded to the UDVM, the padding bytes can be
 set to the initial values contained in the UDVM memory (this helps to
 reduce the size of a SigComp message).

 The directive "align (n)" appends the minimum number of padding bytes
 to the bytecode such that the total number of bytes of bytecode
 generated so far is a multiple of n bytes. If the bytecode is
 already aligned to a multiple of n bytes, then no padding bytes are
 added.

 The directive "at (n)" appends enough padding bytes to the bytecode
 such that the total number of bytes of bytecode generated so far is
 exactly n bytes. If more than n bytes have already been generated
 before the "at" directive is encountered then the assembly code
 contains an error.

 The directives "byte" and "word" can be used to add specific data
 strings to the bytecode.

Surtees & West Informational [Page 9]

RFC 4464 SigComp Users’ Guide May 2006

 The directive "byte (n[0],..., n[k-1])" appends k consecutive bytes
 to the bytecode. The byte string is supplied as expressions that
 evaluate to give integers n[0],..., n[k-1] from 0 to 255.

 The directive "word (n[0],..., n[k-1])" appends k consecutive 2-byte
 words to the bytecode. The word string is supplied as expressions
 that evaluate to give integers n[0],..., n[k-1] from 0 to 65535.

 The directive "set (name, n)" assigns an integer value n to a
 specified text name. The integer value can be supplied in the form
 of an expression.

 The directive "readonly (n)" where n is 0 or 1 can be used to
 indicate that an area of memory could be changed (0) or will not be
 changed (1) during the execution of the UDVM. This directive could
 be used, for example, in conjunction with "!" to ensure that the
 address of the zero used will still contain zero when the bytecode is
 executed. If no readonly directive is used, then any address
 containing zero can be used by "!" (i.e., by default, there is
 assumed to be a readonly (1) directive at Address 0) and it is up to
 the author of the assembly code to ensure that the address in
 question will still contain zero when the bytecode is executed. If
 the readonly directive is used, then bytes between a readonly (0) and
 readonly (1) pair are NOT to be used by "!". When a readonly
 directive has been used, the bytes obey that directive from that
 address to either another readonly directive or the end of UDVM
 memory, whichever comes first.

3.2.4. Labels

 A label is a special directive used to assign memory addresses to
 text names.

 Labels are specified by a single colon followed by the text name to
 be defined. The (absolute) position of the byte immediately
 following the label is evaluated and assigned to the text name. For
 example:

 :start

 LOAD (temp, 1)

 Since the label "start" occurs at the beginning of the bytecode, it
 is assigned the integer value 0.

 Note that writing the label ":name" has exactly the same behavior as
 writing the directive "set (name, .)".

Surtees & West Informational [Page 10]

RFC 4464 SigComp Users’ Guide May 2006

3.3. Uploading the Bytecode to the UDVM

 Once the parser has converted a string of assembly into the
 corresponding bytecode, it must be copied to the UDVM memory
 beginning at Address 0 and then executed, beginning from the first
 UDVM instruction in the bytecode.

 SigComp provides the following message format for uploading bytecode
 to the UDVM:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 | T | 0 |
 +---+---+---+---+---+---+---+---+
 | |
 : returned feedback item : if T = 1
 | |
 +---+---+---+---+---+---+---+---+
 | code_len |
 +---+---+---+---+---+---+---+---+
 | code_len | destination |
 +---+---+---+---+---+---+---+---+
 | |
 : uploaded UDVM bytecode :
 | |
 +---+---+---+---+---+---+---+---+
 | |
 : remaining SigComp message :
 | |
 +---+---+---+---+---+---+---+---+

 The destination field should be set to the memory address of the
 first UDVM instruction. Note that if this address cannot be
 represented by the destination field, then the bytecode cannot be
 uploaded to the UDVM using the standard SigComp header. In
 particular, the memory address of the first UDVM instruction must
 always be a multiple of 64 bytes or the standard SigComp header
 cannot be used. Of course, there may be other ways to upload the
 bytecode to the UDVM, such as retrieving the bytecode directly via
 the INPUT-BYTES instruction.

 Additionally, all memory addresses between Address 0 and Address 31
 inclusive are initialized to endpoint-specific values by the UDVM, so
 they must be specified as padding in the bytecode, or the standard
 SigComp header cannot be used. Memory addresses from Address 32 to
 Address (destination - 1) inclusive are initialized to 0, so they
 must be specified either as padding or as 0s if the bytecode is to be
 successfully uploaded using the standard SigComp header.

Surtees & West Informational [Page 11]

RFC 4464 SigComp Users’ Guide May 2006

 The code_len field should be set to the smallest value such that all
 memory addresses beginning at Address (destination + code_len) are
 either as initialised by the UDVM (to 0) or as set by the bytecode at
 runtime.

 The "uploaded UDVM bytecode" should be set to contain the segment of
 bytecode that lies between Address (destination) and Address
 (destination + code_len - 1) inclusive.

4. Compression Algorithms

 This section describes a number of compression algorithms that can be
 used by a SigComp compressor. In each case, the document provides
 UDVM bytecode for the corresponding decompression algorithm, which
 can be uploaded to the receiving endpoint as part of a SigComp
 message. Each algorithm (as written in this section) assumes that
 there is a 16K decompression memory size, there are 16 cycles per
 bit, and there is an 8K state memory size. Decompression will
 succeed with a smaller value for state memory size; however, the full
 state will not be created.

 Section 4.1.1 covers a simple algorithm in some detail, including the
 steps required to compress and decompress a SigComp message. The
 remaining sections cover well-known compression algorithms that can
 be adapted for use in SigComp with minimal modification.

4.1. Well-known Compression Algorithms

4.1.1. LZ77

 This section describes how to implement a very simple compression
 algorithm based on LZ77 [5].

 A compressed message generated by the simplified LZ77 scheme consists
 of a sequence of 4-byte characters, where each character contains a
 2-byte position value followed by a 2-byte length value. Each pair
 of integers identifies a byte string in the UDVM memory; when
 concatenated, these byte strings form the decompressed message.

 When implementing a bytecode decompressor for the simplified LZ77
 scheme, the UDVM memory is partitioned into five distinct areas, as
 shown below:

 0 64 128 256 512
 | scratch-pad | variables | bytecode | dictionary | circular buffer |
 +-------------+-----------+----------+------------+-----------------+
 <-----------> <---------> <--------> <----------> <--------------->
 64 bytes 64 bytes 128 bytes 256 bytes 512+ bytes

Surtees & West Informational [Page 12]

RFC 4464 SigComp Users’ Guide May 2006

 The first 128 bytes are used to hold the 2-byte variables needed by
 the LZ77 decompressor. Within this memory, the first 64 bytes are
 used as a scratch-pad, holding the 2-byte variables that can be
 discarded between SigComp messages. In contrast, the next 64 bytes
 (and in fact all of the UDVM memory starting from Address 64) should
 be saved after decompressing a SigComp message to improve the
 compression ratio of subsequent messages.

 The bytecode for the LZ77 decompressor is stored beginning at Address
 128. A total of 128 bytes are reserved for the bytecode although the
 LZ77 decompressor requires less; this allows room for adding
 additional features to the decompressor at a later stage.

 The next 256 bytes are initialized by the bytecode to contain the
 integers 0 to 255 inclusive. The purpose of this memory area is to
 provide a dictionary of all possible uncompressed characters; this is
 important to ensure that the compressor can always generate a
 sequence of position/length pairs that encode a given message. For
 example, a byte with value 0x41 (corresponding to the ASCII character
 "A") can be found at Address 0x0141 of the UDVM memory, so the
 compressed character 0x0141 0001 will decompress to give this ASCII
 character. Note that encoding each byte in the application message
 as a separate 4-byte compressed character is not recommended,
 however, as the resulting "compressed" message is four times as large
 as the original uncompressed message.

 The compression ratio of LZ77 is improved by the remaining UDVM
 memory, which is used to store a history buffer containing the
 previously decompressed messages. Compressed characters can point to
 strings that have previously been decompressed and stored in the
 buffer, so the overall compression ratio of the LZ77 algorithm
 improves as the decompressor "learns" more text strings and is able
 to encode longer strings using a single compressed character. The
 buffer is circular, so older messages are overwritten by new data
 when the buffer becomes full.

 The steps required to implement an LZ77 compressor and decompressor
 are similar, although compression is more processor-intensive as it
 requires a searching operation to be performed. Assembly for the
 simplified LZ77 decompressor is given below:

 ; Variables that do not need to be stored after decompressing each
 ; SigComp message are stored here:

 at (32)

 :position_value pad (2)
 :length_value pad (2)

Surtees & West Informational [Page 13]

RFC 4464 SigComp Users’ Guide May 2006

 at (42)

 set (requested_feedback_location, 0)

 ; The UDVM registers must be stored beginning at Address 64:

 at (64)

 ; Variables that should be stored after decompressing a message are
 ; stored here. These variables will form part of the SigComp state
 ; item created by the bytecode:

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :decompressed_pointer pad (2)

 set (returned_parameters_location, 0)

 align (64)

 :initialize_memory

 set (udvm_memory_size, 8192)
 set (state_length, (udvm_memory_size - 64))

 ; The UDVM registers byte_copy_left and byte_copy_right are set to
 ; indicate the bounds of the circular buffer in the UDVM memory. A
 ; variable decompressed_pointer is also created and set pointing to
 ; the start of the circular buffer:

 MULTILOAD (64, 3, circular_buffer, udvm_memory_size, circular_buffer)

 ; The "dictionary" area of the UDVM memory is initialized to contain
 ; the values 0 to 255 inclusive:

 MEMSET (static_dictionary, 256, 0, 1)

 :decompress_sigcomp_message

 :next_character

 ; The next character in the compressed message is read by the UDVM
 ; and the position and length integers are stored in the variables
 ; position_value and length_value, respectively. If no more
 ; compressed data is available, the decompressor jumps to the
 ; "end_of_message" subroutine:

 INPUT-BYTES (4, position_value, end_of_message)

Surtees & West Informational [Page 14]

RFC 4464 SigComp Users’ Guide May 2006

 ; The position_value and length_value point to a byte string in the
 ; UDVM memory, which is copied into the circular buffer at the
 ; position specified by decompressed_pointer. This allows the string
 ; to be referenced by later characters in the compressed message:

 COPY-LITERAL ($position_value, $length_value, $decompressed_pointer)

 ; The byte string is also outputted onto the end of the decompressed
 ; message:

 OUTPUT ($position_value, $length_value)

 ; The decompressor jumps back to consider the next character in the
 ; compressed message:

 JUMP (next_character)

 :end_of_message

 ; The decompressor saves the UDVM memory and halts:

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 at (256)

 ; Memory for the dictionary and the circular buffer are reserved by
 ; the following statements:

 :static_dictionary pad (256)
 :circular_buffer

 The task of an LZ77 compressor is simply to discover a sequence of
 4-byte compressed characters that the above bytecode will decompress
 to give the desired application message. As an example, a message
 compressed using the simplified LZ77 algorithm is given below:

 0x0154 0001 0168 0001 0165 0001 0120 0001 0152 0001 0165 0001 0173
 0x0002 0161 0001 0175 0001 0172 0001 0161 0001 016e 0001 0174 0001
 0x0120 0001 0161 0001 020d 0002 0174 0001 0201 0003 0145 0001 016e
 0x0001 0164 0001 0120 0001 016f 0001 0166 0001 0211 0005 0155 0001
 0x016e 0001 0169 0001 0176 0001 0165 0001 0172 0002 0165 0001 010a
 0x0001

 The uncompressed message is "The Restaurant at the End of the
 Universe\n".

Surtees & West Informational [Page 15]

RFC 4464 SigComp Users’ Guide May 2006

 The bytecode for the LZ77 decompressor can be uploaded as part of the
 compressed message, as specified in Section 3.3. However, in order
 to improve the overall compression ratio, it is important to avoid
 uploading bytecode in every compressed message. For this reason,
 SigComp allows the UDVM to save an area of its memory as a state item
 between compressed messages. Once a state item has been created, it
 can be retrieved by sending the corresponding state identifier using
 the following SigComp message format:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 | T | 1 |
 +---+---+---+---+---+---+---+---+
 | |
 : returned feedback item : if T = 1
 | |
 +---+---+---+---+---+---+---+---+
 | |
 : partial state identifier :
 | |
 +---+---+---+---+---+---+---+---+
 | |
 : remaining SigComp message :
 | |
 +---+---+---+---+---+---+---+---+

 The partial_state_identifier field must contain the first 6 bytes of
 the state identifier for the state item to be accessed (see [2] for
 details of how state identifiers are derived).

 Note that the partial_state_identifier field could be 9 or 12 bytes
 and that in these cases, bits 6 and 7 of the first byte of the
 message would be 10 or 11, respectively.

4.1.2. LZSS

 This section provides UDVM bytecode for the simple but effective LZSS
 compression algorithm [6].

 The principal improvement offered by LZSS over LZ77 is that each
 compressed character begins with a 1-bit indicator flag to specify
 whether the character is a literal or an offset/length pair. A
 literal value is simply a single uncompressed byte that is appended
 directly to the decompressed message.

 An offset/length pair contains a 12-bit offset value from 1 to 4096
 inclusive, followed by a 4-bit length value from 3 to 18 inclusive.
 Taken together, these values specify one of the previously received

Surtees & West Informational [Page 16]

RFC 4464 SigComp Users’ Guide May 2006

 text strings in the circular buffer, which is then appended to the
 end of the decompressed message.

 Assembly for an LZSS decompressor is given below:

 at (32)
 readonly (0)

 :index pad (2)
 :length_value pad (2)
 :old_pointer pad (2)

 at (42)

 set (requested_feedback_location, 0)

 at (64)

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :input_bit_order pad (2)
 :decompressed_pointer pad (2)

 set (returned_parameters_location, 0)

 align (64)
 readonly (1)

 :initialize_memory

 set (udvm_memory_size, 8192)
 set (state_length, (udvm_memory_size - 64))

 MULTILOAD (64, 4, circular_buffer, udvm_memory_size, 0,
 circular_buffer)

 :decompress_sigcomp_message

 :next_character

 INPUT-HUFFMAN (index, end_of_message, 2, 9, 0, 255, 16384, 4, 4096,
 8191, 1)
 COMPARE ($index, 8192, length, end_of_message, literal)

 :literal

 set (index_lsb, (index + 1))

Surtees & West Informational [Page 17]

RFC 4464 SigComp Users’ Guide May 2006

 OUTPUT (index_lsb, 1)
 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
 JUMP (next_character)

 :length

 INPUT-BITS (4, length_value, !)
 ADD ($length_value, 3)
 LOAD (old_pointer, $decompressed_pointer)
 COPY-OFFSET ($index, $length_value, $decompressed_pointer)
 OUTPUT ($old_pointer, $length_value)
 JUMP (next_character)

 :end_of_message

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 readonly (0)
 :circular_buffer

 An example of a message compressed using the LZSS algorithm is given
 below:

 0x279a 0406 e378 b200 6074 1018 4ce6 1349 b842

 The uncompressed message is "Oh no, not again!".

4.1.3. LZW

 This section provides UDVM bytecode for the well-known LZW
 compression algorithm LZW [7]. This algorithm is used in a number of
 standards including the GIF image format.

 LZW compression operates in a similar manner to LZ77 in that it
 maintains a circular buffer of previously received decompressed data,
 and each compressed character references exactly one byte string from
 the circular buffer. However, LZW also maintains a "codebook"
 containing 1024 position/length pairs that point to byte strings that
 LZW believes are most likely to occur in the uncompressed data.

 The byte strings stored in the LZW codebook can be referenced by
 sending a single 10-bit value from 0 to 1023 inclusive. The UDVM
 extracts the corresponding text string from the codebook and appends
 it to the end of the decompressed message. It then creates a new
 codebook entry containing the current text string and the next
 character to occur in the decompressed message.

Surtees & West Informational [Page 18]

RFC 4464 SigComp Users’ Guide May 2006

 Assembly for an LZW decompressor is given below:

 at (32)

 :length_value pad (2)
 :position_value pad (2)
 :index pad (2)

 at (42)

 set (requested_feedback_location, 0)

 at (64)

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :input_bit_order pad (2)

 :codebook_next pad (2)
 :current_length pad (2)
 :decompressed_pointer pad (2)

 set (returned_parameters_location, 0)

 align (64)

 :initialize_memory

 set (udvm_memory_size, 8192)
 set (state_length, (udvm_memory_size - 64))

 MULTILOAD (64, 6, circular_buffer, udvm_memory_size, 0, codebook, 1,
 static_dictionary)

 :initialize_codebook

 ; The following instructions are used to initialize the first 256
 ; entries in the LZW codebook with single ASCII characters:

 set (index_lsb, (index + 1))
 set (current_length_lsb, (current_length + 1))

 COPY-LITERAL (current_length_lsb, 3, $codebook_next)
 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
 ADD ($index, 1)
 COMPARE ($index, 256, initialize_codebook, next_character, 0)

 :decompress_sigcomp_message

Surtees & West Informational [Page 19]

RFC 4464 SigComp Users’ Guide May 2006

 :next_character

 ; The following INPUT-BITS instruction extracts 10 bits from the
 ; compressed message:

 INPUT-BITS (10, index, end_of_message)

 ; The following instructions interpret the received bits as an index
 ; into the LZW codebook and extract the corresponding
 ; position/length pair:

 set (length_value_lsb, (length_value + 1))

 MULTIPLY ($index, 3)
 ADD ($index, codebook)
 COPY ($index, 3, length_value_lsb)

 ; The following instructions append the selected text string to the
 ; circular buffer and create a new codebook entry pointing to this
 ; text string:

 LOAD (current_length, 1)
 ADD ($current_length, $length_value)
 COPY-LITERAL (current_length_lsb, 3, $codebook_next)
 COPY-LITERAL ($position_value, $length_value, $decompressed_pointer)

 ; The following instruction outputs the text string specified by the
 ; position/length pair:

 OUTPUT ($position_value, $length_value)
 JUMP (next_character)

 :end_of_message

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 :static_dictionary pad (256)
 :circular_buffer

 at (4492)

 :codebook

Surtees & West Informational [Page 20]

RFC 4464 SigComp Users’ Guide May 2006

 An example of a message compressed using the LZW algorithm is given
 below:

 0x14c6 f080 6c1b c6e1 9c20 1846 e190 201d 0684 206b 1cc2 0198 6f1c
 0x9071 b06c 42c6 8195 111a 4731 a021 02bf f0

 The uncompressed message is "So long and thanks for all the fish!\n".

4.1.4. DEFLATE

 This section provides UDVM bytecode for the DEFLATE compression
 algorithm. DEFLATE is the algorithm used in the well-known "gzip"
 file format.

 The following bytecode will decompress the DEFLATE compressed data
 format [8] with the following modifications:

 1. The DEFLATE compressed data format separates blocks of compressed
 data by transmitting 7 consecutive zero bits. Each SigComp
 message is assumed to contain a separate block of compressed
 data, so the end-of-block bits are implicit and do not need to be
 transmitted at the end of a SigComp message.

 2. This bytecode supports only DEFLATE block type 01 (data
 compressed with fixed Huffman codes).

 Assembly for the DEFLATE decompressor is given below:

 at (32)
 readonly (0)

 :index pad (2)
 :extra_length_bits pad (2)
 :length_value pad (2)
 :extra_distance_bits pad (2)
 :distance_value pad (2)

 at (42)

 set (requested_feedback_location, 0)

 at (64)

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :input_bit_order pad (2)
 :decompressed_pointer pad (2)

Surtees & West Informational [Page 21]

RFC 4464 SigComp Users’ Guide May 2006

 :length_table pad (116)
 :distance_table pad (120)

 set (returned_parameters_location, 0)

 align (64)

 readonly (1)
 :initialize_memory

 set (udvm_memory_size, 8192)
 set (state_length, (udvm_memory_size - 64))
 set (length_table_start, (((length_table - 4) + 65536) / 4))
 set (length_table_mid, (length_table_start + 24))
 set (distance_table_start, (distance_table / 4))

 MULTILOAD (64, 122, circular_buffer, udvm_memory_size, 5,
 circular_buffer,

 0, 3, 0, 4, 0, 5,
 0, 6, 0, 7, 0, 8,
 0, 9, 0, 10, 1, 11,
 1, 13, 1, 15, 1, 17,
 2, 19, 2, 23, 2, 27,
 2, 31, 3, 35, 3, 43,
 3, 51, 3, 59, 4, 67,
 4, 83, 4, 99, 4, 115,
 5, 131, 5, 163, 5, 195,
 5, 227, 0, 258,

 0, 1, 0, 2, 0, 3,
 0, 4, 1, 5, 1, 7,
 2, 9, 2, 13, 3, 17,
 3, 25, 4, 33, 4, 49,
 5, 65, 5, 97, 6, 129,
 6, 193, 7, 257, 7, 385,
 8, 513, 8, 769, 9, 1025,
 9, 1537, 10, 2049, 10, 3073,
 11, 4097, 11, 6145, 12, 8193,
 12, 12289, 13, 16385, 13, 24577)

 :decompress_sigcomp_message

 INPUT-BITS (3, extra_length_bits, !)

 :next_character

Surtees & West Informational [Page 22]

RFC 4464 SigComp Users’ Guide May 2006

 INPUT-HUFFMAN (index, end_of_message, 4,
 7, 0, 23, length_table_start,
 1, 48, 191, 0,
 0, 192, 199, length_table_mid,
 1, 400, 511, 144)
 COMPARE ($index, length_table_start, literal, end_of_message,
 length_distance)

 :literal

 set (index_lsb, (index + 1))

 OUTPUT (index_lsb, 1)
 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
 JUMP (next_character)

 :length_distance

 ; this is the length part

 MULTIPLY ($index, 4)
 COPY ($index, 4, extra_length_bits)
 INPUT-BITS ($extra_length_bits, extra_length_bits, !)
 ADD ($length_value, $extra_length_bits)

 ; this is the distance part

 INPUT-HUFFMAN (index, !, 1, 5, 0, 31, distance_table_start)
 MULTIPLY ($index, 4)
 COPY ($index, 4, extra_distance_bits)

 INPUT-BITS ($extra_distance_bits, extra_distance_bits, !)
 ADD ($distance_value, $extra_distance_bits)
 LOAD (index, $decompressed_pointer)
 COPY-OFFSET ($distance_value, $length_value, $decompressed_pointer)
 OUTPUT ($index, $length_value)
 JUMP (next_character)

 :end_of_message

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 readonly (0)
 :circular_buffer

Surtees & West Informational [Page 23]

RFC 4464 SigComp Users’ Guide May 2006

 An example of a message compressed using the DEFLATE algorithm is
 given below:

 0xf3c9 4c4b d551 28c9 4855 08cd cb2c 4b2d 2a4e 5548 cc4b 5170 0532
 0x2b4b 3232 f3d2 b900

 The uncompressed message is "Life, the Universe and Everything\n".

4.1.5. LZJH

 This section provides UDVM bytecode for the LZJH compression
 algorithm. LZJH is the algorithm adopted by the International
 Telecommunication Union (ITU-T) Recommendation V.44 [9].

 Assembly for the LZJH decompressor is given below:

 at (32)
 readonly (0)

 ; The following 2-byte variables are stored in the scratch-pad memory
 ; area because they do not need to be saved after decompressing a
 ; SigComp message:

 :length_value pad (2)
 :position_value pad (2)
 :index pad (2)
 :extra_extension_bits pad (2)
 :codebook_old pad (2)

 at (42)

 set (requested_feedback_location, 0)

 at (64)

 ; UDVM_registers

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)

 :input_bit_order pad (2)

Surtees & West Informational [Page 24]

RFC 4464 SigComp Users’ Guide May 2006

 ; The following 2-byte variables are saved as state after
 ; decompressing a SigComp message:

 :current_length pad (2)
 :decompressed_pointer pad (2)
 :ordinal_length pad (2)
 :codeword_length pad (2)
 :codebook_next pad (2)

 set (returned_parameters_location, 0)

 align (64)
 readonly (1)

 :initialize_memory

 ; The following constants can be adjusted to configure the LZJH
 ; decompressor. The current settings are as recommended in the V.44
 ; specification (given that a total of 8K UDVM memory is available):

 set (udvm_memory_size, 8192) ; sets the total memory for LZJH
 set (max_extension_length, 8) ; sets the maximum string extension
 set (min_ordinal_length, 7) ; sets the minimum ordinal length
 set (min_codeword_length, 6) ; sets the minimum codeword length

 set (codebook_start, 4492)
 set (first_codeword, (codebook_start - 12))
 set (state_length, (udvm_memory_size - 64))

 MULTILOAD (64, 8, circular_buffer, udvm_memory_size, 7, 0,
 circular_buffer, min_ordinal_length, min_codeword_length,
 codebook_start)

 :decompress_sigcomp_message

 :standard_prefix

 ; The following code decompresses the standard 1-bit LZJH prefix
 ; that specifies whether the next character is an ordinal or a
 ; codeword/control value:

 INPUT-BITS (1, index, end_of_message)
 COMPARE ($index, 1, ordinal, codeword_control, codeword_control)

 :prefix_after_codeword

Surtees & West Informational [Page 25]

RFC 4464 SigComp Users’ Guide May 2006

 ; The following code decompresses the special LZJH prefix that only
 ; occurs after a codeword. It specifies whether the next character
 ; is an ordinal, a codeword/control value, or a string extension:

 INPUT-HUFFMAN (index, end_of_message, 2, 1, 1, 1, 2, 1, 0, 1, 0)
 COMPARE ($index, 1, ordinal, string_extension, codeword_control)

 :ordinal

 ; The following code decompresses an ordinal character and creates
 ; a new codebook entry consisting of the ordinal character and the
 ; next character to be decompressed:

 set (index_lsb, (index + 1))
 set (current_length_lsb, (current_length + 1))

 INPUT-BITS ($ordinal_length, index, !)
 OUTPUT (index_lsb, 1)
 LOAD (current_length, 2)
 COPY-LITERAL (current_length_lsb, 3, $codebook_next)
 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
 JUMP (standard_prefix)

 :codeword_control

 ; The following code decompresses a codeword/control value:

 INPUT-BITS ($codeword_length, index, !)
 COMPARE ($index, 3, control_code, initialize_memory, codeword)

 :codeword

 ; The following code interprets a codeword as an index into the LZJH
 ; codebook. It extracts the position/length pair from the specified
 ; codebook entry; the position/length pair points to a byte string
 ; in the circular buffer, which is then copied to the end of the
 ; decompressed message. The code also creates a new codebook entry
 ; consisting of the byte string plus the next character to be
 ; decompressed:

 set (length_value_lsb, (length_value + 1))

 MULTIPLY ($index, 3)
 ADD ($index, first_codeword)
 COPY ($index, 3, length_value_lsb)
 LOAD (current_length, 1)
 ADD ($current_length, $length_value)
 LOAD (codebook_old, $codebook_next)

Surtees & West Informational [Page 26]

RFC 4464 SigComp Users’ Guide May 2006

 COPY-LITERAL (current_length_lsb, 3, $codebook_next)
 COPY-LITERAL ($position_value, $length_value, $decompressed_pointer)
 OUTPUT ($position_value, $length_value)
 JUMP (prefix_after_codeword)

 :string_extension

 ; The following code decompresses a Huffman-encoded string extension:

 INPUT-HUFFMAN (index, !, 4, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 13, 3,
 0, 7, 5)
 COMPARE ($index, 13, continue, extra_bits, extra_bits)

 :extra_bits

 INPUT-BITS (max_extension_length, extra_extension_bits, !)
 ADD ($index, $extra_extension_bits)

 :continue

 ; The following code extends the most recently created codebook entry
 ; by the number of bits specified in the string extension:

 COPY-LITERAL ($position_value, $length_value, $position_value)
 COPY-LITERAL ($position_value, $index, $decompressed_pointer)
 OUTPUT ($position_value, $index)
 ADD ($index, $length_value)
 COPY (index_lsb, 1, $codebook_old)
 JUMP (standard_prefix)

 :control_code

 ; The code can handle all of the control characters in V.44 except
 ; for ETM (Enter Transparent Mode), which is not required for
 ; message-based protocols such as SigComp.

 COMPARE ($index, 1, !, flush, stepup)

 :flush

 ; The FLUSH control character jumps to the beginning of the next
 ; complete byte in the compressed message:

 INPUT-BYTES (0, 0, 0)
 JUMP (standard_prefix)

 :stepup

Surtees & West Informational [Page 27]

RFC 4464 SigComp Users’ Guide May 2006

 ; The STEPUP control character increases the number of bits used to
 ; encode an ordinal value or a codeword:

 INPUT-BITS (1, index, !)
 COMPARE ($index, 1, stepup_ordinal, stepup_codeword, 0)

 :stepup_ordinal

 ADD ($ordinal_length, 1)
 JUMP (ordinal)

 :stepup_codeword

 ADD ($codeword_length, 1)
 JUMP (codeword_control)

 :end_of_message

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 readonly (0)
 :circular_buffer

 An example of a message compressed using the LZJH algorithm is given
 below:

 0x5c09 e6e0 cadc c8d2 dcce 40c2 40f2 cac2 e440 c825 c840 ccde 29e8
 0xc2f0 40e0 eae4 e0de e6ca e65c 1403

 The uncompressed message is "...spending a year dead for tax
 purposes.\n".

4.2. Adapted Algorithms

4.2.1. Modified DEFLATE

 Alternative algorithms can also be used with SigComp. This section
 shows a modified version of the DEFLATE [8] algorithm. The two-stage
 encoding of DEFLATE is replaced by a single step with a discrete
 Huffman code for each symbol. The literal/length symbol
 probabilities are dependent upon whether the previous symbol was a
 literal or a match. Bit handling is also simpler, in that all bits
 are input using the INPUT-HUFFMAN instruction and the value of the H
 bit does not change so all bits are input, read, and interpreted in
 the same order.

Surtees & West Informational [Page 28]

RFC 4464 SigComp Users’ Guide May 2006

 Assembly for the algorithm is given below. String matching rules are
 the same as for the other LZ-based algorithms, with the alternative
 encoding of the literals and length/distance pairs.

 at (32)
 readonly (0)

 :index pad (2)
 :distance_value pad (2)
 :old_pointer pad (2)

 at (42)

 set (requested_feedback_location, 0)

 at (64)

 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :input_bit_order pad (2)
 :decompressed_pointer pad (2)

 set (returned_parameters_location, 0)

 at (128)
 readonly (1)

 :initialize_memory

 set (udvm_memory_size, 8192)
 set (state_length, (udvm_memory_size - 64))

 MULTILOAD (64, 4, circular_buffer, udvm_memory_size, 0,
 circular_buffer)

 :decompress_sigcomp_message

 :character_after_literal

 INPUT-HUFFMAN (index, end_of_message, 16,
 5, 0, 11, 46,
 0, 12, 12, 256,
 1, 26, 32, 257,
 1, 66, 68, 32,
 0, 69, 94, 97,
 0, 95, 102, 264,
 0, 103, 103, 511,
 2, 416, 426, 35,

Surtees & West Informational [Page 29]

RFC 4464 SigComp Users’ Guide May 2006

 0, 427, 465, 58,
 0, 466, 481, 272,
 1, 964, 995, 288,
 3, 7968, 7988, 123,
 0, 7989, 8115, 384,
 1, 16232, 16263, 0,
 0, 16264, 16327, 320,
 1, 32656, 32767, 144)

 COMPARE ($index, 256, literal, distance, distance)

 :character_after_match

 INPUT-HUFFMAN (index, end_of_message, 16,
 4, 0, 0, 511,
 1, 2, 9, 256,
 1, 20, 22, 32,
 0, 23, 30, 264,
 1, 62, 73, 46,
 0, 74, 89, 272,
 2, 360, 385, 97,
 0, 386, 417, 288,
 1, 836, 874, 58,
 0, 875, 938, 320,
 1, 1878, 1888, 35,
 0, 1889, 2015, 384,
 1, 4032, 4052, 123,
 1, 8106, 8137, 0,
 1, 16276, 16379, 144,
 1, 32760, 32767, 248)

 COMPARE ($index, 256, literal, distance, distance)

 :literal

 set (index_lsb, (index + 1))

 OUTPUT (index_lsb, 1)
 COPY-LITERAL (index_lsb, 1, $decompressed_pointer)
 JUMP (character_after_literal)

 :distance

 SUBTRACT ($index, 253)
 INPUT-HUFFMAN (distance_value, !, 9,
 9, 0, 7, 9,
 0, 8, 63, 129,
 1, 128, 135, 1,

Surtees & West Informational [Page 30]

RFC 4464 SigComp Users’ Guide May 2006

 0, 136, 247, 17,
 0, 248, 319, 185,
 1, 640, 1407, 257,
 2, 5632, 6655, 1025,
 1, 13312, 15359, 2049,
 2, 61440, 65535, 4097)

 LOAD (old_pointer, $decompressed_pointer)
 COPY-OFFSET ($distance_value, $index, $decompressed_pointer)
 OUTPUT ($old_pointer, $index)
 JUMP (character_after_match)

 :end_of_message

 END-MESSAGE (requested_feedback_location,
 returned_parameters_location, state_length, 64,
 decompress_sigcomp_message, 6, 0)

 readonly (0)
 :circular_buffer

 An example of a message compressed using the modified DEFLATE
 algorithm is given below:

 0xd956 b132 cd68 5424 c5a9 6215 8a70 a64d af0a 5499 3621 509b 3e4c
 0x28b4 a145 b362 653a d0a6 498b 5a6d 2970 ac4c 930a a4ca 74a4 c268
 0x0c

 The uncompressed message is "Arthur leapt to his feet like an author
 hearing the phone ring".

5. Additional SigComp Mechanisms

 This section covers the additional mechanisms that can be employed by
 SigComp to improve the overall compression ratio, including the use
 of acknowledgements, dictionaries, and sharing state between two
 directions of a compressed message flow.

 An example of assembly code is provided for these mechanisms.
 Depending on the mechanism and basic algorithm in use, the assembly
 code for either the mechanism or the basic algorithm may require
 modification (e.g., if the algorithm uses ’no more input’ to jump to
 end_of_message, following end_of_message with an input instruction
 for CRC will not work). In any case, these are examples and there
 may be alternative ways to make use of the mechanisms.

Surtees & West Informational [Page 31]

RFC 4464 SigComp Users’ Guide May 2006

 When each of the compression algorithms described in Section 4 has
 successfully decompressed the current SigComp message, the contents
 of the UDVM memory are saved as a SigComp state item. Subsequent
 messages can access this state item by uploading the correct state
 identifier to the receiving endpoint, which avoids the need to upload
 the bytecode for the compression algorithm on a per-message basis.
 However, before a state item can be accessed, the compressor must
 first ensure that it is available at the receiving endpoint.

 For each SigComp compartment, the receiving endpoint maintains a list
 of currently available states (where the total amount of state saved
 does not exceed the state_memory_size for the compartment). The
 SigComp compressor should maintain a similar list containing the
 states that it has instructed the receiving endpoint to save.

 As well as tracking the list of state items that it has saved at the
 remote endpoint, the compressor also maintains a flag for each state
 item indicating whether or not the state can safely be accessed.
 State items should not be accessed until they have been acknowledged
 (e.g., by using the SigComp feedback mechanism as per Section 5.1).

 State items are deleted from the list when adding a new piece of
 state when the total state_memory_size for the compartment is full.
 The state to be deleted is determined according to age and retention
 priority as discussed in SigComp [2]. The SigComp compressor should
 not attempt to access any state items that have been deleted in this
 manner, as they may no longer be available at the receiving endpoint.

5.1. Acknowledging a State Item

 SigComp [2] defines a feedback mechanism to allow the compressor to
 request feedback from the decompressor, to give the compressor
 indication that a message has been received and correctly
 decompressed and that state storage has been attempted. (Note: This
 mechanism cannot convey the success or failure of individual state
 creation requests.) In order to invoke the feedback mechanism, the
 following fields must be reserved in the UDVM memory:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | reserved | Q | S | I | requested_feedback_location
 +---+---+---+---+---+---+---+---+
 | 1 | requested_feedback_length | if Q = 1
 +---+---+---+---+---+---+---+---+
 | |
 : requested_feedback_field : if Q = 1
 | |
 +---+---+---+---+---+---+---+---+

Surtees & West Informational [Page 32]

RFC 4464 SigComp Users’ Guide May 2006

 These fields can be reserved in any of the algorithms of Section 4 by
 replacing the line "set (requested_feedback_location, 0)" with the
 following assembly:

 :requested_feedback_location pad (1)
 :requested_feedback_length pad (1)
 :requested_feedback_field pad (12)
 :hash_start pad (8)

 When a SigComp message is successfully decompressed and saved as
 state, the following bytecode instructs the receiving endpoint to
 return the first 6 bytes of the corresponding state identifier. The
 bytecode can be added to any of the compression algorithms of Section
 4 immediately following the ":end_of_message" label:

 :end_of_message

 set (hash_length, (state_length + 8))

 LOAD (requested_feedback_location, 1158)
 MULTILOAD (hash_start, 4, state_length, 64,
 decompress_sigcomp_message, 6)
 SHA-1 (hash_start, hash_length, requested_feedback_field)

 The receiving endpoint then returns the state identifier in the
 "returned feedback field" of the next SigComp message to be
 transmitted in the reverse direction.

 When the state identifier is returned, the compressor can set the
 availability flag for the corresponding state to 1.

5.2. Static Dictionary

 Certain protocols that can be compressed using SigComp offer a fixed,
 mandatory state item known as a static dictionary. This dictionary
 contains a number of text strings that commonly occur in messages
 generated by the protocol in question. The overall compression ratio
 can often be improved by accessing the text phrases from this static
 dictionary rather than by uploading them as part of the compressed
 message.

 As an example, a static dictionary is provided for the protocols SIP
 and SDP, RFC 3485 [4]. This dictionary is designed for use by a wide
 range of compression algorithms including all of the ones covered in
 Section 4.

Surtees & West Informational [Page 33]

RFC 4464 SigComp Users’ Guide May 2006

 In any of the compression algorithms of Section 4, the static
 dictionary can be accessed by inserting the following instruction
 immediately after the ":initialize_memory" label:

 STATE-ACCESS (dictionary_id, 6, 0, 0, 1024, 0)

 The parameters of STATE-ACCESS instruction will depend on the
 compression algorithm in use.

 The following lines should also be inserted immediately after the
 END-MESSAGE instruction:

 :dictionary_id

 byte (0xfb, 0xe5, 0x07, 0xdf, 0xe5, 0xe6)

 The text strings contained in the static dictionary can then be
 accessed in exactly the same manner as the text strings from
 previously decompressed messages (see Section 5.1 for further
 details).

 Note that in some cases it is sufficient to load only part of the
 static dictionary into the UDVM memory. Further information on the
 contents of the SIP and SDP static dictionary can be found in the
 relevant document, RFC 3485 [4].

5.3. CRC Checksum

 The acknowledgement scheme of Section 5.1 is designed to indicate the
 successful decompression of a message. However, it does not
 guarantee that the decompressed message is identical to the original
 message, since decompression of a corrupted message could succeed but
 with some characters being incorrect. This could lead to an
 incorrect message being passed to the application or unexpected
 contents of state to be stored. In order to prevent this happening,
 a CRC check could be used.

 If an additional CRC check is required, then the following bytecode
 can be inserted after the ":end_of_message" label:

 INPUT-BYTES (2, index, !)
 CRC ($index, 64, state_length, !)

 The bytecode extracts a 2-byte CRC from the end of the SigComp
 message and compares it with a CRC calculated over the UDVM memory.
 Decompression failure occurs if the two CRC values do not match.

Surtees & West Informational [Page 34]

RFC 4464 SigComp Users’ Guide May 2006

 A definition of the CRC polynomial used by the CRC instruction can be
 found in SigComp [2].

5.4. Announcing Additional Resources

 If a particular endpoint is able to offer more processing or memory
 resources than the mandatory minimum, the SigComp feedback mechanism
 can be used to announce that these resources are available to the
 remote endpoint. This may help to improve the overall compression
 ratio between the two endpoints.

 Additionally, if an endpoint has any pieces of state that may be
 useful for the remote endpoint to reference, it can advertise the
 identifiers for the states. The remote endpoint can then make use of
 any that it also knows about (i.e., knows the contents of), for
 example, a dictionary or shared mode state (see Section 5.5).

 The values of the following SigComp parameters can be announced using
 the SigComp advertisement mechanism:

 cycles_per_bit
 decompression_memory_size
 state_memory_size
 SigComp_version
 state identifiers

Surtees & West Informational [Page 35]

RFC 4464 SigComp Users’ Guide May 2006

 As explained in SigComp, in order to announce the values of these
 parameters, the following fields must be reserved in the UDVM memory:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | cpb | dms | sms | returned_parameters_location
 +---+---+---+---+---+---+---+---+
 | SigComp_version |
 +---+---+---+---+---+---+---+---+
 | length_of_partial_state_ID_1 |
 +---+---+---+---+---+---+---+---+
 | |
 : partial_state_identifier_1 :
 | |
 +---+---+---+---+---+---+---+---+
 : :
 +---+---+---+---+---+---+---+---+
 | length_of_partial_state_ID_n |
 +---+---+---+---+---+---+---+---+
 | |
 : partial_state_identifier_n :
 | |
 +---+---+---+---+---+---+---+---+

 These fields can be reserved in any of the algorithms of Section 4 by
 replacing the line "set (returned_parameters_location, 0)" with the
 following piece of assembly:

 :adverts_len pad (1)
 :adverts_len_lsb pad (1)
 :returned_parameters_location pad (1)
 :returned_sigcomp_version pad (1)
 :state_ids pad (x)

 where x is enough space for the number state identifiers that the
 endpoint wishes to advertise.

 When a SigComp message is successfully decompressed and saved as
 state, the following bytecode announces to the receiving endpoint
 that additional resources and pieces of state are available at the
 sending endpoint:

 :end_of_message

 LOAD (returned_parameters_location, N)
 INPUT-BYTES (1, adverts_len_lsb, done)
 INPUT-BYTES ($adverts_len, state_ids, done)

Surtees & West Informational [Page 36]

RFC 4464 SigComp Users’ Guide May 2006

 :done

 Note that the integer value "N" should be set equal to the amount of
 resources available at the sending endpoint. N should be expressed
 as a 2-byte integer with the most significant bits corresponding to
 the cycles_per_bit parameter and the least significant bits
 corresponding to the SigComp_version parameter.

 The length of the state identifiers followed by the state identifiers
 in the format shown are appended to the end of the compressed
 message.

5.5. Shared Compression

 This section provides bytecode for implementing the SigComp shared
 compression mechanism, RFC 3321 [3]. If two endpoints A and B are
 communicating via SigComp, shared compression allows the messages
 sent from Endpoint A to Endpoint B to be compressed relative to the
 messages sent from Endpoint B to Endpoint A (and vice versa). This
 may improve the overall compression ratio by reducing the need to
 transmit the same information in both directions.

 As described in RFC 3321 [3], two steps must be taken to implement
 shared compression at an endpoint.

 First, it is necessary to announce to the remote endpoint that shared
 compression is available. This is done by announcing the state
 identifier as an available piece of state. This can be done using
 the returned_parameters_location announcement as in Section 5.4.

 Second, assuming that such an announcement is received from the
 remote endpoint, then the state created by shared compression needs
 to be accessed by the message sent in the opposite direction. This
 can be done in a similar way to accessing the static dictionary (see
 Section 5.2), but using the appropriate state identifier, for
 example, by using the INPUT-BYTES instruction as below:

 :shared_state_id pad (6)

 :access_shared_state

 INPUT-BYTES (6, shared_state_id, !)
 STATE-ACCESS (shared_state_id, 6, 0, 0, $decompressed_start, 0)

Surtees & West Informational [Page 37]

RFC 4464 SigComp Users’ Guide May 2006

6. Security Considerations

 This document describes implementation options for the SigComp
 protocol [2]. Consequently, the security considerations for this
 document match those of SigComp.

7. Acknowledgements

 Thanks to Richard Price, Carsten Bormann, Adam Roach, Lawrence
 Conroy, Christian Schmidt, Max Riegel, Lars-Erik Jonsson, Jonathan
 Rosenberg, Stefan Forsgren, Krister Svanbro, Miguel Garcia,
 Christopher Clanton, Khiem Le, Ka Cheong Leung, and Zoltan Barczikay
 for valuable input and review.

 Special thanks to Pekka Pessi and Cristian Constantin, who served as
 committed working group document reviewers.

8. Intellectual Property Right Considerations

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

9. Normative References

 [1] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [2] Price, R., Bormann, C., Christoffersson, J., Hannu, H., Liu,
 Z., and J. Rosenberg, "Signaling Compression (SigComp)", RFC
 3320, January 2003.

 [3] Hannu, H., Christoffersson, J., Forsgren, S., Leung, K.-C.,
 Liu, Z., and R. Price, "Signaling Compression (SigComp) -
 Extended Operations", RFC 3321, January 2003.

 [4] Garcia-Martin, M., Bormann, C., Ott, J., Price, R., and A.B.
 Roach, "The Session Initiation Protocol (SIP) and Session
 Description Protocol (SDP) Static Dictionary for Signaling
 Compression (SigComp)", RFC 3485, February 2003.

 [5] Ziv, J. and A. Lempel, "A universal algorithm for sequential
 data compression", IEEE 23:337-343, 1977.

 [6] Storer, J., "Data Compression: Methods and Theory", Computer
 Science Press ISBN 0-88175-161-8, 1998.

Surtees & West Informational [Page 38]

RFC 4464 SigComp Users’ Guide May 2006

 [7] Nelson, M., "LZW Data Compression", Dr Dobb’s Journal,
 October 1989.

 [8] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [9] "Data Compression Procedures", ITU-T Recommendation V.44,
 November 2000.

Surtees & West Informational [Page 39]

RFC 4464 SigComp Users’ Guide May 2006

Appendix A. UDVM Bytecode for the Compression Algorithms

 The following sections list the UDVM bytecode generated for each
 compression algorithm of Section 4.

 Note that the different assemblers can output different bytecode for
 the same piece of assembly code, so a valid assembler can produce
 results different from those presented below. However, the following
 bytecode should always generate the same decompressed messages on any
 UDVM.

A.1. Well-known Algorithms

A.1.1. LZ77

 0x0f86 0389 8d89 1588 8800 011c 0420 0d13 5051 2222 5051 16f5 2300
 0x00bf c086 a08b 06

A.1.2. LZSS

 0x0f86 04a0 c48d 00a0 c41e 2031 0209 00a0 ff8e 048c bfff 0117 508d
 0x0f23 0622 2101 1321 0123 16e5 1d04 22e8 0611 030e 2463 1450 5123
 0x2252 5116 9fd2 2300 00bf c086 a089 06

A.1.3. LZW

 0x0f86 06a1 ce8d 00b1 8f01 a0ce 13a0 4903 2313 2501 2506 1201 1752
 0x88f4 079f 681d 0a24 2508 1203 0612 b18f 1252 0321 0ea0 4801 0624
 0x5013 a049 0323 1351 5025 2251 5016 9fde 2300 00bf c086 a09f 06

A.1.4. DEFLATE

 0x0f86 7aa2 528d 05a2 5200 0300 0400 0500 0600 0700 0800 0900 0a01
 0x0b01 0d01 0f01 1102 1302 1702 1b02 1f03 2303 2b03 3303 3b04 a043
 0x04a0 5304 a063 04a0 7305 a083 05a0 a305 a0c3 05a0 e300 a102 0001
 0x0002 0003 0004 0105 0107 0209 020d 0311 0319 0421 0431 05a0 4105
 0xa061 06a0 8106 a0c1 07a1 0107 a181 08a2 0108 a301 09a4 0109 a601
 0x0aa8 010a ac01 0bb0 010b b801 0c80 2001 0c80 3001 0d80 4001 0d80
 0x6001 1d03 229f b41e 20a0 6504 0700 1780 4011 0130 a0bf 0000 a0c0
 0xa0c7 8040 2901 a190 a1ff a090 1750 8040 1109 a046 1322 2101 1321
 0x0123 169f d108 1004 1250 0422 1d51 229f d706 1251 1e20 9fcf 0105
 0x001f 2f08 1004 1250 0426 1d53 26f6 0614 530e 2063 1454 5223 2250
 0x5216 9f9e 2300 00bf c086 a1de 06

Surtees & West Informational [Page 40]

RFC 4464 SigComp Users’ Guide May 2006

A.1.5. LZJH

 0x0f86 08a1 5b8d 0700 a15b 0706 b18f 1d01 24a0 c317 5201 1a31 311e
 0x24a0 b802 0101 0102 0100 0100 1752 0107 a04e 1e1d 6524 f822 2501
 0x0ea0 4602 13a0 4703 2713 2501 2416 9fcd 1d66 24e1 1752 03a0 639f
 0xb808 0812 0306 12b1 8312 5203 210e a046 0106 2350 0e28 6713 a047
 0x0327 1351 5024 2251 5016 9fa8 1e24 9fb1 0401 0101 0102 0103 0201
 0x0101 0d03 0007 0517 520d 0d06 061d 0826 f706 1253 1351 5011 1351
 0x5224 2251 5206 1250 1225 0154 169f 6617 5201 9fdb 070f 1c00 009e
 0xce16 9f57 1d01 24fa 1752 0107 0d9e c206 2501 169f 6506 2601 169f
 0x7623 0000 bfc0 86a0 8e06

A.2. Adapted Algorithms

A.2.1. Modified DEFLATE

 0x0f86 04a1 d38d 00a1 d31e 20a1 4010 0500 0b2e 000c 0c88 011a 20a1
 0x0101 a042 a044 2000 a045 a05e a061 00a0 5fa0 66a1 0800 a067 a067
 0xa1ff 02a1 a0a1 aa23 00a1 aba1 d13a 00a1 d2a1 e1a1 1001 a3c4 a3e3
 0xa120 03bf 20bf 34a0 7b00 bf35 bfb3 a180 0180 3f68 803f 8700 0080
 0x3f88 803f c7a1 4001 807f 9080 7fff a090 1750 88a0 79a0 83a0 831e
 0x20a0 c810 0400 00a1 ff01 0209 8801 1416 2000 171e a108 013e a049
 0x2e00 a04a a059 a110 02a1 68a1 81a0 6100 a182 a1a1 a120 01a3 44a3
 0x6a3a 00a3 6ba3 aaa1 4001 a756 a760 2300 a761 a7df a180 01af c0af
 0xd4a0 7b01 bfaa bfc9 0001 803f 9480 3ffb a090 0180 7ff8 807f ffa0
 0xf817 5088 0610 1022 2101 1321 0123 169f 1107 10a0 fd1e 229f d909
 0x0900 0709 0008 3fa0 8101 87a0 8701 00a0 88a0 f711 00a0 f8a1 3fa0
 0xb901 a280 a57f a101 02b6 00b9 ffa4 0101 8034 0080 3bff a801 0290
 0x00ff b001 0e24 6314 5150 2322 5250 169f 3b23 0000 bfc0 86a0 8906

Surtees & West Informational [Page 41]

RFC 4464 SigComp Users’ Guide May 2006

Authors’ Addresses

 Abigail Surtees
 Siemens/Roke Manor Research
 Roke Manor Research Ltd.
 Romsey, Hants SO51 0ZN
 UK

 Phone: +44 (0)1794 833131
 EMail: abigail.surtees@roke.co.uk
 URI: http://www.roke.co.uk

 Mark A. West
 Siemens/Roke Manor Research
 Roke Manor Research Ltd.
 Romsey, Hants SO51 0ZN
 UK

 Phone: +44 (0)1794 833311
 EMail: mark.a.west@roke.co.uk
 URI: http://www.roke.co.uk

Surtees & West Informational [Page 42]

RFC 4464 SigComp Users’ Guide May 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Surtees & West Informational [Page 43]

