
Network Working Group M. Stiemerling
Request for Comments: 4540 J. Quittek
Category: Experimental NEC
 C. Cadar
 May 2006

 NEC’s Simple Middlebox Configuration (SIMCO) Protocol Version 3.0

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

IESG Note

 The content of this RFC was at one time considered by the IETF, and
 therefore it may resemble a current IETF work in progress or a
 published IETF work. This RFC is not a candidate for any level of
 Internet Standard. The IETF disclaims any knowledge of the fitness
 of this RFC for any purpose and in particular notes that the decision
 to publish is not based on IETF review for such things as security,
 congestion control, or inappropriate interaction with deployed
 protocols. The RFC Editor has chosen to publish this document at its
 discretion. Readers of this RFC should exercise caution in
 evaluating its value for implementation and deployment. See RFC 3932
 [RFC3932] for more information.

Abstract

 This document describes a protocol for controlling middleboxes such
 as firewalls and network address translators. It is a fully
 compliant implementation of the Middlebox Communications (MIDCOM)
 semantics described in RFC 3989. Compared to earlier experimental
 versions of the SIMCO protocol, this version (3.0) uses binary
 message encodings in order to reduce resource requirements.

Stiemerling, et al. Experimental [Page 1]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

Table of Contents

 1. Introduction ..4
 1.1. Terminology ..4
 1.2. Binary Encodings ...4
 2. Compliance with MIDCOM Protocol Semantics5
 3. SIMCO Sessions ..6
 4. SIMCO Message Components ..6
 4.1. Message Types ..7
 4.2. The SIMCO Header ...7
 4.2.1. Basic Message Types8
 4.2.2. Message Sub-types for Requests and Positive
 Replies ...8
 4.2.3. Message Sub-types for Negative Replies8
 4.2.4. Message Sub-types for Notifications9
 4.2.5. Transaction Identifier9
 4.3. The SIMCO Payload ...10
 4.3.1. SIMCO Protocol Version Attribute11
 4.3.2. Authentication Attributes11
 4.3.3. Middlebox Capabilities Attribute12
 4.3.4. Policy Rule Identifier Attribute13
 4.3.5. Group Identifier Attribute13
 4.3.6. Policy Rule Lifetime Attribute13
 4.3.7. Policy Rule Owner Attribute14
 4.3.8. Address Tuple Attribute14
 4.3.9. PRR Parameter Set Attribute16
 4.3.10. PER Parameter Set Attribute18
 5. SIMCO Message Formats ..19
 5.1. Protocol Error Replies and Notifications19
 5.1.1. BFM Notification19
 5.1.2. Protocol Error Negative Replies19
 5.2. Session Control Messages20
 5.2.1. SE Request ...20
 5.2.2. SE Positive Reply21
 5.2.3. SA Positive Reply21
 5.2.4. SA Request ...21
 5.2.5. ST Request and ST Positive Reply22
 5.2.6. SE Negative Replies22
 5.2.7. AST Notification23
 5.3. Policy Rule Control Messages23
 5.3.1. Policy Events and Asynchronous Notifications24
 5.3.2. PRR Request ..24
 5.3.3. PER Request ..25
 5.3.4. PEA Request ..26
 5.3.5. PLC Request ..26
 5.3.6. PRS Request ..27
 5.3.7. PRL Request ..27
 5.3.8. PDR Request ..27

Stiemerling, et al. Experimental [Page 2]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 5.3.9. PRR Positive Reply28
 5.3.10. PER Positive Reply28
 5.3.11. PLC Positive Reply29
 5.3.12. PRD Positive Reply29
 5.3.13. PRS Positive Reply30
 5.3.14. PES Positive Reply31
 5.3.15. PDS Positive Reply32
 3.5.16. PRL Positive Reply32
 5.3.17. PDR Positive Replies33
 5.3.18. Policy Rule Control Negative Replies33
 5.3.19. ARE Notification33
 6. Message Format Checking ..34
 7. Session Control Message Processing36
 7.1. Session State Machine36
 7.2. Processing SE Requests37
 7.3. Processing SA Requests38
 7.4. Processing ST Requests39
 7.5. Generating AST Notifications39
 7.6. Session Termination by Interruption of Connection39
 8. Policy Rule Control Message Processing40
 8.1. Policy Rule State Machine40
 8.2. Processing PRR Requests41
 8.2.1. Initial Checks41
 8.2.2. Processing on Pure Firewalls43
 8.2.3. Processing on Network Address Translators44
 8.3. Processing PER Requests45
 8.3.1. Initial Checks46
 8.3.2. Processing on Pure Firewalls48
 8.3.3. Processing on Network Address Translators49
 8.3.4. Processing on Combined Firewalls and NATs51
 8.4. Processing PEA Requests51
 8.4.1. Initial Checks51
 8.4.2. Processing on Pure Firewalls53
 8.4.3. Processing on Network Address Translators54
 8.5. Processing PLC Requests55
 8.6. Processing PRS Requests56
 8.7. Processing PRL Requests57
 8.8. Processing PDR requests57
 8.8.1. Extending the MIDCOM semantics58
 8.8.2. Initial Checks58
 8.8.3. Processing on Pure Firewalls61
 8.8.4. Processing on Network Address Translators61
 8.8.5. Processing on Combined Firewalls and NATs62
 8.9. Generating ARE Notifications62
 9. Security Considerations ..63
 9.1. Possible Threats to SIMCO63
 9.2. Securing SIMCO with IPsec63

Stiemerling, et al. Experimental [Page 3]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 10. IAB Considerations on UNSAF64
 11. Acknowledgements ..64
 12. Normative References ..65
 13. Informative References ..65

1. Introduction

 The Simple Middlebox Configuration (SIMCO) protocol is used to
 control firewalls and Network Address Translators (NATs). As defined
 in [RFC3234], firewalls and NATs are classified as middleboxes. A
 middlebox is a device on the datagram path between the source and
 destination that performs other functions than just IP routing. As
 outlined in [RFC3303], firewalls and NATs are potential obstacles to
 packet streams, for example, if dynamically negotiated UDP or TCP
 port numbers are used, as in many peer-to-peer communication
 applications.

 SIMCO allows applications to communicate with middleboxes on the
 datagram path in order to request a dynamic configuration at the
 middlebox that enables datagram streams to pass the middlebox.
 Applications can request pinholes at firewalls and address bindings
 at NATs.

 The semantics for the SIMCO protocol are described in [RFC3989].

1.1. Terminology

 The terminology used in this document is fully aligned with the
 terminology defined in [RFC3989]. In the remainder of the text, the
 term SIMCO refers to SIMCO version 3.0. The term "prefix-length" is
 used as described in [RFC4291] and [RFC1519]. With respect to
 wildcarding, the prefix length determines the part of an IP address
 that will be used in address match operations.

1.2. Binary Encodings

 Previous experimental versions of SIMCO used simple ASCII encodings
 with augmented BNF for syntax specification. This encoding requires
 more resources than binary encodings do for generation and parsing of
 messages. This applies to resources for coding agents and
 middleboxes as well as to resources for executing a SIMCO stack.

Stiemerling, et al. Experimental [Page 4]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 Low resource requirements are important properties for two main
 reasons:

 - For many applications (for example, IP telephony), session setup
 times are critical. Users do accept setup times only up to some
 limit, and some signaling protocols start retransmitting
 messages if setup is not completed within a certain time.

 - Many middleboxes are rather small and relatively low-cost
 devices. For these, support of resource-intensive protocols
 might be a problem. The acceptance of a protocol on these
 devices depends, among other things, on the cost of implementing
 the protocol and of its hardware requirements.

 Therefore, we decided to use a simple and efficient binary encoding
 for SIMCO version 3.0, which is described in this document.

2. Compliance with MIDCOM Protocol Semantics

 SIMCO version 3 is fully compliant with the MIDCOM protocol semantics
 defined by [RFC3989]. SIMCO implements protocol transactions as
 defined in Section 2.1.1 of [RFC3989]. All message types defined in
 Section 2.1.2 of [RFC3989] are supported by SIMCO, and all mandatory
 transactions are implemented. SIMCO does not implement the optional
 group transactions. For all implemented transactions, SIMCO
 implements all parameters concerning the information contained.

 SIMCO defines a few new terms to reference functionality in the
 semantics. Among these terms are Session Authentication (SA) and
 Policy Enable Rule After reservation (PEA) messages. SA is used to
 model the state transition given in Figure 2 of [RFC3989] from NOAUTH
 to OPEN. PEA is used to model the state transition given in Figure 4
 of [RFC3989] from RESERVED to ENABLED.

 SIMCO implements one additional transaction, the Policy Disable Rule
 (PDR) transaction, to those defined in [RFC3989]. PDR transactions
 are used by security functions such as intrusion detection and attack
 detection. They allow the agent to block a specified kind of
 traffic. PDRs have priority above Policy Enable Rules (PERs). When
 a PDR is established, all conflicting PERs (including PERs with just
 a partial overlap) are terminated, and no new conflicting PER can be
 established before the PDR is terminated. Support of the PDR
 transaction by SIMCO is optional. For a detailed description of the
 PDR transaction semantics, see Section 8.8.

Stiemerling, et al. Experimental [Page 5]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

3. SIMCO Sessions

 The SIMCO protocol uses a session model with two parties: an agent
 representing one or more applications and a middlebox. Both parties
 may participate in multiple sessions. An agent may simultaneously
 communicate with several middleboxes using one session per middlebox.
 A middlebox may simultaneously communicate with several agents using
 one session per agent.

 +-------+ SIMCO protocol +-----------+
 | agent +------------------+ middlebox |
 +-------+ +-----------+

 Figure 1: Participants in a SIMCO session

 SIMCO sessions must run over a reliable transport layer protocol and
 are initiated by the agent. SIMCO implementations must support TCP,
 while other reliable transport protocols can be used as transport for
 SIMCO as well. When using TCP as transport, middleboxes must wait
 for agents to connect on port 7626. This port is assigned to SIMCO
 servers by IANA (see http://www.iana.org/assignments/port-numbers).
 The session may be secured, if required, by either IPsec or TLS
 [RFC4346] to guarantee authentication, message integrity and
 confidentiality. The use of IPsec is outlined in Section 9,
 "Security Considerations".

 The transaction semantics of sessions is explained in [RFC3989]
 Section 2.2.

4. SIMCO Message Components

 All SIMCO messages from agent to middlebox and from middlebox to
 agent are sent over the transport protocol as specified in Section 3.
 SIMCO messages are Type-Length-Value (TLV) encoded using big endian
 (network ordered) binary data representations.

 All SIMCO messages start with the SIMCO header containing message
 type, message length, and a message identifier. The rest of the
 message, the payload, contains zero, one, or more TLV message
 attributes.

Stiemerling, et al. Experimental [Page 6]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

4.1. Message Types

 The message type in the SIMCO header is divided into a basic type and
 a sub-type. There are four basic types of SIMCO messages:

 - request,
 - positive reply,
 - negative reply,
 - notification.

 Messages sent from the agent to the middlebox are always of basic
 type ’request message’, while the basic type of messages sent from
 the middlebox to the agent is one of the three other types. Request
 messages and positive and negative reply messages belong to request
 transactions. From the agent’s point of view, notification messages
 belong to notification transactions only. From the middlebox’s point
 of view, a notification message may also belong to a request
 transaction. See section 2.3.4. of [RFC3989] for a detailed
 discussion of this issue.

 The message sub-type gives further information on the message type
 within the context of the basic message type. Only the combination
 of basic type and sub-type clearly identify the type of a message.

4.2. The SIMCO Header

 The SIMCO header is the first part of all SIMCO messages. It
 contains four fields: the basic message type, the message sub-type,
 the message length (excluding the SIMCO header) in octets, and the
 transaction identifier. The SIMCO header has a size of 64 bits. Its
 layout is defined in Figure 2.

 Message Type
 _______________^_______________
 / \
 +-+
 | Basic Type | Sub-Type | Message Length |
 +-+
 | Transaction Identifier (TID) |
 +-+

 Figure 2: The SIMCO header

Stiemerling, et al. Experimental [Page 7]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

4.2.1. Basic Message Types

 For the basic type field, the following values are defined:

 0x01 : Request Message
 0x02 : Positive Reply Message
 0x03 : Negative Reply Message
 0x04 : Notification Message

4.2.2. Message Sub-types for Requests and Positive Replies

 For basic types 0x01 (request) and 0x02 (positive reply), a common
 set of values for the sub-type field is defined. Most of the sub-
 types can be used for both basic types. Restricted sub-types are
 marked accordingly.

 0x01 : (SE) session establishment
 0x02 : (SA) session authentication
 0x03 : (ST) session termination
 0x11 : (PRR) policy reserve rule
 0x12 : (PER) policy enable rule
 0x13 : (PEA) PER after reservation (request only)
 0x14 : (PDR) policy disable rule
 0x15 : (PLC) policy rule lifetime change
 0x16 : (PRD) policy rule deletion (positive reply only)
 0x21 : (PRS) policy rule status
 0x22 : (PRL) policy rule list
 0x23 : (PES) policy enable rule status (positive reply only)
 0x24 : (PDS) policy disable rule status (positive reply only)

4.2.3. Message Sub-types for Negative Replies

 For basic type 0x03 (negative reply message), the following values of
 the sub-type field are defined:

 Replies concerning general message handling
 0x10 : wrong basic request message type
 0x11 : wrong request message sub-type
 0x12 : badly formed request
 0x13 : reply message too big

 Replies concerning sessions
 0x20 : request not applicable
 0x21 : lack of resources
 0x22 : protocol version mismatch
 0x23 : authentication failed
 0x24 : no authorization
 0x25 : transport protocol problem

Stiemerling, et al. Experimental [Page 8]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 0x26 : security of underlying protocol layers insufficient

 Replies concerning policy rules
 0x40 : transaction not supported
 0x41 : agent not authorized for this transaction
 0x42 : no resources available for this transaction
 0x43 : specified policy rule does not exist
 0x44 : specified policy rule group does not exist
 0x45 : not authorized for accessing specified policy
 0x46 : not authorized for accessing specified group
 0x47 : requested address space not available
 0x48 : lack of IP addresses
 0x49 : lack of port numbers
 0x4A : middlebox configuration failed
 0x4B : inconsistent request
 0x4C : requested wildcarding not supported
 0x4D : protocol type doesn’t match
 0x4E : NAT mode not supported
 0x4F : IP version mismatch
 0x50 : conflict with existing rule
 0x51 : not authorized to change lifetime
 0x52 : lifetime can’t be extended
 0x53 : illegal IP Address
 0x54 : protocol type not supported
 0x55 : illegal port number
 0x56 : illegal number of subsequent ports (NOSP)
 0x57 : already enable PID
 0x58 : parity doesn’t match

4.2.4. Message Sub-types for Notifications

 For basic type 0x04, the following values of the sub-type field are
 defined:

 0x01 : (BFM) badly formed message received
 0x02 : (AST) asynchronous session termination
 0x03 : (ARE) asynchronous policy rule event

4.2.5. Transaction Identifier

 The transaction identifier (TID) is an arbitrary number identifying
 the transaction. In a request message, the agent chooses an agent-
 unique TID, such that the same agent never uses the same TID in two
 different request messages belonging to the same session. Reply
 messages must contain the same TID as the corresponding request
 message. In a notification message, the middlebox chooses a

Stiemerling, et al. Experimental [Page 9]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 middlebox-unique TID, such that the same middlebox never uses the
 same TID in two different notification messages belonging to the same
 session.

4.3. The SIMCO Payload

 A SIMCO payload consists of zero, one, or more type-length-value
 (TLV) attributes. Each TLV attribute starts with a 16-bit type field
 and a 16-bit length field, as shown in Figure 3.

 +-+
 | attribute type | attribute length |
 +-+
 | value
 +-+

 ...

 +-+
 |
 +-+

 Figure 3: Structure of TLV attribute

 The attribute length field contains the length of the value field in
 octets.

 The following attribute types are defined:

 type description length
 --
 0x0001 : SIMCO protocol version 32 bits
 0x0002 : authentication challenge <= 4096 octets
 0x0003 : authentication token <= 4096 octets
 0x0004 : middlebox capabilities 64 bits
 0x0005 : policy rule identifier 32 bits
 0x0006 : group identifier 32 bits
 0x0007 : policy rule lifetime 32 bits
 0x0008 : policy rule owner <= 255 octets
 0x0009 : address tuple 32, 96 or 192 bits
 0x000A : PRR parameter set 32 bits
 0x000B : PER parameter set 32 bits

Stiemerling, et al. Experimental [Page 10]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

4.3.1. SIMCO Protocol Version Attribute

 The SIMCO protocol version attribute has a length of four octets.
 The first two octets contain the version number, one the major
 version number and the other the minor version number. Two remaining
 octets are reserved.

 +-+
 | 0x0001 | 0x0004 |
 +-+
 |major version #|minor version #| reserved |
 +-+

 Figure 4: Protocol version attribute

 The SIMCO protocol specified within this document is version 3.0.
 The version numbers carried in the protocol version attribute are 3
 for major version number and 0 for minor version number.

4.3.2. Authentication Attributes

 The authentication challenge attribute and the authentication token
 attribute have the same format. Both contain a single value field
 with variable length. For both, the maximum length is limited to
 4096 octets. Please note that the length of these attributes may
 have values that are not multiples of 4 octets. In case of an
 authentication challenge attribute, the value field contains an
 authentication challenge sent from one peer to the other, requesting
 that the other peer authenticate itself.

 +-+
 | 0x0002 | challenge length |
 +-+
 | challenge
 +-+

 ...

 +-+
 |
 +-+

 Figure 5: Authentication challenge attribute

 The authentication token attribute is used for transmitting an
 authentication token.

Stiemerling, et al. Experimental [Page 11]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +-+
 | 0x0003 | authentication length |
 +-+
 | authentication token
 +-+

 ...

 +-+
 |
 +-+

 Figure 6: Authentication attribute

4.3.3. Middlebox Capabilities Attribute

 The middlebox capabilities attribute has a length of eight octets.

 +-+
 | 0x0004 | 0x0008 |
 +-+
 | MB type |I|E|P|S|IIV|EIV| reserved |
 +-+
 | max policy rule lifetime |
 +-+

 Figure 7: Capabilities attribute

 The first parameter field carries a bit field called MB type and
 provides information about the middlebox type. The following bits
 within the field are defined. The remaining ones are reserved.

 0x80 : packet filter firewall
 0x40 : network address translator
 0x10 : support of PDR transaction
 0x01 : port translation (requires 0x40 set)
 0x02 : protocol translation (requires 0x40 set)
 0x04 : twice NAT support (requires 0x40 set)

 For middleboxes that implement combinations of NAT and firewalls,
 combinations of those flags are possible. For instance, for a
 Network Address and Port Translator (NAPT) with packet filter and PDR
 transaction support, the value of the MB type parameter field is
 0xD1.

 The following four parameters fields are binary flags with a size of
 one bit:

Stiemerling, et al. Experimental [Page 12]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 I : internal IP address wildcard support
 E : external IP address wildcard support
 P : port wildcard support
 S : persistent storage of policy rules

 The supported IP version for the internal and external network are
 coded into the IIV (Internal IP version) and EIV (external IP
 version) parameter fields. They both have a size of two bits.
 Allowed values are 0x1 for IP version 4 (IPv4), 0x2 for IP version 6
 (IPv6), and the combination of both (0x3) for IPv4 and IPv6 dual
 stack.

 The next parameter field with a length of 16 bits is reserved.

 The max policy rule lifetime parameter field specifies the maximum
 lifetime a policy rule may have.

4.3.4. Policy Rule Identifier Attribute

 The policy rule identifier (PID) attribute contains an identifier of
 a policy rule. The identifier has a length of four octets.

 +-+
 | 0x0005 | 0x0004 |
 +-+
 | policy rule identifier (PID) |
 +-+

 Figure 8: Policy rule identifier attribute

4.3.5. Group Identifier Attribute

 The group identifier (GID) attribute contains an identifier of a
 policy rule group. The identifier has a length of four octets.

 +-+
 | 0x0006 | 0x0004 |
 +-+
 | group identifier (GID) |
 +-+

 Figure 9: Group identifier attribute

4.3.6. Policy Rule Lifetime Attribute

 The policy rule lifetime attribute specifies the requested or actual
 remaining lifetime of a policy rule, in seconds. Its value field
 contains a 32-bit unsigned integer.

Stiemerling, et al. Experimental [Page 13]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +-+
 | 0x0007 | 0x0004 |
 +-+
 | policy rule lifetime |
 +-+

 Figure 10: Policy rule lifetime attribute

4.3.7. Policy Rule Owner Attribute

 The policy rule owner attribute specifies the authenticated agent
 that created and owns the policy rule. Its value field does not have
 a fixed length, but its length is limited to 255 octets. Please note
 that the length of this attribute may have values that are not
 multiples of 4 octets. The owner is set by the middlebox.

 +-+
 | 0x0008 | owner length |
 +-+
 | owner
 +-+

 ...

 +-+
 |
 +-+

 Figure 11: Policy rule owner attribute

4.3.8. Address Tuple Attribute

 The address tuple attribute contains a set of parameters specifying
 IP and transport addresses. The length of this attribute is 32, 96,
 or 192 bits.

 The first parameter field has a length of 4 bits. It indicates
 whether the contained parameters specify just the used protocols or
 also concrete addresses. Defined values for this field are:

 0x0 : full addresses
 0x1 : protocols only

 The second parameter field also has a length of 4 bits. It specifies
 the IP version number. Defined values for this field are:

 0x1 : IPv4
 0x2 : IPv6

Stiemerling, et al. Experimental [Page 14]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 The third parameter field has a length of 8 bits. It specifies a
 prefix length to be used for IP address wildcarding (see Section
 1.1).

 The fourth parameter field has also a length of 8 bits. It specifies
 the transport protocol. Defined values for this field are all values
 that are allowed in the ’Protocol’ field of the IPv4 header [RFC791]
 or in the ’Next Header field’ of the IPv6 header [RFC2460]. The set
 of defined numbers for these fields is maintained by the Internet
 Assigned Numbers Authority (IANA) under the label ’PROTOCOL NUMBERS’.

 The fifth parameter field has also a length of 8 bits. It specifies
 the location of the address. Defined values for this field are:

 0x00 : internal (A0)
 0x01 : inside (A1)
 0x02 : outside (A2)
 0x03 : external (A3)

 Port and address wildcarding can only be used in PER and PEA
 transactions. The address tuple attribute carries a port number of 0
 if the port should be wildcarded. For IPv4, a prefix length less
 than 0x20 is IP address wildcarding. For IPv6, a prefix length less
 than 0x80 is IP address wildcarding.

 The port range field must be always greater than zero, but at least
 1.

Stiemerling, et al. Experimental [Page 15]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +-+
 | 0x0009 | 0x0004 |
 +-+
 | 0x1 |IP ver.| prefix length |trnsp. protocol| location |
 +-+

 +-+
 | 0x0009 | 0x000C |
 +-+
 | 0x0 | 0x1 | prefix length |trnsp. protocol| location |
 +-+
 | port number | port range |
 +-+
 | IPv4 address |
 +-+

 +-+
 | 0x0009 | 0x0018 |
 +-+
 | 0x0 | 0x2 | prefix length |trnsp. protocol| location |
 +-+
 | port number | port range |
 +-+
 | |
 + +
 | |
 + IPv6 address +
 | |
 + +
 | |
 +-+

 Figure 12: Address tuple attributes

4.3.9. PRR Parameter Set Attribute

 The policy reserve rule (PRR) parameter set attribute contains all
 parameters of the PRR request except the group identifier:

 - NAT mode
 - port parity
 - requested inside IP version
 - requested outside IP version
 - transport protocol
 - port range

Stiemerling, et al. Experimental [Page 16]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 The attribute value field has a total size of 32 bits. It is sub-
 divided into six parameter fields.

 The first parameter field, called NM, has a length of 2 bits and
 specifies the requested NAT mode of the middlebox at which a
 reservation is requested. Defined values for this field are:

 01 : traditional
 10 : twice

 The second parameter field, called PP, has also a length of 2 bits.
 It specifies the requested port parity. Defined values for this
 field are:

 00 : any
 01 : odd
 10 : even

 The third and the fourth parameter fields are called IPi and IPo,
 respectively. Both have a length of 2 bits. They specify the
 requested version of the IP protocol at the inside (IPi) or outside
 (IPo) of the middlebox, respectively. Defined values for these
 fields are:

 00 : any
 01 : IPv4
 10 : IPv6

 The fifth parameter field has a length of 8 bits. It specifies the
 transport protocol for which the reservation should be made. A value
 of zero indicates that the reservation is requested for an IP address
 without specific selection of a protocol and a port number. Allowed
 non-zero values are the defined values for the ’protocol’ field in
 the IPv4 header and IPv6 extension headers. The set of defined
 numbers for these fields is maintained by the Internet Assigned
 Numbers Authority (IANA) under the label ’PROTOCOL NUMBERS’.

 The sixth parameter field has a length of 16 bits. It contains an
 unsigned integer specifying the length of the port range that should
 be supported. A value of 0xFFFF indicates that the reservation
 should be made for all port numbers of the specified transport
 protocol. A port range field with the value of 0x0001 specifies that
 only a single port number should be reserved. Values greater than
 one indicate the number of consecutive port numbers to be reserved.
 A value of zero is not valid for this field.

Stiemerling, et al. Experimental [Page 17]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 Please note that the wildcarding value 0xFFFF can only be used in the
 port range field in the PRR parameter set attribute. In the address
 tuple attribute, wildcarding of port numbers is specified by the port
 number field having a value of zero (see Section 4.3.8).

 +-+
 | 0x000A | 0x0004 |
 +-+
 |NM |PP |IPi|IPo|trnsp. protocol| port range |
 +-+

 Figure 13: PRR parameter set attribute

4.3.10. PER Parameter Set Attribute

 The policy enable rule (PER) parameter set attribute contains two
 parameters: the requested port parity, and the direction of the
 enabled data stream. The attribute value field has a total size of
 32 bits, and it is sub-divided into 3 parameter fields.

 The first parameter field has a length of 8 bits. It specifies the
 requested port parity. Defined values for this field are:

 0x00 : any
 0x03 : same

 The second parameter field has a length of 8 bits. It specifies the
 direction of the enabled data stream. Defined values for this field
 are:

 0x01 : inbound
 0x02 : outbound
 0x03 : bi-directional

 The third parameter field has a length of 16 bits and is reserved.

 +-+
 | 0x000B | 0x0004 |
 +-+
 | port parity | direction | reserved |
 +-+

 Figure 14: PER parameter set attribute

Stiemerling, et al. Experimental [Page 18]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5. SIMCO Message Formats

 In the following, the formats of the different SIMCO message types
 are defined. The definitions are grouped into protocol error
 messages, session control messages, and policy rule control messages.

5.1. Protocol Error Replies and Notifications

 When processing a received message, the middlebox might run into
 message processing problems before it can identify whether the
 message concerns session control or policy rule control. Also, it
 might not be possible to determine the message type, or it might
 detect a wrong message format. In these cases, the Badly Formed
 Message (BFM) notification or one of the following negative replies
 is sent:

 0x0401 : BFM notification
 0x0310 : wrong basic request message type
 0x0311 : wrong request message sub-type
 0x0312 : badly formed request

5.1.1. BFM Notification

 The Badly Formed Message (BFM) notification message is sent from the
 middlebox to the agent after a message was received that does not
 comply to the SIMCO message format definition. The BFM notification
 has no attributes and contains the SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 15: BFM notification structure

5.1.2. Protocol Error Negative Replies

 Protocol error negative replies are sent from the middlebox to the
 agent if a message cannot be clearly interpreted, as it does not
 comply with any defined message format. Protocol error negative
 replies include ’wrong basic request message type’ (0x0310), ’wrong
 request message sub-type’ (0x0311), and ’badly formed request’
 (0x0312). These replies have no attributes. They consist of the
 SIMCO header only.

Stiemerling, et al. Experimental [Page 19]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 16: Protocol error negative reply structure

5.2. Session Control Messages

 Session control messages include the following list of message types
 (composed of basic type and sub-type):

 0x0101 : SE request
 0x0102 : SA request
 0x0103 : ST request
 0x0201 : SE positive reply
 0x0202 : SA positive reply
 0x0203 : ST positive reply
 0x0310 : negative reply: wrong basic request message type
 0x0311 : negative reply: wrong request message sub-type
 0x0312 : negative reply: badly formed request
 0x0320 : negative reply: request not applicable
 0x0321 : negative reply: lack of resources
 0x0322 : negative reply: protocol version mismatch
 0x0323 : negative reply: authentication failed
 0x0324 : negative reply: no authorization
 0x0325 : negative reply: transport protocol problem
 0x0326 : negative reply: security of underlying protocol layers
 insufficient
 0x0401 : BFM notification
 0x0402 : AST notification

5.2.1. SE Request

 The Session Establishment (SE) request message is sent from the agent
 to the middlebox to request establishment of a session. The SE
 request message contains one or two attributes: a mandatory SIMCO
 version number attribute and an optional authentication challenge
 attribute requesting that the middlebox authenticate itself.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | SIMCO protocol version |
 +--------------------------+
 | authentication challenge | optional
 +--------------------------+

 Figure 17: Structure of SE request

Stiemerling, et al. Experimental [Page 20]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.2.2. SE Positive Reply

 The Session Establishment (SE) reply message indicates completion of
 session establishment. It contains a single mandatory attribute: the
 middlebox capabilities attribute.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | middlebox capabilities |
 +--------------------------+

 Figure 18: Structure of SE positive reply

5.2.3. SA Positive Reply

 If the agent requested middlebox authentication, or if the middlebox
 wants the agent to authenticate itself, then the middlebox replies on
 the SE request with a Session Authentication (SA) reply message
 instead of an SE reply message. The SA reply message contains two
 optional attributes, but at least one of them needs to be present.
 The first one is an authentication challenge attribute requesting
 that the agent authenticate itself. The second one is an
 authentication token attribute authenticating the middlebox as the
 reply to an authentication request by the agent.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | authentication challenge | optional
 +--------------------------+
 | authentication token | optional
 +--------------------------+

 Figure 19: Structure of SA positive reply

5.2.4. SA Request

 The Session Authentication (SA) request message is sent from the
 agent to the middlebox after an initial SE request was answered by an
 SA reply. The SE request message contains one optional attribute: an
 authentication token attribute authenticating the agent as the
 response to an authentication challenge sent by the middlebox in an
 SA reply.

Stiemerling, et al. Experimental [Page 21]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | authentication token | optional
 +--------------------------+

 Figure 20: Structure of SA request

5.2.5. ST Request and ST Positive Reply

 The Session Termination (ST) request message is sent from the agent
 to the middlebox to request termination of a session. The ST
 positive reply is returned, acknowledging the session termination.
 Both messages have no attributes and contain the SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 21: Structure of ST request and positive reply

5.2.6. SE Negative Replies

 There are nine different negative reply messages that can be sent
 from a middlebox to the agent if the middlebox rejects an SE request.
 Three of them are protocol error negative replies (0x031X) already
 covered in Section 4.1.2.

 The remaining six negative replies are specific to session
 establishment. One of them, the ’protocol version mismatch’ negative
 reply (0x0322), contains a single attribute: the protocol version
 attribute.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | SIMCO protocol version |
 +--------------------------+

 Figure 22a: Structure of SE negative replies

 The remaining three replies include ’request not applicable’
 (0x0320), ’lack of resources’ (0x0321), ’authentication failed’
 (0x0323), ’no authorization’ (0x0324), ’transport protocol problem’
 (0x0325), and ’security of underlying protocol layers insufficient’
 (0x0326). They consist of the SIMCO header only.

Stiemerling, et al. Experimental [Page 22]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 22b: Structure of SE negative replies

5.2.7. AST Notification

 The Asynchronous Session Termination (AST) notification message is
 sent from the middlebox to the agent, if the middlebox wants to
 terminate a SIMCO session. It has no attributes and contains the
 SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 22a: Structure of AST notifications

5.3. Policy Rule Control Messages

 Policy Rule control messages include the following list of message
 types (composed of basic type and sub-type):

 0x0111 : PRR request
 0x0112 : PER request
 0x0113 : PEA request
 0x0114 : PDR request
 0x0115 : PLC request
 0x0121 : PRS request
 0x0122 : PRL request
 0x0211 : PRR positive reply
 0x0212 : PER positive reply
 0x0214 : PDR positive reply
 0x0215 : PLC positive reply
 0x0216 : PRD positive reply
 0x0221 : PRS positive reply
 0x0223 : PES positive reply
 0x0224 : PDS positive reply
 0x0222 : PRL positive reply
 0x0310 : negative reply: wrong basic request message type
 0x0311 : negative reply: wrong request message sub-type
 0x0312 : negative reply: badly formed request
 0x0340 : negative reply: transaction not supported
 0x0341 : negative reply: agent not authorized for this transaction
 0x0342 : negative reply: no resources available for this
 transaction
 0x0343 : negative reply: specified policy rule does not exist

Stiemerling, et al. Experimental [Page 23]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 0x0344 : negative reply: specified policy rule group does not exist
 0x0345 : negative reply: not authorized for accessing this policy
 0x0346 : negative reply: not authorized for accessing specified
 group
 0x0347 : negative reply: requested address space not available
 0x0348 : negative reply: lack of IP addresses
 0x0349 : negative reply: lack of port numbers
 0x034A : negative reply: middlebox configuration failed
 0x034B : negative reply: inconsistent request
 0x034C : negative reply: requested wildcarding not supported
 0x034D : negative reply: protocol type doesn’t match
 0x034E : negative reply: NAT mode not supported
 0x034F : negative reply: IP version mismatch
 0x0350 : negative reply: conflict with existing rule
 0x0351 : negative reply: not authorized to change lifetime
 0x0352 : negative reply: lifetime can’t be extended
 0x0353 : negative reply: illegal IP Address
 0x0354 : negative reply: protocol type not supported
 0x0355 : negative reply: illegal port number
 0x0356 : negative reply: illegal NOSP
 0x0357 : negative reply: already enable PID
 0x0358 : negative reply: parity doesn’t match
 0x0401 : negative reply: BFM notification
 0x0403 : negative reply: ARE notification

5.3.1. Policy Events and Asynchronous Notifications

 SIMCO maintains an owner attribute for each policy rule at the
 middlebox. Depending on the configuration of the middlebox, several
 agents may access the same policy rule; see also [RFC3989], Sections
 2.1.5 and 2.3.4.

 To keep all agents synchronized about the state of their policy
 rules, SIMCO generates Asynchronous Rule Event (ARE) notifications.
 When an agent is reserving or enabling a policy rule, the middlebox
 sends an ARE to all agents that are authorized to access this policy
 rule. The middlebox sends an ARE to all agents authorized to access
 this policy rule when the rule lifetime is modified or if the rule is
 deleted.

5.3.2. PRR Request

 The Policy Reserve Rule (PRR) request message is sent from the agent
 to the middlebox to request reservation of an IP address (and
 potentially also a range of port numbers) at the middlebox. Besides
 the SIMCO header, the request message contains two or three
 attributes. The first one is the PRR parameter set attribute
 specifying all parameters of the request except the requested policy

Stiemerling, et al. Experimental [Page 24]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 rule lifetime and the group identifier. The missing parameters are
 covered by the following two attributes. The last attribute, the
 group identifier, is optional.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | PRR parameter set |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | group identifier | optional
 +--------------------------+

 Figure 23: Structure of PRR request

5.3.3. PER Request

 The Policy Enable Rule (PER) request message is sent from the agent
 to the middlebox to request enabling of data communication between an
 internal and an external address. Besides the SIMCO header, the
 request message contains four or five attributes. The first one is
 the PER parameter set attribute specifying all parameters of the
 request except the internal address, the external address, the
 requested policy rule lifetime, and the group identifier. The
 missing parameters are covered by the following four attributes. Two
 address tuple parameters specify internal and external address
 tuples. Much like the PRR request, the last two attributes specify
 the requested lifetime and group identifier. The group identifier
 attribute is optional.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | PER parameter set |
 +--------------------------+
 | address tuple (internal) |
 +--------------------------+
 | address tuple (external) |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | group identifier | optional
 +--------------------------+

 Figure 24: Structure of PER request

Stiemerling, et al. Experimental [Page 25]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.4. PEA Request

 The Policy Enable rule After reservation (PEA) request message is
 sent from the agent to the middlebox to request enabling of data
 communication between an internal and an external address. It is
 similar to the PER request. There is just one difference. The
 optional group identifier attribute of the PER request is replaced by
 a mandatory policy rule identifier attribute referencing an already
 established policy reserve rule established by a PRR transaction.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | PER parameter set |
 +--------------------------+
 | address tuple (internal) |
 +--------------------------+
 | address tuple (external) |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+

 Figure 25: Structure of PEA request

 The group identifier attribute is not included in the PEA request,
 since the group membership of the policy enable rule is inherited of
 the policy reserve rule.

5.3.5. PLC Request

 The Policy Rule Lifetime Change (PLC) request message is sent from
 the agent to the middlebox to request a change of the remaining
 policy lifetime. Besides the SIMCO header, the request message
 contains two attributes specifying the policy rule to which the
 change should be applied and specifying the requested remaining
 lifetime.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+

 Figure 26: Structure of PLC request

Stiemerling, et al. Experimental [Page 26]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.6. PRS Request

 The Policy Rule Status (PRS) request message is sent from the agent
 to the middlebox to request a report on the status of a specified
 policy rule. Besides the SIMCO header, the request message contains
 just one attribute specifying the policy rule for which the report is
 requested.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+

 Figure 27: Structure of PRS request

5.3.7. PRL Request

 The Policy Rule List (PRL) request message is sent from the agent to
 the middlebox to request a list of all policy rules accessible to the
 agent. The message consists of the SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 28: Structure of PRL request

5.3.8. PDR Request

 The Policy Disable Rule (PDR) request message is sent from the agent
 to the middlebox to request a disable rule. The message consists of
 the SIMCO header, an internal address tuple, an external address
 tuple, and a lifetime attribute.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | address tuple (internal) |
 +--------------------------+
 | address tuple (external) |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+

 Figure 29: Structure of PDR request

Stiemerling, et al. Experimental [Page 27]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.9. PRR Positive Reply

 The Policy Reserve Rule (PRR) positive reply is sent after successful
 reservation of an address at the inside or outside of the middlebox.
 The message contains four mandatory attributes and an optional
 attribute: the policy rule identifier of the new policy reserve rule,
 the corresponding group identifier, the remaining lifetime of the
 policy rule, the reserved outside address tuple, and the optional
 reserved inside address tuple. The reserved inside address tuple is
 only returned when the middlebox is of type twice-NAT.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | group identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | address tuple (outside) |
 +--------------------------+
 | address tuple (inside) | optional
 +--------------------------+

 Figure 30: Structure of PRR positive reply

5.3.10. PER Positive Reply

 The Policy Enable Rule (PER) positive reply is sent after the
 middlebox successfully enables data transfer between an internal and
 an external address (by using a PER or PEA request message). The
 message contains five attributes: the policy rule identifier of the
 new policy enable rule, the corresponding group identifier, the
 remaining lifetime of the policy rule, the address tuple at the
 outside of the middlebox, and the address tuple at the inside of the
 middlebox.

Stiemerling, et al. Experimental [Page 28]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | group identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | address tuple (outside) |
 +--------------------------+
 | address tuple (inside) |
 +--------------------------+

 Figure 31: Structure of PER positive reply

5.3.11. PLC Positive Reply

 The Policy Lifetime Change (PLC) positive reply is sent after the
 middlebox changes the lifetime of a policy rule to a positive (non-
 zero) value. The message contains just a single attribute: the
 remaining lifetime of the policy rule.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+

 Figure 32: Structure of PLC positive reply

5.3.12. PRD Positive Reply

 The Policy Rule Deleted (PRD) positive reply is sent after the
 middlebox changes the remaining lifetime of a policy rule to zero,
 which means that it terminates the policy rule. The message consists
 of the SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 33: Structure of PRD positive reply

Stiemerling, et al. Experimental [Page 29]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.13. PRS Positive Reply

 The Policy Reserve Rule Status (PRS) positive reply is used for
 reporting the status of a policy reserve rule. The message format is
 identical with the format of the PRR positive reply except that it
 contains, in addition, a policy rule owner attribute.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | group identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | address tuple (outside) |
 +--------------------------+
 | address tuple (inside) | optional
 +--------------------------+
 | policy rule owner |
 +--------------------------+

 Figure 34: Structure of PRS positive reply

Stiemerling, et al. Experimental [Page 30]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.14. PES Positive Reply

 The Policy Enable Rule Status (PES) positive reply is used for
 reporting the status of a policy enable rule.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | group identifier |
 +--------------------------+
 | PER parameter set |
 +--------------------------+
 | address tuple (internal) |
 +--------------------------+
 | address tuple (inside) |
 +--------------------------+
 | address tuple (outside) |
 +--------------------------+
 | address tuple (external) |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | policy rule owner |
 +--------------------------+

 Figure 35: Structure of PES positive reply

Stiemerling, et al. Experimental [Page 31]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.15. PDS Positive Reply

 The Policy Disable Rule Status (PDS) positive reply is used for
 reporting the status of a policy disable rule. The message contains
 five attributes: the policy rule identifier, the internal and
 external address tuples, the policy disable rule lifetime, and the
 policy rule owner.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | address tuple (internal) |
 +--------------------------+
 | address tuple (external) |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+
 | policy rule owner |
 +--------------------------+

 Figure 36: Structure of PDS positive reply

3.5.16. PRL Positive Reply

 The Policy Rule List (PRL) positive reply is used for reporting the
 list of all established policy rules. The number of attributes of
 this message is variable. The message contains one policy rule
 identifier attribute per established policy rule.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | |
 . . .
 | |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+

 Figure 37: Structure of PRL positive reply

Stiemerling, et al. Experimental [Page 32]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

5.3.17. PDR Positive Replies

 The Policy Disable Rule (PDR) positive reply is sent after the
 middlebox successfully enables the policy disable rule and removal of
 conflicting policy rules. The message contains two attributes: the
 policy rule identifier of the new policy disable rule, and the
 remaining lifetime of the policy rule.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+

 Figure 38: Structure of PDR positive reply

5.3.18. Policy Rule Control Negative Replies

 Session establishment negative replies are sent from the middlebox to
 the agent if a middlebox rejects a policy rule control request.
 Beyond protocol error replies, a number of policy rule control-
 specific negative reply messages that can be sent. They are listed
 at the beginning of Section 5.3. They all have no attributes. They
 consist of the SIMCO header only.

 +--------------------------+
 | SIMCO header |
 +--------------------------+

 Figure 39: Structure of Policy rule control negative replies

5.3.19. ARE Notification

 The Asynchronous Policy Rule Event (ARE) notification message is sent
 from the middlebox to the agent. All agents participating in an open
 SIMCO session that are authorized to access this policy rule and are
 not explicitly requesting an action (i.e., reserving, enabling, and
 changing lifetime) receive such an ARE notification, when:

 - a policy rule is deleted (lifetime attribute = 0)

 - a policy rule is reserved (lifetime attribute = lifetime)

 - a policy rule is enabled (lifetime attribute = lifetime)

 - a policy rule’s lifetime changed (lifetime attribute = lifetime)

Stiemerling, et al. Experimental [Page 33]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 Besides the SIMCO header, the request message contains two attributes
 specifying the policy rule that is concerned and the current
 lifetime.

 +--------------------------+
 | SIMCO header |
 +--------------------------+
 | policy rule identifier |
 +--------------------------+
 | policy rule lifetime |
 +--------------------------+

 Figure 40: Structure of ARE notification

6. Message Format Checking

 This section describes common processing of all messages that are
 received by a middlebox.

 1) When a message arrives at a middlebox, the header is checked for
 consistency before the payload is processed.

 o If the header checks fail, the middlebox sends a BFM
 notification.

 o If a session is already established, then the middlebox also
 sends an AST notification and closes the connection.

 2) The middlebox waits until it has received as many octets from the
 agent as specified by the message length plus 8 octets (the length
 of the SIMCO header).

 o If the middlebox is still waiting and does not receive any more
 octets from the agent for 60 seconds, it sends a BFM
 notification.

 o If a session is already established, then the middlebox also
 sends an AST notification and closes the connection after
 sending the BFM notification; otherwise, it closes the
 connection without sending another message.

 3) After receiving a sufficient number of octets, the middlebox reads
 the transaction identifier and the basic message type.

 o If the value of the basic message type fields does not equal
 0x01 (request message), then the middlebox stops processing the
 message and sends a negative reply of type ’wrong basic request
 message type’ (0x0310) to the agent.

Stiemerling, et al. Experimental [Page 34]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 o If no session is established, then the middlebox closes the
 connection after sending the 0x0310 reply.

 4) Then the middlebox checks the message sub-type.

 o If no session is established, then only sub-type ’session
 establishment’ (0x01) is accepted. For all other sub-types,
 the middlebox sends a reply of type ’wrong request message
 sub-type’ (0x0311) to the agent and closes the connection after
 sending the reply.

 o If a session is already established, then the middlebox checks
 if the message sub-type is one of the sub-types defined in
 Section 4.2.2. (excluding ’session establishment’ (0x01),
 ’session termination’ (0x03), and ’policy rule
 deletion’(0x15)).

 o If not, then the middlebox stops processing the message and
 sends a reply of type ’wrong request message sub-type’
 (0x0311) to the agent.

 5) Then the middlebox checks the TLV-structured attributes in the
 message.

 o If their type or number does not comply with the defined format
 for this message type, the middlebox stops processing the
 message and sends a reply of type ’badly formed request’
 (0x0312) to the agent.

 o If no session is established, then the middlebox closes the
 connection after sending the 0x0312 reply.

 6) After all message format checks are passed, the middlebox
 processes the content of the attributes as described in the
 following sections.

Stiemerling, et al. Experimental [Page 35]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

7. Session Control Message Processing

 For session control, the agent can send SE, SA, and ST request
 messages. The middlebox then sends per request a single reply back
 to the agent. Additionally, the middlebox may send unsolicited AST
 notifications.

7.1. Session State Machine

 For each session, there is a session state machine illustrated by the
 figure below.

 SE/BFM
 SE/0x031X
 SE/0x032X
 +-------+
 | v
 +----------+
 | CLOSED |----------------+
 +----------+ |
 | ^ ^ |
 | | | SA/BFM | SE/SA
 | | | SA/0x031X |
 | | | SA/0x032X |
 SE/SE | | | ST/ST v
 | | | AST +----------+
 | | +------------| NOAUTH |
 | | +----------+
 | | AST |
 v | ST/ST | SA/SE
 +----------+ |
 | OPEN |<---------------+
 +----------+

 Figure 41: Session state machine

 The figure illustrates all possible state transitions of a session.
 Request transactions (SE, SA, ST) are denoted by a descriptor of the
 request message, a ’/’ symbol, and a descriptor of the reply message.
 Notification transactions are denoted just by the a notification
 descriptor. For example, a successful SE transaction is denoted by
 ’SE/SE’, and an AST notification is denoted by ’AST’.

 Initially, all sessions are in state CLOSED. From there, a
 successful SE transaction can change its state either to NOAUTH or to
 OPEN. From state NOAUTH, a successful SA transaction changes session
 state to OPEN. A failed SA transaction changes session state from

Stiemerling, et al. Experimental [Page 36]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 NOAUTH back to CLOSED. Successful ST transactions and AST
 notifications change sessions from state NOAUTH or from state OPEN to
 state CLOSED.

 A SIMCO session is established in state OPEN, which is the only state
 in which the middlebox accepts requests other than SE, SA, and ST.

7.2. Processing SE Requests

 The SE request is only applicable if the session is in state CLOSED.
 If a session is in state NOAUTH or OPEN, then the middlebox sends a
 negative reply message of type ’request not applicable’ (0x0320) to
 the agent, leaving the state of the session unchanged.

 Before processing the content of the SE request message, the
 middlebox may check its resources and decide that available resources
 are not sufficient to serve the agent. In such a case, the middlebox
 returns a negative reply of type ’lack of resources’ (0x0321) and
 closes the connection. Furthermore, the middlebox may decide to
 reject the SE request if the selected network connection and its
 protocol specific parameters are not acceptable for the middlebox.
 In such a case, the middlebox returns a negative reply of type
 ’transport protocol problem’ (0x0325) and closes the connection. The
 middlebox returns a negative reply of type ’security of underlying
 protocol layers insufficient’ (0x0326) and closes the connection, if
 the security properties of the network connection do not match the
 middlebox’s requirements.

 Processing of an SE request message starts with checking the major
 and minor protocol version number in the protocol version attribute.
 If the middlebox does not support the specified version number, then
 the middlebox returns a negative reply message of type ’protocol
 version mismatch’ (0x0322) with the protocol version attribute
 indicating a version number that is supported by the middlebox.
 After sending this reply, the middlebox closes the connection.

 If the agent is already sufficiently authenticated by means of the
 underlying network connection (for instance, IPsec or TLS), then the
 middlebox checks whether the agent is authorized to configure the
 middlebox. If it is not, the middlebox returns a negative reply of
 type ’no authorization’ (0x0324) and closes the connection.

 A positive reply on the SE request may be of sub-type SE or SA. An
 SE request is sent after both parties sufficiently authenticate and
 authorize each other. An SA reply message is sent if explicit
 authentication is requested by any party. The agent requests
 explicit authentication by adding an authentication challenge
 attribute to the SE request message. The middlebox requests explicit

Stiemerling, et al. Experimental [Page 37]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 authentication by returning an SA reply message with an
 authentication challenge attribute to the agent. If both parties
 request explicit authentication, then the SA reply message contains
 both an authentication challenge attribute for the agent and an
 authentication token attribute authenticating the middlebox.

 If the SE request message contains an authentication challenge
 attribute, then the middlebox checks if it can authenticate itself.
 If yes, it adds a corresponding authentication token attribute to the
 SA reply. If it cannot authenticate based on the authentication
 challenge attribute, it adds an authentication token attribute to the
 SA reply message with a value field of length zero.

 If the middlebox wants the agent to explicitly authenticate itself,
 then the middlebox creates an authentication challenge attribute for
 the agent and adds it to the SA reply message.

 If the middlebox replies to the SE request message with an SA reply
 message, then the session state changes from CLOSED to NO_AUTH.

 If the SE request message did not contain an authentication challenge
 attribute and if the middlebox does not request the agent to
 explicitly authenticate itself, then the middlebox sends an SE reply
 message in response to the SE request message. This implies that the
 session state changes from CLOSED to OPEN.

 The SE reply message contains a capabilities attribute describing the
 middlebox capabilities.

7.3. Processing SA Requests

 The SA request is only applicable if the session is in state NOAUTH.
 If a session is in state CLOSED or OPEN, then the middlebox sends a
 negative reply message of type ’request not applicable’ (0x0320) to
 the agent. The state of the session remains unchanged.

 After receiving an SA request message in state NOAUTH, the middlebox
 checks if the agent is sufficiently authenticated. Authentication
 may be based on an authentication token attribute that is optionally
 contained in the SA request message. If the agent is not
 sufficiently authenticated, then the middlebox returns a negative
 reply of type ’authentication failed’ (0x0323) and closes the
 connection.

 If authentication of the agent is successful, the middlebox checks if
 the agent is authorized to configure the middlebox. If not, the
 middlebox returns a negative reply of type ’no authorization’
 (0x0324) and closes the connection.

Stiemerling, et al. Experimental [Page 38]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 If authorization is successful, then the session state changes from
 NOAUTH to OPEN, and the agent returns an SE reply message that
 concludes session setup. The middlebox states its capabilities in
 the capability attribute contained in the SE reply message.

7.4. Processing ST Requests

 The ST request is only applicable if the session is in state NOAUTH
 or OPEN. If a session is in state CLOSED, then the middlebox sends a
 negative reply message of type ’request not applicable’ (0x0320) to
 the agent. The state of the session remains unchanged.

 The middlebox always replies to a correct ST request with a positive
 ST reply. The state of the session changes from OPEN or from NOAUTH
 to CLOSED. After sending the ST reply, the middlebox closes the
 connection. Requests received after receiving the ST request and
 before closing the connection are ignored by the middlebox.

7.5. Generating AST Notifications

 At any time, the middlebox may terminate an established session and
 change the session state from OPEN or from NOAUTH to CLOSED. Session
 termination is indicated to the agent by sending an AST notification.

 Before sending the notification, the middlebox ensures that for all
 requests that have been processed, according replies are returned to
 the agent, such that the agent exactly knows the state of the
 middlebox at the time of session termination. After sending the AST
 notification, the middlebox sends no more messages to the agent, and
 it closes the connection.

7.6. Session Termination by Interruption of Connection

 Section 2.2.4 of [RFC3989] describes the session behavior when the
 network connection is interrupted. The behavior is defined for the
 middlebox (i.e., the SIMCO server) only and does not consider the
 behavior of the SIMCO agent in such an event.

 If the SIMCO agent detects an interruption of the underlying network
 connection, it can terminate the session. The detection of the
 interrupted network connection can be done by several means, for
 instance, feedback of the operating system or a connection timeout.
 The definition of this detection mechanism is out of the scope of
 this memo.

Stiemerling, et al. Experimental [Page 39]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8. Policy Rule Control Message Processing

 For policy rule control and monitoring, the agent can send the PRR,
 PER, PEA, PLC, PRS, and PRL requests. The middlebox then sends a
 single reply message per request message back to the agent.
 Additionally, the middlebox may send unsolicited ARE notifications at
 any time.

 The transaction semantics of policy rule control messages is
 explained in detail in [RFC3989], Section 2.3.

 For examples about protocol operation, see Section 4 of [RFC3989].

8.1. Policy Rule State Machine

 Policy rules are established by successful PRR, PEA, or PER
 transactions. Each time a policy rule is created, an unused policy
 rule identifier (PID) is assigned to the new policy rule. For each
 policy rule identifier, a state machine exists at the middlebox. The
 state machine is illustrated by the figure below.

 PRR/PRR +---------------+
 +----+ +-----------------+ PID UNUSED |<-+
 | | | +---------------+ |
 | v v PLC(lt=0)/ ^ | |
 | +-------------+ PRD | | PER/PER | ARE(lt=0)
 | | RESERVED +------------+ | | PLC(lt=0)/
 | +-+----+------+ ARE(lt=0) v | PRD
 | | | +---------------+ |
 +----+ +---------------->| ENABLED +--+
 PLC(lt>0)/ PEA/PER +-+-------------+
 PLC | ^
 +-----------+
 lt = lifetime PLC(lt>0)/PLC

 Figure 42: Policy rule state machine

 The figure illustrates all possible state transitions of a PID and
 its associated policy. Successful configuration request transactions
 (PER, PRR, PEA, PLC) are denoted by a descriptor of the request
 message, a ’/’ symbol, and a descriptor of the reply message. Failed
 configuration request transactions are not displayed, because they do
 not change the PID state. Notification transactions are denoted just
 by the a notification descriptor. For example, a successful PRR
 request transaction is denoted by ’PRR/PRR’, and an ARE notification

Stiemerling, et al. Experimental [Page 40]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 is denoted by ’ARE’. For PLC request transactions, the descriptor
 for the request message is extended by an indication of the value of
 the lifetime parameter contained in the message.

 A successful PRR transaction (PRR/PRR) picks a PID in state UNUSED
 and changes the state to RESERVED. A successful PER transitions
 picks a PID in state UNUSED and changes the state to ENABLED. A PID
 in state RESERVED is changed to ENABLED by a successful PEA
 transaction. In state RESERVED or UNUSED, a successful PLC
 transaction with a lifetime parameter greater than zero does not
 change the PID’s state. A successful PLC transaction with a lifetime
 parameter equal to zero changes the state of a PID from RESERVED to
 UNUSED or from ENABLED to UNUSED.

 A failed request transaction does not change state at the middlebox.

 An ARE notification transaction with the lifetime attribute set to
 zero has the same effect as a successful PLC transaction with a
 lifetime parameter equal to zero.

8.2. Processing PRR Requests

 Processing PRR requests is much simpler on pure firewalls than on
 middleboxes with NAT functions. Therefore, this section has three
 sub-sections: The first one describes initial checks that are
 performed in any case. The second sub-section describes processing
 of PRR requests on pure firewalls, and the third one describes
 processing on all devices with NAT functions.

8.2.1. Initial Checks

 When a middlebox receives a PRR request message, it first checks if
 the authenticated agent is authorized for requesting reservations.
 If not, it returns a negative reply message of type ’agent not
 authorized for this transaction’ (0x0341).

 If the request contains the optional group identifier, then the
 middlebox checks if the group already exists. If not, the middlebox
 returns a negative reply message of type ’specified policy rule group
 does not exist’ (0x0344).

 If the request contains the optional group identifier, then the
 middlebox checks if the authenticated agent is authorized for adding
 members to this group. If not, the middlebox returns a negative
 reply message of type ’not authorized for accessing specified group’
 (0x0346).

Stiemerling, et al. Experimental [Page 41]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 The middlebox may then check the PRR parameter set. A negative reply
 of type ’IP version mismatch’ (0x034F) is returned if the IPi field
 does not match the inside IP version of the address at the middlebox.
 A negative reply of type ’IP version mismatch’ (0x034F) is returned
 if the IPo field does not match the outside IP version of the address
 at the middlebox. The requested transport protocol type is checked,
 and a negative reply of type ’protocol type not supported’ (0x0354)
 is returned if it is not supported. The middlebox may return a
 negative reply of type ’requested address space not available’
 (0x0347) if the requested address space is completely blocked or not
 supported by the middlebox in any way; for example, if a UDP port
 number is requested and all UDP packets are blocked by a middlebox
 acting as firewall.

 The latter check at the middlebox is optional. If the check would
 fail and is not performed at this transaction, then two superfluous
 transactions will follow. First, the agent will send a request
 message for a corresponding PER transaction and will receive a
 negative reply on this. Second, either the agent will send a
 corresponding PLC request message with lifetime set to zero in order
 to delete the reservation, or the reservation will time out and the
 middlebox will send an ARE notification message with the lifetime
 attribute set to zero. Both transactions can be avoided if the
 middlebox initially performs this check.

 A reason for avoiding this check might be its complexity. If the
 check is passed, the same check will have to be performed again for a
 subsequent corresponding PEA request. If processing two more
 transactions is considered to consume less resources than performing
 the check twice, it might be desirable not to perform it during the
 PRR transaction.

 After checking the PRR parameter set, the middlebox chooses a
 lifetime value for the new policy rule to be created, which is
 greater than or equal to zero and less than or equal to the minimum
 of the requested value and the maximum lifetime specified by the
 middlebox capabilities attribute at session setup. Formally, the
 lifetime is chosen such that

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 holds, where ’lt_granted’ is the actual lifetime chosen by the
 middlebox, ’lt_requested’ is the lifetime requested by the agent, and
 ’lt_maximum’ is the maximum lifetime specified during capability
 exchange at session setup.

Stiemerling, et al. Experimental [Page 42]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 If there are further sessions in state OPEN with authenticated agents
 authorized to access the policy rule, then to each of these agents a
 corresponding ARE notification with lifetime set to lt_granted is
 sent.

 If the chosen lifetime is zero, the middlebox sends a negative reply
 of type ’middlebox configuration failed’ (0x034A) to the agent.

8.2.2. Processing on Pure Firewalls

 If the middlebox is configured as a pure firewall, then it accepts
 the request after the initial checks. It establishes a new policy
 reserve rule and assigns to it a policy rule identifier in state
 RESERVED. It generates a positive PRR reply and sets the attributes
 as specified below. No configuration of the firewall function is
 required.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PRR reply.

 If a group identifier attribute is contained in the PRR request, then
 the middlebox adds the new policy rule to the members of this group.
 If the PRR request does not contain a group identifier attribute,
 then the middlebox creates a new group with the new policy rule as
 the only member. In any case, the middlebox reports the group of
 which the new policy rule is a member in the group identifier
 attribute of the PRR reply.

 The chosen lifetime is reported in the lifetime attribute of the PRR
 reply.

 In the address tuple (outside) attribute of the PRR reply, the first
 parameter field is set to ’protocols only’ (0x1). Consequently, the
 attribute has a length of 32 bits. The IP version parameter field is
 set according to the IPo parameter field in the PRR parameter set
 attribute of the PRR request message. The prefix length parameter
 field is set to 0x00, and the transport protocol parameter field in
 the address tuple (outside) attribute of the PRR reply is set
 identically to the transport protocol attribute in the PRR parameter
 set attribute of the PRR request message. The location parameter
 field is set to ’outside’ (0x02).

Stiemerling, et al. Experimental [Page 43]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.2.3. Processing on Network Address Translators

 If the middlebox is configured as a Network Address Translator (NAT),
 then it tries to reserve a NAT binding.

 The middlebox first checks the PRR parameter set further if the NM
 (NAT mode) parameter matches its configuration. A negative reply of
 type ’NAT mode not supported’ (0x034E) is returned by the middlebox
 if the configuration is not matched.

 The following actions are performed, depending on the middlebox NAT
 type:

 - traditional NAT
 A NAT binding at the outside (A2) with the requested transport
 protocol, external IP version, port range, and port parity is
 reserved.

 - twice NAT
 A NAT binding at the outside (A2) with the requested transport
 protocol, external IP version, port range, and port parity is
 reserved. Furthermore, the middlebox reserves an inside (A1) NAT
 binding with the requested transport protocol, internal IP
 version, port range, and port parity.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PRR reply.

 After the checks are successfully performed, the middlebox
 establishes a new policy reserve rule, with the requested PRR
 parameter set, and assigns to it a policy rule identifier in state
 RESERVED. It generates a positive PRR reply and sets the attributes
 as specified below.

 If a group identifier attribute is contained in the PRR request, then
 the middlebox adds the new policy rule to the members of this group.
 If the PRR request does not contain a group identifier attribute,
 then the middlebox creates a new group with the new policy rule as
 the only member. In any case, the middlebox reports the group of
 which the new policy rule is a member in the group identifier
 attribute of the PRR reply.

 The chosen lifetime is reported in the lifetime attribute of the PRR
 reply.

 In the address tuple (outside) attribute of the PRR reply, the first
 parameter field is set to ’full addresses’ (0x0). The location
 parameter field is set to ’outside’ (0x02). The IP version parameter

Stiemerling, et al. Experimental [Page 44]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 field is set according to the IPo parameter field in the PRR
 parameter set attribute of the PRR request message. For IPv4
 addresses, the prefix length field is set to 0x20 to indicate a full
 address, and the reserved outside IPv4 address is set in the address
 field. For IPv6 addresses, the prefix length field is set to 0x80 to
 indicate a full address, and the reserved outside IPv6 address is set
 in the address field. The transport protocol parameter field in the
 address tuple (outside) attribute of the PRR reply is set identically
 to the transport protocol attribute in the PRR parameter set
 attribute of the PRR request message. The reserved outside base port
 number (i.e., the lowest port number of the allocated range) is
 stored in the port number parameter field, and the allocated port
 range is stored in the port range parameter field.

 If the NM (NAT mode) parameter in the PRR parameter set attribute of
 the PRR request message has the value ’traditional’, then the PRR
 reply message does not contain an address tuple (inside) attribute.
 If otherwise (it has the value ’twice’), then the PRR reply message
 contains an address tuple (inside) attribute. In the address tuple
 (inside) attribute of the PRR reply, the first parameter field is set
 to ’full addresses’ (0x0). The location parameter field is set to
 ’inside’ (0x01). The IP version parameter field is set according to
 the IPi parameter field in the PRR parameter set attribute of the PRR
 request message. For IPv4 addresses, the prefix length field is set
 to 0x20 to indicate a full address, and the reserved inside IPv4
 address is set in the address field. For IPv6 addresses, the prefix
 length field is set to 0x80 to indicate a full address, and the
 reserved inside IPv6 address is set in the address field. The
 transport protocol parameter field in the address tuple (inside)
 attribute of the PRR reply is set identically to the transport
 protocol attribute in the PRR parameter set attribute of the PRR
 request message. The reserved inside base port number (i.e., the
 lowest port number of the allocated range) is stored in the port
 number parameter field, and the allocated port range is stored in the
 port range parameter field.

8.3. Processing PER Requests

 Processing PER requests is much simpler on pure firewalls than on
 middleboxes with NAT functions. Therefore, this section has three
 sub-sections: The first one describes initial checks that are
 performed in any case. The second sub-section describes processing
 of PER requests on pure firewalls, and the third one describes
 processing on all devices with NAT functions.

Stiemerling, et al. Experimental [Page 45]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.3.1. Initial Checks

 When a middlebox receives a PER request message, it first checks if
 the authenticated agent is authorized for requesting middlebox
 configurations for enabling communication. If not, it returns a
 negative reply message of type ’agent not authorized for this
 transaction’ (0x0341).

 If the request contains the optional group identifier, then the
 middlebox checks if the group already exists. If not, the middlebox
 returns a negative reply message of type ’specified policy rule group
 does not exist’ (0x0344).

 If the request contains the optional group identifier, then the
 middlebox checks if the authenticated agent is authorized for adding
 members to this group. If not, the middlebox returns a negative
 reply message of type ’not authorized for accessing specified group’
 (0x0346).

 Then the middlebox checks the contained address tuple attributes.

 If the first one does not have the location parameter field set to
 ’internal’ (0x00), or if the second one does not have the location
 parameter field set to ’external’ (0x03), then the middlebox returns
 a negative reply message of type ’inconsistent request’ (0x034B).

 If the transport protocol parameter field does not have the same
 value in both address tuple attributes, then the middlebox returns a
 negative reply message of type ’inconsistent request’ (0x034B).

 If both address tuple attributes contain a port range parameter
 field, if both port range parameter fields have values not equal to
 0xFFFF, and if the values of both port range parameter fields are
 different, then the middlebox returns a negative reply message of
 type ’inconsistent request’ (0x034B).

 Then the agent checks if wildcarding is requested and if the
 requested wildcarding is supported by the middlebox. Wildcarding
 support may be different for internal address tuples and external
 address tuples. The following parameter fields of the address tuple
 attribute can indicate wildcarding:

 - the first parameter field
 If it is set to ’protocols only’ (0x1), then IP addresses and
 port numbers are completely wildcarded.

Stiemerling, et al. Experimental [Page 46]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 - the transport protocol field
 If it is set to 0x00, then the transport protocol is completely
 wildcarded. Please note that a completely wildcarded transport
 protocol might still support only a limited set of transport
 protocols according to the capabilities of the middlebox. For
 example, a typical NAT implementation may apply transport
 wildcarding to UDP and TCP transport only. Wildcarding the
 transport protocol implies wildcarding of port numbers. If this
 field is set to 0x00, then the values of the port number field
 and the port range field are irrelevant.

 - the prefix length field
 If the IP version number field indicates IPv4 and the value of
 this field is less than 0x20, then IP addresses are wildcarding
 according to this prefix length. If the IP version number field
 indicates IPv6 and the value of this field is less than 0x80,
 then IP addresses are wildcarding according to this prefix
 length. If the first parameter field is set to ’protocols only’
 (0x1), then the value of the prefix length field is irrelevant.

 - the port number field
 If it is set to zero, then port numbers are completely
 wildcarded. In this case, the value of the port range field is
 irrelevant.

 If any of these kinds of wildcarding is used, and if this is in
 conflict with wildcarding support for internal or external addresses
 of the middlebox, then the middlebox returns a negative reply message
 of type ’requested wildcarding not supported’ (0x034C).

 Please note that the port range field cannot be used for wildcarding.
 If it is set to a value greater than one, then middlebox
 configuration is requested for all port numbers in the interval
 starting with the specified port number and containing as many
 consecutive port numbers as specified by the parameter.

 If the direction parameter field in the PER parameter set attribute
 has the value ’bi-directional’, then only transport protocol
 wildcarding is allowed. If any other kind of wildcarding is
 specified in one or both of the IP address tuple attributes, then the
 middlebox returns a negative reply message of type ’inconsistent
 request’ (0x034B).

 If the PER request conflicts with any policy disable rule (see
 Section 8.8.1), then the middlebox returns a negative reply message
 of type ’conflict with existing rule’ (0x0350).

Stiemerling, et al. Experimental [Page 47]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 After checking the address tuple attributes, the middlebox chooses a
 lifetime value for the new policy rule to be created, which is
 greater than or equal to zero and less than or equal to the minimum
 of the requested value and the maximum lifetime specified by the
 middlebox capabilities attribute at session setup. Formally, the
 lifetime is chosen such that

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 holds, where ’lt_granted’ is the actual lifetime chosen by the
 middlebox, ’lt_requested’ is the lifetime requested by the agent, and
 ’lt_maximum’ is the maximum lifetime specified during capability
 exchange at session setup.

 If there are further sessions in state OPEN with authenticated agents
 authorized to access the policy rule, then to each of these agents a
 corresponding ARE notification with lifetime set to lt_granted is
 sent.

 If the chosen lifetime is zero, the middlebox sends a negative reply
 of type ’middlebox configuration failed’ (0x034A) to the agent.

8.3.2. Processing on Pure Firewalls

 If the middlebox is acting as a pure firewall, then it tries to
 configure the requested pinhole. The firewall configuration ignores
 the port parity parameter field in the PER parameter set attribute,
 but it considers the direction parameter field in this attribute.
 The pinhole is configured such that communication between the
 specified internal and external address tuples is enabled in the
 specified direction and covering the specified wildcarding. If the
 configuration fails (for example, because the pinhole would conflict
 with high-level firewall policies), then the middlebox returns a
 negative reply message of type ’middlebox configuration failed’
 (0x034A).

 If the configuration was successful, the middlebox establishes a new
 policy enable rule and assigns to it a policy rule identifier in
 state ENABLED. It generates a positive PER reply and sets the
 attributes as specified below.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PER reply.

 If a group identifier attribute is contained in the PER request, then
 the middlebox adds the new policy rule to the members of this group.
 If the PRR request does not contain a group identifier attribute,
 then the middlebox creates a new group with the new policy rule as

Stiemerling, et al. Experimental [Page 48]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 the only member. In any case, the middlebox reports the group of
 which the new policy rule is a member in the group identifier
 attribute of the PER reply.

 The chosen lifetime is reported in the lifetime attribute of the PER
 reply.

 The address tuple (internal) attribute of the PER request is reported
 as address tuple (outside) attribute of the PER reply. The address
 tuple (external) attribute of the PER request is reported as address
 tuple (inside) attribute of the PER reply.

8.3.3. Processing on Network Address Translators

 If the middlebox is configured as a NAT, then it tries to configure
 the requested NAT binding. The actions taken by the NAT are quite
 similar to the actions of the Policy Reserve Rule (PRR) request, but
 in the PER request a NAT binding is enabled.

 The following actions are performed, depending on the middlebox NAT
 type:

 - traditional NAT
 A NAT binding is established between the internal and external
 address tuple with the requested transport protocol, port range,
 direction, and port parity. The outside address tuple is
 created.

 - twice NAT
 A NAT binding is established between the internal and external
 address tuple with the requested transport protocol, port range,
 and port parity. But two address tuples are created: an outside
 address tuple and an inside address tuple.

 Should the configuration fail in either NAT case, a negative reply
 ’middlebox configuration failed’ (0x034A) is returned.

 If the configuration was successful, the middlebox establishes a new
 policy enable rule and assigns to it a policy rule identifier in
 state ENABLED. It generates a positive PER reply and sets the
 attributes as specified below.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PER reply.

 If a group identifier attribute is contained in the PER request, then
 the middlebox adds the new policy rule to the members of this group.
 If the PRR request does not contain a group identifier attribute,

Stiemerling, et al. Experimental [Page 49]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 then the middlebox creates a new group with the new policy rule as
 the only member. In any case, the middlebox reports the group of
 which the new policy rule is a member in the group identifier
 attribute of the PER reply.

 The chosen lifetime is reported in the lifetime attribute of the PER
 reply.

 In the address tuple (outside) attribute of the PER reply, the first
 parameter field is set to ’full addresses’ (0x0). The location
 parameter field is set to ’outside’ (0x02). The IP version parameter
 field is set according to the IP version parameter field in the PER
 parameter set attribute of the PER request message. For IPv4
 addresses, the prefix length field is set to 0x20 to indicate a full
 address, and the reserved outside IPv4 address is set in the address
 field. For IPv6 addresses, the prefix length field is set to 0x80 to
 indicate a full address, and the reserved outside IPv6 address is set
 in the address field. The transport protocol parameter field in the
 address tuple (outside) attribute of the PER reply is set identically
 to the transport protocol attribute in the PER parameter set
 attribute of the PER request message. The reserved outside base port
 number (i.e., the lowest port number of the allocated range) is
 stored in the port number parameter field, and the allocated port
 range is stored in the port range parameter field.

 The address tuple (inside) is only returned if the middlebox is a
 twice NAT; otherwise, it is omitted. In the address tuple (inside)
 attribute of the PER reply, the first parameter field is set to ’full
 addresses’ (0x0). The location parameter field is set to ’inside’
 (0x01). The IP version parameter field is set according to the IP
 version parameter field in the PER parameter set attribute of the PER
 request message. For IPv4 addresses, the prefix length field is set
 to 0x20 to indicate a full address, and the reserved inside IPv4
 address is set in the address field. For IPv6 addresses, the prefix
 length field is set to 0x80 to indicate a full address, and the
 reserved inside IPv6 address is set in the address field. The
 transport protocol parameter field in the address tuple (inside)
 attribute of the PER reply is set identically to the transport
 protocol attribute in the PER parameter set attribute of the PER
 request message. The reserved inside base port number (i.e., the
 lowest port number of the allocated range) is stored in the port
 number parameter field, and the allocated port range is stored in the
 port range parameter field.

Stiemerling, et al. Experimental [Page 50]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.3.4. Processing on Combined Firewalls and NATs

 Middleboxes that are combinations of firewalls and NATs are
 configured in such a way that first the NAT bindings are configured
 and afterwards the firewall pinholes. This sequence is needed since
 the firewall rules must be configured according to the outside
 address tuples and for twice NATs the inside address tuples as well.
 This aspect of middlebox operation may be irrelevant to SIMCO, since
 some NATs already do firewall configuration on their own.

8.4. Processing PEA Requests

 Processing PEA requests is much simpler on pure firewalls than on
 middleboxes with NAT functions. Therefore, this section has three
 sub-sections: The first one describes initial checks that are
 performed in any case. The second sub-section describes processing
 of PEA requests on pure firewalls, and the third one describes
 processing on all devices with NAT functions.

8.4.1. Initial Checks

 When a middlebox receives a PEA request message, it first checks if
 the authenticated agent is authorized for requesting middlebox
 configurations for enabling communication. If not, it returns a
 negative reply message of type ’agent not authorized for this
 transaction’ (0x0341).

 Then the middlebox checks the policy rule identifier attribute
 contained in the PEA message. If no policy rule with this identifier
 exists, then the middlebox returns a negative reply message of type
 ’specified policy rule does not exist’ (0x0343). If there exists a
 policy with this identifier and if it is in a state other than
 RESERVED, then the middlebox returns a negative reply message of type
 ’inconsistent request’ (0x034B).

 If a policy rule with this identifier exists, but the authenticated
 agent is not authorized for terminating this policy reserve rule,
 then the middlebox returns a negative reply message of type ’agent
 not authorized for accessing this policy’ (0x0345).

 Then the middlebox checks the contained address tuple attributes.

 If the first one does not have the location parameter field set to
 ’internal’ (0x00) or if the second one does not have the location
 parameter field set to ’external’ (0x03), then the middlebox returns
 a negative reply message of type ’inconsistent request’ (0x034B).

Stiemerling, et al. Experimental [Page 51]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 If the transport protocol parameter field does not have the same
 value in both address tuple attributes, then the middlebox returns a
 negative reply message of type ’inconsistent request’ (0x034B).

 If both address tuple attributes contain a port range parameter
 field, if both port range parameter fields have values not equal to
 0xFFFF, and if the values of both port range parameter fields are
 different, then the middlebox returns a negative reply message of
 type ’inconsistent request’ (0x034B).

 Then the agent checks if wildcarding is requested and if the
 requested wildcarding is supported by the middlebox. Wildcarding
 support may be different for internal address tuples and external
 address tuples. The following parameter fields of the address tuple
 attribute can indicate wildcarding:

 - the first parameter field
 If it is set to ’protocols only’ (0x1), then IP addresses and
 port numbers are completely wildcarded.

 - the transport protocol field
 If it is set to 0x00, then IP the transport protocol is
 completely wildcarded. Please note that a completely wildcarded
 transport protocol might still support only a limited set of
 transport protocols according to the capabilities of the
 middlebox. For example, a typical NAT implementation may apply
 transport wildcarding to UDP and TCP transport only.

 - the prefix length field
 If the IP version number field indicates IPv4 and the value of
 this field is less than 0x20, then IP addresses are wildcarding
 according to this prefix length. If the IP version number field
 indicates IPv6 and the value of this field is less than 0x80,
 then IP addresses are wildcarding according to this prefix
 length. If the first parameter field is set to ’protocols only’
 (0x1), then the value of the prefix length field is irrelevant.

 - the port number field
 If it is set to zero, then port numbers are completely
 wildcarded.

 - the port range field
 If it is set to a value greater than one, then port numbers are
 wildcarded within an interval starting with the specified port
 number and containing as many consecutive port numbers as
 specified by the parameter.

Stiemerling, et al. Experimental [Page 52]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 If any of these kinds of wildcarding is used, and if this is in
 conflict with wildcarding support for internal or external addresses
 of the middlebox, then the middlebox returns a negative reply message
 of type ’requested wildcarding not supported’ (0x034C).

 If the PEA request conflicts with any policy disable rule (see
 Section 8.8.1), then the middlebox returns a negative reply message
 of type ’conflict with existing rule’ (0x0350).

 After checking the address tuple attributes, the middlebox chooses a
 lifetime value for the new policy enable rule to be created, which is
 greater than or equal to zero and less than or equal to the minimum
 of the requested value and the maximum lifetime specified by the
 middlebox capabilities attribute at session setup. Formally, the
 lifetime is chosen such that

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 holds, where ’lt_granted’ is the actual lifetime chosen by the
 middlebox, ’lt_requested’ is the lifetime requested by the agent, and
 ’lt_maximum’ is the maximum lifetime specified during capability
 exchange at session setup.

 If there are further sessions in state OPEN with authenticated agents
 authorized to access the policy rule, then to each of these agents a
 corresponding ARE notification with lifetime set to lt_granted is
 sent.

 If the chosen lifetime is zero, the middlebox sends a negative reply
 of type ’middlebox configuration failed’ (0x034A) to the agent.

8.4.2. Processing on Pure Firewalls

 If the middlebox is configured as a pure firewall, then it tries to
 configure the requested pinhole. The firewall configuration ignores
 the port parity parameter field in the PER parameter set attribute,
 but it considers the direction parameter field in this attribute.
 The pinhole is configured such that communication between the
 specified internal and external address tuples is enabled in the
 specified direction and covering the specified wildcarding. If the
 configuration fails, then the middlebox returns a negative reply
 message of type ’middlebox configuration failed’ (0x034A).

 If the configuration was successful, the middlebox replaces the
 policy reserve rule referenced by the policy rule identifier
 attribute in the PEA request message with a new policy enable rule.
 The policy enable rule re-uses the policy rule identifier of the
 replaced policy reserve rule. The state of the policy rule

Stiemerling, et al. Experimental [Page 53]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 identifier changes from RESERVED to ENABLED. The policy reserve rule
 is a member of the same group as the replaced policy reserve rule
 was.

 Then the middlebox generates a positive PER reply and sets the
 attributes as specified below.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PER reply.

 The group identifier is reported in the group identifier attribute of
 the PER reply.

 The chosen lifetime is reported in the lifetime attribute of the PER
 reply.

 The address tuple (internal) attribute of the PER request is reported
 as the address tuple (outside) attribute of the PER reply. The
 address tuple (external) attribute of the PER request is reported as
 the address tuple (inside) attribute of the PER reply.

8.4.3. Processing on Network Address Translators

 If the middlebox is configured as a NAT, then it tries to configure
 the requested NAT binding, i.e., enabling the already reserved
 binding. The already reserved NAT binding from the PRR request is
 now enabled in the middlebox.

 If the enable configuration was successful, the middlebox replaces
 the policy reserve rule referenced by the policy rule identifier
 attribute in the PEA request message with a new policy enable rule.
 The policy enable rule re-uses the policy rule identifier of the
 replaced policy reserve rule. The state of the policy rule
 identifier changes from RESERVED to ENABLED. The policy reserve rule
 is a member of the same group as the replaced policy reserve rule
 was.

 Then the middlebox generates a positive PER reply and sets the
 attributes as specified below.

 The reserved outside address tuple is reported as the address tuple
 (outside) attribute of the PER reply. The reserved inside address
 tuple is reported as the address tuple (inside) attribute of the PER
 reply. Both reserved outside and inside address tuples are taken
 from the reserve policy rule generated during the PRR transaction.

Stiemerling, et al. Experimental [Page 54]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.5. Processing PLC Requests

 When a middlebox receives a PLC request message, it first checks if
 the authenticated agent is authorized for requesting policy rule
 lifetime changes. If not, it returns a negative reply message of
 type ’agent not authorized for this transaction’ (0x0341).

 Then the middlebox checks the policy rule identifier attribute
 contained in the PLC message. If no policy rule with this identifier
 exists, then the middlebox returns a negative reply message of type
 ’specified policy rule does not exist’ (0x0343).

 If a policy rule with this identifier exists, but the authenticated
 agent is not authorized for changing the lifetime of this policy
 rule, then the middlebox returns a negative reply message of type
 ’agent not authorized for accessing this policy’ (0x0345).

 Then the middlebox chooses a lifetime value for the new policy rule,
 which is greater than zero and less than or equal to the minimum of
 the requested value and the maximum lifetime specified by the
 middlebox capabilities attribute at session setup. Formally, the
 lifetime is chosen such that

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 holds, where ’lt_granted’ is the actual lifetime chosen by the
 middlebox, ’lt_requested’ is the lifetime requested by the agent, and
 ’lt_maximum’ is the maximum lifetime specified during capability
 exchange at session setup. This procedure implies that the chosen
 lifetime is zero if the requested lifetime is zero.

 If the chosen lifetime is greater than zero, the middlebox changes
 the lifetime of the policy rule to the chosen value and generates a
 PLC reply message. The chosen lifetime is reported in the lifetime
 attribute of the message.

 If otherwise (the chosen lifetime is zero), then the middlebox
 terminates the policy rule and changes the PID state from ENABLED or
 RESERVED, respectively, to UNUSED.

 The middlebox generates a PRD reply message and sends it to the
 requesting agent. If there are further sessions in state OPEN with
 authenticated agents authorized to access the policy rule, then to
 each of these agents a corresponding ARE notification with lifetime
 set to zero is sent.

Stiemerling, et al. Experimental [Page 55]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.6. Processing PRS Requests

 When a middlebox receives a PRS request message, it first checks if
 the authenticated agent is authorized for receiving policy status
 information. If not, it returns a negative reply message of type
 ’agent not authorized for this transaction’ (0x0341).

 Then the middlebox checks the policy rule identifier attribute
 contained in the PRS message. If no policy rule with this identifier
 exists in state RESERVED or ENABLED, then the middlebox returns a
 negative reply message of type ’specified policy rule does not exist’
 (0x0343).

 If a policy rule with this identifier exists, but the authenticated
 agent is not authorized to receive status information for this policy
 rule, then the middlebox returns a negative reply message of type
 ’agent not authorized for accessing this policy’ (0x0345).

 If the checks described above are passed, the middlebox accepts the
 requests and generates a reply. If the policy rule for which status
 information is requested is in state RESERVED, then a PRS reply is
 generated and sent to the agent. If otherwise (the policy rule is in
 state ENABLED), then a PES reply is generated and sent to the agent.
 For policy disable rules, a PDS reply is generated and sent to the
 agent.

 In both message formats, the lifetime attribute reports the current
 remaining lifetime of the policy rule, and the owner attribute
 reports the owner of the policy rule for which status information is
 requested.

 The PRS reply message format is identical to the PRR reply message
 format except for an appended owner attribute. In the PRS reply, the
 attributes that are common with the PRR reply (except for the
 lifetime attribute) have exactly the same values as the corresponding
 attributes of the PRR reply that was sent as part of the PRR
 transaction that established the policy reserve rule.

 In the PES reply message, the PER parameter set attribute, the
 address tuple (internal) attribute, and the address tuple (external)
 attribute have exactly the same values as the corresponding
 attributes of the PER or PEA request that were sent as part of the
 corresponding transaction that established the policy enable rule.

Stiemerling, et al. Experimental [Page 56]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 In the PES reply message, the policy rule identifier attribute, the
 group identifier attribute, the address tuple (inside) attribute, and
 the address tuple (outside) attribute have exactly the same values as
 the corresponding attributes of the PER reply that was sent as part
 of the PER or PEA transaction that established the policy enable
 rule.

 In the PDS reply message, the policy rule identifier attribute, the
 address tuple (internal) attribute, and the address tuple (external)
 attribute have exactly the same values as the corresponding
 attributes of the PDR request message.

 This transaction does not change the state of any policy rule.

8.7. Processing PRL Requests

 When a middlebox receives a PRL request message, it first checks if
 the authenticated agent is authorized for receiving policy
 information. If not, it returns a negative reply message of type
 ’agent not authorized for this transaction’ (0x0341).

 Then the middlebox generates a PRL reply message. For each policy
 rule at the middlebox in state RESERVED or ENABLED that the
 authenticated agent can access, a policy rule identifier attribute is
 generated and added to the PRL reply message before the message is
 sent to the agent. A negative reply message of type ’reply message
 too big’ (0x0313) is generated if the number of policy rule
 attributes to be returned exceeds the maximum transport unit size of
 the underlying network connection or the maximum length of a SIMCO
 message. The total size of a SIMCO message is limited to 65,536
 octets in total (see Section 4.2 for the SIMCO header).

 This transaction does not change the state of any policy rule.

8.8. Processing PDR requests

 Processing of PDR requests is structured into five sub-sections. The
 first one describes the general extension of the MIDCOM protocol
 semantics by PDR. The second sub-section describes the initial
 checks that are performed in any case. The third sub-section
 describes the processing of PDR requests on pure firewalls. The
 fourth one describes processing on devices with NATs, and the fifth
 describes processing of devices with combined firewall and NAT
 functions.

Stiemerling, et al. Experimental [Page 57]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.8.1. Extending the MIDCOM semantics

 The Policy Disable Rule (PDR) extends the MIDCOM protocol semantics
 [RFC3989] by another policy rule type. The PDR is intended to be
 used for dynamically blocking unwanted traffic, particularly in case
 of an attack, for example, a distributed denial of service attack.

 PDR requests follow the same ownership concept as all other
 transactions do (see [RFC3989], Section 2.1.5). However, PDR
 prioritization over PERs is independent of ownership. A PDR always
 overrules a conflicting PER, even if the respective owners are
 different. Typically, only a highly privileged agent will be allowed
 to issue PDR requests.

 A PDR rule and PER rule conflict with each other if their address
 tuples overlap such that there exists at least one IP packet that
 matches address tuple A0 of both rules in the internal network and
 that matches address tuple A3 of both rules in the external network.
 Note that the packet may be translated from the internal to external
 network, or vice versa.

 Let’s assume, for instance, that a policy enable rule (PER) enables
 all traffic from any external host using any UDP port to a certain
 UDP port of a certain internal host:

 PER A3={ any external IP address, UDP, any port }
 PER A0={ internal IP address 10.1.8.3, UDP, port 12345 }

 Then this conflicts with a policy disable rule (PDR) blocking all UDP
 traffic from a potentially attacking host:

 PDR A3={ external IP address 192.0.2.100, UDP, any port }
 PDR A0={ any internal IP address, UDP, any port }

 If a new PDR is established, then all conflicting PERS are terminated
 immediately. A new PER can only be established if it does not
 conflict with any already existing PDR.

8.8.2. Initial Checks

 When a middlebox receives a PDR request message, it first checks if
 the authenticated agent is authorized for requesting middlebox
 configurations for disabling communication. If not, it returns a
 negative reply message of type ’agent not authorized for this
 transaction’ (0x0341).

 Then the middlebox checks the contained address tuple attributes.

Stiemerling, et al. Experimental [Page 58]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 If the first one does not have the location parameter field set to
 ’internal’ (0x00), or if the second one does not have the location
 parameter field set to ’external’ (0x03), then the middlebox returns
 a negative reply message of type ’inconsistent request’ (0x034B).

 If the transport protocol parameter field does not have the same
 value in both address tuple attributes, then the middlebox returns a
 negative reply message of type ’inconsistent request’ (0x034B).

 If both address tuple attributes contain a port range parameter
 field, if both port range parameter fields have values not equal to
 0xFFFF, and if the values of both port range parameter fields are
 different, then the middlebox returns a negative reply message of
 type ’inconsistent request’ (0x034B).

 Then the agent checks if wildcarding is requested and if the
 requested wildcarding is supported by the middlebox. Wildcarding
 support may be different for internal address tuples and external
 address tuples. The following parameter fields of the address tuple
 attribute can indicate wildcarding:

 - the first parameter field
 If it is set to ’protocols only’ (0x1), then IP addresses and
 port numbers are completely wildcarded.

 - the transport protocol field
 If it is set to 0x00, then the transport protocol is completely
 wildcarded. Please note that a completely wildcarded transport
 protocol might still support only a limited set of transport
 protocols according to the capabilities of the middlebox. For
 example, a typical NAT implementation may apply transport
 wildcarding to UDP and TCP transport only. Wildcarding the
 transport protocol implies wildcarding of port numbers. If this
 field is set to 0x00, then the values of the port number field
 and the port range field are irrelevant.

 - the prefix length field
 If the IP version number field indicates IPv4 and the value of
 this field is less than 0x20, then IP addresses are wildcarding
 according to this prefix length. If the IP version number field
 indicates IPv6 and the value of this field is less than 0x80,
 then IP addresses are wildcarding according to this prefix
 length. If the first parameter field is set to ’protocols only’
 (0x1), then the value of the prefix length field is irrelevant.

Stiemerling, et al. Experimental [Page 59]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 - the port number field
 If it is set to zero, then port numbers are completely
 wildcarded. In this case, the value of the port range field is
 irrelevant.

 If any of these kinds of wildcarding is used, and if this is in
 conflict with wildcarding support for internal or external addresses
 of the middlebox, then the middlebox returns a negative reply message
 of type ’requested wildcarding not supported’ (0x034C).

 Please note that the port range field cannot be used for wildcarding.
 If it is set to a value greater than one, then middlebox
 configuration is requested for all port numbers in the interval
 starting with the specified port number and containing as many
 consecutive port numbers as specified by the parameter.

 The specified policy disable rule is activated, and the middlebox
 will terminate any conflicting policy enable rule immediately.
 Conflicts are defined in Section 8.8.1. Agents with open sessions
 that have access to the policy rules to be terminated are notified
 via the ARE notification.

 The middlebox will reject all requests for new policy enable rules
 that conflict with the just established PDR as long as the PDR is not
 terminated. In such a case, a negative ’conflict with existing rule’
 (0x0350) reply will be generated.

 After checking the address tuple attributes, the middlebox chooses a
 lifetime value for the new policy rule to be created, which is
 greater than or equal to zero and less than or equal to the minimum
 of the requested value and the maximum lifetime specified by the
 middlebox capabilities attribute at session setup. Formally, the
 lifetime is chosen such that

 0 <= lt_granted <= MINIMUM(lt_requested, lt_maximum)

 holds, where ’lt_granted’ is the actual lifetime chosen by the
 middlebox, ’lt_requested’ is the lifetime requested by the agent, and
 ’lt_maximum’ is the maximum lifetime specified during capability
 exchange at session setup.

 If there are further sessions in state OPEN with authenticated agents
 authorized to access the policy rule, then to each of these agents a
 corresponding ARE notification with lifetime set to lt_granted is
 sent.

 If the chosen lifetime is zero, the middlebox sends a negative reply
 of type ’middlebox configuration failed’ (0x034A) to the agent.

Stiemerling, et al. Experimental [Page 60]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.8.3. Processing on Pure Firewalls

 If the middlebox is acting as a pure firewall, then it tries to
 configure the requested disable rule, i.e., configuring a blocking
 rule at the firewall. The disable rule is configured such that
 communication between the specified internal and external address
 tuples is blocked, covering the specified wildcarding. If the
 configuration fails (for example, because the blocking rule would
 conflict with high-level firewall policies), then the middlebox
 returns a negative reply message of type ’middlebox configuration
 failed’ (0x034A).

 If the configuration was successful, the middlebox establishes a new
 policy disable rule and assigns to it a policy rule identifier in
 state ENABLED. It generates a positive PDR reply and sets the
 attributes as specified below.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PDR reply.

 The chosen lifetime is reported in the lifetime attribute of the PDR
 reply.

8.8.4. Processing on Network Address Translators

 If the middlebox is configured as a NAT, then it tries to block the
 specified address tuple in the NAT. The mechanisms used for this
 depend on the implementation and capabilities of the NAT.

 Should the configuration fail in either NAT case, a negative reply
 ’middlebox configuration failed’ (0x034A) is returned.

 If the configuration was successful, the middlebox establishes a new
 policy disable rule and assigns to it a policy rule identifier in
 state ENABLED. It generates a positive PDR reply and sets the
 attributes as specified below.

 The identifier chosen for the new policy rule is reported in the
 policy rule identifier attribute of the PDR reply.

 The chosen lifetime is reported in the lifetime attribute of the PDR
 reply.

Stiemerling, et al. Experimental [Page 61]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

8.8.5. Processing on Combined Firewalls and NATs

 Middleboxes that are combinations of firewall and NAT are configured
 in such a way that first the firewall is configured with the blocking
 rule and afterwards the NAT is configured to block the address tuple.
 This aspect of middlebox operation may be irrelevant to SIMCO, since
 some NATs already do firewall configuration on their own.

8.9 Generating ARE Notifications

 At any time, the middlebox may terminate a policy rule by deleting
 the configuration of the rule and by changing the corresponding PID
 state from ENABLED or from RESERVED, respectively, to UNUSED.

 For each session in state OPEN with authenticated agents authorized
 to access the policy rule, the middlebox generates a corresponding
 ARE notification with the lifetime attribute set to zero and sends it
 to the respective agent. The identifier of the terminated policy
 rule is reported in the policy rule identifier attribute of the ARE
 notification.

 After sending the notification, the middlebox will consider the
 policy rule non-existent. It will not process any further
 transaction on this policy rule.

 In the case of PRR, PER, PEA, and PLC (reserving and enabling policy
 rules and changes of the lifetime), the middlebox generates an ARE
 notification after processing the request. This ARE notification is
 generated for each session in state OPEN with authenticated agents
 (other than the requesting agent) who are authorized to access the
 policy rule. Through this ARE notification all other agents are kept
 synchronized with the latest state of the policy rules.

Stiemerling, et al. Experimental [Page 62]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

9. Security Considerations

9.1. Possible Threats to SIMCO

 Middleboxes, such as firewalls and NATs, are usually operated for
 improving the network security and for extending the IP address space
 (note that stand-alone NATs are not considered to improve security;
 see [RFC2663]). The configuration of middleboxes from an external
 entity looks quite counterproductive on the first glimpse, since an
 attacker using this can possibly configure the middlebox in such way
 that no filtering is applied anymore or that NAT bindings are
 configured for malicious use. So the middlebox is not performing the
 intended function anymore. Possible threats to SIMCO are:

 - Man-in-the-middle attack
 A malicious host intercepts messages exchanged between then SIMCO
 agent and middlebox and can change the content of the messages on
 the fly. This man-in-the-middle attack would result, from the
 agent’s view, in a proper middlebox configuration, but the
 middlebox would not be configured accordingly. The man in the
 middlebox could open pinholes that compromise the protected
 network’s security.

 - Changing content
 The message content could be changed in such a way that the
 requested policy rule configuration is not configured in the
 middlebox, but that any other unwanted configuration could be.
 That way, an attacker can open the firewall for his own traffic.

 - Replaying
 Already sent messages could be re-sent in order to configure the
 middlebox in such a way that hosts could configure policy rules
 without the permission of an application-level gateway or system
 administrator.

 - Wiretapping
 An already configured policy rule could be re-used by other hosts
 if the policy rule is configured with too broad a wildcarding
 (see below). These hosts could send unwanted traffic.

9.2. Securing SIMCO with IPsec

 The previous subsection identifies several issues on security for
 SIMCO. SIMCO can rely on IPsec mechanisms, as defined in [RFC4302]
 and [RFC4303], for ensuring proper operations.

Stiemerling, et al. Experimental [Page 63]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 When SIMCO relies on IPsec, it uses IPsec in transport mode with an
 authentication header (AH) [RFC4302] and an encapsulating security
 payload (ESP) [RFC4303], so that IP traffic between SIMCO agent and
 middlebox is protected. The authentication header is used for
 protecting the whole packet against content changes and replaying.
 The ESP header is used to prevent wiretapping.

 At either the agent or middlebox side, the following should be pre-
 configured: the IP addresses of the agent or middlebox, TCP (as the
 transport protocol), and the port numbers (if possible). Only
 packets from the pre-configured address of the agents or middlebox
 should be accepted.

 The keys for authentication for both the SIMCO agent and middlebox
 are pre-configured at each side. For replay protection, the use of a
 key management system is recommended. For the Internet Key Exchange
 (IKE) protocol, see [RFC4306].

10. IAB Considerations on UNSAF

 UNilateral Self-Address Fixing (UNSAF) is described in [RFC3424] as a
 process at originating endpoints that attempt to determine or fix the
 address (and port) by which they are known to another endpoint.
 UNSAF proposals, such as STUN [RFC3489], are considered a general
 class of work-arounds for NAT traversal and solutions for scenarios
 with no middlebox communication (MIDCOM).

 This document describes a protocol implementation of the MIDCOM
 semantics and thus implements a middlebox communication (MIDCOM)
 solution. MIDCOM is not intended as a short-term work-around, but
 more as a long-term solution for middlebox communication. In MIDCOM,
 endpoints are not involved in allocating, maintaining, and deleting
 addresses and ports at the middlebox. The full control of addresses
 and ports at the middlebox is located at the SIMCO server.

 Therefore, this document addresses the UNSAF considerations in
 [RFC3424] by proposing a long-term alternative solution.

11. Acknowledgements

 The authors would like to thank Sebastian Kiesel and Andreas Mueller
 for valuable feedback from their SIMCO implementation and Mary Barnes
 for a thorough document review.

Stiemerling, et al. Experimental [Page 64]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

12. Normative References

 [RFC3989] Stiemerling, M., Quittek, J., and T. Taylor, "Middlebox
 Communications (MIDCOM) Protocol Semantics", RFC 3989,
 February 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302, December
 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
 4303, December 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

13. Informative References

 [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC1519] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Classless
 Inter-Domain Routing (CIDR): an Address Assignment and
 Aggregation Strategy", RFC 1519, September 1993.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations", RFC
 2663, August 1999.

 [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, February 2002.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A.,
 and A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, August 2002.

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

Stiemerling, et al. Experimental [Page 65]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

 [RFC3932] Alvestrand, H., "The IESG and RFC Editor Documents:
 Procedures", BCP 92, RFC 3932, October 2004.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
 RFC 4306, December 2005.

Authors’ Addresses

 Martin Stiemerling
 NEC Europe Ltd.
 Network Laboratories Europe
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 4342-113
 EMail: stiemerling@netlab.nec.de

 Juergen Quittek
 NEC Europe Ltd.
 Network Laboratories Europe
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany

 Phone: +49 6221 4342-115
 EMail: quittek@netlab.nec.de

 Cristian Cadar
 Muelheimer Strasse 23
 40239 Duesseldorf
 Germany

 EMail: ccadar2@yahoo.com

Stiemerling, et al. Experimental [Page 66]

RFC 4540 NEC’s SIMCO Protocol Version 3.0 May 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78 and at www.rfc-editor.org/copyright.html, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Stiemerling, et al. Experimental [Page 67]

