
Network Working Group S. Josefsson
Request for Comments: 4648 SJD
Obsoletes: 3548 October 2006
Category: Standards Track

 The Base16, Base32, and Base64 Data Encodings

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes the commonly used base 64, base 32, and base
 16 encoding schemes. It also discusses the use of line-feeds in
 encoded data, use of padding in encoded data, use of non-alphabet
 characters in encoded data, use of different encoding alphabets, and
 canonical encodings.

Josefsson Standards Track [Page 1]

RFC 4648 Base-N Encodings October 2006

Table of Contents

 1. Introduction ..3
 2. Conventions Used in This Document3
 3. Implementation Discrepancies3
 3.1. Line Feeds in Encoded Data3
 3.2. Padding of Encoded Data4
 3.3. Interpretation of Non-Alphabet Characters in Encoded Data ..4
 3.4. Choosing the Alphabet4
 3.5. Canonical Encoding ...5
 4. Base 64 Encoding ..5
 5. Base 64 Encoding with URL and Filename Safe Alphabet7
 6. Base 32 Encoding ..8
 7. Base 32 Encoding with Extended Hex Alphabet10
 8. Base 16 Encoding ...10
 9. Illustrations and Examples11
 10. Test Vectors ..12
 11. ISO C99 Implementation of Base6414
 12. Security Considerations14
 13. Changes Since RFC 3548 ..15
 14. Acknowledgements ..15
 15. Copying Conditions ..15
 16. References ..16
 16.1. Normative References16
 16.2. Informative References16

Josefsson Standards Track [Page 2]

RFC 4648 Base-N Encodings October 2006

1. Introduction

 Base encoding of data is used in many situations to store or transfer
 data in environments that, perhaps for legacy reasons, are restricted
 to US-ASCII [1] data. Base encoding can also be used in new
 applications that do not have legacy restrictions, simply because it
 makes it possible to manipulate objects with text editors.

 In the past, different applications have had different requirements
 and thus sometimes implemented base encodings in slightly different
 ways. Today, protocol specifications sometimes use base encodings in
 general, and "base64" in particular, without a precise description or
 reference. Multipurpose Internet Mail Extensions (MIME) [4] is often
 used as a reference for base64 without considering the consequences
 for line-wrapping or non-alphabet characters. The purpose of this
 specification is to establish common alphabet and encoding
 considerations. This will hopefully reduce ambiguity in other
 documents, leading to better interoperability.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [2].

3. Implementation Discrepancies

 Here we discuss the discrepancies between base encoding
 implementations in the past and, where appropriate, mandate a
 specific recommended behavior for the future.

3.1. Line Feeds in Encoded Data

 MIME [4] is often used as a reference for base 64 encoding. However,
 MIME does not define "base 64" per se, but rather a "base 64 Content-
 Transfer-Encoding" for use within MIME. As such, MIME enforces a
 limit on line length of base 64-encoded data to 76 characters. MIME
 inherits the encoding from Privacy Enhanced Mail (PEM) [3], stating
 that it is "virtually identical"; however, PEM uses a line length of
 64 characters. The MIME and PEM limits are both due to limits within
 SMTP.

 Implementations MUST NOT add line feeds to base-encoded data unless
 the specification referring to this document explicitly directs base
 encoders to add line feeds after a specific number of characters.

Josefsson Standards Track [Page 3]

RFC 4648 Base-N Encodings October 2006

3.2. Padding of Encoded Data

 In some circumstances, the use of padding ("=") in base-encoded data
 is not required or used. In the general case, when assumptions about
 the size of transported data cannot be made, padding is required to
 yield correct decoded data.

 Implementations MUST include appropriate pad characters at the end of
 encoded data unless the specification referring to this document
 explicitly states otherwise.

 The base64 and base32 alphabets use padding, as described below in
 sections 4 and 6, but the base16 alphabet does not need it; see
 section 8.

3.3. Interpretation of Non-Alphabet Characters in Encoded Data

 Base encodings use a specific, reduced alphabet to encode binary
 data. Non-alphabet characters could exist within base-encoded data,
 caused by data corruption or by design. Non-alphabet characters may
 be exploited as a "covert channel", where non-protocol data can be
 sent for nefarious purposes. Non-alphabet characters might also be
 sent in order to exploit implementation errors leading to, e.g.,
 buffer overflow attacks.

 Implementations MUST reject the encoded data if it contains
 characters outside the base alphabet when interpreting base-encoded
 data, unless the specification referring to this document explicitly
 states otherwise. Such specifications may instead state, as MIME
 does, that characters outside the base encoding alphabet should
 simply be ignored when interpreting data ("be liberal in what you
 accept"). Note that this means that any adjacent carriage return/
 line feed (CRLF) characters constitute "non-alphabet characters" and
 are ignored. Furthermore, such specifications MAY ignore the pad
 character, "=", treating it as non-alphabet data, if it is present
 before the end of the encoded data. If more than the allowed number
 of pad characters is found at the end of the string (e.g., a base 64
 string terminated with "==="), the excess pad characters MAY also be
 ignored.

3.4. Choosing the Alphabet

 Different applications have different requirements on the characters
 in the alphabet. Here are a few requirements that determine which
 alphabet should be used:

Josefsson Standards Track [Page 4]

RFC 4648 Base-N Encodings October 2006

 o Handled by humans. The characters "0" and "O" are easily
 confused, as are "1", "l", and "I". In the base32 alphabet below,
 where 0 (zero) and 1 (one) are not present, a decoder may
 interpret 0 as O, and 1 as I or L depending on case. (However, by
 default it should not; see previous section.)

 o Encoded into structures that mandate other requirements. For base
 16 and base 32, this determines the use of upper- or lowercase
 alphabets. For base 64, the non-alphanumeric characters (in
 particular, "/") may be problematic in file names and URLs.

 o Used as identifiers. Certain characters, notably "+" and "/" in
 the base 64 alphabet, are treated as word-breaks by legacy text
 search/index tools.

 There is no universally accepted alphabet that fulfills all the
 requirements. For an example of a highly specialized variant, see
 IMAP [8]. In this document, we document and name some currently used
 alphabets.

3.5. Canonical Encoding

 The padding step in base 64 and base 32 encoding can, if improperly
 implemented, lead to non-significant alterations of the encoded data.
 For example, if the input is only one octet for a base 64 encoding,
 then all six bits of the first symbol are used, but only the first
 two bits of the next symbol are used. These pad bits MUST be set to
 zero by conforming encoders, which is described in the descriptions
 on padding below. If this property do not hold, there is no
 canonical representation of base-encoded data, and multiple base-
 encoded strings can be decoded to the same binary data. If this
 property (and others discussed in this document) holds, a canonical
 encoding is guaranteed.

 In some environments, the alteration is critical and therefore
 decoders MAY chose to reject an encoding if the pad bits have not
 been set to zero. The specification referring to this may mandate a
 specific behaviour.

4. Base 64 Encoding

 The following description of base 64 is derived from [3], [4], [5],
 and [6]. This encoding may be referred to as "base64".

 The Base 64 encoding is designed to represent arbitrary sequences of
 octets in a form that allows the use of both upper- and lowercase
 letters but that need not be human readable.

Josefsson Standards Track [Page 5]

RFC 4648 Base-N Encodings October 2006

 A 65-character subset of US-ASCII is used, enabling 6 bits to be
 represented per printable character. (The extra 65th character, "=",
 is used to signify a special processing function.)

 The encoding process represents 24-bit groups of input bits as output
 strings of 4 encoded characters. Proceeding from left to right, a
 24-bit input group is formed by concatenating 3 8-bit input groups.
 These 24 bits are then treated as 4 concatenated 6-bit groups, each
 of which is translated into a single character in the base 64
 alphabet.

 Each 6-bit group is used as an index into an array of 64 printable
 characters. The character referenced by the index is placed in the
 output string.

 Table 1: The Base 64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 +
 12 M 29 d 46 u 63 /
 13 N 30 e 47 v
 14 O 31 f 48 w (pad) =
 15 P 32 g 49 x
 16 Q 33 h 50 y

 Special processing is performed if fewer than 24 bits are available
 at the end of the data being encoded. A full encoding quantum is
 always completed at the end of a quantity. When fewer than 24 input
 bits are available in an input group, bits with value zero are added
 (on the right) to form an integral number of 6-bit groups. Padding
 at the end of the data is performed using the ’=’ character. Since
 all base 64 input is an integral number of octets, only the following
 cases can arise:

 (1) The final quantum of encoding input is an integral multiple of 24
 bits; here, the final unit of encoded output will be an integral
 multiple of 4 characters with no "=" padding.

Josefsson Standards Track [Page 6]

RFC 4648 Base-N Encodings October 2006

 (2) The final quantum of encoding input is exactly 8 bits; here, the
 final unit of encoded output will be two characters followed by
 two "=" padding characters.

 (3) The final quantum of encoding input is exactly 16 bits; here, the
 final unit of encoded output will be three characters followed by
 one "=" padding character.

5. Base 64 Encoding with URL and Filename Safe Alphabet

 The Base 64 encoding with an URL and filename safe alphabet has been
 used in [12].

 An alternative alphabet has been suggested that would use "˜" as the
 63rd character. Since the "˜" character has special meaning in some
 file system environments, the encoding described in this section is
 recommended instead. The remaining unreserved URI character is ".",
 but some file system environments do not permit multiple "." in a
 filename, thus making the "." character unattractive as well.

 The pad character "=" is typically percent-encoded when used in an
 URI [9], but if the data length is known implicitly, this can be
 avoided by skipping the padding; see section 3.2.

 This encoding may be referred to as "base64url". This encoding
 should not be regarded as the same as the "base64" encoding and
 should not be referred to as only "base64". Unless clarified
 otherwise, "base64" refers to the base 64 in the previous section.

 This encoding is technically identical to the previous one, except
 for the 62:nd and 63:rd alphabet character, as indicated in Table 2.

Josefsson Standards Track [Page 7]

RFC 4648 Base-N Encodings October 2006

 Table 2: The "URL and Filename safe" Base 64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 17 R 34 i 51 z
 1 B 18 S 35 j 52 0
 2 C 19 T 36 k 53 1
 3 D 20 U 37 l 54 2
 4 E 21 V 38 m 55 3
 5 F 22 W 39 n 56 4
 6 G 23 X 40 o 57 5
 7 H 24 Y 41 p 58 6
 8 I 25 Z 42 q 59 7
 9 J 26 a 43 r 60 8
 10 K 27 b 44 s 61 9
 11 L 28 c 45 t 62 - (minus)
 12 M 29 d 46 u 63 _
 13 N 30 e 47 v (underline)
 14 O 31 f 48 w
 15 P 32 g 49 x
 16 Q 33 h 50 y (pad) =

6. Base 32 Encoding

 The following description of base 32 is derived from [11] (with
 corrections). This encoding may be referred to as "base32".

 The Base 32 encoding is designed to represent arbitrary sequences of
 octets in a form that needs to be case insensitive but that need not
 be human readable.

 A 33-character subset of US-ASCII is used, enabling 5 bits to be
 represented per printable character. (The extra 33rd character, "=",
 is used to signify a special processing function.)

 The encoding process represents 40-bit groups of input bits as output
 strings of 8 encoded characters. Proceeding from left to right, a
 40-bit input group is formed by concatenating 5 8bit input groups.
 These 40 bits are then treated as 8 concatenated 5-bit groups, each
 of which is translated into a single character in the base 32
 alphabet. When a bit stream is encoded via the base 32 encoding, the
 bit stream must be presumed to be ordered with the most-significant-
 bit first. That is, the first bit in the stream will be the high-
 order bit in the first 8bit byte, the eighth bit will be the low-
 order bit in the first 8bit byte, and so on.

Josefsson Standards Track [Page 8]

RFC 4648 Base-N Encodings October 2006

 Each 5-bit group is used as an index into an array of 32 printable
 characters. The character referenced by the index is placed in the
 output string. These characters, identified in Table 3, below, are
 selected from US-ASCII digits and uppercase letters.

 Table 3: The Base 32 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 A 9 J 18 S 27 3
 1 B 10 K 19 T 28 4
 2 C 11 L 20 U 29 5
 3 D 12 M 21 V 30 6
 4 E 13 N 22 W 31 7
 5 F 14 O 23 X
 6 G 15 P 24 Y (pad) =
 7 H 16 Q 25 Z
 8 I 17 R 26 2

 Special processing is performed if fewer than 40 bits are available
 at the end of the data being encoded. A full encoding quantum is
 always completed at the end of a body. When fewer than 40 input bits
 are available in an input group, bits with value zero are added (on
 the right) to form an integral number of 5-bit groups. Padding at
 the end of the data is performed using the "=" character. Since all
 base 32 input is an integral number of octets, only the following
 cases can arise:

 (1) The final quantum of encoding input is an integral multiple of 40
 bits; here, the final unit of encoded output will be an integral
 multiple of 8 characters with no "=" padding.

 (2) The final quantum of encoding input is exactly 8 bits; here, the
 final unit of encoded output will be two characters followed by
 six "=" padding characters.

 (3) The final quantum of encoding input is exactly 16 bits; here, the
 final unit of encoded output will be four characters followed by
 four "=" padding characters.

 (4) The final quantum of encoding input is exactly 24 bits; here, the
 final unit of encoded output will be five characters followed by
 three "=" padding characters.

 (5) The final quantum of encoding input is exactly 32 bits; here, the
 final unit of encoded output will be seven characters followed by
 one "=" padding character.

Josefsson Standards Track [Page 9]

RFC 4648 Base-N Encodings October 2006

7. Base 32 Encoding with Extended Hex Alphabet

 The following description of base 32 is derived from [7]. This
 encoding may be referred to as "base32hex". This encoding should not
 be regarded as the same as the "base32" encoding and should not be
 referred to as only "base32". This encoding is used by, e.g.,
 NextSECure3 (NSEC3) [10].

 One property with this alphabet, which the base64 and base32
 alphabets lack, is that encoded data maintains its sort order when
 the encoded data is compared bit-wise.

 This encoding is identical to the previous one, except for the
 alphabet. The new alphabet is found in Table 4.

 Table 4: The "Extended Hex" Base 32 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 0 9 9 18 I 27 R
 1 1 10 A 19 J 28 S
 2 2 11 B 20 K 29 T
 3 3 12 C 21 L 30 U
 4 4 13 D 22 M 31 V
 5 5 14 E 23 N
 6 6 15 F 24 O (pad) =
 7 7 16 G 25 P
 8 8 17 H 26 Q

8. Base 16 Encoding

 The following description is original but analogous to previous
 descriptions. Essentially, Base 16 encoding is the standard case-
 insensitive hex encoding and may be referred to as "base16" or "hex".

 A 16-character subset of US-ASCII is used, enabling 4 bits to be
 represented per printable character.

 The encoding process represents 8-bit groups (octets) of input bits
 as output strings of 2 encoded characters. Proceeding from left to
 right, an 8-bit input is taken from the input data. These 8 bits are
 then treated as 2 concatenated 4-bit groups, each of which is
 translated into a single character in the base 16 alphabet.

 Each 4-bit group is used as an index into an array of 16 printable
 characters. The character referenced by the index is placed in the
 output string.

Josefsson Standards Track [Page 10]

RFC 4648 Base-N Encodings October 2006

 Table 5: The Base 16 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding
 0 0 4 4 8 8 12 C
 1 1 5 5 9 9 13 D
 2 2 6 6 10 A 14 E
 3 3 7 7 11 B 15 F

 Unlike base 32 and base 64, no special padding is necessary since a
 full code word is always available.

9. Illustrations and Examples

 To translate between binary and a base encoding, the input is stored
 in a structure, and the output is extracted. The case for base 64 is
 displayed in the following figure, borrowed from [5].

 +--first octet--+-second octet--+--third octet--+
 |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
 +-----------+---+-------+-------+---+-----------+
 |5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
 +--1.index--+--2.index--+--3.index--+--4.index--+

 The case for base 32 is shown in the following figure, borrowed from
 [7]. Each successive character in a base-32 value represents 5
 successive bits of the underlying octet sequence. Thus, each group
 of 8 characters represents a sequence of 5 octets (40 bits).

 1 2 3
 01234567 89012345 67890123 45678901 23456789
 +--------+--------+--------+--------+--------+
 |< 1 >< 2| >< 3 ><|.4 >< 5.|>< 6 ><.|7 >< 8 >|
 +--------+--------+--------+--------+--------+
 <===> 8th character
 <====> 7th character
 <===> 6th character
 <====> 5th character
 <====> 4th character
 <===> 3rd character
 <====> 2nd character
 <===> 1st character

Josefsson Standards Track [Page 11]

RFC 4648 Base-N Encodings October 2006

 The following example of Base64 data is from [5], with corrections.

 Input data: 0x14fb9c03d97e
 Hex: 1 4 f b 9 c | 0 3 d 9 7 e
 8-bit: 00010100 11111011 10011100 | 00000011 11011001 01111110
 6-bit: 000101 001111 101110 011100 | 000000 111101 100101 111110
 Decimal: 5 15 46 28 0 61 37 62
 Output: F P u c A 9 l +

 Input data: 0x14fb9c03d9
 Hex: 1 4 f b 9 c | 0 3 d 9
 8-bit: 00010100 11111011 10011100 | 00000011 11011001
 pad with 00
 6-bit: 000101 001111 101110 011100 | 000000 111101 100100
 Decimal: 5 15 46 28 0 61 36
 pad with =
 Output: F P u c A 9 k =

 Input data: 0x14fb9c03
 Hex: 1 4 f b 9 c | 0 3
 8-bit: 00010100 11111011 10011100 | 00000011
 pad with 0000
 6-bit: 000101 001111 101110 011100 | 000000 110000
 Decimal: 5 15 46 28 0 48
 pad with = =
 Output: F P u c A w = =

10. Test Vectors

 BASE64("") = ""

 BASE64("f") = "Zg=="

 BASE64("fo") = "Zm8="

 BASE64("foo") = "Zm9v"

 BASE64("foob") = "Zm9vYg=="

 BASE64("fooba") = "Zm9vYmE="

 BASE64("foobar") = "Zm9vYmFy"

 BASE32("") = ""

 BASE32("f") = "MY======"

 BASE32("fo") = "MZXQ===="

Josefsson Standards Track [Page 12]

RFC 4648 Base-N Encodings October 2006

 BASE32("foo") = "MZXW6==="

 BASE32("foob") = "MZXW6YQ="

 BASE32("fooba") = "MZXW6YTB"

 BASE32("foobar") = "MZXW6YTBOI======"

 BASE32-HEX("") = ""

 BASE32-HEX("f") = "CO======"

 BASE32-HEX("fo") = "CPNG===="

 BASE32-HEX("foo") = "CPNMU==="

 BASE32-HEX("foob") = "CPNMUOG="

 BASE32-HEX("fooba") = "CPNMUOJ1"

 BASE32-HEX("foobar") = "CPNMUOJ1E8======"

 BASE16("") = ""

 BASE16("f") = "66"

 BASE16("fo") = "666F"

 BASE16("foo") = "666F6F"

 BASE16("foob") = "666F6F62"

 BASE16("fooba") = "666F6F6261"

 BASE16("foobar") = "666F6F626172"

Josefsson Standards Track [Page 13]

RFC 4648 Base-N Encodings October 2006

11. ISO C99 Implementation of Base64

 An ISO C99 implementation of Base64 encoding and decoding that is
 believed to follow all recommendations in this RFC is available from:

 http://josefsson.org/base-encoding/

 This code is not normative.

 The code could not be included in this RFC for procedural reasons
 (RFC 3978 section 5.4).

12. Security Considerations

 When base encoding and decoding is implemented, care should be taken
 not to introduce vulnerabilities to buffer overflow attacks, or other
 attacks on the implementation. A decoder should not break on invalid
 input including, e.g., embedded NUL characters (ASCII 0).

 If non-alphabet characters are ignored, instead of causing rejection
 of the entire encoding (as recommended), a covert channel that can be
 used to "leak" information is made possible. The ignored characters
 could also be used for other nefarious purposes, such as to avoid a
 string equality comparison or to trigger implementation bugs. The
 implications of ignoring non-alphabet characters should be understood
 in applications that do not follow the recommended practice.
 Similarly, when the base 16 and base 32 alphabets are handled case
 insensitively, alteration of case can be used to leak information or
 make string equality comparisons fail.

 When padding is used, there are some non-significant bits that
 warrant security concerns, as they may be abused to leak information
 or used to bypass string equality comparisons or to trigger
 implementation problems.

 Base encoding visually hides otherwise easily recognized information,
 such as passwords, but does not provide any computational
 confidentiality. This has been known to cause security incidents
 when, e.g., a user reports details of a network protocol exchange
 (perhaps to illustrate some other problem) and accidentally reveals
 the password because she is unaware that the base encoding does not
 protect the password.

 Base encoding adds no entropy to the plaintext, but it does increase
 the amount of plaintext available and provide a signature for
 cryptanalysis in the form of a characteristic probability
 distribution.

Josefsson Standards Track [Page 14]

RFC 4648 Base-N Encodings October 2006

13. Changes Since RFC 3548

 Added the "base32 extended hex alphabet", needed to preserve sort
 order of encoded data.

 Referenced IMAP for the special Base64 encoding used there.

 Fixed the example copied from RFC 2440.

 Added security consideration about providing a signature for
 cryptoanalysis.

 Added test vectors.

 Fixed typos.

14. Acknowledgements

 Several people offered comments and/or suggestions, including John E.
 Hadstate, Tony Hansen, Gordon Mohr, John Myers, Chris Newman, and
 Andrew Sieber. Text used in this document are based on earlier RFCs
 describing specific uses of various base encodings. The author
 acknowledges the RSA Laboratories for supporting the work that led to
 this document.

 This revised version is based in parts on comments and/or suggestions
 made by Roy Arends, Eric Blake, Brian E Carpenter, Elwyn Davies, Bill
 Fenner, Sam Hartman, Ted Hardie, Per Hygum, Jelte Jansen, Clement
 Kent, Tero Kivinen, Paul Kwiatkowski, and Ben Laurie.

15. Copying Conditions

 Copyright (c) 2000-2006 Simon Josefsson

 Regarding the abstract and sections 1, 3, 8, 10, 12, 13, and 14 of
 this document, that were written by Simon Josefsson ("the author",
 for the remainder of this section), the author makes no guarantees
 and is not responsible for any damage resulting from its use. The
 author grants irrevocable permission to anyone to use, modify, and
 distribute it in any way that does not diminish the rights of anyone
 else to use, modify, and distribute it, provided that redistributed
 derivative works do not contain misleading author or version
 information and do not falsely purport to be IETF RFC documents.
 Derivative works need not be licensed under similar terms.

Josefsson Standards Track [Page 15]

RFC 4648 Base-N Encodings October 2006

16. References

16.1. Normative References

 [1] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

16.2. Informative References

 [3] Linn, J., "Privacy Enhancement for Internet Electronic Mail:
 Part I: Message Encryption and Authentication Procedures", RFC
 1421, February 1993.

 [4] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [5] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
 "OpenPGP Message Format", RFC 2440, November 1998.

 [6] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
 "DNS Security Introduction and Requirements", RFC 4033, March
 2005.

 [7] Klyne, G. and L. Masinter, "Identifying Composite Media
 Features", RFC 2938, September 2000.

 [8] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [9] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [10] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNSSEC Hash
 Authenticated Denial of Existence", Work in Progress, June
 2006.

 [11] Myers, J., "SASL GSSAPI mechanisms", Work in Progress, May
 2000.

 [12] Wilcox-O’Hearn, B., "Post to P2P-hackers mailing list",
 http://zgp.org/pipermail/p2p-hackers/2001-September/
 000315.html, September 2001.

Josefsson Standards Track [Page 16]

RFC 4648 Base-N Encodings October 2006

Author’s Address

 Simon Josefsson
 SJD
 EMail: simon@josefsson.org

Josefsson Standards Track [Page 17]

RFC 4648 Base-N Encodings October 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Josefsson Standards Track [Page 18]

