
Network Working Group H. Khartabil
Request for Comments: 4660 Telio
Category: Standards Track E. Leppanen
 M. Lonnfors
 J. Costa-Requena
 Nokia
 September 2006

 Functional Description of Event Notification Filtering

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The SIP event notification framework describes the usage of the
 Session Initiation Protocol (SIP) for subscriptions and notifications
 of changes to the state of a resource. The document does not
 describe a mechanism whereby filtering of event notification
 information can be achieved.

 This document describes the operations a subscriber performs in order
 to put filtering rules associated with a subscription to event
 notification information in place. The handling, by the subscriber,
 of responses to subscriptions carrying filtering rules and the
 handling of notifications with filtering rules applied to them are
 also described. Furthermore, the document conveys how the notifier
 behaves when receiving such filtering rules and how a notification is
 constructed.

Khartabil, et al. Standards Track [Page 1]

RFC 4660 Functional Description of Filtering September 2006

Table of Contents

 1. Introduction ..3
 2. Conventions ...3
 3. Client Operation ..4
 3.1. Transport Mechanism ..4
 3.2. SUBSCRIBE Bodies ...4
 3.3. Subscriber Generating of SUBSCRIBE Requests4
 3.3.1. Defining the Filtering Rules4
 3.3.2. Request-URI vs. Filter URI5
 3.3.3. Changing Filters within a Dialog5
 3.3.4. Subscriber Interpreting of SIP Responses6
 3.4. Subscriber Processing of NOTIFY Requests6
 4. Resource List Server Behaviour7
 4.1. Request-URI vs. Filter URI7
 4.2. Changing Filters within a Dialog9
 5. Server Operation ..9
 5.1. NOTIFY Bodies ..9
 5.2. Notifier Processing of SUBSCRIBE Requests9
 5.2.1. Request-URI vs. Filter URI10
 5.2.2. Changing Filters within a Dialog11
 5.3. Notifier Generating of NOTIFY Requests11
 5.3.1. Generation of NOTIFY Contents12
 5.3.2. Handling of Notification Triggering Rules13
 5.4. Handling Abnormal Cases13
 6. XML Document Validation ..14
 7. Examples ...14
 7.1. Presence Specific Examples14
 7.1.1. Subscriber Requests Messaging-Related Information ..15
 7.1.2. Subscriber Fetches Information about "Open"
 Communication Means16
 7.1.3. Subscriber Requests Notifications When
 Presentity’s Status Changes18
 7.2. Watcher Information Specific Examples21
 7.2.1. Watcher Subscriber Makes Subscription to
 Get All the Information about Active Watchers22
 7.2.2. Watcher Subscriber Requests Information of
 Watchers with Specific Subscription Duration
 Conditions ...23
 7.2.3. Watcher Subscriber Requests Specific
 Watcher Info on Specific Triggers24
 8. Security Considerations ..27
 9. IANA Considerations ..28
 10. Acknowledgements ..28
 11. References ..28
 11.1. Normative References28
 11.2. Informative References28

Khartabil, et al. Standards Track [Page 2]

RFC 4660 Functional Description of Filtering September 2006

1. Introduction

 SIP event notification is described in [3]. It defines a general
 framework for sending subscriptions and receiving notifications in
 SIP-based systems. It introduces the concept of event packages,
 which are concrete applications of the general event framework to a
 specific usage of events.

 Filtering is a mechanism for controlling the content of event
 notifications. Additionally, the subscriber may specify the rules
 for when a notification should be sent to it. The filtering
 mechanism is expected to be particularly valuable to users of mobile
 wireless access devices. The characteristics of the devices
 typically include high latency, low bandwidth, low data processing
 capabilities, small display, and limited battery power. Such devices
 can benefit from the ability to filter the amount of information
 generated at the source of the event notification. However,
 implementers need to be aware of the computational burden on the
 source of the event notification. This is discussed further in
 Section 8.

 It is stated in [3] that the notifier may send a NOTIFY at any time,
 but typically it is sent when the state of the resource changes. It
 also states that the notifications would contain the complete and
 current state of the resource authorized for a certain subscriber to
 see. The format of such resource state information is package
 specific. In this memo, we assume that the NOTIFY for any package
 contains an XML document.

 This document, together with [5], presents a mechanism for filtering
 whereby a subscriber describes its preference of when notifications
 are to be sent to it and what they are to contain. It also describes
 how the notifier functions when generating notifications by taking
 into account filters and default functionality of the package/
 service.

 The XML format for defining the filter is described in [5].

2. Conventions

 In this document, the key words ’MUST’, ’MUST NOT’, ’REQUIRED’,
 ’SHALL’, ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’,
 and ’OPTIONAL’ are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for compliant implementations.

 "Content" refers to the XML document that appears in a notification
 reflecting the state of a resource.

Khartabil, et al. Standards Track [Page 3]

RFC 4660 Functional Description of Filtering September 2006

3. Client Operation

3.1. Transport Mechanism

 Transportation of the filter to the server is achieved by inserting
 the XML document, as defined in [5], in the body of the SUBSCRIBE
 request. Alternatively, the XML document can be uploaded to the
 server using means outside the scope of this document.

3.2. SUBSCRIBE Bodies

 SIP entities compliant with this specification MUST support the
 content type ’application/simple-filter+xml’.

3.3. Subscriber Generating of SUBSCRIBE Requests

 This section presents additional functionality required from the
 subscriber when filters are used in the bodies of the SUBSCRIBE
 requests. Normal operations of services (e.g., as defined in [8],
 [10], and [4]) are otherwise followed.

 As defined in [3], the SUBSCRIBE message MAY contain a body. This
 body would carry filtering information. Honouring those filters is
 at the discretion of the notifier and might depend on local policies.

 No content in the body of a SUBSCRIBE indicates to the notifier that
 no filter is being requested, so the notifier is instructed to send
 all the NOTIFY requests using the notifier’s own or service-specific
 policy. Note that, for example, in the list case [4], the filter
 might have been uploaded to the server beforehand (by means outside
 the scope of this document).

 If the body of the SUBSCRIBE includes the filter, the body MUST be of
 the MIME-Type ’application/simple-filter+xml’.

3.3.1. Defining the Filtering Rules

 Multiple filters MAY be included in one SUBSCRIBE. This is achieved
 by including multiple <filter> elements in the filter [5]. Each
 <filter> element may include a ’uri’ attribute.

 A SUBSCRIBE request destined to a list URI [4] MAY include multiple
 filters specific to individual resources. This is achieved by
 including multiple <filter> elements with different URIs of resources
 in each of those elements. This resource specific resource-specific
 filter are processed first before any list specific list-specific
 filter, if any. The list specific list-specific filter may or may
 not include a URI.

Khartabil, et al. Standards Track [Page 4]

RFC 4660 Functional Description of Filtering September 2006

 Furthermore, regardless of whether the SUBSCRIBE is destined to a
 list URI, there can only be one filter applicable to a single
 resource or domain within a single SUBSCRIBE. That is, each filter
 within a subscription MUST uniquely identify one resource or one
 domain.

 A filter can be enabled and disabled using the ’enabled’ attribute in
 the <filter> element, as described in [5].

3.3.2. Request-URI vs. Filter URI

 The URI in the filter defines the target resource. For example, in
 the Presence service case, it is the presentity’s presence
 information to which the filter is applied. The subscriber MAY
 choose to leave the URI in the filter undefined. If the URI is not
 defined within the filter, the filter applies to the resource
 identified in the Request-URI. Similarly, the subscriber MAY define
 a filter URI. If the Request-URI is a list URI [4], the filter URI
 MUST be the list URI, a sub-list URI, or resource whose URI is one of
 the URIs that result from a lookup, by a Resource List Server (RLS),
 on the Request-URI. If it is not, the filter may be ignored or may
 be rejected. URI matching is done according to the matching rules
 defined for a particular scheme (SIP URI matching rules are defined
 in RFC 3261 [2]).

 A filter may also be addressed to a domain using the ’domain’
 attribute instead of the ’uri’ attribute. In this case, the filter
 applies to resources in that domain. This can be used when a
 subscription is for a resource that is an event list with many
 resources from differing domains. If an individual resource-specific
 filter is present along with the domain filter, this
 resource-specific filter overrides any domain-specific filter, if
 any.

3.3.3. Changing Filters within a Dialog

 The subscriber MAY reset or change the filter by re-issuing a new
 SUBSCRIBE request within the existing dialog. A SUBSCRIBE within the
 exiting dialog that does not contain a filter is assumed to maintain
 existing filters. This means that filters are persistent within a
 dialog and are only explicitly removed.

 A subscriber requiring removal of a filter may do so by using the
 ’remove="true"’ attribute, as defined in [5].

 In the case where the URI in the filter is that of a list, a
 subscriber may override the existing filter with a filter for an
 individual resource that is part of the list subscribed to earlier by

Khartabil, et al. Standards Track [Page 5]

RFC 4660 Functional Description of Filtering September 2006

 issuing a new SUBSCRIBE within the existing dialog and including a
 filter, specific for that individual resource, using a new filter ID.
 The new filter need not include the original filter since a filter is
 only removed in the manner indicated above.

 A filter is replaced by the subscriber re-issuing the filter using
 the same filter ID and replacing the contents of the filter.
 Replacing a filter by changing the filter ID and keeping the resource
 URI is considered an error since this causes the server to assume
 that two filters are placed for the same resource.

 Again, a filter can be disabled and re-enabled using the ’enabled’
 attribute in the <filter> element, as described in [5].

3.3.4. Subscriber Interpreting of SIP Responses

 The SUBSCRIBE request will be confirmed with a final response. A
 200-class response indicates that the subscription has been accepted
 and that a NOTIFY will be sent immediately. A "200" response
 indicates that the subscription has been accepted and that the filter
 is accepted. A "202" response merely indicates that the subscription
 has been understood, that the content type has been accepted, and
 that authorization may or may not have been granted. A "202"
 response also indicates that the filter has not been accepted yet.
 The acceptance of the filter MAY arrive in a subsequent NOTIFY.

 A non-200 class final response indicates that no subscription or
 dialog has been created, and no subsequent NOTIFY message will be
 sent. All non-200 class final responses have the same meanings and
 handling as described in [2] and [3].

 Specifically, a "415" response indicates that the MIME type
 ’application/simple-filter+xml’ is not understood by the notifier. A
 "488" response indicates that the content type (filter) is understood
 but some aspects of it were either not understood or not accepted.

3.4. Subscriber Processing of NOTIFY Requests

 If the 2xx response was returned for the SUBSCRIBE, the NOTIFY that
 follows MAY contain a body that describes the present state of the
 resource after the filters have been applied.

 If the NOTIFY indicates that a subscription has been terminated [3],
 the subscription is assumed to be terminated. Behaviour in such
 events is also described in [3].

 If the subscription is indicated as active, NOTIFY requests are
 handled as described in package-specific documents and in [3].

Khartabil, et al. Standards Track [Page 6]

RFC 4660 Functional Description of Filtering September 2006

4. Resource List Server Behaviour

 The Resource List Server is defined in [4]. This section describes
 how such an entity behaves in the presence of a filter in a
 subscription to a list.

4.1. Request-URI vs. Filter URI

 If the URI is not defined within the filter, the filter applies to
 the resource list identified in the Request-URI of the SUBSCRIBE
 request. This results in the filters being applied to all the
 notifications that the RLS issues to this subscription. The same
 processing applies to a filter that defines a URI that matches the
 request-URI of the SUBSCRIBE request. That is, the filter applies to
 all notifications that the RLS issues to this subscription.

 If the URI indicated by the filter is for one resource whose URI is
 one of the URIs that result from a lookup by the RLS on the
 Request-URI, the filter for that particular resource is extracted and
 propagated in the SUBSCRIBE request sent to that resource. It is
 possible to have more than one filter in a SUBSCRIBE request body,
 and therefore a filter specific to a resource MUST be extracted and
 only that one is propagated. For example, if the Request-URI in a
 SUBSCRIBE has the value "sip:mybuddies@example.com", where
 "bob@example.com" is a resource belonging to that list, and the URI
 in a filter is "sip:bob@example.com", the filter specific for Bob is
 extracted and placed in the body of the SUBSCRIBE sent to
 "bob@example.com".

 If the URI indicated by the filter is for one resource whose URI is
 NOT under the RLS administrative control, the RLS propagates the
 filter to all the fanned out subscriptions. This is to accommodate
 the scenario where the subscriber knows that there are sub-lists in
 the event list that are under a different administrative domain from
 that where the original subscription was sent, and the subscriber
 wishes to set a filter for a resource in that sub-list.

 If the URI indicated by the filter is for one resource whose URI is
 under the RLS administrative control but is not part of the resource
 list that the subscription was addressed to, the filter is not
 propagated. In this case, it is the RLS’s responsibility to make
 sure that this filter is applied to notifications issued, if
 information about that resource is present.

Khartabil, et al. Standards Track [Page 7]

RFC 4660 Functional Description of Filtering September 2006

 For example: If we have 2 lists, each located on its own RLS:

 List1 (list1@example.com) on RLS1 has: bob@example.com

 list2@biloxi.com

 List2 on RLS2 has: alice@biloxi.com sarah@example.com
 (Note: list2 is a resource in list1)

 RLS1 receives the following SUBSCRIBE request (the SUBSCRIBE is
 addressed to list1 and contains 2 filters: one for sarah@example.com
 and the other for alice@biloxi.com):

 SUBSCRIBE sip:List1@example.com SIP/2.0
 ...
 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="pidf" urn="urn:ietf:params:xml:ns:pidf"/>
 </ns-bindings>
 <filter id="999" uri="sip:sarah@example.com">
 <what>
 <include type="namespace">
 urn:ietf:params:xml:ns:pidf</include>
 <exclude>
 //pidf:tuple/pidf:note</exclude>
 </what>
 </filter>
 <filter id="8439" uri="sip:alice@biloxi.com">
 <what>
 <include>
 //pidf:tuple/pidf:status/pidf:basic</include>
 </what>
 </filter>
 </filter-set>

 RLS1 fans out subscriptions to resources on list1. The text above
 suggests that if a filter is destined to a resource that is not part
 of the list and is outside the administrative domain of an RLS, then
 that filter is propagated. The rest are consumed. In our example,
 only the filter to alice@biloxi.com is propagated since biloxi.com is
 not under the administrative domain of RLS1. The filter to
 sarah@example.com is consumed, and RLS1 needs to apply that filter to
 notifications it receives.

 URI matching is done according to the matching rules defined for a
 particular scheme (SIP URI matching rules are defined in RFC 3261
 [2]).

Khartabil, et al. Standards Track [Page 8]

RFC 4660 Functional Description of Filtering September 2006

 A filter may also be addressed to a domain using the ’domain’
 attribute instead of the ’uri’ attribute. In this case, the filter
 applies to resources in that domain, and the RLS MUST NOT apply
 filters to any notifications it sends. Instead, it MUST forward the
 filter with all fanned-out subscriptions to the notifiers.

 As indicated in Section 3.3.1, multiple filters can be present in a
 SUBSCRIBE request. Filters can also be added or modified as
 indicated in Section 3.3.3. In such circumstances, an RLS MUST check
 that there are no filters addressed to the same resource or domain,
 and if there are, it MUST reject the SUBSCRIBE request with a "488"
 error response.

4.2. Changing Filters within a Dialog

 If an RLS receives a subscription refresh request with no filters
 specified (empty payload), the RLS assumes that the client does not
 wish to update the filters. If an RLS receives a subscription
 refresh with a filter containing the ’remove="true"’ attribute, as
 defined in [5], the RLS assumes that the client is removing that
 filter identified by the filter ID.

 If an RLS receives a subscription refresh request with a filter that
 already exists (i.e., having the same filter ID), the RLS interprets
 it as a replacement of the existing filter. Replacing a filter by
 changing the filter ID and keeping the resource URI is considered an
 error since this causes the RLS to assume that two filters are in
 place for the same resource.

 A filter can be disabled and re-enabled using the ’enabled’ attribute
 in the <filter> element, as described in [5].

5. Server Operation

5.1. NOTIFY Bodies

 SIP entities compliant with this specification MUST support
 content-type ’application/simple-filter+xml’.

5.2. Notifier Processing of SUBSCRIBE Requests

 This section presents additional functionality required from the
 notifier when filters are used in the bodies of the SUBSCRIBE
 requests. Normal package-specific functionality is otherwise
 followed.

Khartabil, et al. Standards Track [Page 9]

RFC 4660 Functional Description of Filtering September 2006

 The notifier will examine the Content-Type header field and will
 return a 415 response if it does not understand the content type
 ’application/simple-filter+xml’.

 A 200-class response indicates that the subscription has been
 accepted, and the NOTIFY will be sent immediately. A "200" response
 indicates that the subscription has been accepted, the user is
 authorized, and the filter is accepted. A "202" response merely
 indicates that the subscription has been understood, but that the
 authorization may or may not have been granted. A "202" response
 also indicates that the filters have not been accepted yet. The
 acceptance of the filters MAY arrive in a subsequent NOTIFY.

 Procedures described in Section 5.4 are followed if an error is
 encountered.

 As indicated in Section 3.3.1, multiple filters can be present in a
 SUBSCRIBE request. Filters can also be added or modified as
 indicated in Section 3.3.3. In such circumstances, a server MUST
 check that there are no filters addressed to the same resource or
 domain, and if they are, it MUST reject the SUBSCRIBE request with a
 "488" error response.

5.2.1. Request-URI vs. Filter URI

 The subscriber may have chosen to leave the URI in the filter
 undefined. If the URI is not defined within the filter, the filter
 applies to the resource identified in the Request-URI.

 Similarly, the subscriber may have chosen to include a URI in the
 filter. In this case, the filter applies to all notifications sent
 with content associated with the resource with that URI for this
 subscription. If the Request-URI and the URI in the filter do not
 match, the filter may be ignored or rejected. URI matching is done
 according to the matching rules defined for a particular scheme (SIP
 URI matching rules are defined in RFC 3261 [2]).

 A filter may also be addressed to a domain using the ’domain’
 attribute instead of the ’uri’ attribute. In this case, the filter
 applies to resources in that domain. A notifier MUST ignore any
 filter using a ’domain’ attribute containing a domain for which this
 notifier is not responsible. The notifier MUST NOT apply such a
 filter to any notification it sends. Notifiers belonging to the
 domain MUST apply the filter to all notifications it sends for that
 subscription, unless policy dictates otherwise.

Khartabil, et al. Standards Track [Page 10]

RFC 4660 Functional Description of Filtering September 2006

5.2.2. Changing Filters within a Dialog

 If a server receives a subscription refresh request with no filters
 specified (empty payload), it assumes that the client does not wish
 to update the filters. If it receives a subscription refresh with a
 filter containing the ’remove="true"’ attribute, as defined in [5],
 the server assumes that the client is removing the filter identified
 by the filter ID.

 If the server receives a subscription refresh request with a filter
 that already exists (i.e., having the same filter ID), it interprets
 it as a replacement of the existing filter. Replacing a filter by
 changing the filter ID and keeping the resource URI is considered an
 error since this causes the server to assume that two filters are
 placed for the same resource.

5.3. Notifier Generating of NOTIFY Requests

 Upon receiving the SUBSCRIBE with the filter, the notifier SHOULD
 retain the filter as long as the subscription persists. The filter
 MAY be incorporated within an existing subscription (in an active
 dialog) by sending a re-SUBSCRIBE that includes the filter in the
 body.

 If the response sent to the SUBSCRIBE was a "202" and the "202" was
 chosen because the filter could not be accepted that time, the NOTIFY
 MAY be used to terminate the subscription if the filter is found
 unacceptable.

 As described in [3], the NOTIFY message MAY contain a body that
 describes the state of the resource. This body is in one of the
 formats listed in the Accept header field of the SUBSCRIBE, or in the
 package-specific default if the Accept header field is omitted.

 Based on the contents of a filter, the following processing occurs:

 o A filter with only a <what> element will result in sending the
 requested resource state information in that <what> element
 whenever there is a change in the resource state.

 o A filter with only a <trigger> element will result in sending all
 resource state information whenever there is a change in the
 resource state that matches the triggers.

 o A filter with <what> and <trigger> elements will result in sending
 the requested resource state information in that <what> element
 whenever there is a change in the resource state that matches the
 triggers.

Khartabil, et al. Standards Track [Page 11]

RFC 4660 Functional Description of Filtering September 2006

 When a filter is disabled (by setting the ’enabled’ attribute to
 "false"), it means the same thing as the absence of that filter.
 That is, all state and state changes are reported by issuing a
 notification to the subscriber (assuming there are no other filters).

 When a filter is re-enabled (by setting the ’enabled’ attribute to
 "true" or by omitting the ’enabled’ attribute), the notifier behaves
 as if the filter has just been placed by the SUBSCRIBE request
 enabling it. Immediate NOTIFY rules, as stated in Section 5.3.1,
 apply.

5.3.1. Generation of NOTIFY Contents

 If the NOTIFY being sent is the one sent immediately after a 2xx
 response to the original SUBSCRIBE, its contents MUST be populated
 according to the filter <what> element, unless the processing of the
 filters will take too long or the NOTIFY request is following a "202"
 response to the SUBSCRIBE request and is terminating the
 subscription. In the case that the filter is taking too long to
 process, the NOTIFY request being sent may be empty or may be
 populated with a pre-configured value as authorised to that
 subscriber. If applying the filter results in no content to be
 delivered, the NOTIFY MUST be sent with empty contents. If the
 filter contains <trigger> elements, the notifier ignores the trigger
 values when generating the first NOTIFY request.

 The input to the content filter is a package-specific XML document
 (e.g., [7] and [9]) derived according to the package-specific
 specifications, (e.g., [8] and [10]).

 The content is filtered according to the expressions in the <what>
 element of the filter. The expression indicates the delivered XML
 elements and/or attributes. Prefixes of the namespaces of the items
 of the XML document to be filtered must be expanded before applying
 the filter to the items.

 The expression directly states the XML elements and attributes to be
 delivered in the NOTIFY, along with their values. In addition to the
 selected contents, the namespaces of all the selected items are also
 included in the NOTIFY. The XML elements and/or attributes indicated
 by the expression in the <what> element must be items that the
 subscriber is authorised to see. If they are not, the notifier
 policy dictates the behaviour of the notifier (which can ignore the
 filter, parts of the filter, or reject the filter completely).
 Implementers need to carefully consider such an implementation
 decision; the subscriber may not be aware of the authorised contents
 and therefore most likely will include a filter requesting
 unauthorised contents. It is therefore RECOMMENDED that notifiers

Khartabil, et al. Standards Track [Page 12]

RFC 4660 Functional Description of Filtering September 2006

 just ignore the parts of the filter that are requesting unauthorised
 info (i.e., the filter in the <filter> element where the unauthorised
 contents are requested is ignored). If polite blocking is used by
 the notifier, the notifier may choose to deliver notifications
 containing bogus information in the unauthorised elements or
 attributes and applying the filter afterwards.

 The resultant XML document MUST be well formed and valid according to
 the XML schema. This means that all mandatory elements and
 attributes, along with their values, MUST be included in the XML
 document regardless of the expression. In other words, if the result
 of applying a filter on an XML document is a non-valid XML document,
 the notifier MUST add elements and attributes, along with their
 values, from the original XML document into the newly formulated one
 in order for it to be valid.

5.3.2. Handling of Notification Triggering Rules

 There can be several <trigger> elements inside one <filter> element.
 If the criteria for any of the <trigger> elements are satisfied, a
 NOTIFY SHOULD be generated.

 The items (XML elements and/or attributes) indicated by the
 expression in the <changed> element, <added> element, or <removed>
 element must be items that the subscriber is authorised to access.
 If they are not, the notifier policy dictates the behaviour of the
 notifier (which can ignore the filter, parts of the filter, or reject
 the filter completely).

5.4. Handling Abnormal Cases

 In case of an invalid filter definition where the XML document of the
 filter is not aligned with the XML schema of the filter format [5],
 the notifier rejects the SUBSCRIBE request with a "488" response. A
 Warning header field in the response may give a better indication as
 to why the filters were not accepted. If the subscription was
 accepted with a "202" response but the invalid filter was discovered
 after that, a NOTIFY with a subscription-state of value ’terminated’
 is sent. An event-reason-value "badfilter", introduced here, of
 subexp-params [3] MAY be included.

 In case of an erroneous expression in the filter definition, the
 notifier either ignores the filter definition or terminates the
 subscription.

 If a <what> or <trigger> element is empty, the notifier proceeds as
 if the element did not exist.

Khartabil, et al. Standards Track [Page 13]

RFC 4660 Functional Description of Filtering September 2006

6. XML Document Validation

 The subscriber of the filter MUST ensure that the XML document
 inserted as the SUBSCRIBE request body is well formed and valid. The
 subscriber MUST NOT insert any extension elements or attributes into
 the XML document unless it has access to the extension schema and can
 validate the XML document. The XML document notifier MAY validate
 the XML document according to the schemas, including extension
 schemas, to which it has access that are applicable to this XML
 document.

7. Examples

 The following sections include filtering examples for Presence and
 Watcher Information. The format of filter is according to [5].

7.1. Presence Specific Examples

 This section describes three use cases where the presence information
 filtering solution is utilised [8]. In the first use case, the
 watcher is interested in getting messaging-specific information of a
 certain presentity. In the second use case, the watcher is
 interested in getting information about the communication means and
 contact addresses on which the presentity is currently available for
 communication. The third case shows how a presentity can request
 triggers to receive notifications.

 Below is the presentity’s presence information in PIDF [7]. It
 includes two tuples: one for the instant messaging and another for
 the voice-related information.

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="432sd">
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:presentity@example.com</contact>
 </tuple>
 <tuple id="thr76jk">
 <status>
 <basic>open</basic>
 </status>
 <rpid:class>voice</rpid:class>
 <contact>tel:2224055555@example.com</contact>

Khartabil, et al. Standards Track [Page 14]

RFC 4660 Functional Description of Filtering September 2006

 </tuple>
 </presence>

7.1.1. Subscriber Requests Messaging-Related Information

 The subscriber initiates a subscription to the presentity’s messaging
 (MMS, IM, and SMS) related presence information. The subscription
 includes the content limiting filter.

 The filtered content is indicated with an expression. This
 expression selects the <basic> element and all the parent elements
 (i.e., the <status>, the <tuple>, and its root element), the <class>
 element, and the <contact> element. The filter matches if the
 <class> element contains "MMS", "SMS", or "IM".

 In this case, the notification includes the contents of the tuple
 that has the value "IM" in its <class> element.

 SUBSCRIBE request from the subscriber including filter:

 SUBSCRIBE sip:presentity@example.com
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>
 From: <sip:watcher@example.com>;tag:12341111
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 3600
 Event: Presence
 Contact: <sip:watcher@client.example.com>
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="pidf" urn="urn:ietf:params:xml:ns:pidf"/>
 <ns-binding prefix="rpid"
 urn="urn:ietf:params:xml:ns:pidf:rpid"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <what>
 <include type="xpath">
 //pidf:tuple[rpid:class="IM" or rpid:class="SMS"
 or rpid:class="MMS"]/pidf:status/pidf:basic
 </include>
 <include type="xpath">
 //pidf:tuple[rpid:class="IM" or rpid:class="SMS"
 or rpid:class="MMS"]/rpid:class

Khartabil, et al. Standards Track [Page 15]

RFC 4660 Functional Description of Filtering September 2006

 </include>
 <include type="xpath">
 //pidf:tuple[rpid:class="IM" or rpid:class="SMS"
 or rpid:class="MMS"]/pidf:contact
 </include>
 </what>
 </filter>
 </filter-set>

 Notification to the subscriber:

 NOTIFY sip:watcher@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: <sip:watcher@example.com>;tag:12341111
 From: <sip:presentity@example.com>;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Event: Presence
 Subscription-State: active; expires=3599
 Contact: sip:presentity@server.example.com
 Content-Type: application/pidf+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="432sd">
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:presentity@example.com</contact>
 </tuple>
 </presence>

7.1.2. Subscriber Fetches Information about "Open" Communication Means

 The subscriber makes a subscription to the presentity’s available
 communication means. The subscription includes the content-limiting
 filter.

 The filtered content is indicated with an expression. This
 expression selects the <basic> element and all the parent elements
 (i.e., the <status>, the <tuple>, and its root element), the <class>
 element, and the <contact> element. The filter matches if the
 <basic> element’s value is "open".

Khartabil, et al. Standards Track [Page 16]

RFC 4660 Functional Description of Filtering September 2006

 In this case, the notification returns the contents of the tuple that
 has the value "open" inside the <status> element.

 SUBSCRIBE request from the subscriber including filter:

 SUBSCRIBE sip:presentity@example.com SIP/2.0
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>
 From: <sip:watcher@example.com>;tag:12341111
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 3600
 Event: Presence
 Contact: <sip:watcher@client.example.com>
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="pidf" urn="urn:ietf:params:xml:ns:pidf"/>
 <ns-binding prefix="rpid"
 urn="urn:ietf:params:xml:ns:pidf:rpid"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <what>
 <include type="xpath">
 //pidf:tuple/pidf:status[pidf:basic="open"]/pidf:basic
 </include>
 <include type="xpath">
 //pidf:tuple[pidf:status/pidf:basic="open"]/rpid:class
 </include>
 <include type="xpath">
 //pidf:tuple[pidf:status/pidf:basic="open"]/pidf:contact
 </include>
 </what>
 </filter>
 </filter-set>

 Notification to the subscriber:

 NOTIFY sip:watcher@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: <sip:watcher@example.com>;tag:12341111
 From: <sip:presentity@example.com>;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Event: Presence

Khartabil, et al. Standards Track [Page 17]

RFC 4660 Functional Description of Filtering September 2006

 Subscription-State: active; expires=3599
 Contact: sip:presentity@server.example.com
 Content-Type: application/pidf+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="thr76jk">
 <status>
 <basic>open</basic>
 </status>
 <rpid:class>voice</rpid:class>
 <contact>tel:2224055555@example.com</contact>
 </tuple>
 </presence>

7.1.3. Subscriber Requests Notifications When Presentity’s Status
 Changes

 The subscriber subscribes to the presentity, specifying in the filter
 that it wants notifications only when the <basic> element has changed
 to value "open".

 SUBSCRIBE request from the subscriber including filter:

 SUBSCRIBE sip:presentity@example.com
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>
 From: <sip:watcher@example.com>;tag:12341111
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 3600
 Event: Presence
 Contact: <sip:watcher@client.example.com>
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="pidf" urn="urn:ietf:params:xml:ns:pidf"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <trigger>
 <changed from="closed" to="open">
 /pidf:presence/pidf:tuple/pidf:status/pidf:basic

Khartabil, et al. Standards Track [Page 18]

RFC 4660 Functional Description of Filtering September 2006

 </changed>
 </trigger>
 </filter>
 </filter-set>

 At some point during the subscription, a second PIDF document is
 created with both tuples having a status of "closed":

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="432sd">
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:presentity@example.com</contact>
 </tuple>
 <tuple id="thr76jk">
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>voice</rpid:class>
 <contact>tel:2224055555@example.com</contact>
 </tuple>
 </presence>

 A NOTIFY is not sent to the subscriber in this case.

 Now, a third PIDF document is created when the IM status changes to
 "open":

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="432sd">
 <status>
 <basic>open</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:presentity@example.com</contact>
 </tuple>
 <tuple id="thr76jk">
 <status>
 <basic>closed</basic>
 </status>

Khartabil, et al. Standards Track [Page 19]

RFC 4660 Functional Description of Filtering September 2006

 <rpid:class>voice</rpid:class>
 <contact>tel:2224055555@example.com</contact>
 </tuple>
 </presence>

 Notification containing both tuples is sent to the subscriber in this
 case:

 NOTIFY sip:watcher@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: <sip:watcher@example.com>;tag:12341111
 From: <sip:presentity@example.com>;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Event: Presence
 Subscription-State: active; expires=3599
 Contact: sip:presentity@server.example.com
 Content-Type: application/pidf+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
 entity="sip:presentity@example.com">
 <tuple id="432sd">
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:presentity@example.com</contact>
 </tuple>
 <tuple id="thr76jk">
 <status>
 <basic>open</basic>
 </status>
 <rpid:class>voice</rpid:class>
 <contact>tel:2224055555@example.com</contact>
 </tuple>
 </presence>

Khartabil, et al. Standards Track [Page 20]

RFC 4660 Functional Description of Filtering September 2006

7.2. Watcher Information Specific Examples

 The examples in this section use the winfo template-package with the
 presence event package [10].

 Watcher information to a Presentity:

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:presentity@example.com"
 package="presence">
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="509"
 expiration="20"
 event="approved">sip:watcherA@example.com"</watcher>
 <watcher status="pending"
 id="sr8fdsj"
 duration-subscribed="501"
 expiration="100"
 event="subscribe">sip:watcherB@example.com"</watcher>
 <watcher status="terminated"
 id="sr8fdsj"
 duration-subscribed="500"
 expiration="0"
 event="rejected">sip:watcherC@example.com"</watcher>
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="20"
 expiration="30"
 event="approved">sip:watcherD@example.com"</watcher>
 </watcher-list>
 </watcherinfo>

Khartabil, et al. Standards Track [Page 21]

RFC 4660 Functional Description of Filtering September 2006

7.2.1. Watcher Subscriber Makes Subscription to Get All the Information
 about Active Watchers

 SUBSCRIBE request from the presentity including the filter:

 SUBSCRIBE sip:presentity@example.com
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>
 From: <sip:presentity@example.com>;tag:12341111
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 3600
 Event: Presence.winfo
 Contact: sip:presentity@client.example.com
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="wi"
 urn="urn:ietf:params:xml:ns:watcherinfo"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <what>
 <include>
 /wi:watcherinfo/wi:watcher-list[@package="presence"]/
 wi:watcher[@status="active"]
 </include>
 </what>
 </filter>
 </filter-set>

 Notification to the subscriber:

 NOTIFY sip:presentity@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: sip:presentity@example.com;tag:12341111
 From: sip:presentity@example.com;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Contact: sip:presentity@server.example.com
 Event: Presence.winfo

 Content-Type: application/watcherinfo+xml
 Content-Length: ...

Khartabil, et al. Standards Track [Page 22]

RFC 4660 Functional Description of Filtering September 2006

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:presentity@example.com"
 package="presence">
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="509"
 expiration="20"
 event="approved">sip:watcherA@example.com"</watcher>
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="20"
 expiration="30"
 event="approved">sip:watcherD@example.com"</watcher>
 </watcher-list>
 </watcherinfo>

7.2.2. Watcher Subscriber Requests Information of Watchers with
 Specific Subscription Duration Conditions

 SUBSCRIBE request from the presentity including the filter:

 SUBSCRIBE sip:presentity@example.com
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>;tag:12341111
 From: <sip:presentity@example.com>
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 0
 Event: Presence.winfo
 Contact: <sip:presentity@client.example.com>
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-filter">
 <ns-bindings>
 <ns-binding prefix="wi"
 urn="urn:ietf:params:xml:ns:watcherinfo"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <what>
 <include>
 /wi:watcherinfo/wi:watcher-list[@package="presence"]/
 wi:watcher[@duration-subscribed>500]
 </include>
 </what>

Khartabil, et al. Standards Track [Page 23]

RFC 4660 Functional Description of Filtering September 2006

 </filter>
 </filter-set>

 Notification to the subscriber:

 NOTIFY sip:presentity@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: sip:presentity@example.com;tag:12341111
 From: sip:presentity@example.com;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Contact: sip:presentity@server.example.com
 Event: Presence.winfo

 Content-Type: application/watcherinfo+xml
 Content-Length: ...

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:presentity@example.com"
 package="presence">
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="509"
 expiration="20"
 event="approved">sip:watcherA@example.com"</watcher>
 <watcher status="pending"
 id="sr8fdsj"
 duration-subscribed="501"
 expiration="100"
 event="subscribe">sip:watcherB@example.com"</watcher>
 </watcher-list>
 </watcherinfo>

7.2.3. Watcher Subscriber Requests Specific Watcher Info on Specific
 Triggers

 This filter selects watcher information notifications [9] to be sent
 when the pending subscription status has changed from "pending" to
 "terminated". In the notification, only the watchers that have a
 status of "terminated" and an event of "rejected" are included.

 SUBSCRIBE request from the Watcher Subscriber including the filter:

 SUBSCRIBE sip:presentity@example.com
 Via: SIP/2.0/TCP client.example.com:5060;branch=z9hG4bKxjfdsjfk
 To: <sip:presentity@example.com>;tag:12341111

Khartabil, et al. Standards Track [Page 24]

RFC 4660 Functional Description of Filtering September 2006

 From: <sip:presentity@example.com>
 Call-ID: 32432udfidfjmk342
 Cseq: 1 SUBSCRIBE
 Expires: 0
 Event: Presence.winfo
 Contact: <sip:presentity@client.example.com>
 Content-Type: application/simple-filter+xml
 Content-Length: ...

 <?xml version="1.0" encoding="UTF-8"?>
 <filter-set xmlns="urn:ietf:params:xml:ns:simple-winfo-filter">
 <ns-bindings>
 <ns-binding prefix="wi"
 urn="urn:ietf:params:xml:ns:watcherinfo"/>
 </ns-bindings>
 <filter id="123" uri="sip:presentity@example.com">
 <what>
 <include>
 /wi:watcherinfo/wi:watcher-list[@package="presence"]/
 wi:watcher[@status="terminated" and @event="rejected"]
 </include>
 </what>
 <trigger>
 <changed from="pending"
 to="terminated">
 //@status
 </changed>
 </trigger>
 </filter>
 </filter-set>

 At some point during the subscription, a second Winfo document is
 created due to some change:

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:presentity@example.com"
 package="presence">
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="509"
 expiration="20"
 event="approved">sip:watcherA@example.com"</watcher>
 <watcher status="terminated"
 id="sr8fdsj"
 duration-subscribed="501"
 expiration="100"

Khartabil, et al. Standards Track [Page 25]

RFC 4660 Functional Description of Filtering September 2006

 event="rejected">sip:watcherB@example.com"</watcher>
 <watcher status="terminated"
 id="sr8fdsj"
 duration-subscribed="500"
 expiration="0"
 event="rejected">sip:watcherC@example.com"</watcher>
 <watcher status="active"
 id="sr8fdsj"
 duration-subscribed="20"
 expiration="30"
 event="approved">sip:watcherD@example.com"</watcher>
 </watcher-list>
 </watcherinfo>

 Notification to the subscriber is created, taking into account the
 <trigger> and <what> elements:

 NOTIFY sip:presentity@client.example.com SIP/2.0
 Via: SIP/2.0/TCP presence.example.com:5060;branch=z9hG4bKxjfder
 To: sip:presentity@example.com;tag:12341111
 From: sip:presentity@example.com;tag:232321
 Call-ID: 32432udfidfjmk342
 Cseq: 1 NOTIFY
 Contact: sip:presentity@server.example.com
 Event: Presence.winfo

 Content-Type: application/watcherinfo+xml
 Content-Length: ...

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:presentity@example.com"
 package="presence">
 <watcher status="terminated"
 id="sr8fdsj"
 duration-subscribed="501"
 expiration="100"
 event="rejected">sip:watcherB@example.com"</watcher>
 <watcher status="terminated"
 id="sr8fdsj"
 duration-subscribed="500"
 expiration="0"
 event="rejected">sip:watcherC@example.com"</watcher>
 </watcher-list>
 </watcherinfo>

Khartabil, et al. Standards Track [Page 26]

RFC 4660 Functional Description of Filtering September 2006

8. Security Considerations

 The presence of filters in the body of a SIP message has a
 significant effect on the ways in which the request is handled at a
 server. As a result, it is especially important that messages
 containing this extension be authenticated and authorized.
 Authentication can be achieved using the Digest Authentication
 mechanism described in [2]. The authorisation decision is based on
 the permissions that the resource (notifier) has given to the
 watcher. An example of such auhorisation policy can be found in
 [11].

 Processing of requests and looking up filters requires set operations
 and searches, which can require some amount of computation. This
 enables a DoS attack whereby a user can send requests with
 substantial numbers of messages with large contents, in the hopes of
 overloading the server. To counter this, the server can establish a
 limit on the number of occurrences of the <what>, <changed>, <added>,
 and <removed> elements that are allowed in the filters. A default
 limit of 40 is RECOMMENDED; however, servers may raise or lower the
 limit depending upon their specific engineered capacity.

 Requests can reveal sensitive information about a User Agent’s (UA’s)
 capabilities. If this information is sensitive, it SHOULD be
 encrypted using SIP S/MIME capabilities [6]. All package-specific
 security measures MUST be followed.

 Propagating filters in SUBSCRIBE requests to foreign domains reveals
 sensitive information about a user’s resource lists. It is therefore
 required that an RLS does not forward a filter if that filter is
 addressed to a resource that is under the administrative domain of
 the RLS, but that is not on the resource list. Section 4.1 shows an
 example where such a scenario can occur.

 Note that a filtered document located at a subscriber may project
 false reality. For example, if a subscriber asked to be notified
 when a resource has changed his presence state from "closed" to
 "open" but not from "open" to "closed", then the subscriber may
 afterwards be under the false impression that the resource’s presence
 state is "open", even long after the resource has changed it to
 "closed". Therefore, subscribers need to be sure what they put in a
 filter, understand what they asked for, and be prepared to be out of
 sync with the real state of a resource.

Khartabil, et al. Standards Track [Page 27]

RFC 4660 Functional Description of Filtering September 2006

9. IANA Considerations

 A new event-reason-value "badfilter" is defined to represent the
 event where the filter is not well formed and/or not accepted. No
 IANA registration is required for this value.

10. Acknowledgements

 The authors would like to thank George Foti, Tim Moran, Sreenivas
 Addagatla, Juha Kalliokulju, Jari Urpalainen, and Mary Barnes for
 their valuable input.

11. References

11.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Roach, A.B., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [4] Roach, A.B., Campbell, B., and J. Rosenberg, "A Session
 Initiation Protocol (SIP) Event Notification Extension for
 Resource Lists", RFC 4663, September 2006.

 [5] Khartabil, H., Leppanen, E., Lonnfors, M., and J. Costa-Requena,
 "An Extensible Markup Language (XML)-Based Format for Event
 Notification Filtering", RFC 4661, September 2006.

 [6] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Message Specification", RFC 3851, July
 2004.

11.2. Informative References

 [7] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
 J. Peterson, "Presence Information Data Format (PIDF)", RFC
 3863, August 2004.

 [8] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

Khartabil, et al. Standards Track [Page 28]

RFC 4660 Functional Description of Filtering September 2006

 [9] Rosenberg, J., "An Extensible Markup Language (XML) Based Format
 for Watcher Information", RFC 3858, August 2004.

 [10] Rosenberg, J., "A Watcher Information Event Template-Package for
 the Session Initiation Protocol (SIP)", RFC 3857, August 2004.

 [11] Rosenberg, J., "Presence Authorization Rules", Work in Progress,
 June 2006.

Khartabil, et al. Standards Track [Page 29]

RFC 4660 Functional Description of Filtering September 2006

Authors’ Addresses

 Hisham Khartabil
 Telio
 P.O. Box 1203 Vika
 Oslo
 Norway

 Phone: +47 2167 3544
 EMail: hisham.khartabil@telio.no

 Eva Leppanen
 Nokia
 P.O BOX 785
 Tampere
 Finland

 Phone: +358 7180 77066
 EMail: eva-maria.leppanen@nokia.com

 Mikko Lonnfors
 Nokia
 P.O BOX 321
 Helsinki
 Finland

 Phone: + 358 71800 8000
 EMail: mikko.lonnfors@nokia.com

 Jose Costa-Requena
 Nokia
 P.O. Box 321
 FIN-00045 NOKIA GROUP
 FINLAND

 Phone: +358 71800 8000
 EMail: jose.costa-requena@nokia.com

Khartabil, et al. Standards Track [Page 30]

RFC 4660 Functional Description of Filtering September 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Khartabil, et al. Standards Track [Page 31]

