
Network Working Group K. Jaganathan
Request for Comments: 4757 L. Zhu
Category: Informational J. Brezak
 Microsoft Corporation
 December 2006

 The RC4-HMAC Kerberos Encryption Types Used by Microsoft Windows

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

IESG Note

 This document documents the RC4 Kerberos encryption types first
 introduced in Microsoft Windows 2000. Since then, these encryption
 types have been implemented in a number of Kerberos implementations.
 The IETF Kerberos community supports publishing this specification as
 an informational document in order to describe this widely
 implemented technology. However, while these encryption types
 provide the operations necessary to implement the base Kerberos
 specification [RFC4120], they do not provide all the required
 operations in the Kerberos cryptography framework [RFC3961]. As a
 result, it is not generally possible to implement potential
 extensions to Kerberos using these encryption types. The Kerberos
 encryption type negotiation mechanism [RFC4537] provides one approach
 for using such extensions even when a Kerberos infrastructure uses
 long-term RC4 keys. Because this specification does not implement
 operations required by RFC 3961 and because of security concerns with
 the use of RC4 and MD4 discussed in Section 8, this specification is
 not appropriate for publication on the standards track.

Jaganathan, et al. Informational [Page 1]

RFC 4757 RC4-HMAC December 2006

Abstract

 The Microsoft Windows 2000 implementation of Kerberos introduces a
 new encryption type based on the RC4 encryption algorithm and using
 an MD5 HMAC for checksum. This is offered as an alternative to using
 the existing DES-based encryption types.

 The RC4-HMAC encryption types are used to ease upgrade of existing
 Windows NT environments, provide strong cryptography (128-bit key
 lengths), and provide exportable (meet United States government
 export restriction requirements) encryption. This document describes
 the implementation of those encryption types.

Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document3
 2. Key Generation ..3
 3. Basic Operations ..4
 4. Checksum Types ..5
 5. Encryption Types ..6
 6. Key Strength Negotiation ..8
 7. GSS-API Kerberos V5 Mechanism Type8
 7.1. Mechanism Specific Changes8
 7.2. GSS-API MIC Semantics9
 7.3. GSS-API WRAP Semantics11
 8. Security Considerations ..15
 9. IANA Considerations ..15
 10. Acknowledgements ..15
 11. References ..16
 11.1. Normative References16
 11.2. Informative References16

Jaganathan, et al. Informational [Page 2]

RFC 4757 RC4-HMAC December 2006

1. Introduction

 The Microsoft Windows 2000 implementation of Kerberos contains new
 encryption and checksum types for two reasons. First, for export
 reasons early in the development process, 56-bit DES encryption could
 not be exported, and, second, upon upgrade from Windows NT 4.0 to
 Windows 2000, accounts will not have the appropriate DES keying
 material to do the standard DES encryption. Furthermore, 3DES was
 not available for export when Windows 2000 was released, and there
 was a desire to use a single flavor of encryption in the product for
 both US and international products.

 As a result, there are two new encryption types and one new checksum
 type introduced in Microsoft Windows 2000.

 Note that these cryptosystems aren’t intended to be complete,
 general-purpose Kerberos encryption or checksum systems as defined in
 [RFC3961]: there is no one-one mapping between the operations in this
 documents and the primitives described in [RFC3961].

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
 be interpreted as described in [RFC2119].

2. Key Generation

 On upgrade from existing Windows NT domains, the user accounts would
 not have a DES-based key available to enable the use of DES base
 encryption types specified in [RFC4120] and [RFC3961]. The key used
 for RC4-HMAC is the same as the existing Windows NT key (NT Password
 Hash) for compatibility reasons. Once the account password is
 changed, the DES-based keys are created and maintained. Once the DES
 keys are available, DES-based encryption types can be used with
 Kerberos.

 The RC4-HMAC string to key function is defined as follows:

 String2Key(password)

 K = MD4(UNICODE(password))

 The RC4-HMAC keys are generated by using the Windows UNICODE version
 of the password. Each Windows UNICODE character is encoded in
 little-endian format of 2 octets each. Then an MD4 [RFC1320] hash
 operation is performed on just the UNICODE characters of the password
 (not including the terminating zero octets).

Jaganathan, et al. Informational [Page 3]

RFC 4757 RC4-HMAC December 2006

 For an account with a password of "foo", this String2Key("foo") will
 return:

 0xac, 0x8e, 0x65, 0x7f, 0x83, 0xdf, 0x82, 0xbe,
 0xea, 0x5d, 0x43, 0xbd, 0xaf, 0x78, 0x00, 0xcc

3. Basic Operations

 The MD5 HMAC function is defined in [RFC2104]. It is used in this
 encryption type for checksum operations. Refer to [RFC2104] for
 details on its operation. In this document, this function is
 referred to as HMAC(Key, Data) returning the checksum using the
 specified key on the data.

 The basic MD5 hash operation is used in this encryption type and
 defined in [RFC1321]. In this document, this function is referred to
 as MD5(Data) returning the checksum of the data.

 RC4 is a stream cipher licensed by RSA Data Security. In this
 document, the function is referred to as RC4(Key, Data) returning the
 encrypted data using the specified key on the data.

 These encryption types use key derivation. With each message, the
 message type (T) is used as a component of the keying material. The
 following table summarizes the different key derivation values used
 in the various operations. Note that these differ from the key
 derivations used in other Kerberos encryption types. T = the message
 type, encoded as a little-endian four-byte integer.

 1. AS-REQ PA-ENC-TIMESTAMP padata timestamp, encrypted with the
 client key (T=1)
 2. AS-REP Ticket and TGS-REP Ticket (includes TGS session key or
 application session key), encrypted with the service key (T=2)
 3. AS-REP encrypted part (includes TGS session key or application
 session key), encrypted with the client key (T=8)
 4. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS
 session key (T=4)
 5. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with the TGS
 authenticator subkey (T=5)
 6. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator cksum, keyed
 with the TGS session key (T=6)
 7. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator (includes TGS
 authenticator subkey), encrypted with the TGS session key T=7)
 8. TGS-REP encrypted part (includes application session key),
 encrypted with the TGS session key (T=8)
 9. TGS-REP encrypted part (includes application session key),
 encrypted with the TGS authenticator subkey (T=8)

Jaganathan, et al. Informational [Page 4]

RFC 4757 RC4-HMAC December 2006

 10. AP-REQ Authenticator cksum, keyed with the application session
 key (T=10)
 11. AP-REQ Authenticator (includes application authenticator
 subkey), encrypted with the application session key (T=11)
 12. AP-REP encrypted part (includes application session subkey),
 encrypted with the application session key (T=12)
 13. KRB-PRIV encrypted part, encrypted with a key chosen by the
 application. Also for data encrypted with GSS Wrap (T=13)
 14. KRB-CRED encrypted part, encrypted with a key chosen by the
 application (T=14)
 15. KRB-SAFE cksum, keyed with a key chosen by the application.
 Also for data signed in GSS MIC (T=15)

 Relative to RFC-1964 key uses:

 T = 0 in the generation of sequence number for the MIC token
 T = 0 in the generation of sequence number for the WRAP token
 T = 0 in the generation of encrypted data for the WRAPPED token

 All strings in this document are ASCII unless otherwise specified.
 The lengths of ASCII-encoded character strings include the trailing
 terminator character (0). The concat(a,b,c,...) function will return
 the logical concatenation (left to right) of the values of the
 arguments. The nonce(n) function returns a pseudo-random number of
 "n" octets.

4. Checksum Types

 There is one checksum type used in this encryption type. The
 Kerberos constant for this type is:

 #define KERB_CHECKSUM_HMAC_MD5 (-138)

 The function is defined as follows:

 K = the Key
 T = the message type, encoded as a little-endian four-byte integer

 CHKSUM(K, T, data)

 Ksign = HMAC(K, "signaturekey") //includes zero octet at end
 tmp = MD5(concat(T, data))
 CHKSUM = HMAC(Ksign, tmp)

Jaganathan, et al. Informational [Page 5]

RFC 4757 RC4-HMAC December 2006

5. Encryption Types

 There are two encryption types used in these encryption types. The
 Kerberos constants for these types are:

 #define KERB_ETYPE_RC4_HMAC 23
 #define KERB_ETYPE_RC4_HMAC_EXP 24

 The basic encryption function is defined as follows:

 T = the message type, encoded as a little-endian four-byte integer.

 OCTET L40[14] = "fortybits";

 The header field on the encrypted data in KDC messages is:

 typedef struct _RC4_MDx_HEADER {
 OCTET Checksum[16];
 OCTET Confounder[8];
 } RC4_MDx_HEADER, *PRC4_MDx_HEADER;

 ENCRYPT (K, export, T, data)
 {
 struct EDATA {
 struct HEADER {
 OCTET Checksum[16];
 OCTET Confounder[8];
 } Header;
 OCTET Data[0];
 } edata;

 if (export){
 *((DWORD *)(L40+10)) = T;
 K1 = HMAC(K, L40); // where the length of L40 in
 // octets is 14
 }
 else
 {
 K1 = HMAC(K, &T); // where the length of T in octets
 // is 4
 }
 memcpy (K2, K1, 16);
 if (export) memset (K1+7, 0xAB, 9);

 nonce (edata.Confounder, 8);
 memcpy (edata.Data, data);

Jaganathan, et al. Informational [Page 6]

RFC 4757 RC4-HMAC December 2006

 edata.Checksum = HMAC (K2, edata);
 K3 = HMAC (K1, edata.Checksum);

 RC4 (K3, edata.Confounder);
 RC4 (K3, data.Data);
 }

 DECRYPT (K, export, T, edata)
 {
 // edata looks like
 struct EDATA {
 struct HEADER {
 OCTET Checksum[16];
 OCTET Confounder[8];
 } Header;
 OCTET Data[0];
 } edata;

 if (export){
 *((DWORD *)(L40+10)) = T;
 HMAC (K, L40, 14, K1);
 }
 else
 {
 HMAC (K, &T, 4, K1);
 }
 memcpy (K2, K1, 16);
 if (export) memset (K1+7, 0xAB, 9);

 K3 = HMAC (K1, edata.Checksum);
 RC4 (K3, edata.Confounder);
 RC4 (K3, edata.Data);

 // verify generated and received checksums
 checksum = HMAC (K2, concat(edata.Confounder, edata.Data));
 if (checksum != edata.Checksum)
 printf("CHECKSUM ERROR !!!!!!\n");
 }

 The KDC message is encrypted using the ENCRYPT function not including
 the Checksum in the RC4_MDx_HEADER.

 The character constant "fortybits" evolved from the time when a
 40-bit key length was all that was exportable from the United States.
 It is now used to recognize that the key length is of "exportable"
 length. In this description, the key size is actually 56 bits.

Jaganathan, et al. Informational [Page 7]

RFC 4757 RC4-HMAC December 2006

 The pseudo-random operation [RFC3961] for both enctypes above is
 defined as follows:

 pseudo-random(K, S) = HMAC-SHA1(K, S)

 where K is the protocol key and S is the input octet string.
 HMAC-SHA1 is defined in [RFC2104] and the output of HMAC-SHA1 is the
 20-octet digest.

6. Key Strength Negotiation

 A Kerberos client and server can negotiate over key length if they
 are using mutual authentication. If the client is unable to perform
 full-strength encryption, it may propose a key in the "subkey" field
 of the authenticator, using a weaker encryption type. The server
 must then either return the same key or suggest its own key in the
 subkey field of the AP reply message. The key used to encrypt data
 is derived from the key returned by the server. If the client is
 able to perform strong encryption but the server is not, it may
 propose a subkey in the AP reply without first being sent a subkey in
 the authenticator.

7. GSS-API Kerberos V5 Mechanism Type

7.1. Mechanism Specific Changes

 The Generic Security Service Application Program Interface (GSS-API)
 per-message tokens also require new checksum and encryption types.
 The GSS-API per-message tokens are adapted to support these new
 encryption types. See [RFC1964] Section 1.2.2.

 The only support quality of protection is:

 #define GSS_KRB5_INTEG_C_QOP_DEFAULT 0x0

 When using this RC4-based encryption type, the sequence number is
 always sent in big-endian rather than little-endian order.

 The Windows 2000 implementation also defines new GSS-API flags in the
 initial token passed when initializing a security context. These
 flags are passed in the checksum field of the authenticator. See
 [RFC1964] Section 1.1.1.

 GSS_C_DCE_STYLE - This flag was added for use with Microsoft’s
 implementation of Distributed Computing Environment Remote Procedure
 Call (DCE RPC), which initially expected three legs of
 authentication. Setting this flag causes an extra AP reply to be
 sent from the client back to the server after receiving the server’s

Jaganathan, et al. Informational [Page 8]

RFC 4757 RC4-HMAC December 2006

 AP reply. In addition, the context negotiation tokens do not have
 GSS-API per-message tokens -- they are raw AP messages that do not
 include object identifiers.

 #define GSS_C_DCE_STYLE 0x1000

 GSS_C_IDENTIFY_FLAG - This flag allows the client to indicate to the
 server that it should only allow the server application to identify
 the client by name and ID, but not to impersonate the client.

 #define GSS_C_IDENTIFY_FLAG 0x2000

 GSS_C_EXTENDED_ERROR_FLAG - Setting this flag indicates that the
 client wants to be informed of extended error information. In
 particular, Windows 2000 status codes may be returned in the data
 field of a Kerberos error message. This allows the client to
 understand a server failure more precisely. In addition, the server
 may return errors to the client that are normally handled at the
 application layer in the server, in order to let the client try to
 recover. After receiving an error message, the client may attempt to
 resubmit an AP request.

 #define GSS_C_EXTENDED_ERROR_FLAG 0x4000

 These flags are only used if a client is aware of these conventions
 when using the Security Support Provider Interface (SSPI) on the
 Windows platform; they are not generally used by default.

 When NetBIOS addresses are used in the GSS-API, they are identified
 by the GSS_C_AF_NETBIOS value. This value is defined as:

 #define GSS_C_AF_NETBIOS 0x14

 NetBios addresses are 16-octet addresses typically composed of 1 to
 15 characters, trailing blank (ASCII char 20) filled, with a 16th
 octet of 0x0.

7.2. GSS-API MIC Semantics

 The GSS-API checksum type and algorithm are defined in Section 5.
 Only the first 8 octets of the checksum are used. The resulting
 checksum is stored in the SGN_CKSUM field. See [RFC1964] Section 1.2
 for GSS_GetMIC() and GSS_Wrap(conf_flag=FALSE).

Jaganathan, et al. Informational [Page 9]

RFC 4757 RC4-HMAC December 2006

 The GSS_GetMIC token has the following format:

 Byte no Name Description
 0..1 TOK_ID Identification field.
 Tokens emitted by GSS_GetMIC() contain
 the hex value 01 01 in this field.
 2..3 SGN_ALG Integrity algorithm indicator.
 11 00 - HMAC
 4..7 Filler Contains ff ff ff ff
 8..15 SND_SEQ Sequence number field.
 16..23 SGN_CKSUM Checksum of "to-be-signed data",
 calculated according to algorithm
 specified in SGN_ALG field.

 The MIC mechanism used for GSS-MIC-based messages is as follows:

 GetMIC(Kss, direction, export, seq_num, data)
 {
 struct Token {
 struct Header {
 OCTET TOK_ID[2];
 OCTET SGN_ALG[2];
 OCTET Filler[4];
 };
 OCTET SND_SEQ[8];
 OCTET SGN_CKSUM[8];
 } Token;

 Token.TOK_ID = 01 01;
 Token.SGN_SLG = 11 00;
 Token.Filler = ff ff ff ff;

 // Create the sequence number

 if (direction == sender_is_initiator)
 {
 memset(Token.SEND_SEQ+4, 0xff, 4)
 }
 else if (direction == sender_is_acceptor)
 {
 memset(Token.SEND_SEQ+4, 0, 4)
 }
 Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24;
 Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16;
 Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8;
 Token.SEND_SEQ[3] = (seq_num & 0x000000ff);

Jaganathan, et al. Informational [Page 10]

RFC 4757 RC4-HMAC December 2006

 // Derive signing key from session key

 Ksign = HMAC(Kss, "signaturekey");
 // length includes terminating null

 // Generate checksum of message - SGN_CKSUM
 // Key derivation salt = 15

 Sgn_Cksum = MD5((int32)15, Token.Header, data);

 // Save first 8 octets of HMAC Sgn_Cksum

 Sgn_Cksum = HMAC(Ksign, Sgn_Cksum);
 memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8);

 // Encrypt the sequence number

 // Derive encryption key for the sequence number
 // Key derivation salt = 0

 if (exportable)
 {
 Kseq = HMAC(Kss, "fortybits", (int32)0);
 // len includes terminating null
 memset(Kseq+7, 0xab, 7)
 }
 else
 {
 Kseq = HMAC(Kss, (int32)0);
 }
 Kseq = HMAC(Kseq, Token.SGN_CKSUM);

 // Encrypt the sequence number

 RC4(Kseq, Token.SND_SEQ);
 }

7.3. GSS-API WRAP Semantics

 There are two encryption keys for GSS-API message tokens, one that is
 128 bits in strength and one that is 56 bits in strength as defined
 in Section 6.

 All padding is rounded up to 1 byte. One byte is needed to say that
 there is 1 byte of padding. The DES-based mechanism type uses 8-byte
 padding. See [RFC1964] Section 1.2.2.3.

Jaganathan, et al. Informational [Page 11]

RFC 4757 RC4-HMAC December 2006

 The RC4-HMAC GSS_Wrap() token has the following format:

 Byte no Name Description
 0..1 TOK_ID Identification field.
 Tokens emitted by GSS_Wrap() contain
 the hex value 02 01 in this field.
 2..3 SGN_ALG Checksum algorithm indicator.
 11 00 - HMAC
 4..5 SEAL_ALG ff ff - none
 00 00 - DES-CBC
 10 00 - RC4
 6..7 Filler Contains ff ff
 8..15 SND_SEQ Encrypted sequence number field.
 16..23 SGN_CKSUM Checksum of plaintext padded data,
 calculated according to algorithm
 specified in SGN_ALG field.
 24..31 Confounder Random confounder.
 32..last Data Encrypted or plaintext padded data.

 The encryption mechanism used for GSS-wrap-based messages is as
 follows:

 WRAP(Kss, encrypt, direction, export, seq_num, data)
 {
 struct Token { // 32 octets
 struct Header {
 OCTET TOK_ID[2];
 OCTET SGN_ALG[2];
 OCTET SEAL_ALG[2];
 OCTET Filler[2];
 };
 OCTET SND_SEQ[8];
 OCTET SGN_CKSUM[8];
 OCTET Confounder[8];
 } Token;

 Token.TOK_ID = 02 01;
 Token.SGN_SLG = 11 00;
 Token.SEAL_ALG = (no_encrypt)? ff ff : 10 00;
 Token.Filler = ff ff;

 // Create the sequence number

 if (direction == sender_is_initiator)
 {

Jaganathan, et al. Informational [Page 12]

RFC 4757 RC4-HMAC December 2006

 memset(&Token.SEND_SEQ[4], 0xff, 4)
 }
 else if (direction == sender_is_acceptor)
 {
 memset(&Token.SEND_SEQ[4], 0, 4)
 }
 Token.SEND_SEQ[0] = (seq_num & 0xff000000) >> 24;
 Token.SEND_SEQ[1] = (seq_num & 0x00ff0000) >> 16;
 Token.SEND_SEQ[2] = (seq_num & 0x0000ff00) >> 8;
 Token.SEND_SEQ[3] = (seq_num & 0x000000ff);

 // Generate random confounder

 nonce(&Token.Confounder, 8);

 // Derive signing key from session key

 Ksign = HMAC(Kss, "signaturekey");

 // Generate checksum of message -
 // SGN_CKSUM + Token.Confounder
 // Key derivation salt = 15

 Sgn_Cksum = MD5((int32)15, Token.Header,
 Token.Confounder);

 // Derive encryption key for data
 // Key derivation salt = 0

 for (i = 0; i < 16; i++) Klocal[i] = Kss[i] ^ 0xF0;
 // XOR
 if (exportable)
 {
 Kcrypt = HMAC(Klocal, "fortybits", (int32)0);
 // len includes terminating null
 memset(Kcrypt+7, 0xab, 7);
 }
 else
 {
 Kcrypt = HMAC(Klocal, (int32)0);
 }

 // new encryption key salted with seq

 Kcrypt = HMAC(Kcrypt, (int32)seq);

Jaganathan, et al. Informational [Page 13]

RFC 4757 RC4-HMAC December 2006

 // Encrypt confounder (if encrypting)

 if (encrypt)
 RC4(Kcrypt, Token.Confounder);

 // Sum the data buffer

 Sgn_Cksum += MD5(data); // Append to checksum

 // Encrypt the data (if encrypting)

 if (encrypt)
 RC4(Kcrypt, data);

 // Save first 8 octets of HMAC Sgn_Cksum

 Sgn_Cksum = HMAC(Ksign, Sgn_Cksum);
 memcpy(Token.SGN_CKSUM, Sgn_Cksum, 8);

 // Derive encryption key for the sequence number
 // Key derivation salt = 0

 if (exportable)
 {
 Kseq = HMAC(Kss, "fortybits", (int32)0);
 // len includes terminating null
 memset(Kseq+7, 0xab, 7)
 }
 else
 {
 Kseq = HMAC(Kss, (int32)0);
 }
 Kseq = HMAC(Kseq, Token.SGN_CKSUM);

 // Encrypt the sequence number

 RC4(Kseq, Token.SND_SEQ);

 // Encrypted message = Token + Data
 }

 The character constant "fortybits" evolved from the time when a
 40-bit key length was all that was exportable from the United States.
 It is now used to recognize that the key length is of "exportable"
 length. In this description, the key size is actually 56 bits.

Jaganathan, et al. Informational [Page 14]

RFC 4757 RC4-HMAC December 2006

8. Security Considerations

 Care must be taken in implementing these encryption types because
 they use a stream cipher. If a different IV is not used in each
 direction when using a session key, the encryption is weak. By using
 the sequence number as an IV, this is avoided.

 There are two classes of attack on RC4 described in [MIRONOV].
 Strong distinguishers distinguish an RC4 keystream from randomness at
 the start of the stream. Weak distinguishers can operate on any part
 of the keystream, and the best ones, described in [FMcG] and
 [MANTIN05], can exploit data from multiple, different keystreams. A
 consequence of these is that encrypting the same data (for instance,
 a password) sufficiently many times in separate RC4 keystreams can be
 sufficient to leak information to an adversary. The encryption types
 defined in this document defend against these by constructing a new
 keystream for every message. However, it is RECOMMENDED not to use
 the RC4 encryption types defined in this document for high-volume
 connections.

 Weaknesses in MD4 [BOER91] were demonstrated by den Boer and
 Bosselaers in 1991. In August 2004, Xiaoyun Wang, et al., reported
 MD4 collisions generated using hand calculation [WANG04].
 Implementations based on Wang’s algorithm can find collisions in real
 time. However, the intended usage of MD4 described in this document
 does not rely on the collision-resistant property of MD4.
 Furthermore, MD4 is always used in the context of a keyed hash in
 this document. Although no evidence has suggested keyed MD4 hashes
 are vulnerable to collision-based attacks, no study has directly
 proved that the HMAC-MD4 is secure: the existing study simply assumed
 that the hash function used in HMAC is collision proof. It is thus
 RECOMMENDED not to use the RC4 encryption types defined in this
 document if alternative stronger encryption types, such as
 aes256-cts-hmac-sha1-96 [RFC3962], are available.

9. IANA Considerations

 Section 5 of this document defines two Kerberos encryption types
 rc4-hmac (23) and rc4-hmac-exp (24). The Kerberos parameters
 registration page at <http://www.iana.org/assignments/kerberos-
 parameters> has been updated to reference this document for these two
 encryption types.

10. Acknowledgements

 The authors wish to thank Sam Hartman, Ken Raeburn, and Qunli Li for
 their insightful comments.

Jaganathan, et al. Informational [Page 15]

RFC 4757 RC4-HMAC December 2006

11. References

11.1. Normative References

 [RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320,
 April 1992.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism",
 RFC 1964, June 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC3962] Raeburn, K., "Advanced Encryption Standard (AES)
 Encryption for Kerberos 5", RFC 3962, February 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4537] Zhu, L., Leach, P., and K. Jaganathan, "Kerberos
 Cryptosystem Negotiation Extension", RFC 4537, June 2006.

11.2. Informative References

 [BOER91] den Boer, B. and A. Bosselaers, "An Attack on the Last Two
 Rounds of MD4", Proceedings of the 11th Annual
 International Cryptology Conference on Advances in
 Cryptology, pages: 194 - 203, 1991.

 [FMcG] Fluhrer, S. and D. McGrew, "Statistical Analysis of the
 Alleged RC4 Keystream Generator", Fast Software
 Encryption: 7th International Workshop, FSE 2000, April
 2000, <http://www.mindspring.com/˜dmcgrew/rc4-03.pdf>.

Jaganathan, et al. Informational [Page 16]

RFC 4757 RC4-HMAC December 2006

 [MANTIN05] Mantin, I., "Predicting and Distinguishing Attacks on RC4
 Keystream Generator", Advances in Cryptology -- EUROCRYPT
 2005: 24th Annual International Conference on the Theory
 and Applications of Cryptographic Techniques, May 2005.

 [MIRONOV] Mironov, I., "(Not So) Random Shuffles of RC4", Advances
 in Cryptology -- CRYPTO 2002: 22nd Annual International
 Cryptology Conference, August 2002,
 <http://eprint.iacr.org/2002/067.pdf>.

 [WANG04] Wang, X., Lai, X., Feng, D., Chen, H., and X. Yu,
 "Cryptanalysis of Hash functions MD4 and RIPEMD", August
 2004, <http://www.infosec.sdu.edu.cn/paper/md4-ripemd-
 attck.pdf>.

Authors’ Addresses

 Karthik Jaganathan
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: karthikj@microsoft.com

 Larry Zhu
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: lzhu@microsoft.com

 John Brezak
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: jbrezak@microsoft.com

Jaganathan, et al. Informational [Page 17]

RFC 4757 RC4-HMAC December 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Jaganathan, et al. Informational [Page 18]

